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Abstract

Networked access and mobile devices provide near constant data generation and

collection. Users, environments, applications, each generate different types of data;

from the voluntarily provided data posted in social networks to data collected by

sensors on mobile devices, it is becoming trivial to access big data caches. Process-

ing sufficiently large amounts of data results in inferences that can be characterized

as privacy invasive. In order to address privacy risks we must understand the limits

of the data exploring relationships between variables and how the user is reflected

in them.

In this dissertation we look at data collected from social networks and sensors

to identify some aspect of the user or their surroundings. In particular, we find

that from social media metadata we identify individual user accounts and from the

magnetic field readings we identify both the (unique) cellphone device owned by

the user and their course-grained location. In each project we collect real-world

datasets and apply supervised learning techniques, particularly multi-class classifi-

cation algorithms to test our hypotheses. We use both leave-one-out cross validation

as well as k-fold cross validation to reduce any bias in the results. Throughout the

dissertation we find that unprotected data reveals sensitive information about users.

Each chapter also contains a discussion about possible obfuscation techniques or

countermeasures and their effectiveness with regards to the conclusions we present.

Overall our results show that deriving information about users is attainable and,

with each of these results, users would have limited if any indication that any type

of analysis was taking place.
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Data is being collected at an unprecedented rate. More than 100 networked devices

are connected every second [1]; each of which, report on some facet of the life of

its owner. In this dissertation we explore the identification risk of two types of data:

sensor data and social media data.

The greatest impact of this work can be found in the research methods and the

general methodology we present. In terms of algorithms, we show an implemen-

tation of the divide-and-conquer design paradigm for a Random Forest classifier

allowing the algorithm to process successfully tens of thousands of classes; then,

also algorithmically but in the field of time series classification and analysis, we

present a classifier that takes into account the form (i.e., the shape or outline) of a

signal and uses it to determine the best fit of an unknown unlabeled observation. In

terms of applications, we propose a methodology to analyze metadata and sensor

information deriving from them unique sets of identifiers that link back to user ac-

counts, in the case of metadata, and mobile devices, in the case of sensor readings.

Finally, we present a proof-of-concept project for a coarse-grained localization al-

gorithm that relies on potentially crowdsourced sensor readings for accuracy.

Outside of academia, the empirical results we present can be used to inform

public policy and discourse. To achieve this, the most difficult task is making the

relevant information accessible to the right people. Having the work published

in competitive journals and presenting the work in conferences and workshops to

experts on the field raises the profile of our conclusions, potentially making them

more accessible to public servants and members of governing bodies interested in

the topic. Realistically, the expectation is that the impact and relevance of this work



Impact Statement 5

will become more evident in the coming years once it has been accepted by the

discipline and validated through the works that carry on from our conclusions. For

the moment, engaging in collaborations both within the UK and abroad in the topics

presented in this dissertation can help set the tone in the ongoing discussion that is

the topic of data analysis and privacy.
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Chapter 1

Introduction

On the Internet, nobody knows you are a dog.

Peter Steiner

1.1 Overview
Interaction with digital devices is the backdrop of modern society. Smart TVs and

refrigerators, network connected toothbrushes and scales, navigation systems, satel-

lite radios, access tokens, loyalty cards, social media and personal electronic devices

are just a few examples of the technologies that are constantly collecting and gen-

erating data about users and their environment. Individuals are often unaware, un-

qualified or unwilling to disable this ever-present machinery of collection. Despite

the privacy risks they might bring, and perhaps because it provides useful services

to ultimately enhance user’s experiences, location services allow navigation apps to

guide users to new places or through changing traffic conditions, open (free) WiFi

access points reduce cellular data consumption, motion sensors in a phone are legiti-

mately used for gaming. Keeping track of sensors and access to data is an expensive

mental task that users find difficult to justify [3].

Companies have taken on the responsibility of incorporating the necessary

(digital) protections to their products. The security platform for both mobile op-

erating systems and online social networks, for example, provides sandbox en-

vironments for third-party applications and controlled access to data generated

through the use of the product [4, 5]. Nonetheless, decades of high-profile data
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breaches [6, 7, 8], (state level) cyber-attacks [9, 10], high-impact malware such as

the ransomware epidemic that infested the English National Health Services [11],

as well as targeted education campaigns by both government and social enter-

prises [12], have led to stronger legislation surrounding technology and the appro-

priate use of data. Overall, regulations set basic standards across providers, address

the question of legitimate access, set boundaries on the geographic dissemination of

data, and give special provisions for storage, analysis, and use of personal data [13].

While this all accounts for progress, it is not enough. Data collected by the different

sensors in personal devices, as well as the records generated from our interactions

with technology in general are often not considered invasive and are therefore not

covered by the protections of the many privacy regulations in effect today [14]. To

some extent this is justified: on their own and with only superficial analysis, these

records do not reveal anything of importance about any single user. However, once

we realize that the data about an individual is actually part of an aggregated dataset,

which includes all users and when we consider that the period of collection spans

for years, if not decades, we then realize that the analysis of such a rich dataset

reveals a great deal about the behaviour of an individual and their environment.

The data collection platforms we focus on, and which are expected to grow

in use, are comprised of multi-modal sensor platforms available in personal (mo-

bile) devices and social media data that contains real-time reports by people on the

ground. All of this information combined provides data on both individual users

and aggregate social behaviors; from the user’s perspective, this data is commonly

referred to as the user’s digital trace [15, 16, 17].

1.1.1 Digital Traces and Identification

Many of the services available on the Web require, if not the natural identity, some

form of unique identifier where each user receives or can access specialized content

in the form of access to data they posted or purchased, recommendations based on

their past behavior, connection to the digital version of the services they subscribe

to (e.g., banking, utilities), etc. This is analogous to the physical world where “an

individual becomes a person when he or she has a recognizable identity”[18].
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Identification is the process of one-to-many matching [19]. In the physical

world, this happens naturally: we assign to an individual a name (i.e., label) and

a set of characteristics. The better we know a person, the more and more distinct

are the descriptors we use. Similarly, in the digital world, the label depends on the

service or the group being studied but the characteristics are derived from the digital

traces relating to each entity.

1.1.2 Digital Traces and Privacy

Privacy is a human right [20]. Privacy was famously defined by Thomas Cooley

in the late 19th century as “the right to be left alone” [21]. Under common law,

each individual has “the right of determining to what extent his thought, sentiments

and emotions shall be communicated to others” [22]. This is the general princi-

ple: we have a right to control what is ours, but more than that, this right is not

merely applicable to property nor is it limited to certain data fields relating to in-

formation about individuals. We have a right to: private and family life, home, and

communications; the protection of personal data; freedom of thought, conscience,

and religion; freedom of expression and information; freedom to conduct a business

without intrusion and interference; the right to an effective remedy and to a fair trial

(i.e., compensation for damages as determined by a court) [23], which combined

constitute our privacy.

Personal electronic devices provide a window into our life. In 2019 there were

19.4 billion active network-connected devices [1]. Each of these devices will con-

tribute to the digital trace of the owner. Deriving behavioral traits from data with-

out explicit permission is more than a simple invasion of privacy [15]. Without

proper oversight, this information might be used to make determinations about peo-

ple (and their abilities) without their consent. For example, our shopping habits

might be used to predict our financial trustworthiness and be used in the case where

we would like to take out a loan, analyzing our driving skills might be used as a

factor of consideration for the premium of car insurance, or our job performance

might be affected by inferences drawn from our social engagement calendars, just

to name a few.
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Mobile Devices and Social Media platforms are two sources for extracting in-

formation about users. Processing video or images results in the identification of

individuals depicted in the media (which has been used to ban patrons from gam-

bling establishments) [24]; similarly, a set of images from the same photographer

can be used to reveal the hometown of the photographer [25]; and the processing of

written text can lead to the approximate age and gender of its author [26] and their

mood at the time of the post [27].

Most data protection legislation includes statements about the analysis and

storage of personal information. In the UK, the data protection legislation states

that “personal data should be collected for a specic purpose and should be ade-

quate, relevant and not excessive in relation to the purposes for which it is collected

and processed” [28]. Our point of contention is that personal information is a poten-

tially poor approximation for what the law is supposed to cover. In a world where

“even the limited information of partial profiles may be sufficient for abuse by in-

ference on specific features only” [29], we must look at all types of data and what

they reveal.

In this dissertation we will focus on the problem of identification considering

the specific examples of Twitter data (in particular metadata associated to the posts

of an account) and magnetometer data from mobile phones. We believe that this

thesis considers key examples that are representative of a large set of identification

problems based on the analysis of personal digital traces.

1.2 Motivation

The whole of the dissertation presents problems through the lens of applied work.

In Chapter 4, we use Twitter to discuss what in the literature is referred to as op-

portunistic data collection [30]. Communication channels, software applications,

financial transactions, these are only a few examples of services that attach to their

primary content information about the record generated. Unlike the primary con-

tent, the storage, processing, and sharing of metadata is unregulated and is often at

the core of the business model of “free” online services. The purpose of Chapter 4
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is to explore whether behavioral traits and descriptors contained in metadata are re-

liable features for identification and argue that if it is, then opportunistic data should

be treated with the same care as more sensitive data. Twitter was the best source of

information. It provided ground truth and access to millions of homogeneous users

(we removed extreme accounts).

In Chapter 5, we use cell phones to study a universal method for electronic de-

vice identification. The Internet of Things and “Smart” Environments are, and will

continue to become, ubiquitous. In order to protect and integrate new technology

into our life, it is vital that we are able to first identify distinct devices. Cell phones

are a good litmus test. Off-the-shelf, they are sensing platforms already integrated

into society. They provide a wide range of software and hardware configurations

and through the use of apps allow for a viable data collection process.

Finally in Chapter 6 we focus on location data and address two challenges:

privacy for users and an inexpensive coarse-grained localization method for appli-

cations. In terms of privacy, location data is extremely sensitive. Location monitor-

ing can reveal social preferences, state of mind, and predict where a user might be

in the future. Investigating whether sensors on mobile phones are leaking sensitive

information is, to our perspective, important. The insight is that the magnetic field

is a naturally-occurring phenomena that reacts to human activity. Identifying and

measuring patterns in the resulting local field might give some information about

the location.

1.3 Research Questions

More specifically, in this dissertation we address the following research questions.

First, considering the unique patterns of user behavior captured in social media

interactions, we ask: is it possible to identify an individual from a set of metadata

fields from a randomly selected set of Twitter user accounts?

Then, we direct our attention to mobile devices focusing on a specific sensor

embedded in today’s mobile phone. For the second project, we leverage the rela-

tionship between electricity and magnetism. The basic premise of this study is that
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the electric current that flows through circuits inevitably generates a magnetic field.

From this, the research question is then: given a set of devices, are the differences

in the characteristics of the radiated emissions between each device sufficient to

uniquely identify each one of them?

Finally, continuing from the previous work, we use magnetic field readings

from the phone’s sensor and focus on a coarse-grained localization problem. Mag-

netism is a prevalent force in nature that is sensitive to man-made structures, electric

(and electronic) devices, and human activities. Given the widespread availability of

magnetic field sensors, can we identify the current location-type1 of a user from

low-power sensor readings present in their phones?

Following the unifying theme of identification and privacy, in addition to the

questions listed above, we will also consider the implications of these scenarios and

discuss the potential countermeasures to each one of them.

1.4 Structure and Contributions
In the following we will discuss the structure and contributions of this dissertation

in detail. In Chapter 2 we discuss the state of the art in identification from online

social networks and mobile sensor data.

Throughout Chapter 4 we will look at online social networks and in particular

at the metadata contained in each message. We will use Twitter as a case study to

quantify the uniqueness of the metadata in relation to user account identity. We will

also consider the effectiveness of potential obfuscation strategies. In this chapter,

we define metadata as any information that relates to a post. In the case of Twitter,

metadata contains information about the message being posted (e.g., the time of the

post) and the account from which it is posted (e.g., the number of friends linked to

the account), both of which are embedded in the post. Previous research has mainly

been focused on the problem of the identification of a user from the content of a

message. In reality, the footprint of the message is much smaller than the metadata

1The term location-type will be formally defined in Chapter 6. For now, think of the location-
type as the category to which a distinct place belongs. As an example, one way to categorize UCL
would be as the type University. Some other categories can be: parks, bridges, subway stations,
coffee shops, etc.
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it generates, and despite the volume of information, it is often still categorized as

non-sensitive. In this chapter, we analyze atomic fields in the metadata of each tweet

and systematically combine them in an effort to classify new tweets as belonging

to a particular user account. We apply three supervised-learning classification algo-

rithms that abstract from the features provided to predict the account identifier of

unseen (unlabeled) posts. Using Random Forests, k-Nearest Neighbors, and Multi-

nomial Logistic Regressions we demonstrate that we are able to identify any user in

a group of 10,000 with 96.7% accuracy. Moreover, if we broaden the scope of our

search and consider the 10 most likely candidates, we increase the accuracy of the

model to 99.22%. We also found that data obfuscation is hard and ineffective for

this type of data: even after perturbing 60% of the training data, it is still possible to

classify users with an accuracy greater than 95%. These results have strong implica-

tions in terms of the design of metadata obfuscation strategies, not only for Twitter,

but more generally, for other social media platforms with similar circumstances.

Then, in Chapter 5, we consider sensor data from cellphones. Specifically,

we show how magnetic field emissions can be used to generate fingerprints that are

unique to each device. Previous works on device identification rely on specific char-

acteristics that vary with the settings and components available on a device. This,

in turn, limits the number of devices on which any single approach is effective. By

contrast, all electronic devices emit a magnetic field, which is accessible internally

through the Application Programming Interface (API) or externally through a sen-

sor placed in proximity to the device. In this project, we conducted an in-the-wild

study over a period of four months and collected mobile sensor data from 175 de-

vices. In our experiments we observed that the electromagnetic field reported by the

magnetometer identifies devices with an accuracy of 98.9%. Furthermore, we show

that even if the sensor was removed from the device or access to it was discontinued,

identification would still be possible from a secondary device in close proximity to

the target. Our findings suggest that the magnetic field emitted by smartphones is

unique and fingerprinting devices based on this feature can be performed without

any interaction from users.
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In Chapter 6 we present techniques for inferring the location-type from mag-

netometer readings. Location data is particularly invasive when considered through

the lens of privacy. Indeed, location information extracted from mobile devices re-

veals our routine, significant places, and interests, just to name a few. Given the

sensitivity of this information, location information (i.e., GPS and network loca-

tion) is protected by mobile operating systems and users have control over which

applications can access it. We argue that applications may still infer coarse-grain

location information by using alternative sensors that are available in off-the-shelf

mobile devices and do not require any permissions from the users. In this chapter,

we present a zero-permission location inference attack where each location is iden-

tified on the geomagnetic characteristics of its environment. We analyze over 90

hours of time-series magnetic field data collected with 5 devices from 110 distinct

locations throughout London and consider four different feature extraction tech-

niques in the classification. We present our results using two evaluation criteria:

leave-a-place-out which simulates identifying an unknown location from within a

set of known categories and leave-a-device-out, which simulates identifying known

locations from unknown devices.

Chapter 7 concludes this dissertation summarizing the key findings, limitations

of the methods and in general of the work, and proposing some projects where our

work could be used as the basis to tackle open research problems.

1.5 Scope

Identification and authentication are broad topics. By choice we focus on specific

application problems. Even if the proposed techniques and methodologies can be

applied to a broader set of problems we do not make any claims in terms of gener-

ilizability. Whilst we developed mobile applications for some of these tasks, we do

not create tools or systems for identification. Moreover, in each chapter, we also

discuss countermeasures against the proposed attack, but as you will see, we base

our attacks on intrinsic properties of the technology employed and, as such, discus-

sions around the countermeasures are mostly strategies to mitigate risk by shifting
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the responsibility towards the user.

1.6 Publications
The work presented in this dissertation has been presented as separate projects at

different venues.

• The work on Twitter metadata was presented at the 12th AAAI International

Conference on Web and Social Media (ICWSM’18) and published in its pro-

ceedings [31].

• The work on device identification was presented at the 12th ACM Conference

on Security and Privacy in Wireless and Mobile Networks (WiSec’19) and

published in its proceedings [32].

• The work on location-type inference is submitted for publication at the 18th

ACM International Conference on Mobile Systems, Applications, and Ser-

vices (MobiSys’20).



Chapter 2

Literature Review

Thematically, the literature presented in this chapter is split in two parts: first a dis-

cussion on privacy — its definition, attacks and the privacy protections available in

mobile devices and social networks; and a second part which is more detailed with

respect to the areas that will be discussed in the dissertation. In this second part, we

begin with a discussion of the use of metadata for identification and classification,

followed by the tools and techniques available for device fingerprinting, and finally

an overview of the technology deployed for the localization of users and entities.

2.1 Definition of Privacy
Privacy is universal, present in all cultures and all times, though its expression is

different depending on the social context of a people [33, 34].

The concept of privacy and technology’s relationship to it is constantly being

explored and tested. Novelists, lawyers, psychologists, sociologists and now com-

puter scientists have shown an interest in this area. Indeed, many different areas of

human life are influenced by it. On one hand, people argue that the institution of

privacy promotes a state of ‘social hypocrisy’ and that complete transparency would

move society to a state where there would be no shame as people would realize that

behaviors which cause shame, and might therefore be considered private, are com-

mon to all. On the other end of the spectrum, proponents suggest that privacy is

a necessary condition for love, trust and human relations [35, 36, 37]. It provides

psychological protections allowing a person to express ideas and be understood by



2.1. Definition of Privacy 25

the right people in the right context.

In developing a unifying concept of privacy, the literature suggests two ap-

proaches. First, a definition-based approach where each variation of the defini-

tion will cover a different facet of what privacy is and, second, an experience-like

approach where the subjective value of privacy is observed and its attributes de-

rived [33].

Definitions of privacy are varied and provide a focus on different aspects of

life. Some regard privacy as a right where the control of information disclosure

lies with the person to which it refers; others see privacy as a facade that stands

for control (akin to private property) over information, personal identity or physical

access.

One point of convergence seems to be that privacy is a necessary condition for

freedom in the sense that the very act of observing someone might inadvertently

cause them to adjust their behavior. In a free and democratic society, we should all

have the right to behave as we will until and unless there is a greater social concern

that compels us to override some behavior.

Privacy, then, provides a sphere of protection that works in three dimensions:

first, in our ability to maintain a public self in as much as there is a private self,

which is protected; second, a psychological protection against harm (or ridicule)

that may come from the judgment of others; and, finally, in the formation of new

relationships where we allow others access to compartmentalized expressions of

ourselves as we develop bonds and align interests when working towards a common

goal [24, 33].

Technology, and its facility to transmit and store information, has the power

to disrupt the boundaries of privacy from one generation to the next. The Internet,

being the archetype dissemination platform, provides real time access to informa-

tion that can be processed by anyone who views it. Moreover, the threats to privacy

are compounded when we consider that digital technologies allow a would be ‘ob-

server’ to follow a person without respite often overlooking the sensitive nature of

what can be revealed [35]. The protection of information privacy is, therefore, the
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ongoing, iterable, adversarial task of adding obstacles in the path of those who aim

to collect or process information (or make inferences) that are not in keeping with

the rights and well-being of an individual [38].

2.2 Attacks on User Privacy

The goal of any adversary in terms of privacy is to increase their knowledge of the

entity they pursue [39]. This model applies to transmission channels where an at-

tacker might be interested in identifying either the sender or the receiver or instead

be interested in learning something about the message; it applies to static datasets

that have been collected, anonymized, and are subsequently released where an at-

tacker might be interested in identifying a record or learning something new about a

collection of them — the field of differential privacy has looked at the requirements

that must be fulfilled for a static dataset to be truly anonymous; or, alternatively, the

model works in a dynamic environment where access to information requires some

form of interaction between the adversary and its target, and where the type of in-

formation available is bounded by the resources of both parties. The focus of this

dissertation is on the latter. We are interested in exploring what can be learned from

imperfect data and making inferences about the user. For every case, we specify the

resources (i.e., data, sensors, access) the adversary must have at their disposal.

There are two main types of information an adversary might be after: (i) the

identity of the entity to which the data relates (i.e., identification or identity dis-

closure) or (ii) a set of attributes that relate to that entity (i.e., attribute disclo-

sure) [40, 41, 42].

In this context identity can be defined as “any subset of attribute values of an

individual person which sufficiently identifies this individual within any set of per-

sons” [40]. Identity is most often associated with human beings however we would

like to point out that commercial and governmental organizations, electronic de-

vices, and generated “bureaucratic” personas (e.g., bank accounts, customer loyalty

records, utilities records) all have this property of identity: something that makes

them distinguishable from others like it.
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Previous work on identification includes both identification of users across

datasets and profiling users within the same (even anonymized) data. In de Mon-

tjoye et al. [41], the authors consider financial records, specifically card transac-

tions, from an anonymized dataset and builds a profile for each user. In general,

they are able to accurately assign new transactions to an individual with 90% accu-

racy. They also explore the impact of gender and income on the accuracy of this

classification. Their model, built on historical records, extracts patterns from the

time of the transaction, the shop, and value range of the expenses and aggregates

purchases in terms of price range and shop category to further understand unique-

ness in this context. They find that obfuscating features are of little consequence

when trying to protect users’ privacy.

There are different applications for the same technology. Whilst [41] builds

profiles for users, the techniques developed for identification purposes are used

elsewhere for provenance assurance. In their paper Garcia-Romero and Espy-

Wilson [42], use a single audio recording clip to determine whether the entirety

of the clip was recorded using the same device or whether some part of it had been

tampered with and inserted from a separate source into the original. The authors

look at microphones and landlines and are able to successfully separate the two

categories and determine which device made the measurement. Similarly, there is

an ever-growing body of work on biometric identification and authentication. We

discuss the characteristics of this particular type of identification in Section 2.6.

Identity is not however the only relevant information that can be learned. Iden-

tity is most useful when the target is known, i.e., when we have additional sources of

information and the identity becomes the key between what is known and what is to

be revealed. However, when the entity is unknown, there is valuable information to

be learned from the attributes that are revealed by a group. There is a one-to-many

relationship between entities and traits [19]. Any entity is described by a collection

of traits and each trait reveals some information about the entity. Attribute disclo-

sure is the task of mining or revealing traits that relate to an entity [43]. It is a

different task to identity disclosure, not a lesser one [40]. The application of such
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research may vary from marketing (i.e., uncovering patterns in aggregated data) to

profiling (i.e., uncovering characteristics of a single individual).

In their work, Cumby et al. explore the possibility of predicting the shopping

list of a user from historical transactional data [44]. The authors use the available

purchases made by one individual for the two preceding years to build a personal-

ized model that populates the shopping list for the current visit for that customer.

While the motivation of this paper is commercial (i.e., the aim of the paper is to

maximize revenue for the store by providing a positive shopping experience), the

fact that they predict customers’ preferences (thereby increasing the revenue of the

store) reveals the shopping behavior (i.e., a trait) of the user.

Using the sensing platform available in smartphones, Weiss et al. use the three-

dimensional changes in acceleration recorded by the phone to determine the weight,

height and biological sex of the user carrying it [45]. In their experiments, they col-

lect data from approximately 70 individuals and apply different supervised learning

techniques to make predictions. They show that predicting these traits is possible

with an accuracy ranging between 71% (for sex) and 85% (for height). And, while

these attributes could be measured from a device they can also be inferred from text

as is shown by Rao et al. in [26] where they derive the age, gender and political

orientation of the author of a tweet.

Ultimately, attacks on privacy originate from different sources of information

(e.g., historical records, sensors and public information) and different types of data

(textual, numeric measurements, transactions) and result in either the identity or the

traits of an entity being revealed, which in turn may be contrary to the physical,

financial or psychological well-being of an individual. As such, these risks cannot

be overlooked.

2.3 Basic Notions on Privacy

The gold standard for security was proposed in 1977 as the ad omnia principle

which states that anything that can be learned about a respondent from a statistical

database should be learnable without access to the database [30]. Though originally
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intended for databases, the ad omnia principle has also been extended to cryptog-

raphy and network security. In this dissertation, the commodity we are studying

is data: collecting, analyzing, and sharing data. A privacy-oriented analysis of a

dataset will start from existing notions; primarily, statistical database security, dif-

ferential privacy, and privacy preserving data mining.

A (statistical) database is a collection of records with the ability to create and

return relevant subsets from queries posted to the system. The work on privacy for

statistical databases was motivated by a need to provide statistical (i.e., aggregate)

information about a population without revealing sensitive information about in-

dividuals [46, 47]. The techniques can be broadly classified into query restriction

(e.g., frequency and sample overlap between queries) and data perturbation (e.g.,

adding noise to the output of a query, replacing the values in the database with a

sample from the same distribution). The problem in presenting data as aggregates

is that the literature shows that accurate statistics and record privacy are not mutu-

ally attainable [46, 48].

Differential privacy approaches the same problem from the opposite perspec-

tive. The problem with the ad omnia principle was that a useful database should re-

veal information in aggregate, information that was not known before. Differential

privacy is based on the principle that inserting or removing individual observations

should have no substantial effect on the statistics derived from a database [30]. The

literature presents different algorithms that are differentially private [49], but in the

end, rather than being a firm guarantee, the goal of diferential privacy is to minimize

the risk for any single user of being singled out in a dataset.

In the real world, the benefits derived from big data analysis have led the re-

search community to work a situation where the release of some information is

inevitable [30]. The purpose of privacy preserving data mining is to look at the

analysis of a database and determine the disclosure risks for individuals from it.

Agrawal et al. study privacy preserving data mining from the point of view of mod-

eling. First, in [47] the authors look at the reliability of models constructed from

perturbed (or obfuscated) datasets using decision trees. And then, in [50] they ex-
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plore the best algorithms to use in the perturbation process. Verykios et al. [51]

published a survey on the methods and propose a taxonomy for privacy-preserving

algorithms in different contexts.

The privacy implications of continuous online access surpass the boundaries

of data storage and analysis [47]. In this chapter we discuss how the literature is

relevant to the task of identification: from privacy in payment systems and transac-

tions in Section 2.2 to the leaking of information when combining multiple datasets

in Section 2.5.3 and location privacy in pervasive computing in Section 2.8.

2.4 Privacy Mechanisms in Social Media and Mobile

Devices
“Privacy is measured by the information gain of an observer” [39]. The scope of this

work is limited to the information that a passive observer may extract from a system

(i.e., the use of a system in the manner for which it was intended). Our interest is

open data. The premise is that this information was released by its owner in a spe-

cific context and for a particular purpose. In this work, we explore what unintended

information this data may reveal about the users. Furthermore, we concentrate on

online social networks and mobile devices as the sources from which we obtain the

data for our analysis. With more than 7 billion network-capable devices in use and

more than 2 billion Facebook users alone, privacy risks from these widely adopted

technologies have universal implications.

The most widely adopted privacy-protection method in both social networks

and mobile devices relies on the use of Access Control Lists (ACL). The protec-

tions offered by ACLs rest upon regulating the interaction between entities (or re-

sources). Once a request has been initiated, the operating system checks the origin,

destination and type of interaction on a table associated to the object of the request.

Each entry in the table describes the level of interaction allowed with all other en-

tities. For the request to be granted, the requesting entity must have an entry in the

table for the operation to be performed [52]. In the case of mobiles, the requesting

entity can be an application installed on the phone or a script running on a browser
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whereas the object of the request might be a component of the phone, a peripheral

or one of the other applications installed. In the case of social media, the request-

ing entity might be another user (through an account) or an advertising company

whereas the object of the request might be the fields of data associated to a profile.

2.4.1 Security in Mobile Devices

Security and privacy are closely related. Strong security measures are needed to

guarantee that the privacy protections in place are adequate. For mobile devices, a

secure platform has to take into account physical loss of the device, unauthorized

access through any of the radios (i.e., Bluetooth, WiFi, network card), and a wide

range of development standards in the software installed on the phone (from the

operating system which they control to perhaps inexperienced developers promoting

their apps); all while maintaining uninterrupted service and adequate protection to

the information stored on the device and accessible through it.

Android and iOS have converged to similar security platforms. First, each ap-

plication runs in its own environment (i.e., sandbox); they both also have secure

chips where the most sensitive information is stored (e.g., payments cards through

NFC, biometrics for authentication mechanisms, encrypted data); and finally, they

both regulate interactions between system resources and applications through a per-

mission platform where the most relevant resources are ultimately placed under user

control [53, 54, 4].

The level of importance of a resource, and by extension its protection under

the permission system, depends on its ability to adversely impact either user expe-

rience, the device itself or any of the other applications installed in it [52]. Permis-

sions are enforced by the operating system at runtime and, while permissions are

usually granted at install-time, users have the ability to enable and disable access at

any point. Once the application is running, if the appropriate permissions are not

granted, the operation fails [54].

One of the key challenges in designing a privacy-preserving system based on

permissions is the balance between usability and protection. It is inherent to a

permission-based system that the use cases be defined a priory [52]. One might ar-
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gue that the most secure solution would be to place a protection around all possible

interactions through the use of permissions. This however is contrary to a positive

user experience. Mobile devices are part of everyday life. They are fully integrated

into the daily activities of the owners. Placing all responsibility on users (as they

would be ultimately responsible for granting or revoking permissions) would com-

promise this synergy. On the other hand, having the OS block resources (i.e., by

not providing Application Programming Interface (API) support) would hinder the

ability of these personal assistants to provide timely and relevant information to

their users.

2.4.2 Privacy in Online Social Networks

In 2010, 48% of Americans participated in at least one online social network with

the global statistic being around the same [55]. Today, that number is up. As of

June 2019, 7 in 10 Americans use social networks to access news and entertainment

and maintain their social relationships [56].

Online Social Networks (OSN) were created as a means to manage and main-

tain past, present and future social relations. In some instances, people could repli-

cate their real social networks and share news, pictures, opinions and videos with

existing friends; alternatively, users could establish new connections with other

users that share hobbies, interests and other relationships. The ability to share and

search through profiles along with the ability to communicate are core features of-

fered by OSN [57, 5].

Posting and sharing information is necessary to foster online communities.

However, even as part of such open environments, privacy is still a vital service

for the protection of users and the continued success of the online platform. While

it is true that the privacy and security requirements of OSN vary depending on

the purpose of the network and the expectation of its users, there are three main

areas that should be considered when evaluating the privacy protections of a service:

identity, personal space and communications [5].

First, the service providers should put safeguards in place to protect the iden-

tity of its users. Whether this means making sure that unique identifiers are not
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traceable back to the physical individual in an anonymous service, or that personal

information is only available to those authorized by users to see it, the identity of

a user must be safeguarded against the threats of stalking, slander, spamming or

phishing [5].

Second, it is the responsibility of the network provider to protect the environ-

ment that a user has created for themselves and their established relations, what

would be equivalent to the personal space of a user in a face-to-face relationship.

This translates in the digital realm to, among other things, the context of the infor-

mation that was shared. Taken out of context, simple statements could be unduly

harmful to the reputation and prospects of a user. Given that one aspect of privacy

is to be understood by the right people in the right context, service providers are

also responsible for ensuring that unauthorized parties are not able to gain access to

a user’s personal space.

Finally, most OSN also provide a private communication mechanism between

users. Aside from any visibility expectations of public posts, whenever a service

offers communication between users, the reasonable assumption made by users is

that, when in private communication, only the members engaged in the conversation

have access to its content. Once again, guaranteeing this privacy requirement is in

the best interest of the service as it might be liable for violations or its reputation

damaged by a scandal stemming from this.

In reality, though, while these three areas are basic requirements for a privacy-

preserving system, OSN handle sensitive information in the form of followers or

friends (i.e., the social graph of a user) and interests uncovered through clicks and

search results. As discussed in [58] this information can be used to infer anything

from habits and personality traits to health conditions that, if accessed by malicious

entities, can cause real harm to members of the network.

Unlike the case of mobile devices where Android is an open source operating

system, online social networks have grown on proprietary software. Our under-

standing of privacy problems depend on the perception of users measured against

their settings, interactions with the different platforms through their APIs and scan-
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dals, like that of Cambridge Analytica, where private information about users was

revealed to third parties.

To date, the privacy controls that have been introduced are incomplete. While

it is true that it is inherently difficult to design a permission-based system for users

with a wide range of technological expertise [52], studies have shown that the con-

trols in place are oftentimes lacking in terms of safeguarding against a dedicated

adversary [59] but most importantly, they are difficult to use and are either not

adopted or misinterpreted by the majority of users [55, 57, 58, 60]. In the case of

Facebook, a user’s inability to successfully enforce their privacy preferences was

severe enough to warrant a settlement between the company and the Federal Trade

Commission (FTC) on the basis of “deceptive privacy changes” [61].

In short, privacy in an online social network is a balance between the social

aspect of the network (i.e., the ability to discover new connections) and the confi-

dential expectation of users on different forms of communication. OSN platforms

have yet to converge into a system that supports their data-as-asset business model

while protecting the privacy of their members, which results in a wealth of informa-

tion about users being openly available to the public or to unauthorized third-parties.

Finally, this rocky path of privacy exploration has highlighted the tensions between

user preferences and the power asymmetry between platforms and users, which re-

sults in companies being able to manipulate, to some degree, the cognitive biases in

users leaving their information open to exploitation [57].

2.5 Social Networks and the Risk of Identification
With the amount of information posted to each site, social network platforms hold

vast amounts of data on their users. In this subsection, we discuss the risks in

terms of both attribute and identity disclosure from two types of data available to

providers: the text-based content of a post and the network structure of the data.

2.5.1 Identification Through Text

Understanding identity through the written word is a topic of interest in law, history,

literature, intelligence, among others [62]. Stylometry is the statistical analysis of
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text and has been used to study the authors and styles of Shakespeare, the Bible,

and the Federalist Papers [63]. Commonly, stylometric signatures contain markers

such as word length, letter usage, punctuation, readability indexes, sentence count,

average sentence length, and many others [64, 65]. These features can be com-

bined statistically using for example, Bayesian statistics or through one of the many

classification algorithms described in machine learning literature [62, 66, 67].

In addition to the authorship recognition task [67, 68, 69, 70], or perhaps in-

spired by it, the use of user-generated text has given way for several inferences

about authors. In [71], Perito et al. use usernames as a means to link profiles over

multiple social networks. In their work, they develop a measure of entropy between

the usernames associated to each account. They use Markov-chains and Leven-

shtein distance to capture the similarity between strings containing usernames and

ultimately, predict the likelihood of two usernames (from different platforms) re-

solving to the same physical person.

In [72], Juola et al. design an experiment to test the potential of style as a

form of continuous authentication. In particular, they measure the keyboard-based

behavior of 79 people and collected through repeated tasks over the course of a

working week. They find that 1,000 characters are sufficient to uniquely identify

each user with an accuracy of 79.3%. In addition to identity, they are able to infer

the personality of the author (using the Myers-Briggs Personality Inventory), their

gender (76.6% accuracy), and the dominant handedness (96% accuracy).

Using similar methods, Afroz et al. apply stylometry to analyze anonymous

text in order to identify users that might be posting from different accounts [65]. In

their work, they adapt language specific authorship features to handle the jargon and

style of underground internet forums. They were able to successfully build classi-

fiers, which included features extracted from the usernames of different accounts,

to find (with different levels of confidence) whether different accounts map to the

same user.

In terms of large-scale authorship, Narayanan et al. [73] present a study where

they look at 2.4 million posts taken from 100,000 possible authors and attempt to
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find the correct author of some unattributed text. Their results show that in 20%

of the cases the authors are uniquely identifiable; and, if they expand their task to

reduce the candidate pool of authors, they find that in 35% of cases they can have

the correct author be in the top 20 guesses. It is worth noting that in their work

they only focus on the same type of text (i.e., blog posts) and under the assumption

that authors have not actively tried to obfuscate their style. In this work, Narayanan

et al. highlight the problem of deanonymization as a threat to free speech. They

endorse the US Supreme court ruling that “anonymity is a shield from the tyranny

of the majority, a means to protect unpopular individuals from retaliation . . . at the

hand of an intolerant society” [74] and point to how data processing can potentially

pose a real risk to individuals. Brennan and Greenstadt in their work [64] offer a

response to this concern; they show how stylometric techniques perform in the face

of adversarial attacks. They focus their attention on two categories: obfuscation

attacks and imitation attacks. In their work, they recruit participants and assign tasks

that simulate writers attempting to hide their real identity. While the experiments

they perform are limited in scope due to the number of participants, they find that

stylography based authorship techniques are not able to withstand deception.

2.5.2 Identification from the Network

When studied as a graph, an online social network (OSN) consists of edges, nodes,

and the attributes associated to each of these elements; usually, nodes are individ-

uals and edges represent friend relationships or flows of information between them

[15, 43, 75, 76]. OSN providers are responsible for protecting the privacy of their

users, a task which is closely related to their business stability. At the same time,

as centralized entities, they provide attackers with a single point of failure placing

themselves at the center of potential data breaches [15]. Moreover, and as compa-

nies that provide free services to their clients, their primary source of revenue is the

information they control. Data released either publicly or to third parties contains

random identifiers in place of names or other account IDs [77, 78]. This process

known as naive anonymization promises to preserve all the privacy attributes in the

network however, this guarantee is valid only as so far as an adversary has “no infor-
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mation about individuals in the original graph” [75]. In practice, as we will discuss

in the rest of this section, adversaries have multiple methods to obtain auxiliary

information.

The literature describes both active and passive privacy attacks constructed

around the structure of the network. In an active attack, the adversary has the

ability to create links and nodes in the network before the anonymized dataset is

released. These will be used as seeds from which the rest of the nodes will be re-

identified [59, 79]. In their work, Backstorm et al. [79] show that an attacker needs

only O(
√

log n) seeds to be able to re-identify targeted nodes in any anonymized

network. In their experiments, out of 4.4 million nodes and 7 deanonymization

seeds, they compromised 2400 edges. While the authros in [79] look at networks as

static entities, in [77] Ding et al. propose looking at sequential releases of data to

deanonymize nodes and edges. Similar to [79], the threat model assumes that the

adversary has full knowledge of seed nodes and in this case, the auxiliary informa-

tion comes from the different snapshots of the network.

Different from the attacks described above, a passive attack is characterized by

an adversary who only has observable information of the network. Neighborhood

attacks, described by Zhou and Pei in [15, 80], demonstrate the privacy risk to users

when a network is anonymized but the adversary has information about the user

and their connections. Matching entities and their connections is sufficient to reveal

the target. Similarly, Zhelva et al. demonstrated the risk of having both public and

private profiles in the network [43]. In their paper, some nodes are labeled and some

are not (i.e., labeled nodes represent public profiles) but the relationship between

nodes is always visible. The privacy risk in this circumstance is that the edges of the

graph are potentially sensitive attributes that users with private profiles did not wish

disclosed. Similar to [76] presented by Backstorm et al., Narayanan et al. take the

method presented in [59] and apply it to a dataset from a “big data” competition.

They find that by looking at seed reidentification as a combinatorial optimization

problem they are able to reidentify 64.7% of nodes and submit the winning entry to

a link prediction contest with social network data. Instead of placing seeds in the



2.5. Social Networks and the Risk of Identification 38

network before it is anonymized, they gather auxiliary information from a labeled

second crawl. They combine deanonymization with link prediction techniques in

order to carry out the identification task.

2.5.3 Linking Information Across Datasets

Linking back to the physical identity of an individual is only one way in which

databases can overlap. In general, linkage attack is the term used to describe sit-

uations in which two or more datasets, a primary data source in combination with

one or more databases containing auxiliary information, are joined to disclose traits

that would otherwise be unknown [30]. Sweeney [81] presented a privacy protec-

tion model that looks at the attributes associated with each record and states that

a dataset is k-anonymous if and only if there are k records that respond to each

query. In later papers, Machanavajjhala [82] et al. and Li et al. [39] show that,

in certain circumstances, k-anonymity is not a strong enough guarantee to prevent

re-identification and propose prior knowledge (of a respondant) and lack of diver-

sity within classes as two conditions that allow for individuals to be re-identified

from seemingly anonymous datasets. From an applied perspective, and once again

focusing on the relationship between digital and physical identity, there has been

indeed several projects that link the two.

The work presented by Wondracek et al. [83] combines information from a

history stealing attack1 with membership lists obtained from social networks. The

authors use combined group membership to uniquely identify users. In a static

dataset they identified 42.06% of users had unique group membership combinations

and in a real-world scenario they traced 1,207 users (12.1% of their participants)

from the social network Xing.

In [84], Jain et al. deploy an identity resolution system that looks at the public

attributes in Facebook and Twitter and links accounts across both networks. They

divide their task in two: identity search and identity matching and use both profile

attributes (defined by the user) and network attributes (defined by the user’s con-

1History Stealing is a known attach in which a malicious website can extract the browsing history
of a visitor [83]
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nections). Overall, they collected data from 543 Facebook users and were able to

successfully match 39% of those to a respective Twitter account.

2.6 Metadata and Identification
Research-driven legislation has effectively secured Personally Identifiable Informa-

tion (PII) and has placed financial and criminal penalties on entities that exploit

these traits. However, little attention has been focused on the role of metadata. We

define metadata as information that describes some primary content. Often per-

ceived as being devoid of meaning, metadata is more readily available than the

source to which it refers. Perhaps because of this, metadata could present a signifi-

cant risk to user privacy.

In this section, we discuss how metadata is used exclusively or in combination

with other forms of data as a means to single out elements in a set.

2.6.1 Biometrics: User Authentication from Physical Properties

The field of authentication, and in particular research aimed at biometrics, seeks as

its primary purpose to find unique identifiers for individuals that are inexpensive,

unobtrusive and with a low false-positive rate [19, 24, 28]. In essence, they con-

dense individuals into metadata (i.e., information about them) for the purpose of

identification which is then used to determine whether a user has legitimate access

to a system.

Biometrics have become a common authentication method for smartphones

and laptops alike. In 2013, Apple released the iPhone 5S with its first generation

touchID module [85] with the faster second generation deployed only two years

later in the iPhone 6S [86]. While fingerprint scanners had been used as early as

2004 to unlock phones, Apple’s release triggered a change in the market. Since

then, we have seen a growing trend: applications (financial and otherwise) that use

fingerprint recognition to authenticate users in their service.

In order to be classified as a biometric, a descriptor must fulfill certain char-

acteristics. The trait must be universal, distinctive, permanent, accessible and ac-

ceptable, while the system used for collection and authentication must be efficient
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and robust [28, 18]. Universal refers to the recurrence of the trait in the population.

A true biometric must be generally shared by all individuals (i.e., it must be a text-

book characteristic of the group). Distinctive relates to the ability to differentiate

members of the group from the proposed trait. It is not necessary for a biometric to

be unique but it must be unlikely that two individuals will share the value attributed

to the descriptor. Permanence speaks to the invariant nature of the descriptor over

time. Similar to the property of distinctiveness, it is not necessary for a biometric

candidate to be unchanged throughout a persons lifetime but usually biometrics will

remain stable for decades. Finally, in terms of traits, acceptable and accessible are

closely related. For a trait to be adopted as a biometric it must be acceptable by

users, i.e., people need to be comfortable in sharing the trait; and lastly, the trait

must be quantifiable (i.e., easy to measure) and the collection process must not be

invasive (i.e., easy to collect).

Once a biometric trait has been identified an authentication system is designed

around it. A successful system will be efficient and robust. It must be hard for an

attacker to impersonate a user. Practically, this could involve measuring additional

characteristics along with the biometric (e.g., temperature, heart rate). Finally, the

system must be timely. The time-to-authenticate beginning with detection and col-

lection all the way to access must be reasonable for the intended application [87].

Having discussed the requirements, and perhaps due to their use in mobile

devices, we can immediately identify fingerprints and face geometry as good fea-

tures for authentication. However, more broadly there are two types of features

that can fall within the category of biometrics: physiological descriptors and be-

havioral descriptors. Physiological descriptors that fulfill the conditions described

in [28] to be characterized as biometrics are obtained from “patterns in our genetic

makeup” [88]. Current and proposed physiological descriptors are: fingerprints, iris

scans, hand geometry, facial recognition, ear shape, skin patterns and luminescence,

body odour, among others [28]. Alternatively, the second source of inputs are those

derived from our behavior. Behavioral biometrics come from patterns in the way

we complete everyday tasks [88]. Some examples of traits derived from behavior
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include penmanship (handwriting analysis), keystroke analysis, typing rhythm, gait

analysis, and voice recognition [18, 28].

The benefits of using biometric authentication systems are many. From the

users’ perspective they greatly reduce the mental load imposed by the myriad of au-

thentication systems that we encounter every day. For a user, biometrics are perma-

nent, their appeal lies in that they cannot be lost, stolen or forgotten. For companies

and system administrators, these guarantees place most of the responsibility on the

user (biometrics are not transferable 2; by extension when a user is authenticated

the verifier can be reasonably certain that the request is legitimate) and they don’t

incur in the expense of having to issue tokens or, in fact, replace them [28].

On the other hand, the privacy risks associated with biometrics are higher: by

definition, one of the characteristics of biometrics is permanence. Any information

lost (or released) through a data breach implies that the user will be linked, im-

plicated, or identified for decades after the incident has happened. Moreover, the

types of inferences that can be drawn from biometrics might be much more com-

promising. Whereas a password might reveal place of work or a (relevant) historical

fact, an iris scan for example may reveal primary private identifiers such as health

conditions and age [90]. Similarly, biometrics have been used in the past to look

for patterns in“natural populations, in searching for change in bodily and psycho-

logical parameters over time and for grounding racial classification” [18]. This is

why whether physiological or behavioral, human biometric information is protected

under privacy legislation [28].

Independent from discussions on the appropriateness of this data for everyday

authentication tasks, the academic community has explored what continuous au-

thentication systems would require and what they would achieve. One motivation

for this type of work is a vulnerability that remains to be addressed: once unlocked

(and for as long as the screen remains active) there is no available way to guarantee

that the person that unlocked the phone is the one that has continued to use it. In

2Transferable in this context means that the person requesting access can convince the verifier
that they hold a credential without revealing any other information [89]. As biometrics are both
inherent and unique to a person, under normal circumstances only the authorized entity will authen-
ticate.



2.6. Metadata and Identification 42

practice, some applications are released with their own authentication method that

gets triggered when the app is launched, but there is a case to be made for a sys-

tem wide service. In [91] the authors present the advantages and hurdles towards

developing a stronger authentication system with the aid of keystroke characteriza-

tion. More encompassing though is [92] where Patel et al. present a survey of the

methods and techniques that would be required for an active authentication system.

They present the forward facing camera as the sensor required to measure facial ge-

ometry (a physiological biometric); the gyroscope and accelerometer to determine

gait (a behavioral biometric); and the touch screen and orientation sensor for touch

gestures and hand movements (both behavioral biometrics) [92].

2.6.2 Disruption: Identifying Online Misbehavior

As metadata reveals behavioral patterns, one common application of behavioral

classification is identifying entities that break the norm. To this end we focus on

two types of attacks: the identification of problematic content and the identification

of malicious accounts. For the remainder of the section, we will explore different

examples of how metadata is key to solving these problems.

2.6.2.1 Clickbait and other forms of abusive behavior

For all the positive things about the Internet, it also seems to have amplified dif-

ferent forms of abusive or malicious behavior. The past few years have shown an

increase in the number of instances and the severity of each event for things like

cyber-bullying, offensive language, hate speech and sarcasm [93]. In this section

we present some studies that show the usefulness of metadata as a tool to identify

and hopefully prevent this kind of behavior.

In their paper, Founta et al. look at classifying anti-social behavior not only

from the text of the message that was posted but also from the online behavior

and relationships of the account that originated each post. They combine metadata

fields extracted from the text of the posts — Tweets (e.g., number of emoticons,

the number of words completely capitalized), the user’s behavior on the network

(e.g., popularity, the number of subscribed lists, the number of likes), and the social
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network of the author (e.g., reciprocity between user and followers, clustering ten-

dencies of the user and followers) as well as other forms of textual descriptors to

predict whether an account was engaged in abusive behavior and more particularly

the type of behavior it exhibited [93].

Similarly, in mariconti2018coordinated they combine the textual transcript of

a video along with still images associated with it with the metadata available from

the post to build an ensemble classifier and predict the likelihood that a video will

be targeted by a raid originated at some other social network. In their analysis the

authors compare classifiers for each of the three data-type inputs and find that in

their experiments, the classifiers using metadata consistently outperform the other

data type. Ultimately, following their proposal, content providers (their experiments

look at YouTube but others may work as well) could do a risk assessment of the

videos they host and offer preventive or protective services to at-risk posts.

Finally, metadata has also proved useful in the detection of YouTube videos

that aim to trick users into following their link. This is a problem known as “click-

bait” where the posts are designed to mislead viewers towards the content so as to

increase the number of views and from that the revenue they generate from adver-

tisements. In a paper presented by Zannettou et al. researchers use the thumbnail,

the headline and the tags associated to each video posted on the platform as input

to a deep learning classifier that detects these type of posts [94].

2.6.2.2 Identification of Fake Accounts

Fake accounts consume resources (e.g., network bandwidth, memory, computations

from search queries) that can otherwise be made available to legitimate users or

alternatively not used at all reducing the overall expense of the service. This, in

addition to the social load that spammers dump on the network: they saturate user

attention by sending spam emails, they abuse user privacy by having unwanted par-

ticipants in the social network, or what is even more invasive, spam accounts ex-

hibiting human-like behavior may befriend real users making these fake accounts

more difficult to identify [95, 96].

Metadata has become a core component of the services offered by OSNs. Twit-
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ter, for instance, provides information about the users mentioned in a post, the

number of times a message was re-tweeted, when a document was uploaded and

the number of interactions of a user with the system, just to name a few. This is

not merely extra information: users rely on it to measure the credibility of an ac-

count [97] and much of the previous research in fighting spam accounts relies on

metadata for detection [95, 98].

Metadata also has been used to differentiate between organically acquired (i.e.,

legitimate) and paid (i.e., fake but different from spam accounts) followers. Fake

followers are used to artificially augment the popularity of one account with the

intent to secure any range of benefits from fame and glory (i.e., a proxy to social

status) to lucrative marketing contracts by becoming social media influencers. Shen

et al. [99], uses the the ratio of follower count and following count, the percent-

age of bi-directional friends, the ratio of the original posts, proportion of nighttime

posts, all of which are derived exclusively from the account metadata, as well as

the diversity of topics posted by each account to separate both types of followers.

Similarly, in [100] Cresci et al. also look at the problem of identifying fake fol-

lowers on micro-blogging services. In their work they look at Twitter and combine

elements of the content of posts with metadata of the user accounts to build a clas-

sifier that separates legitimate followers from fake ones. In terms of metadata, their

work focuses on the number of friends, the number of tweets, and the ratio between

the number of friends and the number of followers.

Finally, in [101] and following from previous work on fake followers, the au-

thors focus on identifying accounts that correspond to fake influencers. With respect

to online social media, an influencer is a user that, because of their pre-existing con-

nections to (a great number of) other accounts, they provide marketing services to

different companies (i.e., these correspond to the accounts that want to secure mar-

keting contracts discussed above). Zenonos et al. develop a set of 10 features with

which they are able to separate real and fake influencers. In their work, they also

find that using network descriptors, particularly that of degree centrality, they are

able to achieve their goal. Degree centrality is a measure of the importance of a
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node in a network. In their work, they calculate the centrality of a potential influ-

encer by finding an average of the centrality of the nodes around it. As a measure

of the connectivity of a node, this descriptor is metadata of the account for which it

was computed.

Having seen that metadata is a valuable resource, the remaining sections will

discuss the relevance of mobile devices to users’ privacy. In the next section we

argue that given the proximity between mobile devices and users and their typical

one-to-one correspondence, identifying a mobile device is often equivalent to iden-

tifying the individual that owns it. However, due to the abundance of methods and

types of data, we discuss smartphone identification in the next section.

2.7 Identification of Mobile Devices
Previous work on device fingerprinting can be grouped into two parts: identification

through the content available on the device and identification through its physical

characteristics.

2.7.1 Content-Based Identification

Given the personal nature of devices, we expect the user-specific content of a phone

(e.g., photos, applications, contacts, music) to be significantly different from most

if not all others. In [102] Quattrone et al. present an interesting approach combining

both content (i.e., system settings, language settings, etc.) and physical descriptions

(i.e., internal and external memory size, device manufacturer and model) to generate

their signature. Using similar types of auxiliary information in [103] the authors

expose different information leaks. One of these reveals the identity of the user

through the monitoring of network data usage statistics of some key applications.

Other studies focus on the identification of users using lists of applications in-

stalled on the phones. Both [104] and [105] find that the list of applications installed

is highly discriminative in terms of devices and that even if, instead of app names,

the classification was based on the app categories, it would still reveal some partial

information about the user.

In [106] the authors take a different approach: they collect all possible public



2.7. Identification of Mobile Devices 46

resources available in iOS devices and build their classifiers with a compilation

of these features. They find, for example, that the top 50 most frequently played

songs can be used to uniquely identify a device with 94% accuracy. The problem

they present is that, while fingerprinting is possible (and accurate), it is also based

on user behavior, which changes over time. Overall, their main finding is that the

unprotected information available from Apple devices generates unique signatures

from which mobile phones can be identified.

Finally, in [107] the authors combine a set of descriptors from the browser,

system and hardware attributes as well as some behavioral characteristics of the

user. The paper was originally intended to corroborate the standardized settings of

the web browser. The authors also find that by combining different attributes they

are able to generate a fingerprint for identification.

2.7.2 Hardware-Based Identification

The concept of manufacturing variability has been presented before in its applica-

tion as a means for identification and authentication. From a theoretical point of

view, in [108] the authors present the properties and applications of silicon-based

physically unclonable functions (PUFs). In practice, the viability of the method is

implemented by Lee et al. in [109] where their system exploits the timing delays

of transistors and wires in individual circuit boards to compute cryptographic keys

using PUFs. The uniqueness of each device adds the required randomness in the

key generating process and the secret is known only to the device.

Moving away from cryptography, silicon imperfections can be found in every

electronic circuit available. Naturally, an interesting topic of study is the effect

of imperfections on the ever present smartphone. The array of sensors accessible

to mobile devices gives an important added perspective. It not only allows the

exploitation of internal differences for identification, but it also adds a dimension in

the form of environmental interactions.

In [110] they present two approaches for identification. The authors show

that combining microphone and speaker systems and computing the distortion of

a control signal results in accurate classification of the device; however, for this
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approach they need to request two permissions, namely RECORD_AUDIO and

MODIFY_AUDIO_SETTINGS. In the same paper they introduce a second form

of cyber attack: identification through the calibration error of the accelerometer.

They require no permissions to collect readings from the sensor. They created a

web application and ask participants to leave their devices stationary and facing up

while the data collection takes place. The authors find that it is possible to identify

all devices with an accuracy of 58.7%. Imperfections introduced in the manufactur-

ing process make each device unique; moreover, this uniqueness can be quantified

and used for identification. However, the experimental design of this paper calls for

all users to perform the same task. As countermeasures, they propose two methods

to reduce the usefulness of their attack: the calibration of each sensor at production

time to eliminate the variability in the readings and the introduction of some random

value to prevent the recognition of a baseline state in the device.

Other projects have also looked at identification from sensor imperfections and

biases. In [111] the authors present results using the manufacturing imperfections

in the accelerometer for identification. Similarly, in [112] the authors use the im-

perfections found in the magnetometer to identify devices. These two papers rely

on identifying one state in the device and finding the difference between the known

state and the measurement to compute the influence of the imperfection thereby

identifying each phone. In [113] the authors use silicon-based imperfections of net-

work interface cards to successfully identify devices through the passive analysis of

the radio signals they transmit. Lastly, in [114], Kohno et al. show that remote iden-

tification is possible and viable without permission or any modification to the target

device and across different types of devices. They rely on clock skews to generate

the fingerprint but, in their approach, there needs to be an established connection

between attacker and target. This requires some access to the target device, which

might not always be feasible.
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2.8 Identification of Places: Localization
Thus far, we have contextualized identification of accounts within the field of behav-

ioral biometrics and the emission of a magnetic field as a hardware-based identifier

of each phone. In addition to identity (or uniqueness) of an entity there is privacy-

relevant information that can be derived from crowd sourcing sensor readings. In

this section, we place the work presented in Chapter 6 within the literature of local-

ization. Localization is the term used to describe the process of placing an entity in

a known frame of reference [115], in other words, the identification of place. From

an autonomous system perspective, and according to the taxonomy presented by

Thrun et al., we are addressing a global localization problem in a dynamic environ-

ment where we can only passively monitor users (i.e., we have no control over their

future behavior) [115].

In this context, localization of an autonomous agent can only be carried out

through sensor readings, either by matching current readings against an up-to-date

map or through geometric calculations that determine the unknown position of the

agent against a known marker. In the following sections, we discuss each of these

approaches with respect to indoor and outdoor localization.

2.8.1 Model-Based Localization

Model-based techniques are comprised of methods where the movement of the user

is calculated from a sensor, including GPS, as well as cellular and WiFi signals.

Model-Based techniques are by far the most common and widespread techniques

used for localization. Global Navigation Satellite Systems (GNSS) can currently

localize users with an accuracy of centimeters [116]. Assisted GPS (A-GPS) was

developed to add robustness to the system in urban environments where line of sight

to satellites is hindered by buildings or environmental conditions such as weather

or pollution making GPS unreliable [117]. Alternatively, mobile operating systems

give developers the option to localize users based exclusively on cellular radio sig-

nal strength, while less accurate than GPS, it provides a low-power alternative to

GNSS. The position of the user is inferred by extracting features from a signal and

comparing them to an established ground truth. As an example, network signal
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strength is one of the most commonly used features with the actual position of the

user computed from the triangulation between multiple cellular base stations and

the signal received from each station by the device [118].

These methods can be applied to indoor environments as well. Localization

from WiFi access points using received signal strength has been found to be accurate

enough to track users inside buildings with the capability of distinguishing between

adjacent rooms [119, 120, 121]. These methods only require WiFi signal strength

and the layouts of the building so as to localize a user. The primary limitation of

these methods is that the signal strength calculation is typically carried out on the

device whereby continuous tracking drains the resources of a phone [120].

Alternatively, model-based techniques are also used as a means of error cor-

rection for dead-reckoning schemes. Urban dead-reckoning is the process by which

a user’s location is tracked by measuring the side-effects of motion, usually through

the use of the compass and the gyroscope. It has been shown that urban dead reck-

oning can accumulate errors of up to 100 meters in 6 minutes of collected data [122].

Indoor localization methods often combine dead reckoning with model-based local-

ization to maintain acceptable tracking accuracy [123, 124].

The error correction mechanism is obtained from a variety of sources. For

example, Haverinen and Kemppainen use GPS readings to mark the entrance of

the building and again collect active GPS readings from open areas or windows

to validate and correct their location [125]. Wang et al. collect magnetic field

readings along with gyration and acceleration information from different users to

find landmarks and correct the error for individual users [122].

2.8.2 Fingerprint-Based Localization

Fingerprint-based techniques include all methods where a site (or any other geo-

graphical location) is surveyed in order to build a map, which is then used to pin-

point the location of a user.

Fingerprint-based techniques are costly with respect to collection and main-

tenance of the maps. Active areas of research in this field are mainly centered on

reducing the overall financial cost necessary for building maps primarily through
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leveraging crowd-sourcing techniques where data is passively collected by a large

population [126]. In the following, we detail the approaches specific to the type of

environment, whether it is indoor or outdoor.

Indoor Environments Localization in an indoor environment is linked to a map

with a high level of detail. Even for small spaces this presents a challenge in terms

of the volume of data that must be available for the task. In fact, it is important

to consider that sensor values might vary with altitude as well as with horizontal

displacement. Furthermore, selecting a sensor that provides consistent differences

in enclosed environments increases the complexity of the task. Potential solutions

to these problems are manual collection of ambient readings or strategic placement

of location beacons (and sensors) throughout the area of study under considera-

tion [122, 124, 127, 128].

Chung et al. use the magnetic field to determine the position of a user in a

corridor. They manually collect magnetic field readings every 60 cm and find that

localization is accurate to 1.64 m for 90% of the test observations [127]. They also

test their system in elevators and in the atrium of a building and find that there are

measurable differences across these locations. Following the work by Chung et al.,

Haverinen and Kemppainen test whether the difference in magnetic field readings

can be used to locate an agent across a larger area (in their work, they test four

buildings). They find that these readings have low variability over time while being

spatially distinct and build a localization system based on them [125]. Carrillo et al.

[129] focus on the same problem, indoor localization from a map, and improve the

accuracy of their system by using all three components of the magnetic field read-

ing. In [130], Galvan et al. combine three passive sensors the microphone, the light

sensor and the magnetometer to estimate the location of a user in a structure. Wang

et al. use the magnetometer and the light sensor to localize an individual within a

structure and they go a step beyond and test their system in open-plan environments

like parking lots and shopping centers and still obtain good results [131]. Wang et

al. show that magnetic field readings can be used to discriminate between activities

such as standing or walking. In particular, they use changes in the magnetic field to
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identify when a user is moving in an escalator [122]. Finally, Ashraf et al. [132]

combine the accelerometer and the magnetometer to determine the level of activ-

ity of the user and proceed to extract from the magnetic field readings the pattern

formed by the time-series observation. Again, using a fingerprint-based map they

are able to localize a user in one of six buildings in their campus.

Outdoor Environments Outdoor localization approaches are classified based on

the technique used to establish the map. One common fingerprinting method from

outdoor environments is matching the visual cues obtained from the camera of the

phone to a map of geo-tagged images [118].

Narain et al. use the combination of the motion and position sensors avail-

able in smartphones (primarily the accelerometer and gyroscope) to infer the tra-

jectory of a moving car [133]. In particular, they propose a method to reconstruct

the route taken by the car based on the physical characteristics of the roads (i.e.,

speed, bumps, stop signs and curvature), the junctions between roads and the angle

recorded for each turn. With this information, they are able to match the estimated

candidate trajectory to the map of the (known) city using OpenStreetMap and esti-

mate the actual route taken by the user. Similarly to our work, the authors propose a

zero-permission attack to determine location information about users from motion

sensors. However, we focus on a different localization task that aims to identify

the places that users have visited solely from the magnetometer sensor instead of

the trajectories they have taken. Moreover, we employ an event-based approach

that identifies events and matches events to locations thereby reducing the need for

up-to-date maps.

2.9 Contribution with respect to the state of the art

2.9.1 Account Identification

Having explored the use and characteristics of biometrics as well as the identifi-

cation by means of behavioral traits, we propose to look at metadata to determine

whether account (or user) information is latently contained in it. In Chapter 4 we

present a method that follows a stratified combinatorial approach to look for fea-
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tures that might differentiate between user accounts in Twitter. Our claim is that

the way we interact with technology is unique to an individual. We argue that it is

possible to extract some information from the metadata that is generated when we

access such systems.

2.9.2 Device Fingerprinting

Proceeding from the work in account identification, we then turn our attention to the

problem of device fingerprinting. Similar to the work on accelerometers and audio

systems presented in [111] we show that the physical features intrinsic to a device

exist and can be used for identification. However, in contrast to these works, it

is harder to develop countermeasures that obfuscate the magnetic field. Moreover,

by using the magnetic field, we are developing a technique that can potentially

characterize any electronic device.

2.9.3 Localization

To the best of our knowledge, the work presented in Chapter 6 is the first that explic-

itly maps location-types in terms of their environmental characteristics. We take into

consideration features like the structural similarity between buildings, the isolation

of repeated events, the size and distribution of people and crowds, and any similar-

ity across the tasks undertaken at each location. We combine these characteristics to

generate a magnetic signature for each location-type, which we use to identify new

locations in the city. The signatures for each location-type are composed of a set of

shapelets as defined in [134, 135, 136, 137, 138]. The classification of a new obser-

vation into a location-type is a function of the likelihood of a shapelet being present

in that observation. We propose a novel, low-cost, and passive methodology for lo-

cation inference. In particular, we present supervised classification algorithms that

take as input the time-series (observations) for all classes and predict the probability

and label (i.e., location-type) of a new observation.



Chapter 3

Machine Learning: an overview

The methods found in all chapters of this dissertation hinge upon machine learning

and the idea that one set of parameters can be used to predict or reveal additional

information about a single feature or a group of features. In particular, we focus on

two paradigms: unsupervised and supervised learning.

In the following chapters, unsupervised learning is used in the process of dis-

covery. More generally, this learning paradigm takes in a set of M observations

{(X1),(X2), . . . ,(XM)} of p−dimensional vectors. The goal is to infer properties

about the density distribution across dimensions and observations. In unsupervised

learning, the value of p is often much higher than than what it would be in super-

vised learning and therefore things like cluster analysis from different variables and

dimensionality reduction are very common [139].

The core conclusions of the dissertation use supervised learning to sustain

them. Supervised learning starts with the premise of a dataset consisting of a known

number of labeled groups as well as several examples of observations that belong

to each group. The goal is that given some training data (S)

S = {(X1,y1),(X2,y2), . . . ,(Xm,ym)},

we infer a function fs such that

fS(Xi)≈ yi.

Developing fs from the know dataset makes it so that future unlabeled data

S′ = {(Xm+1),(Xm+2), . . .},
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we can assign the appropriate y. When y ∈ {−1,+1} this task is known as classifi-

cation. If instead, y ∈ IR the task is known as regression.

A learning algorithm is the mapping S→ fS. Throughout the dissertation there

are a few examples of learning algorithms, the rest of the chapter is intended to

provide background into the most used of these algorithms.

3.1 Multinomial Logistic Regression
The logistic regression is a nonlinear model specifically designed for binary depen-

dent variables [140]. The probability of the outcome is given by

Pr(Y = 1|X1,X2, . . . ,Xk) = F(β0 +β1X1 + · · ·+βkXk),

where X1 . . . Xk are the different regressors (or variables) and F , the population

regression function, is given by the logistic cumulative distribution function.

Multinomial Logistic Regression (MLR) is the multi-class adaptation of this

binary prediction method. Multi-class methods are needed when the outcome in-

cludes three or more possibilities. For these instances, the logistic regression is built

in a one-vs-rest algorithm where each class (one at a time) is assigned as the pos-

itive instance and all other classes as negative. The final prediction for each new

observation is given by

ŷ = argmax fC(x),

where fC(x) is a vector that contains the prediction of each model for all C classes

of the x being evaluated. In general, and as we will see in Chapter 4, the primary

disadvantage of using MLR is that it is not scalable to the number of output classes.

3.2 Random Forests
Decision trees are the basic building blocks for random forests. A decision tree is

a classification algorithm based on a binary search tree where each node specifies

a test on one of the attributes available to the system. The nodes are constructed in

such a way that the most informative1 features (i.e., tests) are higher up in the tree.
1There are two common ways to rank features in terms of the information they contain, the Gini

Coefficient and Shannon’s Entropy.
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The leaf nodes in the tree will correspond to the outcome variable. Therefore an

observation will be classified once it has traversed the tree and assigned to the class

that corresponds to the leaf in its path [141, 142].

There are several factors that support the rise in popularity of decision trees.

First, once trained, every tree can be written out as a set of logical rules (following

the if . . . then principle). These make the model interpretable removing the appear-

ance of a black box. Then, in principle, decision trees can accept a wide variety of

input data. While this depends on the implementation of one particular algorithm,

as long as there is a test for the data, it can be included in a node. Similarly, because

of their construction decision trees are robust to noise. Features that are not infor-

mative with respect to the prediction variable will be automatically excluded from

the nodes; having outlying values in the training data will also have limited impact

in the outcome of the tests [139].

Random forests were presented as a way to reduce the variance2 of the clas-

sification tree [143, 139]. This method takes a large number of independent trees

and obtains a class vote from each one. Individual results are then averaged and

in its simplest implementation, a majority vote determines the final prediction for

each observation. Based on the idea of bagging, random forests are also effective in

reducing the likelihood of a model over-fitting a particular training set.

3.3 k Nearest Neighbors
k-Nearest Neighbors (KNN) is an example of a lazy learning method. Lazy learn-

ing or instance learning refers to those algorithms that generalize from the training

observations only after receiving a test observation. In other words, lazy learners

work on local weighted functions to make a prediction whereas eager learners com-

pute a global approximation for the target function and simply evaluate test cases.

2Two terms that are relevant to random forests are boosting and bagging. Boosting is the idea
that combining predictors yields better performance. While this is counter intuitive in people, it
has been shown that learners will specialize in different aspects of the problem and often the best
solution is found when multiple learners are combined. Bagging is instead the concept of ‘bootstrap
aggregating’. Bootstrapping is the idea of sampling with replacement. Two of its primary benefits
are that since it generates slightly different input data for different learners it will first allow trees
to specialize in different aspects (i.e., priming the trees for boosting); and then it will reduce the
variance of the classifier. [141]
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The main practical difficulties with instance learning are that first the processing

is done during testing (i.e., each test observation is compared against all training

observations) and second choosing an appropriate function to define what is ‘close’

or ‘related’ is not trivial (this becomes particularly important in high-dimensional

space when proximity in two features might be inverted).

As a classifier, KNN assigns to each new observation xn the label that corre-

sponds to the most common value of a window of size k as defined by some distance

metric3. Formally, the model behaves as follows

f̂ (xn) = argmax
k

∑
n=1

δ (v, f (xi))

where v ∈ {v1,v2, · · · ,vs} belongs to the finite set of labels present in the training

set, δ is the distance function, and k is the hyperparameter that indicates the number

of neighbors under consideration.

The choice of k has a definite impact on the performance of the algorithm. A

small k makes the algorithm sensitive to noise; make it too large the grouping (or

spacing) of the training data has an impact on the accuracy, points that are further

away are less relevant to the new observation [139, 144].

3.4 Artificial Neural Networks
An artificial neural network is a mathematical model designed to imitate how the

neurons in our brain operate, resulting in the multi-layer function learning from

data. In essence, input signals from a previous layer are adjusted and passed along to

the next layer, and the signals of the last layer determine the output of the network.

Usually, for more complex problems, multiple layers of neurons are stacked in order

to generate a prediction.
3A distance metric is a function that has three characteristics: first it takes two inputs and returns

a scalar (typically we thing in three dimensions but this is just as applicable to more), second it is
symmetric (i.e., not affected by the direction of the change), and third it must follow the triangle
inequality that states that between three points a, b and c the distance from a to b plus the distance
from b to c should be greater than or equal to the distance from a to c. Typically the most common
choice for metric is the Euclidean distance as it is easy to generalize to multiple dimensions. [142].
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In terms of supervised learning, the procedure involves collecting a dataset

and selecting appropriate features; normalizing these inputs; splitting the data into

training, testing and validation sets; training the model; and finally testing on unseen

observations. Using an artificial neural network for supervised learning requires an

aditional step: designing the architecture for the network; which involves deter-

mining the depth, width, and activation functions of the model. The parameters of

each layer can be learned and adjusted to achieve a better solution based on some

loss functions. By only employing differentiable layers, these parameters can be

effectively learned with back-propagation [141], which recursively propagates the

gradient backwards starting from the loss functions from the last layer to the first

input layer.

3.4.1 Convolutional Neural Networks

One of the tasks that led to the development of new architectures was that of iden-

tifying objects in an image. The human mind can identify as belonging to the same

category an object under an amazing array of transformations. The hypothesis lead-

ing to Convolutional Neural Networks (CNN) is that grouping nearby pixels will

benefit the object recognition process [145]. The success of this method made

CNNs the method of choice for computer vision problems, moreover it has become

the specialized architecture when processing data with localized spatial correlations.

As the name indicates, CNNs use the convolution operation instead of the gen-

eral matrix multiplication. CNNs belong under the umbrella term of Deep Learning.

A deep neural network is characterized by relatively more layers of neurons.

3.4.2 Siamese Networks

For classification problems, neural networks and deep learning models are inspired

by the human brain and the way people acquire concepts. One major difference

between the two is that while human learning can happen reliably with as little as 2

or 3 observations, artificial (deep) networks need thousands or tens of thousands of

examples to achieve the same performance 4 [146, 147, 148].

4Typically, the penalty for using a reduced data set is that the network will overfit the training
examples and underperform on test observations. [146]
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To mitigate this problem, researchers introduced Siamese Networks, a model

where two networks, with the same architecture and matching weights, are joined at

the last layer. The additional constraints allow the network to not only distinguish

between different classes but to group within class similarities resulting in overall

better performance. In general, in addition to the classification loss, an additional

contrastive loss [149] is introduced between the latent representations of two inputs.

This loss encourages the similarity of hidden features of like pairs while maximizing

the dissimilarity between the features of unlike pairs.

Siamese Networks work under the assumption that generic knowledge from

known classes can be incorporated in the definition of new classes (even if the

categories are unseen). In other words, Siamese Networks use the discriminative

features from the cross-entropy loss and add to it the hidden features from the new

class.



Chapter 4

Identification of User Accounts from

Twitter Metadata

Platforms like Facebook, Flickr, and Reddit allow users to share links, documents,

images, videos, and thoughts. Data has become the newest form of currency and an-

alyzing data is both a business and an academic endeavor. Regardless of the reason

for the release of a specific dataset, it is likely that a dataset containing descriptive

information about accounts and posts becomes readily available. In this work, we

aim to understand what this descriptive information reveals about users. When on-

line social networks (OSNs) were first introduced, privacy was not a major concern

for users and therefore not a priority for service providers. With time, however,

privacy concerns have risen: users started to consider the implications of the infor-

mation they share [57, 150] and in response OSN platforms have introduced coarse

controls for users to manage their data [58]. Indeed, this concern is heightened by

the fact that this descriptive information can be actively analyzed and mined for a

variety of purposes, often beyond the original design goals of the platforms. For

example, information collected for targeted advertisement might be used to under-

stand political and religious inclinations of a user. The problem is also exacerbated

by the fact that often these datasets might be publicly released either as part of a

campaign or through information leaks.

Previous work shows that the content of a message posted on an OSN plat-

form reveals a wealth of information about its author. Through text analysis, it
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is possible to derive age, gender, and political orientation of individuals [26]; the

general mood of groups [151] and the mood of individuals [27]. Image analysis

reveals, for example, the place a photo was taken [152], the place of residence of

the photographer [25], or even the relationship status of two individuals [153]. If

we look at mobility data from location-based social networks, the check-in behavior

of users can tell us their cultural background [154] or identify users uniquely in a

crowd [155]. Finally, even if an attacker only had access to anonymized datasets,

by looking at the structure of the network someone may be able to re-identify users

[59]. Most if not all of these conclusions could be considered privacy-invasive by

users, and therefore the content is what most service providers are starting to pro-

tect. However, access control lists are not sufficient. We argue that the behavioral

information contained in the metadata is just as informative.

Metadata has become a core component of the services offered by OSNs. For

example, Twitter provides information on users mentioned in a post, the number of

times a message was re-tweeted, when a document was uploaded, and the number of

interactions of a user with the system, just to name a few. These are not merely extra

information: users rely on these to measure the credibility of an account [156] and

much of the previous research in fighting social spam relies on account metadata

for detection [98, 95].

In this chapter, we present an in-depth analysis of the identification risk posed

by metadata to a user account. We treat identification as a classification problem

and use supervised learning algorithms to build behavioral signatures for each of

the users. Our analysis is based on metadata associated to micro-blog services like

Twitter: each tweet contains the metadata of the post as well as that of the account

from which it was posted. However, it is worth noting that the methods presented

in this work are generic and can be applied to a variety of social media platforms

with similar characteristics in terms of metadata. In that sense, Twitter should be

considered only as a case study, but the methods proposed in this chapter are of

broad applicability. The proposed techniques can be used in several practical sce-

narios such as when the identifier of an account changes over time, when a single
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user creates multiple accounts, or in the detection of legitimate accounts that have

been hijacked by malicious users.

In security, there are at least two areas that look at identity from opposite per-

spectives: on one hand research in authentication looks for methods that, while un-

obtrusive and usable, consistently identify users with low false positive rates [92];

and, on the other hand, work on obfuscation and differential privacy aims to find

ways by which we can preserve an individual’s right to privacy by making infor-

mation about them indistinguishable in a set [39]. This study is relevant to both:

we claim that in the same way that our behavior in the physical world is used to

identify us [157, 97, 158], the interactions of a user with a system, as represented

by the metadata generated during the account creation and its subsequent use, can

be used for identification. If this is true, and metadata can in fact represent us and

as it is seldom if ever protected, it constitutes a risk for users’ privacy. Our goal is

therefore, to determine if the information contained in users’ metadata is sufficient

to fingerprint an account. Our contributions can be summarized as follows:

• We develop and test strategies for user identification through the analysis of

metadata through state-of-the-art machine learning algorithms, namely Multi-

nomial Logistic Regression (MLR) [159], Random Forest (RF) [143], and

K-Nearest Neighbors (KNN) [160].

• We provide a performance evaluation of different classifiers for multi-class

identification problems, considering a variety of dimensions and in particular

the characteristics of the training set used for the classification task.

• We assess the effectiveness of two obfuscation techniques in terms of their

ability of hiding the identity of an account from which a message was posted.

We demonstrate that through the application of supervised algorithms, we are able

to identify 1 user in a group of 10,000 with approximately 96.7% accuracy. If we

broaden the scope of our search and consider the best 10 candidates from a group

of 10,000 users, we are able to achieve a 99.22% accuracy.



4.1. Motivation 62

4.1 Motivation

4.1.1 Formal Definition of the Study

We consider a set of users

U = {u1,u2, . . . ,uk, . . . ,uM}.

Each user ui is characterized by a finite set of features

Xuk = {xuk 1,xuk 2, . . . ,xuk R}.

In other words, we consider M users and each user is represented by means of R

features. Our goal is to map this set of users to a set of identities

I = {i1, i2, . . . , ik, . . . , iM}.

We assume that each user uk maps to a unique identity il .

Identification is framed in terms of a classification problem: in the training

phase, we build a model with a known dataset; in our case, we consider a dataset in

which a user uk as characterized by features Xuk , extracted from the user’s profile,

is assigned an identity il . Then, in the classification phase, we assign to each user

ûk, for which we assume that the identity is unknown, a set of probabilities over all

the possible identities.

More formally, for each user ûk (i.e., our test observation) the output of the

model is a vector of the form

PI(ûk) = {pi1(ûk), pi2(ûk), . . . , piM(ûk)},

where pi1(ûk) is the probability that the test observation related to ûk will be as-

signed to identity i1 and so on. We assume a closed system where all the ob-

servations will be assigned to users in I, and therefore, ∑il∈I pil(ûk) = 1. Fi-

nally, the identity assigned to the observation will be the one that corresponds to

argmaxil{pil(ûk)}.

Two users with features having the same values are indistinguishable. More-

over, we would like to point out that the values of each feature can be static (con-

stant) over time or dynamic (variable) over time. An example of static feature is the
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Table 4.1: Description of relevant data fields.

Feature Description

Account creation UTC time stamp of the account creation time.
Favourites count The number of tweets that have been marked as ‘favorites’ of this account.
Follower count The number of users that are following this account.
Friend count The number of users this account is following.
Geo enabled (boolean) Indicates whether tweets from this account is geo-tagged.
Listed count The number of public lists that include the account.
Post time stamp UTC time of day stamp at which the post was published.
Statuses count The number of tweets posted by this account.
Verified (boolean) Indicates that Twitter has checked the identity of the user that owns this account.

account creation time. An example of dynamic feature is the number of followers

of the user at the time the tweet was posted. Please also note that, from a practical

point of view, our objective is to ascertain the identity of a user in the test set. In

the case of a malicious user, whose identity has been modified over time, we as-

sume that the ‘real’ identity is the one that is found in the training set. In this way,

our method could also be used to group users with very similar characteristics and

perhaps conclude that they belong to the same identity.

4.1.2 Attack Model

The goal of the study is to understand if it is possible to correctly identify an account

given a series of features extracted from the available metadata. In our evaluation,

as discussed before, the input of the classifier is a set of new (unseen) tweets. We

refer to a successful prediction of the account identity as a hit and an unsuccessful

one as a miss. We assume that the attacker is able to access the metadata of tweets

from a group of users together with their identities (i.e., the training set); and, that

the new tweets belong to one of the users in the training set.

We present the likelihood of success of an identification attack where the ad-

versary’s ultimate goal is to identify a user from a set given this knowledge about the

set of accounts. To achieve this, we answer this question: Is it possible to identify

an individual from a set of metadata fields from a randomly selected set of Twitter

user accounts?



4.2. Methods 64

4.2 Methods

4.2.1 Metadata and the case of Twitter

We define metadata as the information available pertaining to a Twitter post. This

is information that describes the context on which the post was shared. Apart from

the 140 character message, each tweet contains about 144 fields of metadata. Each

of these fields provides additional information about: the account from which it

was posted; the post (e.g. time, number of views); other tweets contained within

the message; various entities (e.g. hashtags, URLs, etc); and the information of any

users directly mentioned in it. From these features (in this work we will use features,

fields, inputs to refer to each of the characteristics available from the metadata) we

created combinations from a selection of 14 fields as a basis for the classifiers.

4.2.2 Feature Selection

Feature selection methods can be essentially grouped in three classes following the

classification proposed by Liu and Yu in [161]: the filter approach that ranks fea-

tures based on some statistical characteristics of the population; the wrapper ap-

proach that creates a rank based on metrics derived from the measurement algo-

rithm; and a group of hybrid methods which combine the previous two approaches.

In the same paper, the authors claim that the wrapper method is guaranteed to find

the optimal combination of inputs for classification based on the selected criteria.

Three years later, in [160], Huang et al. provided validation by experimentally

showing that for classification, the wrapper approach results in the best possible

performance in terms of accuracy for each algorithm.

From the three proposed, the only method that allows for fair comparison be-

tween different algorithms is the wrapper method. Since it guarantees optimal fea-

ture combination on a per algorithm basis, it eliminates any bias in the analysis due

to poor selection. Ultimately, we conducted a comprehensive stratified search over

the feature space and obtained a ranking per level for each of the algorithms. Here,

a level corresponds to the number of features used as input for the classifier and we

will use n to denote it. In the first level, where n = 1 we looked at the predictive
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power of each of the 14 features individually; for n = 2 we looked at all combina-

tions of pairs of features, and so on. We use the term combinations to describe any

group of n un-ordered features throughout this chapter.

The features selected were those that describe the user account and were not

under direct control of the user with the exception of the account ID which was

excluded as it was used as ground truth (i.e., the label) of each observation. As an

example, the field describing the users’ profile background color was not included

in the feature list while number of friends and number of posts were. Table 4.1

contains a description of the fields selected.

4.2.3 Implementation of the Classifiers

We consider three state-of-the-art classification methods: Multinomial Logistic

Regression (MLR) [159], Random Forest (RF) [143], and K-Nearest Neighbors

(KNN) [160]. Each of these algorithms follow a different method to make the rec-

ommendation and they are all popular within the community.

We use the implementation of the algorithms provided by sci-kit learn [162], a

Python library. The optimization of the internal parameters for each classifier was

conducted as a combination of best practices in the field and experimental results in

which we used the cross-validated grid search capability offered by scikit-learn. In

summary, we calculated the value of the parameters for each classifier as follows.

For KNN, we consider the single closest value based on the Euclidean distance be-

tween the observations; for RF, we chose entropy as the function to measure the

effectiveness of the split of the data in a node; finally, for MLR, we selected the

limited-memory implementation of the Broyden-Fletcher-Goldfarb-Shanno (LM-

BFGS) optimizer as the value to optimize [163].

4.2.4 Obfuscation and Re-Identification

Obfuscation can only be understood in the context of data sharing. The goal of ob-

fuscation is to protect the private individual fields of a dataset by providing only the

result of some function computed over these fields [164]. To succeed, the possibil-

ities are either to obfuscate the data or develop algorithms that protect it [165]. We
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reasoned that an attacker will have access to any number of publicly available algo-

rithms. This is outside of our control. However, we could manipulate the granularity

of the information made available. Our task is to determine whether doing so is an

effective way of protecting user privacy, particularly when obfuscated metadata is

released.

In this work we focus on two classic obfuscation methods: data randomization

and data anonymization [47, 166, 167]. Data anonymization is the process by which

the values of a column are grouped into categories and each reading is replaced by

an index of its corresponding category. Data randomization, on the other hand,

is a technique that alters the values of a subset of the data points in each column

according to some pre-determined function. We use rounding as the function to be

applied to the data points. For each of the values that were altered, we rounded

to one less than the most significant value (i.e., 1,592 would be 1,600 while 31

would be 30). We measured the level of protection awarded by randomization by

recording the accuracy of the predictions as we increased the number of obfuscated

data points in increments of 10% until we reached full anonymization (i.e., 100%

randomization) of the training set.

4.2.5 Inference Methods

Statistical inference is the process by which we generalize from a sample a char-

acteristic of the population. Bootstrapping is a computational method that allows

us to make inferences without making any assumptions about the distribution of

the data and without the need of formulas to describe the sampling process. With

bootstrapping we assume that each sample is the population and then aggregate the

result from a large number of runs (anywhere between 50 and 1,000 times depend-

ing on the statistic being drawn) [168]. In this study we are primarily interested in

the precision and accuracy of each classifier as a measure of their ability to predict

the correct user given a tweet. The results we present are an average over 200 rep-

etitions of each experiment. In each experiment, the input data was randomly split

between training and testing sets using a 7:3 proportion, which is a typical setting

in evaluation of machine learning algorithms.
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Table 4.2: KNN classification accuracy using ten observations per user of two features
follower count and friend count for input. We ran each experiment for an

increasing number of users u.

u top result top 5

10 94.283 (±0.696) 98.933 (±0.255)
100 86.146 (±0.316) 96.770 (±0.143)

1,000 70.348 (±0.112) 90.867 (±0.076)
10,000 47.639 (±0.039) 76.071 (±0.029)

100,000 28.091 (±0.089) 55.438 (±0.192)

4.3 Experimental Settings

4.3.1 Dataset

For data collection, we used the Twitter Streaming Public API [169]. Our popu-

lation is a random1 sample of the tweets posted between October 2015 and Jan-

uary 2016 (inclusive). During this period we collected approximately 151,215,987

tweets corresponding 11,668,319 users. However, for the results presented here

we considered only users for which we collected more than 200 tweets. Our final

dataset contains tweets generated by 5,412,693 users.

4.3.2 Ethics Considerations

Twitter is the perfect medium for this work. On one hand, users posting on Twitter

have a very low expectation of privacy: it is in the nature of the platform to be open

and to reach the widest audience possible. Tweets must always be associated with

a valid account and, since the company does not collect demographic information

about users upon registration, the accounts are not inherently linked to the physical

identity of the users. Both these factors reduce but do not eliminate any ethical

concerns that may arise from this work. Nonetheless, we submitted this project for

IRB approval and proceeded with their support.

1It is worth noting that since we use the public Twitter API we do not have control on the sam-
pling process. Having said that, an attacker will most probably access the same type of information.
A typical use case is the release of data set of tweets usually obtained in the same way.
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Figure 4.1: Change in accuracy for a
single feature combination and

increasing users.
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Figure 4.2: Performance of the top 20% of
combinations per classifier for

increasing observations per
user.
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4.3.3 Experimental Variables

We identified two variables that regardless of the features would influence the accu-

racy of the classifiers: the number of users considered in each experiment (which is

equivalent to the number of classes in the classifier) and the number of observations

per user. In this section we discuss both factors.

4.3.3.1 Number of Users

As an attack, guessing is only viable for smaller user pools: indeed, there is a 1:10

probability of randomly classifying a tweet correctly for a user pool made up of

10 users, whereas there is a 1:10,000 probability in a pool of 10,000 users. The

likelihood of guessing correctly is inversely proportional to the number of users.

Therefore, the first task was to compare and describe the way in which increasing

the number of users affects the accuracy of the classifiers. We evaluate each algo-

rithm (i.e., MLR, RF, KNN) on a specific configuration of training data in order to

obtain a trained model. We trained models for all feature combinations however, we

present only the results for the best combination of parameters for each classifier.

We first analyze the impact of the number of classes. In Figure 4.1 we present

with fixed parameters the effect of increasing only the number of outputs for each

of the classifiers. Each model was built with two input features (i.e., n = 2 where

the features are number of friends and number of followers) and 10 observations per

user. Some of the results we present are independent of the underlying classification
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algorithm. For these instances, we present results using only KNN. As will be

shown later, KNN shows the best performance in terms of prediction and resource

consumption.

Figure 4.1 shows that the loss in accuracy is at worst linear. In a group of

100,000 users, the number of friends and of followers was sufficient to identify

30% of the users (around 30,000 times better than random). However, while the

accuracy of the classification gradually declines, there is a dramatic increase in the

cost (in terms of time) when building the model. As we will discuss in the last

part of the Results section, the greatest obstacle with multi-class classification is the

number of classes included in the model.

4.3.3.2 Number of Entries per User

The next variable we consider is the number of observations per user per model.

Our objective is to visualize the relationship between accuracy and the number of

tweets to set a minimum value for the rest of the study.

To set this parameter, we fixed the number of input features at n = 2 and u =

1,000 then we ran models with 10, 100, 200, 300, and 400 tweets per user. Figure

4.2 shows the aggregated results for the 20% most accurate feature combinations

over 400 iterations. As the figure shows, ten entries is not enough to build robust

models. For all classifiers we see that the behavior is almost asymptotic. There is a

significant increase in accuracy as the number of observations per user reaches 100.

However, for all subsequent observations, the variation is less apparent. Each of the

points in the graph contains the confidence interval associated with the measurement

however, for RF the largest error is 0.2. It is worth noting that given the number of

observations per user needed for robustness, with our data set we could only scale

as far as 10,000 users.

Using the bootstrapping method for inferences, going forward, we repeated

each experiment 200 times. Each time with different configurations in terms of

users and observations (i.e., tweets) per user. By standardizing the number of ob-

servations per user at 200 tweets, we preempt two problems: first, by forcing all

users to have the same number of tweets we reduce the likelihood of any user not
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having some entries in the training set; and second, it prevents our results from be-

ing biased towards any user with a disproportionate number of observations. This

might be considered as potentially artificial, but we believe it represents a realistic

baseline for evaluating this attack.

4.4 Results
We present results in three areas: accuracy of classification, the resilience of each

classifier in terms of their prediction accuracy when using obfuscated input data, and

execution time of each algorithm and a method for improving their performance.

4.4.1 Identification

In building and comparing models we are interested in the effects and interactions

of the number of variables used for building the models which we denote n and the

number of output classes which we refer to as u.

We define accuracy as the correct assignment of an observation to a user. In

a multi-class algorithm, the predicted result for each observation is a vector con-

taining the likelihood of that observation belonging to each of the users present in

the model. A prediction is considered correct if the user assigned by the algorithm

corresponds to the true account ID. In the rest of the chapter, we report aggregated

results with 95% confidence intervals. In our analysis, the account creation time

was found to be highly discriminative between users. We present results with the

dynamic features, defined below, then we present our findings with the account

creation time, and finally, we give a comprehensive analysis of the task of identi-

fication given combinations of both static and dynamic features for three different

classifiers.

4.4.1.1 Static Attribute: Account Creation Time

Twitter includes the Account Creation Time (ACT) in every published tweet. The

time stamp represents the moment in which the account was registered, and as such,

this value is constant for all tweets from the same account. Each time stamp is

composed of six fields: day, month, year, hour, minute, and second of the account

creation.
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Table 4.3: Entropy calculation for feature list.

feature entropy

ACT 20925

statuses count 16132

follower count 13097

favorites count 12994

friend count 11725

listed count 6619

second 5907

minute 5907

day 4949

hour 4543

month 3581

year 2947

post time 1789

geo enabled 0995

verified 0211

For perfect classification

(i.e., uniqueness), we look for

a variable whose value is con-

stant within a class but distinct

across classes (as explained be-

fore, each user in is a class).

The account creation time is the

very example of one such vari-

able. We tested the full ACT us-

ing KNN and found that, even

for 10,000 users, classifying on

this feature resulted in 99.98%

accuracy considering 200 runs.

Nonetheless, the ACT is partic-

ularly interesting because while

it represents one unique mo-

ment in time (and thus infinite

and highly entropic), it is composed of periodic fields with a limited range of pos-

sible values. As we see in Table 4.3 individually, each of the fields has at least a

75% drop in entropy as compared to the combined ACT. Since full knowledge of

the ACT can be considered as the trivial case for our classification problem, in the

following sections we will consider the contribution of each field of the account

creation time separately.

4.4.1.2 Dynamic Attributes

By dynamic attributes we mean all those attributes that are likely to change over

time. From Table 4.1 these are the counts for: friends, followers, lists, statuses, and

favorites, as well as, a categorical representation of the time stamp based on the

hour of each post.

Table 4.4 presents the two best performing combinations in terms of accuracy

for each of the values we consider for n and u. In 10,000 users there is a 92%
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Table 4.4: KNN Classification using
dynamic features.

u n features accuracy

10,000
3

friend, follower, listed count 92.499 (±0.0008)
friend, follower, favorite count 91.158 (±0.0006)

2
friend, follower count 83.721 (±0.0005)
friend, favorite count 78.547 (±0.0006)

1,000
3

friend, follower, listed count 95.702 (±0.0037)
friend, follower, favorite count 93.474 (±0.0015)

2
friend, follower count 91.565 (±0.0026)
friend, listed count 89.904 (±0.0028)

100
3

friend, follower, listed count 98.088 (±0.0037)
friend, follower, favorite count 97.425 (±0.0058)

2
friend, follower count 97.099 (±0.0051)
friend, listed count 95.938 (±0.0073)

10
3

friend, follower, favorite count 99.790 (±0.0014)
friend, favorites, listed count 99.722 (±0.0015)

2
friend, favorites count 99.639 (±0.0016)
follower, friend count 99.483 (±0.0022)

Table 4.5: RF Classification using
dynamic features.

u n features accuracy

10,000
3

friend, follower, favorite count 94.408 (±0.0008)
friend, follower, status count 94.216 (±0.0006)

2
friend, follower count 81.105 (±0.0005)
friend, favorite count 75.704 (±0.0006)

1,000
3

friend, follower, favorite count 96.982 (±0.0008)
friend, follower, status count 96.701 (±0.0008)

2
friend, follower count 90.889 (±0.003)
friend, favorite count 89.271 (±0.004)

100
3

friend, follower, favorite count 99.286 (±0.0014)
friend, listed, favorite count 99.149 (±0.0017)

2
friend, follower count 97.690 (±0.0029)
listed, friend count 97.275 (±0.00363)

10
3

friend, listed, favorite count 99.942 (±0.0005)
follower, favorites, friend count 99.930 (±0.00061)

2
friend, listed count 99.885 (±0.0008)
follower, friend count 99.776 (±0.0013)

Table 4.6: Accuracy of the top
combination for n number of
inputs for the KNN classifier.

u n features accuracy(%)

10,000
3 day, minute, second 96.737(±0.019)
2 follower, friend count 83.719(±0.021)
1 friend count 14.612(±0.036)

1,000
3 listed count, minute, second 99.648(±0.022)
2 friend, listed count 92.809(±0.050)
1 friend count 40.151(±0.089)

100
3 month, minute, second 100.00 (±0.000)
2 minute, second 98.836(±0.101)
1 friend count 78.650(±0.330)

10
3 month, minute, second 100.00 (±0.000)
2 month, minute 100.00 (±0.000)
1 friend count 96.428(±0.312)

Table 4.7: Accuracy of the top
combination for n number of
inputs for the RF classifier.

u n features accuracy(%)

10,000
3 listed count, day, second 94.234(±0.022)
2 friend count, minute 81.352(±0.347)
1 friend count 23.958(±0.089)

1,000
3 friend count, minute, second 99.881(±0.008)
2 friend count, second 97.28(±0.032)
1 friend count 49.538(±0.086)

100
3 day, minute, second 100.00 (±0.000)
2 friend count, minute 99.595(±0.023)
1 friend count 81.489(±0.299)

10
3 day, minute, second 100.00 (±0.000)
2 day, second 100.00 (±0.000)
1 friend count 96.858(±0.256)

chance of finding the correct account given the number of friends, followers and the

number of times an account has been listed. Table 4.5 presents similar results for

the RF algorithm. Even without the ACT, we are able to achieve 94.41% accuracy

in a group of 10,000 users. These results are directly linked to the behavior of an

account and are obtained from a multi-class model.

4.4.1.3 Combining Static and Dynamic Attributes

As we expected from our feature selection, the top combinations per value of n

inputs are different per classifier. Tables 4.6, 4.7, 4.8 show the accuracy and the

error obtained for the best performing pair of features aggregated over all runs for

the three classifiers.
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u n features accuracy(%)

10,000

3 day, minute, second 96.060(±0.060)

2 day, minute 29.571(±5.11)

1 second 2.241(±0.080)

1,000

3 hour, minute, second 99.329(±0.060)

2 day, minute 61.77(±5.11)

1 hour 3.105(±0.080)

100

3 day, minute, second 100.00 (±0.000)

2 second, minute 98.494(±0.116)

1 second 26.303(±0.536)

10

3 day, minute, second 100.00 (±0.000)

2 day, minute 100.00 (±0.000)

1 second 94.129(±0.702)

Table 4.8: Accuracy of the top combination for n
number of inputs for the MLR classifier.

We can see that the least

accurate predictions are those

derived by means of the MLR

algorithm. Then, probably for

its robustness against noise, RF

performs best for the smaller

user-groups, but it is KNN that

has the upper hand for the case

where u = 10,000.

In general, the classifi-

cation task gets incrementally

more challenging as the number

of users increase. We are able

to achieve a 90% accuracy over all the classifier with respect to a 0.01% baseline

offered by the random case. If we consider the 10 most likely output candidates

(i.e. the top-10 classes), for the 10,000 user group there is a 99.22% probability of

finding the user.

Finally, we looked at how the best performing combinations across all algo-

rithms behaved in models for each classifier. The top three combinations per value

of n are presented in Figures 4.4a, 4.4b, 4.4c. For the same value of u as we increase

n the accuracy increases.
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Figure 4.3: Averaged model accuracy for logarithmic-step user size increase.
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Figure 4.4: Performance of the most popular features for increasing tuple size.

4.4.2 Obfuscation

The final analysis looks at the effects of data anonymization and data randomization

techniques on the proposed methodology. As we state in the Method section we

start with the original data set then apply a rounding algorithm to change the values

of each reading. The number of readings that pass through the algorithm increase

in steps of 10% from no anonymization to 100% perturbation where we show full

randomization. To test obfuscation, we selected the 3 most accurate combinations

of features for n = 2 and u = 1,000 for each of the classification methods.

While we are not working with geospatial data, we find that similar to [170]

the level of protection awarded by perturbation is not very significant until we get

to 100% randomization. Figures 4.5a, 4.5b, and 4.5c show how each algorithm per-

forms with an increasing number of obfuscated points. RF is the best performing,

all three combinations stay stable for a longer period of time and gives the best re-
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Figure 4.5: Change in predictive accuracy per classification algorithm for increasing
percentage of input data obfuscation.
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Figure 4.6: Mean execution time as a
function of features.
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sult with data anonymity. MLR is the most sensitive of the three. Even with 20%

randomization, there is a steep decrease in terms of prediction accuracy.

4.4.3 Execution Time

To compare the performance of the classifiers in terms of execution time we used a

dedicated server with eight core Intel Xeon E5-2630 processors with 192GB DDR4

RAM running at 2,133MHz. For the implementation of the algorithms, we used

Python 2.7 and Sci-kit learn release 0.17.1.

Figure 4.6 shows execution time as a function of the number of output classes

in each model. Note that the performance gap between MLR and the other two is

significant. While KNN and RF show a linear increase over the number of users,

the rate of change for MLR is much more rapid. At u = 1,000 and n = 3, for ex-

ample, MLR is 105 times slower than RF and 210 times slower than KNN. The

performance bottleneck for multi-class classifiers is the number of output classes.

Finding a viable solution is fundamental for this project and for the general ap-

plicability of the method. To address this, we implemented a divide and conquer

algorithm where we get intermediate predictions over smaller subsets of classes and

build one final model with the (intermediate) results. This method allows for faster

execution and lower memory requirements for each model and parallel execution

resulting in further performance enhancements. Figure 4.7 shows the effectiveness

of the proposed method for u = 100,1000, and 10000. We also observe that the

accuracy is independent from the number of subsets.
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4.5 Discussion and Limitations

We have presented a comparison of three classification methods in terms of accu-

racy and execution time. We reported their performance with and without input

obfuscation. Overall, KNN provides the best trade-off in terms of accuracy and

execution time with both the original and the obfuscated data sets. We tested each

of the algorithms following the wrapper method by increasing the number of input

features in each model in steps of one. The results, summarized in Tables 4.6, 4.7

and 4.8, show that the metadata can be effectively exploited to classify individuals

inside a group of 10,000 randomly selected Twitter users. While both KNN and RF

are similar in terms of accuracy and execution, MLR is consistently outperformed.

Moreover, as shown in Figures 4.3a, 4.3b, and 4.3c, as the number of output classes

increases, the difference in performance becomes more apparent. It is also impor-

tant to note that, as shown in Table 4.8, the accuracy exhibited by MLR depends

entirely on the six constituent features of the account creation time. Finally, the per-

formance of MLR is the most sensitive to obfuscation as shown in Figure 4.5c the

rounding algorithm results in a monotonic drop in accuracy for the best performing

combinations.

One of the challenges in this work was the scalability of the classification al-

gorithms. A key challenge in designing this type of algorithm is performance in

terms of the scalability of its parameters. We found that while both the number of

input features and the number of output classes have a detrimental impact on per-

formance, the bottleneck can be identified in the latter. To address this we designed

an ensemble-like algorithm that subsets the total number of users considered and

creates smaller trained models using fewer output classes and then, combine them.

Figure 4.7 shows that the results obtained from this method are reliable. We ran

comparisons for u = 100,1000, and 10000 using KNN and found that the preci-

sion and the recall of each model are equivalent to the ones obtained from a single

model. This proves the scalabiliy of the proposed approach beyond the number of

users available in our test data set.
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4.6 Summary
In this chapter, we have used Twitter as a case study to quantify the uniqueness

of the association between metadata and user identity, devising techniques for user

identification and related obfuscation strategies. We have tested the performance

of three state-of-the-art machine learning algorithms, MLR, KNN and RF using a

corpus of 5 million Twitter users. KNN provides the best performance in terms of

accuracy for an increasing number of users and obfuscated data. We demonstrated

that through this algorithm, we are able to identify 1 user in a group of 10,000 with

approximately 96.7% accuracy. Moreover, if we broaden the scope of our search

and consider the best 10 candidates from a group of 10,000 users, we achieve a

99.22% accuracy. We also demonstrated that obfuscation strategies are ineffective:

after perturbing 60% of the training data, it is possible to classify users with an

accuracy greater than 95%.

We believe that this work will contribute to raising awareness of the privacy

risks associated to metadata. It is worth underlining that, even if we focused on

Twitter for the experimental evaluation, the methods described in this work can be

applied to a vast class of platforms and systems that generate metadata with similar

characteristics. This problem is particularly relevant given the increasing number of

organizations that release open data with metadata associated to it or the popularity

of social platforms that offer APIs to access their data, which is often accompanied

by metadata.



Chapter 5

Device Identification from Magnetic

Field Emissions

Smartphones are equipped with a wide range of sensors that measure a variety of

physical quantities including light, humidity, orientation, acceleration, pressure,

proximity, and location [171]. The information collected is used to enhance user

experience (e.g., automatic screen brightness adjustment and energy saving mode

during phone calls), to improve services (e.g., location-based services like Uber

and calendar reminders based on travel time), and also as a commodity that benefits

third parties (e.g., the use of microphones in mobile devices to respond to ultrasonic

beacons in order to measure the audience of an advertisement [172]). In many in-

stances, identifying a device or a user is trivial and expected (particularly for ser-

vices that require registration) but for unknown third parties (i.e., secondary data

collectors that gain access to the data without users being explicitly aware of their

activities) or for applications where the user expects to remain anonymous (e.g.,

applications for gaming, weather, and the news), many of these sensors potentially

expose the user’s private information [173].

The magnetometer is the sensor responsible for measuring the magnetic field

in the environment of the phone. It is commonly available in all platforms and

is usually combined in the same chip with the sensors for linear acceleration and

gyration. Apple, with the release of the iPhone 3GS in 2009, added magnetometers

to the sensor array available on their devices [174]. The Android operating system
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opened API support that same year with the release of Cupcake (Version 1.5) [175].

The magnetometer provides a new means to effectively fingerprint mobile devices

in a manner that is transparent to users. Accessing magnetometer readings requires

no permission declaration on either platform and the fact that the magnetic field is

radiated means that it can be measured from outside the phone.

In this chapter, we show that measurements of the magnetic field can be used

for identification. Every electronic device generates a magnetic field. In smart-

phones, it varies depending on the components active in the phone, the tolerance

level of each component, the degradation of the manufacturing materials on the

phone, and the topology of the underlying circuit. Each cell phone contains hun-

dreds of thousands of transistors alone and every component in the phone is unique.

Previous work shows that two seemingly identical components have unavoidable

differences that arise from the manufacturing process [108]. This variability has

been leveraged for identification of sensors and other integrated circuits [113, 109].

We present two identification attacks that rely on magnetic fields: a malware-based

approach that can be carried out by any application installed on a device that con-

tains a magnetometer and a proximity-based attack that can identify any device

inside the range of the external sensor measuring the magnetic field.

In the malware attack, the device on which the app is installed is both the source

and the instrument of collection of the magnetic field. To demonstrate the feasibility

of the attack, we released an app on the Play Store. Our final dataset comprises

175 devices and a minimum of 10,000 readings per device. The application collects

readings from the magnetometer and transmits them back to our servers for analysis.

We use these readings to generate fingerprints with which we identify devices. We

show that selecting 1,000 randomly spaced readings is sufficient to identify one

device from a group of 175 with an accuracy of 98.9%. To mitigate the risk to

users, we propose adding sensor readings to the permission platform. While this

would not directly affect the generation of the fingerprint, it would at least serve as

a warning system to users.

However, even after protecting the readings with the new permission, bypass-
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ing this safeguard is still possible: we present a second attack vector where the

magnetic field readings are collected from a device in close proximity to the target.

Here, the requirements (i.e., the sensor and the software that collects the readings)

have shifted to the attacker and the victim has no possible means of detection.

This work is not the first in considering magnetic emissions in the context of

privacy and security. Previous work shows that electromagnetic leaks can be used

to determine the instruction being executed by a processor [176] and to extract data

from a system through the manipulation of memory access [177, 178] or through

write instructions to the hard drive [179]. However, this is the first work to use

magnetic fields as a way to achieve identification. There are some practical diffi-

culties related to device fingerprinting in general. First, the fingerprinting accuracy

attained with a specific set of features is likely dependent on the total number of

devices present in the dataset. Second, the market diversity for mobile devices with

all the possible vendors, carriers, and designs makes it difficult to find a single uni-

versal feature for identification. We address these by conducting a user study with

175 devices over a period of four months.

In this chapter, we propose three key contributions. First, we investigate and

characterize the emission and collection of magnetic fields from a large set of off-

the-shelf mobile devices, discussing how readings can be used to generate finger-

prints and later be used in an identification attack. In second place, we present two

identification attacks based on magnetic field emissions that enable adversaries to

track devices remotely. Tracking can happen without the knowledge and consent

of the user because of the lack of permissions covering sensor readings, particu-

larly the electromagnetic field, on electronic devices. Effectively, this means that

attacks of this nature can be carried out by anyone, at any time, and they are as

of now undetectable. Furthermore, we present, for each attack the challenges and

open research questions regarding the countermeasures available and our opinion

as to why addressing these will not result in the fingerprint being undetectable. Fi-

nally, we present a methodology to process sensor readings and through the use of

two machine learning algorithms, k-Nearest Neighbors (KNN) [144] and Random
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Forests (RF) [143], build models to distinguish between devices. We show that, by

means of this approach, we are able to achieve correct identification of the devices

with up to 98.9% accuracy in 1,000 readings.

5.1 Background: Privacy and Electromagnetism

These next two chapters present different applications of the side channel informa-

tion leaked through magnetic field readings. In this chapter, we present the ability

of an attacker to identify a specific device and in Chapter 6 we explore how the

same readings can be used to infer the location type of a user. While we are the first

to present these applications, we are not the first to look at the relationship between

electricity and magnetism in terms of security and privacy.

In [179] Biedermann et al. use an off-the-shelf magnetometer to measure the

magnetic field that is emitted by the movement of the pointer to different addresses

of the disk. Following their analysis, it is possible to deduce which instruction is

currently being executed by the processor without requiring either direct access or

digital interaction with the machine. Simillarly, Zajic et al. test the boundaries of

EM memory leakage in terms of distance and present the relationship of memory lo-

cation and transmission strenght [178]. Following the same line of research, Callan

et al. propose a measurement that estimates the amount of information leaked by

different instructions and the general characteristics of the command (e.g., distance

to memory and integer division operations) that originated the signal [176].

Moving slightly into the realm of mobile devices, Guri et al. present a method

for information exchange between a desktop and a cellphone over radio signals gen-

erated by the manipulation of the multi-channel memory architecture. Transmitting

data this way happens is possible through electromagnetic emissions, GSM, UMTS

or LTE technologies. While operable over up to 30 meters, this proposal requires

malware installed on the (air gapped) desktop and the appropriate software on the

mobile device to receive it [177]. Most recently, in [180] the authors leverage mag-

netic field signals to intercept the data being written to a laptop’s hard drive. Most of

the proposed attacks require dedicated software on the target and the mobile device
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Figure 5.1: Measuring the Magnetic Field from a MEMS device. The flow of current (I)
through a conductor polarizes the material. The resulting voltage between
opposite sides is known as the Hall Voltage, from which you can derive the

magnetic induction B.

Table 5.1: Starting from the left, column one lists the two types of magnetic field events.
The middle columns contain the size and description of the response. Finally,

the column on the far right contains the units corresponding to the values
reported.

Sensor Call Response Description Units

TYPE_MAGNETIC_FIELD
SensorEvent.values[0] Geomagnetic field strength: x axis

µTSensorEvent.values[1] Geomagnetic field strength: y axis
SensorEvent.values[2] Geomagnetic field strength: z axis

TYPE_MAGNETIC_FIELD_UNCALIBRATED

SensorEvent.values[0] Geomagnetic field strength (without hard iron calibration): x axis

µT

SensorEvent.values[1] Geomagnetic field strength(without hard iron calibration): y axis
SensorEvent.values[2] Geomagnetic field strength(without hard iron calibration): z axis
SensorEvent.values[3] Iron bias estimation: x axis
SensorEvent.values[4] Iron bias estimation: y axis
SensorEvent.values[5] Iron bias estimation: z axis

is used only as a measurement instrument.

In a clear break from these papers, the analysis we carry out on magnetic field

signals is not an indication of a memory access or a particular instruction. Instead,

by understanding variability we measure uniqueness and by using signal degrada-

tion and interference we pinpoint events. To the best of our knowledge we are the

first to attempt either one of these applications.

5.2 The Magnetometer Sensor
The popularity and use of magnetic sensors have exploded in the last decades and,

while there are different technologies capable of measuring magnetic fields, the

most common distribution for mobile devices is the Micro-ElectroMechanical Sys-
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tems (MEMSs) [181]. MEMS is the name given to batch fabrication techniques

that allow for the combination of miniaturized (typically in the range of microme-

ters to millimeters) mechanical and electrical systems that generate a response in the

macro scale. These silicon-based systems are composed of mechanical structures,

sensors, actuators, and electronics all in the same chip [182].

5.2.1 The Hall Effect

Android classifies the magnetometer as a position sensor [171]. In many devices it

is, along with the accelerometer and the gyroscope, contained in a 9-axis MEMS

chip, where each sensor provides data over 3 axes [183, 184]. In order to measure

the magnitude of the magnetic field, the chip uses a Hall Effect transducer. As

shown in Figure 5.1, in a semi conductive material, such as silicone, there is a

direct relationship between the magnetic field B and the current I. Depending on

its orientation, the magnetic field will pull the current to one side of the surface

causing the plate to be charged. The resulting potential difference is labeled as the

Hall Voltage [185, 186].

F = q0E +q0v×B (5.1)

The magnitude of the force is given by the Lorentz Force Equation (Equation

(5.1)) which states that when an electron moves the force it experiences is a function

of its charge, the direction in which it is moving, and the orientation of the magnetic

field it is moving through. In the equation, F is the force, E the electric field, v the

velocity of the charge, B the magnetic field, and q0 the magnitude of the charge.

Over time, the force (F) is canceled out through a balance achieved between

the the magnetic force pushing the charged particles in one direction and the electric

force pushing them back to the center of the plate. At which point,

VH =−wvB (5.2)

where the magnetic field becomes a linear function of the Hall Voltage (VH), the

thickness of the semi conductive material in the direction parallel to the current (w),
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and the velocity of electrons traveling through the sensor (v) [187].

In reality, the measure is an approximation: while we are theoretically inter-

ested in the value of the magnetic field (H) measured in amperes per meter (A/m),

the sensor actually measures the magnetic induction (B) measured in Tesla (T ).

Equation (5.3) shows the relationship between the magnetic field and the magnetic

induction. The factor µ in the equation corresponds to the magnetic permeability of

the material. While this value varies depending on the medium through which the

wave propagates, we assume that the medium is similar for all mobile devices (i.e.,

plastic, air, and other electronics). We assume that the value of µ is constant for all

the readings and we use H as a proxy of B [188].

B = µH (5.3)

5.2.2 Sensor Calibration

The reading reported by the magnetometer is modeled by Equation 5.4.

ym = Tmm+hm + ε (5.4)

where Tm is a matrix representing, among others, the soft-iron distortion, m is the

true magnetic field vector, hm is a bias vector dominated by the hard-iron distortion,

and ym is the measurement vector in three dimensions [184].

Contrary to other sensors which can be calibrated using a correction formula

determined at manufacturing time, the magnetometer requires as part of the cali-

bration the magnetic field disturbances caused by ferromagnetic materials on the

PCB [189, 190]. The practical implication is that two of the terms in Equation 5.4

are computed in real time.

The two main types of disturbances to the measurements collected from the

magnetometer are known as soft-iron and hard-iron interference. The soft-iron ef-

fect is caused by materials that have no intrinsic magnetic field and are attached to

the magnetometers’ reference frame [184]. Metals like iron and nickle produce soft

iron distortions when, for example, the geomagnetic field induces a load on them.
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Figure 5.2: Effect of hard-iron and soft-iron distortion on magnetic field readings [2].

The hard-iron effect is instead caused by materials that are permanently magnetized

(i.e., materials that generate their own field). In a mobile device, the sensor ro-

tates together with the other (magnetized) components and the hard-iron distortion

corresponds to an additive vector to the true readings.

In an environment free from interference, rotating the sensor in an axis perpen-

dicular to the surface of the circuit and plotting the measurements results in a circle

centered at (0,0). In Figure 5.2, this ideal data is depicted by the red circle where

the radius of the circle is the magnitude of the magnetic field. The soft-iron effect,

shown on the left, causes the circle to become an ellipse. The hard-iron effect, on

the right, displaces the center of the circle (or the ellipse) in either of the axes. Typ-

ically, hard-iron and soft-iron effects, collectively known as the bias, occur together

and correcting the distortion requires to first remove the hard-iron effect (and center-

ing the ellipse at (0,0)) and then correcting the distortion to the circle [189]. From

a computational perspective, different authors have proposed a variety of methods

from maximum likelihood estimation [191] to numerical methods employing gra-

dient descent [184] and adaptive measures using the accelerometer and gyroscope

present on the same chip [190], calibration for magnetometers is an active area of

research.

5.2.3 Software Interface

The Android Sensor Stack controls the access to the magnetometer [192]. It has

seven levels of abstraction that go from the low-level hardware component to the

high-level software application. The lower layers are implemented by the hardware

manufacturers and include drivers and library interfaces to the sensor. The higher

levels are determined by Google and are made available for developers to use in
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their applications through the Software Development Kit (SDK). The API allows

an application to register a sensor and it can be programmed to generate a response

upon a value change event. Table 5.1 describes the data structure used by Android

to represent the readings of the magnetic field. The magnetic sensor has the ability

to output both the raw sensor readings and a calibrated measure for internal inter-

ference. The calibrated reading is the combination of the uncalibrated reading and

some bias. This bias is the internal magnetic field generated by the phone. The two

types of sensors on the left-most column along with the values and the differences

between them will be discussed in more detail in Section 5.5.4.

5.3 Overview of the Attacks
We consider an adversary who aims to establish the identity of a device without

directly requesting the Unique Device Identifier (UID) provided by the platform.

Android protects the UID through the telephony permission, which is classified as

a dangerous permission, and the attacker may not want to alert the user as to their

intention [193]. The methodology we propose results in a strong component of

the identity (with an accuracy of over 90%) being revealed to attackers without the

consent of the user. We assume that the adversary can either have an application

installed on the target device (malware attack) or get in close physical proximity to

it (physical proximity attack) and that the attacker will have access to the collected

readings.

5.3.1 Malware Attack: Identification Through the Analysis of

the Bias reported by the sensor

We first consider a malware attack where the primary goal of the adversary is to

maximize the number of devices to fingerprint. The underlying assumption is that

each phone has both a magnetometer and an app that collects the readings and

transmits them back to the attacker. The app gets installed on the phone through

the usual means: through social engineering, drive-by download, or as a hidden

task in a legitimate application.

The magnetic induction (B) reported by the Android SDK is measured in the



5.3. Overview of the Attacks 87

x

z
y

(a) The position of the 3D axes are fixed with
respect to the phone.

(b) A well placed sensor will capture the
emissions of proximate devices.

Figure 5.3: The magnetometer collects 3D readings of the magnetic field in the vicinity of
the device. The same axes are used to eliminate the signal emitted by the

device.

3D coordinate plane. Figure 5.3a shows the collection axes with respect to all An-

droid devices. The Hardware Abstraction Layer (HAL) interface provided by An-

droid gives developers six values corresponding to the raw sensor readings and the

device’s internal bias each reported in three dimensions.

In this first attack we use the magnetic field emitted by the phone (i.e., the

bias) as input features to the models. Section 5.5 provides an in-depth analysis of

the attack, including a description of our use of each of the fields in Table 5.1.

5.3.2 Physical Proximity Attack: Identification Through Read-

ings Collected Through an External Device

The first attack is in some sense an internal attack entirely software-based. The

sensor, while present in the device, is not being used to assess the environment

in which it operates but rather to report a value that comes as the outcome of a

calibration equation. In other words, there is no evaluation of external phenomena,

but only of the intrinsic characteristics of the MEMS-based sensor. Instead, in the

second attack, the sensor is used to sense the radiation coming from the device

to be identified, i.e., it can be seen an external attack. Figure 5.3b presents the

second attack scenario. We have two devices: a target or victim and an adversary or

attacker. The requirement is that the attacker has a magnetometer and the software

with which to collect and process the readings.

The challenge is to extract a set of characteristics that describes the behavior
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of the signal emitted by the targeted device from the environmental signal collected

by the attacker (which we assume we have). The deployment of the second attack

is described in Section 5.6 and the features selected for identification are discussed

in detail in Section 5.6.2.

5.4 Description of the Identification Model
To show the feasibility of the method we propose, we follow three steps: data collec-

tion; feature definition and analysis; and, identification. Each step will be discussed

in detail in the remainder of the chapter.

To carry out identification, we use supervised classification algorithms. We are

interested in two pieces of information: a unique identifier for each device which

will be used as ground truth (i.e., the label of each observation) and the measure of

the magnetic field emitted by each device (i.e., the separable features).

For each device di in our dataset D of size |D|= M

D = {d1,d2, . . . ,di, . . . ,dM},

we have a set of L independent readings

Rdi = {rdi
1 ,r

di
2 , . . . ,r

di
j , . . . ,r

di
L },

with i being the unique identifier of each device and, therefore, the label assigned

to the appropriate reading during classification. Each reading rdi
j for device di is

composed of N features on which the classifier is built.

F(Rdi
j ) = { f1(Rdi

j ), f2(Rdi
j ), . . . , fk(Rdi

j ), . . . , fN(Rdi
j )}.

The model trained on F(Rdi
j ) is then evaluated on unseen unlabeled observations.

We will use dunk to denote a reading taken from an unknown device. This will be

the case for all the readings used for testing.

The outcome of each test Rdunk
j is a conditional probability distribution given

by Pr(di|F(Rdunk
j )) for each device di in D. Finally, we use the optimal decision rule

to determine the device d̂ to which Rdunk
j belongs to

d̂ = argmaxdiPr(dunk = di|F(Rdunk
j )).
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If the predicted device d̂ matches the ground truth (i.e., the true label of the reading),

which we have for the testing set, we consider the test a success and classify it a hit.

If alternatively, the observation is misclassified, then it becomes a miss.

To summarize, we can formulate our research question as follows: given a

set of devices, are the differences in the characteristics of the radiated emissions

between each device sufficient to uniquely identify each one of them?

5.5 Malware Attack: Identification through the Bias

Readings
The first set of results we present are with respect to the malware attack, i.e., an

attacker that wishes to remotely identify devices such as phones and tablets. The

main challenge in remotely identifying devices is finding a weakness that can be

accessed across all models and all manufacturers. Like for previous studies, the

success of the malware attack depends on the device having the appropriate hard-

ware. Given the popularity and widespread use of the magnetometer, we accept

this as a reasonable constraint. To collect sensor information, an attacker only re-

quires access to the API. The most natural way for data to be collected and trans-

mitted is through an application. In order to use it they would need to request

network access permission to send information. Alternatively, as it was shown

in [110], the attacker might gain access to the readings through a browser appli-

cation and collect them that way. We chose to develop an application to access

TYPE_MAGNETIC_FIELD_UNCALIBRATED and collect the 3D readings from

the phone’s magnetometer. From the six readings we obtain from each sensor event

(see Table 5.1), we focus on those that correspond to the internal bias of the phone.

The values for the bias are constant for a session and we will show that only a

few measurements are sufficient to generate a robust signature. Moreover, once

generated, we observed that the signature is stable over time and therefore the fre-

quency with which the sensor must be sampled to maintain accuracy is reduced to

a bi-monthly event.

The main implication of this attack resides in the ability of service providers
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(and other interested parties) to track users across multiple devices by linking and

distinguishing different devices through log-in events;alternatively, it can be used to

recognize the same device when the application has been removed then reinstalled,

or to link multiple accounts that connect from the same device.

5.5.1 Ethics

While we are only identifying devices, the typically exclusive relationship between

owner and device (as well as their proximity) implies we are indirectly identifying

users. In addition to sensor readings, we collected basic demographic information

as well as unique device identifiers that could be traced back to individuals. For

these reasons, we submitted this project to our institution’s review board and re-

ceived ethical approval for this work.

Each participant had access to an overview of the project as well as details

on the type of data that would be collected throughout the study. Additionally,

the information sheet and the informed consent form are available on the project’s

website as well as withdrawal procedures and a contact email in case of any follow-

up questions.

5.5.2 General Characteristics of the Dataset

To carry out the attack, we developed MyMagneticField, an app distributed through

the Google Play Store. Figure 5.4 presents a screenshot of the main activity (fol-

lowing the Android terminology) of the app. In exchange for their participation,

users were able to see (i) the magnetic field displayed on the screen (both the 3D

readings and the combined magnitude); (ii) an electronic compass; and (iii) a heat

map showing the intensity of the magnetic field at the locations of the data points.

The app was installed by 315 users in 15 countries. We identified 41 manu-

facturers with 61% of all devices belonging to the top 5 most popular brands (i.e.,

Samsung, Xiaomi, Huawei, Motorola, and Lenovo) and a total of 187 distinct mod-

els. The magnetometers can all be traced back to 14 vendors, the most popular

being Yamaha Corporation. We also found that the same phone manufacturer may

have more than one company supplying their sensors.
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Figure 5.4: Screenshot of the main activity of the application.

0

100

200

300

1.491e+12 1.492e+12 1.493e+12 1.494e+12
Time

M
ag

ni
tu

de
 M

ag
ne

tic
 F

ie
ld

Device ID
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Magnitude Magnetic Field per User

Figure 5.5: Magnitude of the bias for a subset of users.

From the dataset, we discarded all devices for which we had less than 33 min-

utes 20 seconds of data collection (the equivalent of 10,000 readings) and all those

users that installed the application on phones that did not have a magnetometer. We

also deleted entries for which the magnetic readings were all recorded as 0µT . The

final dataset contains readings from 175 devices.
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5.5.3 Classification Task

Figure 5.5 provides a high-level view of the distribution of the magnitude of the

magnetic field for 30 devices collected over time. We observe that the classes are

not easily separable: the values are clustered together, often overlapping. The be-

havior displayed suggests that, while the emissions of each device are not random,

boundary-based algorithms are not likely to be effective. We select Random Forest

(RF) [143] and k-Nearest Neighbors (KNN) [144] for the classification task. We

chose RF for its robust behavior to noise and KNN for its distance-based selection

of the predicted class.

We use the term model to refer to the evaluation of an algorithm with specific

training data (i.e., a classifier with a defined dataset). The parameters required for

each algorithm were chosen as a combination of best practices and empirical results

through the use of the grid search algorithm in scikit-learn [162]. KNN requires

two parameters to be set: the number of neighboring points to be considered in the

class assignment of the unlabeled data (i.e., the value of k) and the definition of the

distance metric that links any two points. In our KNN models, we use Euclidean

distance as the metric between two points as recommended in [194] and k = 1 as

the optimal value reported by the grid search.

5.5.4 Feature Generation

The sensor stack introduced in Section 5.2 provides a list of variables devel-

opers can use to access each of the sensors (with their corresponding data

streams) available in the device. There are two possible values that may

be used to access magnetometer readings: TYPE_MAGNETIC_FIELD and

TYPE_MAGNETIC_FIELD_UNCALIBRATED. Equation 4.2 shows the relation-

ship between observations collected using each of these values. In the equation

below, each element is a vector that contains features in three axes: x, y, and z. RunC

contains the raw readings collected from the uncalibrated variable and RC corre-

sponds to radiation readings external to the phone. The values for RIB represent the

internal bias of the phone, in other words, the magnetic field emitted by the device

that is expected to interfere with the environmental measure.
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RunC = RC +RIB (5.5)

The physical interpretation of Equation 4.2 confirms the feasibility of the at-

tack: each device does, in fact, generate a field that is calculated at run-time which

interferes with the environmental reading. Essentially, the specification states that

the raw sensor readings from TYPE_MAGNETIC_FIELD_UNCALIBRATED are

the environmental magnetic field as well as the noise introduced by the device itself

(i.e., the internal magnetic field of each phone), which they refer to as bias.

The correction formula for each sensor is provided by the device manufacturer.

However, we know from the SDK that the bias correction takes into account three

factors: the internal temperature of the phone, the internal interference generated by

electrical components in the device (i.e., hard-iron calibration), and the internal in-

terference created by any shielding materials contained in the device (i.e., soft-iron

calibration) [175]. In a tri-axial MEMS magnetic sensor, the corrections, like the

measurements, are reported in three dimensions. Table 5.1 gives the API’s descrip-

tion of the values returned by the sensor and the difference between the calibrated

and uncalibrated readings.

In all the experiments presented in this section, we use the values of the bias

reported in three axes, x, y, and z with respect to each device, as the input features

for each of the models. We treat measurements as independent data points (i.e.,

we do not consider in our analysis the temporal relationship between consecutive

measurements). As we will show in the following sections, given the high accuracy

of the attack, there was no need for more complex manipulation of the input data.

Rather than being detrimental to the proposed idea, the simplicity of the protocol

shows that this method is effective for identification.

5.5.5 Results

The magnetic field radiated by each device generates a unique signature that

can be accessed through the sensor stack by the bias values reported in

TYPE_MAGNETIC_FIELD_UNCALIBRATED. In Table 5.2, the values presented



5.5. Malware Attack: Identification through the Bias Readings 94

s classifier precision accuracy

10,000
KNN 0.995 (±0.019) 0.995 (±0.0001)
RF 0.995 (±0.016) 0.995 (±0.0001)

1,000
KNN 0.989 (±0.002) 0.989 (±0.0004)
RF 0.988 (±0.002) 0.988 (±0.0003)

100
KNN 0.964 (±0.0005) 0.964 (±0.001)
RF 0.957 (±0.0004) 0.957 (±0.002)

10
KNN 0.888 (±0.0001) 0.871 (±0.011)
RF 0.869 (±0.0001) 0.840 (±0.015)

Table 5.2: Precision and Accuracy for the
classification of 175 devices. In
the table, s denotes the number
of readings or samples included

in the training set.
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Figure 5.6: Determining the impact of the
number of observations per

device for 175 devices.

are an aggregation over 60 runs of each model. The left-most column (s) con-

tains the number of measurements per device used to train each model. Figure 5.6

shows the influence of the number of observations included in the training set for

each device. For completeness, we also ran the experiments following a 10-fold

cross-validation scheme for each model and found the results to have no significant

difference to the ones presented using aggregated randomized sampling. Combined,

these results show that the accuracy does not reflect models that are overfitted but

rather a true identifier contained in the data.

In terms of the success of the attack, Table 5.2 shows that for the same number

of users, higher accuracy requires an increase in the number of observations per

user. In Section 6.3 we discussed that all valid users have at least 10,000 observa-

tions. As mentioned above, each experiment was conducted 60 times and the results

are an average over all the runs. For each user (in every iteration), all observations

(ordered by time) are split into a 70/30 proportion for training and testing data re-

spectively. The observations used in the algorithm are chosen randomly from all

data points collected for each user.

5.5.5.1 Sampling Rate: Interval Between Readings

In mobile devices, the normal frequency range of the emitted magnetic field is be-

tween 200 Hz and 2.4 kHz [195]. From the strictly theoretical analysis based on

Shannon’s Sampling Theorem [196], the sampling frequency for our work should
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Figure 5.7: Change in classification F-Score for 20 users, 100 readings per user, and
500ms interval increase between consecutive measurements.

be between 400 Hz and 4.8 kHz. At worst, the sensor should report measures every

2.5 milliseconds (ms); at best, samples should be collected every 0.208 ms. How-

ever, this range is unattainable for two reasons: on one hand the usability of the

application (and the undetectable nature of the attack) and on the other, the sam-

pling framework provided by Android in the API.

There is a hard limit on the sampling rate for all sensors in a device fixed at 1

kHz [183]. This is lower than the upper boundary of our range at 12 kHz. Moreover,

even at 1 kHz, the measurements are not guaranteed to happen at fixed intervals. To

obtain readings, the framework requires a SensorManager to be initialized with

the sampling rate. This sampling rate is interpreted by the OS as a flexible request.

Android returns readings with an actual frequency anywhere between 90 and 220%

of the requested value. The variability is added to accommodate for the sensor’s

operating conditions and any discrepancies with the CPU clock [183]. Therefore,

even if the theoretical rate was within the Android-allowed parameters it is still

impossible to enforce a fixed time span between measurements in the system.

In terms of usability, higher sampling rates translate into a steep decrease in

the battery life of the device. During beta testing, many participants uninstalled the

app because of the high battery consumption. Keeping the same settings in the full

deployment would amount to low retention rates and slow dissemination, both of

which are contrary to the purpose of the study. We can conclude that uncharacter-

istically draining the resources of the device could signal malicious behavior to the

victim. Any such flag would limit the effectiveness of the attack. Potential targets
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Figure 5.8: Influence of battery state on the generated magnetic field

would uninstall the app and attackers would not get any data. In our study, for rea-

sons of recruitment and retention, we used Android’s SENSOR_DELAY_NORMAL,

which probes the sensor for new readings (approximately) every 200 ms.

In practice, our experiments show that the value of the bias remains nearly con-

stant until the sensor is re calibrated. Moreover, we are not attempting to reconstruct

the original signal. Instead, we either directly use the values obtained or derive fea-

tures from a sampled version of the signal. We test this by manually generating

a dataset where we control the interval between readings. Figure 5.7 shows the

change in classification as we increase the latency. We construct different datasets

for intervals 500 ms apart between 1 and 3 seconds. We run both classifiers training

on 100 readings for 20 randomly selected users. We observe that down-sampling

does not adversely influence our results.

5.5.5.2 Battery Consumption: The Influence of Voltage on Electro-

magnetic Emissions

Given the results presented in Table 5.2, one legitimate concern might be that, when

measuring the internal magnetic field, the state of the battery is driving the measure-

ment. In other words, the battery status might heavily influence the identification

results, making them unreliable. To rule this possibility out, we now look at the

influence of battery discharge on the magnetic emission of the device.

As discussed in Section 5.2, the magnetic field emitted by the phone is a
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byproduct of the current flowing through a device at any given time. However,

measuring the current is not trivial and prone to error. To test the effect of battery

discharge, we performed a controlled experiment on 10 phones where we measured

both the battery levels and the radiation emitted by the phone. All of the measure-

ments were collected at the same location and similar circumstances. Each device

was set to stream an 8-hour video with the screen brightness and volume at maxi-

mum settings. Each experiment took on average 5 hours.

Figures 5.8a and 5.8b show an example of the typical behavior observed. In

Figure 5.8a the magnetic field is presented as a function of the battery percentage.

Comparing these readings to those presented in Section 5.6.1, we can see that bat-

tery depletion serves as a proxy for time and, as evidenced by the trendlines shown

in red, the two variables are nearly independent. In contrast, Figure 5.8b shows that

the voltage and the battery depletion have a very strong correlation with a coeffi-

cient of 0.9994. The physical explanation for this is that, as the battery of the phone

is used, the voltage in the battery falls. Once the voltage is not sufficient to sustain

the current that is required for the operation of the device, the phone shuts down

with the battery depleted. The relationship between voltage, current and resistance

is given by Ohm’s Law as V = IR where V is the voltage, I is the current, and R the

resistance. Both the empirical evidence and the physical explanation attest to the

fact that in using magnetic field readings, we are not identifying the battery level of

the phone.

5.5.5.3 Unique-in-a-line: Differentiating Between Similar Devices

in a Semi-Controlled Environment

The dataset described in Section 6.3 contains readings from devices of the same

brand and indeed the same model. However, given that we do not achieve perfect

classification, it is important to understand whether the values provided by the API

are the same across a model or whether they depend on each device. Moreover, from

Section 5.5.5.2 we learned that the magnetic field depends also on the resources in

use, and therefore it would be equally as important to determine whether we can

distinguish devices executing the same tasks.
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Figure 5.9: Cross validation results for the identification of four different Nexus 6 devices.

To test these scenarios we created a second application that triggers a sequence

of events over the span of 45 seconds. The sequence includes playing a video from

the phone’s internal memory, a controlled-step increase and decrease of the screen’s

brightness, and the calculation of two Fibonacci numbers. Our aim was to standard-

ize the behavior of the phone when collecting measurements. We tested this on four

Nexus6 devices purchased at the same time, running the application simultaneously,

at the same location. We ran the application 10 times on each phone and computed

a leave-one-session-out cross validation scheme where we train on nine iterations

and test on the remaining one (for each phone). We repeat this 10 times, leaving a

different session out each time, then aggregate the results.

In this experiment we achieved perfect classification. Every test value was

assigned to the correct device. The magnetic field emitted by a phone is not hard-

coded into all devices of the same model and while it varies with the level of activity

of a phone, different phones will exhibit different values.

5.5.5.4 Impact of Geography: Understanding the Spatial Sensitivity

of the Measurements

Another external factor that may influence the results is the location of the device

at the time of the measurement. In attempting to identify each device, we may

be inadvertently fixating on its environment. One form of environmental noise is

the presence of significant sources of radiation (e.g., transmission lines, electric
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substations, thunderstorms, etc.) close to the measurement device [197, 198].

Magnetic fields that result from natural events are in the range of micro(µ) and

mili(m) Tesla (T). For human-generated emissions, the World Health Organization

suggests a maximum dose of 2 T with a recommended occupational exposure of no

more than 200 mT [199]. Each country has its own regulations but, as the values we

find are in the range of µT , both natural and man-made events have the potential of

affecting our results. We define geographic independence as the ability to correctly

classify a device using readings from a previously unobserved location.

To test for geographic independence we used the application described in Sec-

tion 5.5.5.3 and collected readings at 10 different locations in a city. The locations

include public transport (buses and subways), coffee shops, university laboratories,

restaurants, stores, residential buildings, etc. We aggregate these results in a leave-

a-place-out cross validation scheme where we used 9 locations in the training set

and the remaining location for testing. This is repeated until every location has been

used for testing. With an accuracy of 96%, the results in Figure 5.9b show that the

internal bias of the phones is not controlled by the environment.

5.5.5.5 Robustness Over Time: Exploring the Stability of the Value

of the magnetic field over 3 months.

Finally, we provide results to support the claim for the robustness of the method

over time. We investigate the temporal validity of the signature of a device, i.e., the

time interval during which the model can be used for the classification task after its
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initial training.

Using the application described in Section 5.5.5.3 we present measurements

from a single device at intervals of 12 hours over a period of 90 days. The boxplots

shown in Figure 5.10 show that while the values are not identical, the variance

within each axis is low. With these results we are confident that the signature of a

device will remain constant over the period of one week.

5.5.6 Limitations and Countermeasures

The primary limitation of this attack is that the bias can only be accessed from

within each device. On one hand, any malicious app can access this data, as there

are no permissions required for the magnetometer; but on the other, as we will

show in Section 5.6, this information cannot be collected from a secondary device.

In our opinion, this is not sufficient to discount the validity of this attack primarily

because when possible, identification can be accomplished without the knowledge

and consent of the user.

We have shown that the internal magnetic field obtained from the Android

sensor interface serves as an adequate proxy for identity. It provides over 90%

accuracy in identification without alerting the user to any suspicious behavior. In

case this becomes a widespread attack, and therefore a real hindrance for The Open

Handset Alliance1 it could be counteracted by protecting the sensor via Android’s

permission platform. Having the sensor available but under the responsibility of

the user is a good compromise and it is in agreement with the precedent set by the

platform [200, 201, 202]. The decision to introduce permissions for thes sensor

in the Android API an attack based on similar principals but carried out externally

would still be possible.

In the next section we will discuss how, by placing a secondary device (i.e., an

external measurement instrument) within range of the target, identification remains

feasible even when internal access to the sensor is not possible.

1The Open Handset Alliance (OHA) is the group of device manufacturers, software developers,
and telecommunications providers responsible for promoting the Android operating system.
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Table 5.3: Description of relevant data fields.

Feature Description

Maximum/Minimum (time) the maximum/minimum amplitude of the signal.
Mean/Median (time) Measures of the central tendencies of the signal.
Variance (time) The square of the difference between each element in the signal and the mean.
Mean/Median Absolute Deviation (time) The average of the deviation of each element in the signal to the mean/median.
Skewness/Kurtosis (time) A measure of the symmetry of the signal and its outlying values.
Average Peak Duration (time) The average length of the intervals corresponding to a local maxima in the signal.
Power Spectral Density (frequency) Frequency corresponding to the maximum value of the power spectral density.
Spectral Centroid (frequency) A measure of the center of mass of a signal calculated as the weighted average of the frequencies present.
Frequency Maximum (frequency) The frequency corresponding to the spectral maximum.
Noise Power (frequency) Derived from the power spectral density, it is one descriptor of the noise in the signal.

5.6 Physical Proximity Attack: Identifying One De-

vice from Another
Successful attacks are contingent on access to the target system. In many cases,

network connectivity is enough to gain access, execute the exploit, and retrieve the

response. It also allows for an increase in the number of potential targets and offers

some measure of protection for the attacker. However, the lack of physical presence

also translates into diminished control. The results presented in Section 5.5.5 place

the hardware and software constraints on the targets and require users to install an

application (or another form of malware) on a phone that has the appropriate sensor.

Once the application is running successfully, an attacker can collect information

and identify devices simultaneously. However, the novelty of our attack is not that

we identify devices through sensor readings (as if to imply that the sensors are the

source of the signature) instead, what we propose is that each device emits magnetic

radiation that can be collected by a magnetometer and used to generate a unique

signature. In this second attack, we shift hardware and software requirements to the

attacker and accept physical proximity as the limiting constraint. The implication is

that now any electronic device is identifiable; all that is necessary is for the attacker

to have a standard phone with a magnetometer and the software to conduct the

attack. In this section we present the identification results for the attack illustrated

in Figure 5.3b.

5.6.1 Experiment Setup and Data Collection

In this scenario we have an adversary (dA) who collects readings from a victim (dV ),

the target of the identification attack. This second dataset was all collected in the
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same location over a period of two weeks from a group of voluntary participants

selected through convenience sampling. Each participant interacted with their own

device and the collection device was the same for all measurements. The parameters

of the collection were more restrictive than those in the first attack, for instance,

for the duration of the collection, participants were (mostly) stationary and their

devices were continuously in use. Each participant was briefed at the beginning of

the session with the procedure and objectives. The participants were told that the

content of their data was not the object of the study, only the emissions of their

device. They were each told that the distance between the two devices should never

exceed a palm width (approximately 20 cm) and that dA should remain immobile

in a flat surface (i.e., resting on a table). After giving each of them some time to

answer questions, they received no further input from the researcher. In practical

terms, this means that there is a fair expectation of noise in the collected readings.

The participants had no restrictions on the applications being used. They were

told that they should maintain continuous interaction (i.e., their task was to use

their phone without allowing it to enter standby mode). Participants responded in

different ways, some watched videos, others listened to music, responded to emails,

used chat applications, played games, read e-books, etc. We assume that the data

collected reflects the range of resource consumption and behavior that would be

normally associated with each device. All measurements were completed with the

same instance of dA and the settings of the device were adjusted to the highest

resolution available (i.e., a sampling rate of 10 Hz).

Each of the participants used their device continuously providing us data for a

period of 30 min. Overall we collected data from 30 participants that resulted in 4

different mobile platforms (i.e., Android, Apple, Blackberry, Windows), 7 brands,

and 22 distinct models.

5.6.2 Feature Generation

We have already shown that the internal magnetic field can be used for identifica-

tion. The next task is to determine whether the unique internal field can be extracted

from the environmental magnetic field collected from a secondary device. Differ-
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(a) iPhone SE. (b) iPhone SE. (c) Galaxy S5. (d) Galaxy Core
Prime.

Figure 5.11: Magnetic field associated with four smartphones.

ent from the analysis conducted in Section 5.5.5 the measurements collected by dA

do not consist solely of the magnetic field of dV . Instead, the values represent the

magnetic field around dA, which includes the emissions of dV . A second major

difference is that while in Section 5.5.5 the magnetic field was measured in three

orthogonal axes of fixed position and orientation with respect to the device. When

we look at the environmental magnetic field, the frame of reference is variable and

the axes with respect to the Earth are constantly changing. Hence, for a valid com-

parison, we transform the three-dimensional readings into a single value through

the magnitude (norm) of the readings which is calculated as follows:

‖m‖=

√
n

∑
i=1

m2
i (5.6)

where m is the vector containing the (x,y,z) measurements of each reading.

Extracting a specific signature from the environmental magnetic field is a chal-

lenging problem. Any environmental reading will contain at least one source of

white noise, our planet’s naturally occurring magnetic field. If the measurement is

recorded in an urban setting, then an additional source of noise are the ferromag-

netic materials in the vicinity of the device primarily those used for a building’s

structural integrity [203]. Regardless of the source, the noise is variable and in the

order of µT well within our range of interest. However, given the universality of the

noise any identification attack must, in order to be successful, be able to overcome

these challenges and find the signature of a device.

Figures 5.11a, 5.11b, 5.11c, and 5.11d show the signal as collected from four

instances of dV . Each graph corresponds to a different device, the first two repre-

sent the same model (an iPhone SE), and the last two are both Samsung devices, one
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Figure 5.12: Classification F-Score for increasing duration of training signal.

low-range (Galaxy Core Prime) and the other relatively high-range (Galaxy S5). As

evidenced by the figure, in the second dataset, we place no constraints on the man-

ufacturing company or the operating system. In addition to Android, we collected

measurements from Apple, Blackberry and Microsoft devices as well as collecting

measurements for different devices of the same model and manufacturer. The re-

sults presented later in this chapter seem to indicate that this method is applicable to

all mobile devices. We would also like to underline another difference: whereas in

the previous attack we consider each reading as a discrete signal, now we interpret

these observations as time series. Indeed, in the malware attack, we had direct ac-

cess to the phone’s magnetic field. This is no longer the case. Now, we must extract

the phone’s field from the environmental measurements and, in order to achieve

this, we include in our analysis the relationship between adjacent observations.

We extract the features described in Table 5.3. Following the recommendation

in [204], we rank the features according to the accuracy exhibited in each classifier

and build the models in accordance with the rank. Each 30 minute signal is divided

in two: the first 20 minutes are used for training and the remaining 10 for testing.

5.6.3 Results

The signal of interest is the magnitude of the magnetic field as measured in the envi-

ronment of dA. For each device we considered a signal sampled at 10 Hz comprised

of 18,000 measurements (i.e., 10 measures per second for 30 minutes). For each
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device, we sampled the signal for different time-spans and computed the features

described in Section 5.6.2.

Figure 5.12 summarizes the main results. We ranked each of the features in

Table 5.3 and used the three best performing descriptors for the final models. Using

the signal’s minimum, maximum, and median values and a training signal duration

of 16.7 min we achieve 99.9% accuracy with RF and 99.0% with KNN. Overall,

the attack is viable and results in accurate identification. If however, we reduce the

period for data collection, we observe that training time is approximately halved

to 8.3 min and, at the same time, we are still able to achieve 99.4% for RF and

96.7% for KNN. It is worth underlining that the random baseline for classification

is around 3% for both methods.

5.6.4 Limitations and Countermeasures

The primary limitation of this attack is the proximity required between dA and dV .

This limits the number of devices that can be identified at any time and it puts phys-

ical demands on the attacker that are simply not there in the malware attack. This

however, is a limitation of our resources. For this experiments we were using Hall

Effect Sensors to measure magnetic field. A more sensitive sensor, a fluxgate mag-

netometer for example, would undoubtedly increase the range of the measurement.

However, the resources available for this project did not allow us to empirically

test the range of the fluxgate sensor. With respect to countermeasures, legislation

already regulates the emissions from a device to prevent, among other things, in-

terference across devices. Manufacturers already incorporate shielding into their

electronics’ designs.

While the magnetic field is a single physical (vectorial) quantity measured by

one sensor, it is actually the result of an intricate interaction of components, material

degradation, and user behavior just to name a few. An effective countermeasure for

this attack would be a cover that offers full shielding for the device. However, if the

price of completely shielding a phone undermines any of the users’ expectations

of mobile devices (e.g., lightweight, multi-purpose, connected, and efficient), the

consumers might prefer to risk the attack rather than to incur in the penalty of the



5.7. Discussion 106

protection.

5.7 Discussion
The techniques presented in this chapter can also be used to forge the identity of

devices. Indeed if an attacker has access to the device as in the first type of at-

tack (malware), it would be sufficient to record and reproduce this magnetic field

(assuming that the sensor API would be intercepted). In the proximity attack, it is

harder to recreate the signature of a device as the model is not build directly on the

magnetic field but rather on a features set derived from an external measurement of

that signal. We believe this is an interesting area to be explored in the future.

Another interesting aspect is that the magnetic field is an inherent characteristic

of all electronic devices. The privacy challenges it presents arise from the physical

aspects of the technology and as such finding effective countermeasures that nullify

the attack is a hard problem. For this reason, we believe that this work also poses

potentially interesting challenges for the materials and signal analysis communities

in general. Continuing this same line of research, future work involves taking this

in-the-wild empirical study and testing the actual boundaries of the assumptions

(i.e., noise, temperature, signal strength, etc.) under laboratory conditions so as to

determine the optimal parameters of the attack and any further applications of it.

5.8 Summary
We have presented the feasibility of identifying devices from the magnetic field they

emit. We have considered two types of attack, one internal, based on the magnetic

field both from within a device, as reported by the Android API, and one external,

based on the readings collected from a secondary device in close proximity to it.

With respect to the internal attack, we have discussed the classification re-

sults using two supervised learning algorithms, KNN and RF, over two different

datasets and we have shown that we are able to identify one device in a group of

175 and approximately 1.6 minutes of data with a precision of 98.9% This holds an

advantage of approximately 165 times over the precision exhibited by the random

classification baseline where the probability of success is around 0.6%. Even if
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this internal attack is limited to those devices that have a magnetometer and which

have the data collection application installed, the lack of permissions associated to

collecting readings from the sensor makes this attack invisible to users.

As far as the external (proximity) attack is concerned, we have shown that

from a distance of approximately 20 cm a Hall Effect sensor is sufficient to collect

the signal from the victim and generate the fingerprint. Using three features in the

temporal domain, we have achieved a maximum accuracy of 99.9% by using a 16

minute signal for training.



Chapter 6

Location Inference from Magnetic

Field Data

Mobile phones are equipped with a variety of sensors used by applications to ob-

tain a user’s contextual information (e.g., location, humidity, acceleration, and net-

work connectivity) to support a variety of applications and services [205]. How-

ever, the sensors embedded in smartphones have also unintentionally become the

source of information leaks that might adversely impact the privacy of their own-

ers. Indeed, information extracted through sensors can be used to identify users

or devices [111, 32, 206], and infer their behavioral patterns, interests, personal

preferences [207], and even their health condition [208]. The fact that information

can automatically be extracted by means of passive sensors is generally perceived

negatively by users [209, 210, 211, 212].

In order to mitigate privacy risks, mobile operating systems have adopted a

permission-based paradigm where applications must request access to any of the

protected resources on the phone, including camera, microphone, location, and con-

tact list. Each permission is flagged as sensitive depending on the invasive nature

of the resource and the importance of the data it might reveal; therefore, the per-

mission to answer phone calls is more restricted as compared to the permission that

accesses the currently connected WiFi access point. Users can choose to disable

system-wide access to a certain type of information, or control it at the application

level where access to some information can be revoked [213, 214, 215].
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Location is one of the information types that is protected by such permission

systems. Location data has been shown to be sensitive for users as it can be used to

track and profile individuals (e.g., for advertising purposes). In particular, it can be

used to infer a user’s identity [216, 217]; it can reveal a user’s significant locations

and points-of-interests (e.g., home location, work location, morning coffee shop)

along with their transportation routine and use them to predict trajectory and future

locations [218]; and, finally, it can be used to detect the general behavior of a single

user and group users based on the similarity across their interests [219].

The restrictions placed on location data have led to the development of alter-

native methods that aim to derive location from sensors that are not protected under

permission systems. Currently, any Android and iOS application can access the

gyroscope, accelerometer, and magnetometer sensors without requiring the user’s

permission. These methods generally combine previously acquired environmental

information (e.g., produced by surveying a location) with real-time sensor readings

to ascertain the user’s current position [220]. In particular, Wang et al. combine

accelerometer and gyroscope measurements in order to localize users [122] and

Chen et al. combine WiFi signal strength with FM radio signals to determine a

users’ location [221].

In this chapter, we show how it is possible leverage the magnetometer, which

is not protectedy by any permission, in order to infer the location-type that corre-

sponds to the current position of a user. Effectively, we present a zero-permission

localization attack based exclusively on sensor data which exploits the readings cap-

tured by the magnetometer, present in most smartphones today, to infer a type of

location from their magnetic signature. We are not the first to address the challenge

of sensor-based localization. However, where previous studies focus on mapping

locations to pinpoint position, we present a method that reduces the need for sur-

veying the target locations (i.e., locations where localization will take place) at the

cost of reduced granularity.

We present four different methods for time-series analysis and classification:

(i) full signal matching, (ii) statistical descriptors, (iii) automated feature extraction,
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Figure 6.1: Overview of the zero-permission attack that leverages the magnetometer of
mobile devices to capture magnetic field readings and then infer the

location-type of the place where the user is currently situated from the
magnetic signature of that location.

and (iv) shapelet analysis both in the time and frequency domains. More specifi-

cally, we compare the two traditional methods of full signal pattern matching and

statistical features with two novel methods, namely automated feature extraction us-

ing convolutional neural networks through One Shot Learning [147] and shapelets,

a method that extracts repeated patterns observed in the form (or the outline) of a

time series [137]. An overview of the method is presented in Figure 6.1.

In order to evaluate our approach we collect a labeled dataset, used as ground

truth, by conducting an in-the-wild measurement study and sampling the magnetic

field at different locations over a metropolitan area. We collect readings from off-

the-shelf smartphones at ten different types of locations: long-distance train sta-

tions, urban train stations (i.e., subways), parks, bridges, coffee shops, halls, laun-

dromats, bus stops, parking lots, and gyms. The places were chosen as alternatives

for three groups: indoor environments, outdoor environments, and environments

that contain clearly distinguishable events (e.g., trains passing by). For each of the

10 location-types, we collect 10 minutes of magnetic field readings sampled at 1

Hz from five different phones at 11 locations. The entire dataset therefore consists

of a total of 91 hours of readings. We evaluate the prediction performance of our

four methods by first identifying a location-type from the magnetic readings of an

unknown location and second, by identifying a location-type from the magnetic

readings of an unknown device.

We propose three major contributions as the outcome of this work. First, we

collected over 91 hours of labeled magnetic field readings from various locations
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across a major metropolitan area. We show that location-types can be inferred from

magnetic field readings available without any system permissions across a wide

range of smartphones. Then, we compare the performance of four methods for time-

series classification in identifying location-types, introducing two novel methods

based on automated feature extraction using convolutional neural networks through

One Shot Learning and a classification method based on shapelets. We perform

an in-depth analysis of the choice of the values of the parameters for each method,

providing a methodology for their selection. Finally, through a proof-of-concept

implementation and an in-the-wild study across different locations, we demonstrate

the feasibility of the location identification attack.

6.1 Preliminaries and Motivation
In this section we introduce the key concepts that will be in use throughout the

chapter and present the main motivation for using the magnetometer in localization.

6.1.1 Key Concepts

In writing this work, we take ownership of some words and create new concepts.

We define them as follows:

Location-Type. As defined in [115], localization is the problem of ascertaining

the position of an agent relative to a map. In this work, we address the problem of

localization from a novel perspective, where our primary interest is to understand

the environmental similarities between places. Location-type is the name we assign

to the top level of a two-tier hierarchy (the lower level being the distinct places).

Locations are grouped based on common environmental characteristics including,

building structure and materials, human movement patterns, and events (defined

later in this section).

Magnetic Field. The magnetic field is the combination of geomagnetic and elec-

tromagnetic phenomena. Geomagnetic fields describe the naturally occurring (mag-

netic) field emitted by the planet’s core and the local variations caused by ferromag-

netic materials such as iron, cobalt, or nickel [128, 125]. As an example, the steel

structure of a building and the movement of metal objects (e.g., a car or a train) will



6.1. Preliminaries and Motivation 112

distort the planet’s field by generating a non-electronic signal. On the other hand,

electromagnetism results from the flow of an electric current. Electromagnetic fields

can be measured from electrical power sources or electronic appliances and hand-

held devices. The magnetometer (or digital compass) present in a smartphone is

the sensor that measures the magnetic field in the vicinity of that phone. As such,

the magnetic field measurement represents a single combined reading that unifies

geo and electro magnetism. The sensor reports each measurement in 3D, i.e., once

completed, the observation at each location consists of three time series (one per

dimension) of the same lenght and matching timestamps. In our analysis, however,

we collapse all dimensions into a single time series using the norm of the vector

with element i defined as (xi,yi,zi) where x,y, and z are the time series correspond-

ing to the three spatial dimensions. This reduction is necessary when collecting data

in a real-world settings and the motion of the sensor cannot be controlled. In this

work, the orientation of the phone’s axes is continuously changing with respect to

Earth [125]. Taking the norm of the vector that describes each measurement allows

us to compare observations.

Time-Series. A time-series is an ordered set of values (i.e., the magnetic field)

sampled at a fixed interval that, together, form a single observation or reading [222].

The length of the time series is equal to the number of values available in that

observation. Subsets or samples of a time-series with more than one element (which

will be associated to shapelets later) are time-series observations in their own right,

with the distinction that the length of the subset must be no greater than the length

of the originating observation(s).

Events. We define events as the dynamic extension of landmarks for time-series

data. While a landmark represents a set of structural characteristics of an environ-

ment (e.g., the corner of a building, the presences of a fountain, the electrical wiring

of a room), an event represents a transient occurrence (e.g., the movement of a train

or car, riding on an escalator, or walking by a person). Unlike landmarks, which are

unique to a place, events can be identified in places described by a location-type.

In our analysis, we make the assumption that locations that belong to the same type
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are characterized by similar events, which will be associated to specific shapes in

the time-series of the magnetic field.

6.1.2 Motivation

Information about a user’s physical location provides private insights about the users

themselves. Applications installed on the users’ smartphones can access location

data provided by location services using the GPS receiver and the cellular network

through permission-based controls offered by the operating system. It is left to

the user’s discretion to grant location access (and revoke it) to any application that

requests it [213, 214, 215].

On the other hand, side-channel, zero-permission attacks have been exploited

to infer users’ location using alternate approaches without requesting access to the

corresponding GPS and cellular permissions. They rely on constructing, for each

target location, a map of the environmental characteristics measured by the sensors

embedded in the smartphone. These sensors, whose access does not require any

specific permissions, include primarily the magnetometer, the accelerometer and

the gyroscope [223, 224, 133, 225, 226]. In practice, given a target location (e.g.,

an area or a building), a map can be built by recording sets of sensor measurements

(e.g., acceleration from the accelerometer and/or magnetic field from the magne-

tometer) that are associated to precise coordinates within the location being sur-

veyed. The literature shows that magnetic field readings recorded at target locations

are different depending on the coordinates at which they have been taken [127].

This implies that it is possible to build maps from the readings collected from mo-

bile sensors. Any attacker can then leverage this information to track users within

the confines of the map; that is, at any point they can determine the exact coordi-

nates of the user within that area or building. They achieve this by comparing new

readings against values in a map. While essential for localization, maps are limited

in their application.

Collecting and maintaining accurate maps for every target location is difficult

and requires high quality survey data. In particular, it requires the attacker to se-

lect a target location and to survey its environmental characteristics assigning each
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measurement to a location on a grid. The solution we propose is to group distinct

locations into location-types and extract common events that fully describe each

location-type. This provides a cost-efficient technique to determine a user’s loca-

tion eliminating the need to survey all possible sites for given location-type. As

such, an attacker (or alternatively, a service) would be able to derive coarse-grained

location data without collecting information about any specific place.

Contextually, this work contributes towards the development of a new tech-

nology. As opposed to the GPS module, the magnetometer is a low-power sensor

and accessing readings from a magnetometer does not require any notification to

users (or permissions) in either Android or iOS. Moreover, once the information is

processed it can be used to protect the privacy of users: while the GPS provides de-

tailed location information (accurate to centimeters of the true position), a generic

localization method based on magnetic field could potentially be used to verify that

a user is within the premises of a certain type of place or in a specific environment

without disclosing exact information. Both marketing and verification applications

could obtain the information they need without being invasive with regards to user

location.

6.2 Methodology
In this section we detail the different approaches that we use in our methodology

to predict location-types from magnetic field readings collected from off-the-shelf

smartphones. In particular, our methodology addresses two problems: (1) classifica-

tion from time-series; and (2) deriving location-types from magnetic field readings.

6.2.1 Techniques for Feature Extraction

Measurements over time provide a more complete view of reality, they allow us to

uncover relationships between consecutive measurements. We propose that collect-

ing and processing longitudinal magnetic field readings will prove to be useful in the

task of localization. However, time-series classification, clustering, and prediction

are identified in the literature as hard problems. Challenges in time-series analy-

sis include: depending on the length of the time series, the resource consumption
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(i.e., computational complexity) of the method; the definition of a similarity metric

in data that is noisy and prone to outlying values and shifts; and finally, the high-

dimensionality of each observation. An in-depth discussion of these challenges can

be found in [138, 222, 227, 228]. In this work we compare four methods for time-

series analysis: (i) full signal matching; (ii) statistical descriptors; (iii) automated

feature extraction through the use of neural networks; and (iv) classification through

the extraction of shapelets, in both time and frequency domains. The details of these

methods are discussed in the remainder of this section.

6.2.1.1 Full Signal Matching

Pattern matching is a method for time-series classification where each test sample

is matched against all labelled training samples. The test sample is then assigned to

the label of the closest training sample (i.e., with the shortest distance to it). Conse-

quently, this approach requires a pairwise distance calculation from every signal in

the testing set to every signal in the training set, which might become intractable as

the number of signals grows. In this analysis, we used four different distance mea-

sures for performing classification task: Dynamic Time Warping (DTW), Euclidean

Distance, Cosine Distance, and Bhattacharyya Distance [229]. We selected these

distance measures as they extract different information from the corresponding in-

put signals: DTW involves both signals and tries to find the best fit between them

in a cross-correlation computation, the Euclidean Distance measures the magnitude

of the separation between the sampled signals, the Cosine Distance measures the

angular separation between the two vectors being compared, and finally, the Bhat-

tacharyya Distance captures the divergence between the probability distributions of

each of the signals.

One of the key limitations of this approach is that it is sensitive to small varia-

tions between the two signals, including differences in the mean for matching sig-

nals, which could negatively impact the classification performance. In contrast,

we aim at identifying similarities between observations collected in noisy environ-

ments. Therefore, in the context of our application, we are expecting this method

to have poor prediction accuracy. Nevertheless, we use it as the baseline metric for
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our performance evaluation.

6.2.1.2 Statistical Descriptors

The second approach we consider consists in the extraction of representative statis-

tical descriptors (i.e., features) from the time-series. The extracted features are used

to represent key characteristics of the data. It is worth noting that the classification

performance using these features depends on the degree to which the sampled data

represents the population of interest. Good statistical models require a sufficient

sample size.

We selected eight commonly used statistical features: the median, the ampli-

tude, the energy of the signal, the magnitude and frequency of the natural frequency,

the spectral centroid, and the magnitude and frequency of maximum power. Note

that we sub-sample the input data and compute these features in both the time and

frequency domain. It is worth noting that other alternative features might be ex-

tracted.

Also for ensuring the replicability of the experiments, we used the open

source versions of three state-of-the-art classification algorithms provided by the

scikit-learn library [162] to construct our prediction models: k-Nearest Neighbors

(kNN) [144], Random Forests (RF) [143], Extreme Gradient Boost (XGB) [230].

kNN is one of the most popular and effective unsupervised learning algorithms,

whereas RF and XGB are widely used for their interpretability and performance,

respectively.

6.2.1.3 Automated Feature Extraction

Algorithms based on neural networks remove the burden of manual extraction of

features in order to train prediction models [231]. In particular, in this study, we

use Siamese Networks [147] — a specific type of neural network architecture that

aims to learn to differentiate between two inputs rather than classifying the inputs

into given classes. This network architecture is comprised of two identical neural

networks each taking one of the two inputs and the last layers of the two networks

are then fed to a contrastive loss function to compute the similarity between the

inputs [232]. Two neural networks are identical if they have the same configuration
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in terms of parameters and weights. Since the weights across the two networks are

shared, there are fewer parameters to train, which in turn means that less amount of

training data is required. This also reduces the chance of overfitting. Since our input

is in the form of a time series, we use 1-D convolutional layers to extract patterns

from the data, which are passed from the feed-forward layers to obtain the results

for the output layer that is used for computing similarity. More specifically, our

network consists of C convolutional layers (CNN layers) and a feed-forward layer

that maps the features (extracted by the CNN layers) to the output layer with 100

nodes (i.e., the number of final features to be extracted). We considered values of

C ∈ [2,3,4]. We do not consider higher values of C given the size of the training set

under consideration.

6.2.1.4 Shapelets (in Time Domain)

Shapelets are small local patterns in a time-series that are highly predictive of a

class [136, 138]. In the context of our work, each shapelet corresponds to an event

that is found in at least 90% of the observations belonging to a certain location-

type (with 11 distinct locations and 5 devices we require an event to be present in

50 observations before a candidate is considered a shapelet). Our assumption is

that for each class there exists at least one shapelet contained in all observations of

that class, and we consider shapelets of different sizes where longer shapelets are

more valuable in terms of class separation. In Figure 6.2, we introduce the visual

representation of an event. These shapelets correspond to one example per class

with a length of 80 seconds.

One benefit of adopting this technique is that the analysis of candidate

shapelets is independent for each class. This means that the length of a shapelet

is also a feature we are considering in the input and that the maximum length is

determined on a per class basis (i.e., one way to distinguish between classes that

may have similar events is the duration of that event). As an example, the passing

of a long-distance train and a subway are similar events but long-distance trains are

longer which might correspond to longer shapelets.

The methodological contribution of this work incorporates shapelets into prob-
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Figure 6.2: The visual representation of a shapelet. In the figure, each sequence
corresponds to an 80 second time-series present in at least 90% of the

observations for each location-type.

abilistic classification algorithms. Our method takes labeled time series observa-

tions and returns the location-type of an unlabeled observation. The algorithm is

divided in three steps: first, it extracts shapelets from the training observations (to

build a shapelet dictionary); then, uses the training data to describe each class in

terms of the discovered shapelets; and finally, it classifies test observations into the

known classes. Conceptually, extracting the representative shapelets for each class

is straightforward: for each sub-sequence of any duration and beginning at any start-

ing point, we identify the sub-sequence(s) present in distinct locations that belong

to that class.
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Given a certain application domain, the first step is to select a range of lengths

for which a shapelet has a semantic meaning (and a step size to traverse this range).

In our study, we select shapelet lengths ranging from 20 seconds to 2 minutes in

steps of 20 seconds. Then, for each length in the range, we create a bag that con-

tains all possible sub-sequences from all the training observations for a single class.

Secondly, we cluster all the elements in the bag. As there can be a variable num-

ber of shapelets (i.e., events) in the different bags, we use hierarchical clustering to

create links between the samples. Then, we inspect each cluster to determine the

number of distinct locations present in that cluster. We only accept clusters where

the minimum number of locations is met. Finally, for each of the valid clusters, we

compute the medoid of the elements in that cluster. The signal that corresponds to

the medoid becomes the shapelet added to the dictionary. We repeat this process for

all lengths in the range.

Having extracted all representative shapelets (i.e., for all lengths and classes),

the second part of the algorithm consists in characterizing each class with respect to

the shapelet dictionary. However, since the shapelets are time-series, we cannot use

them as raw inputs for training the models. Furthermore, since their size and number

may vary from one class to another, this causes a symmetry problem between the

training and testing sets. This characterization step addresses both these problems

by creating equal length samples from both training and testing data and computing

the distance from each sample to each of the shapelets. In the training set, the

distances are associated with the label of the class to which the sample belongs,

whereas in the testing set this becomes the prediction variable. Each distance in the

newly created matrix represents minimum value between a windowed segment in

the sample and each shapelet.

The last step of the algorithm is the classification of unknown signals. Similar

to the classification with the statistical features, we use kNN, RF, and XGB for the

prediction of a location-type.
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6.2.1.5 Shapelets (in Frequency Domain)

It is common practice in signal processing to study signals in the frequency do-

main [233]. Following the same procedure described in Section 6.2.1.4, we gen-

erate a bag of shapelets (with all the possible sub-signals from the training set)

and transform each one to the frequency spectra before computing the correla-

tion between all signals. Doing the piecewise transformation before extracting the

shapelets might result in better classification if the sources of the signal are mono-

tonic. We integrate the frequency analysis method, known as the Generalized Cor-

relation Coefficient (GCC) [234] with the shapelet-based classifier and compare the

accuracy of both methods.

We follow the same clustering procedure and apply hierarchical clustering to

the distance matrix generated using GCC. The shapelet dictionary is extracted from

the inspection of each cluster. During classification, we use GCC to compute the

correspondence between each of the elements in the shapelet dictionary and the

signal used as input. This process is repeated (separately) for the observations in

the test set and evaluated using the same algorithms.

6.2.2 Criteria for Assessing Prediction Models

In this section we discuss the three approaches we used for evaluating the perfor-

mance of the different methods to predict location-types.

6.2.2.1 All Places, All Devices

This evaluation approach aims at answering the question as to whether the models

are capable to correctly classify a known location from a known device. In the

data, we take the 10-minute readings collected from each device and divide it into

ten 1-minute segments. We then proceed to a 70/30 cross evaluation by randomly

selecting 3 segments for the testing set and the remaining 7 for the training set,

i.e., there is no overlapping between training and test sets. We repeat this process

and average over 30 iterations using the analysis methods detailed in Section 6.2.1.

Under this evaluation criterion, we assume that we have (previous) data from the

device being tested at the location from which the new observation is tested.
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6.2.2.2 Leave-a-Place-Out

This evaluation approach aims at examining the location-type prediction perfor-

mance from magnetic field readings belonging to locations that have not been seen

by the model but belonging to the existing set of location-types. For instance, in this

approach, we aim to classify a magnetic field reading that belongs to a train station

but in a station different to the ones present in the training set. With this approach,

we want to investigate whether the need to map each location can be eliminated

and, thus, the location-type can be determined based on its characteristics. In order

to carry out this type of evaluation, we remove from each location-type a single

distinct location at a time. We use the removed location as the test set and all the

readings from the remaining locations in the training set. This process is repeated

until each location is assigned once to the testing set.

6.2.2.3 Leave-a-Device-Out

In this final evaluation approach, we are interested in determining whether the mod-

els can predict the location-type from the reading of a new device (i.e., an unknown

user). To carry out this evaluation, we select all readings from one device and

use them in the testing set. The training set is then composed of all readings of

the remaining devices. We use cross validation to evaluate the performance of the

method.

6.3 Dataset
The data collection process was carried out in three stages: (i) application develop-

ment, (ii) data collection, and finally (iii) analysis and classification.

6.3.1 Data Collection

Our hypothesis in this project is that similar locations will be characterized by sim-

ilar magnetic fields. We are attempting to determine whether a fingerprint exists for

a particular location-type and use it to predict the class of unknown locations. This

task requires on-site data collection at a number of locations across the city. The

measurement devices must therefore be mobile and, if possible, able to be crowd-

sourced. For their sensors and ubiquity, we use cell phones to collect magnetic field
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Figure 6.3: Histogram of distances of within-class observations.

readings at each location.

We developed two applications, for Android and iPhone, and used 14 devices

to collect measurements (6 Android phones, 8 iPhones). Both applications collect

the three dimensional magnetic field readings along with location, linear acceler-

ation, user activity (for Android phones), and phone identifiers. In the evaluation

(i.e., testing) of each model we only considered the five devices for which we had

data at all locations.

6.3.2 Description of the Dataset

The final dataset that we collected consists of 550 magnetic-field readings: we col-

lected the readings from 5 off-the-shelf smartphones at 110 different locations (10

location-types and 11 locations per type allowing us to train on at least 10 locations

for each location-type). Each magnetic reading contains at least 10 minutes of data

sampled at 1 Hz. In our case, we are not interested in reconstructing the function

and sampling at this rate allows us to record changes without overtaxing either the

battery nor the other resources of the phone. We designed a collection methodology

such that the ways the data that was collected mimic realistic everyday life situa-

tions. The volunteers were instructed to hold one phone at a time while walking

around the location as they would normally do for 10 minutes. The samples (even

those for the same locations) were taken at different times of the day over a period
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of three months by different volunteers in an attempt to get measurements to cap-

ture the inherent characteristics of a location rather than any bias introduced by the

volunteers.

The types of places were chosen in order to have different examples for one

of three groups. The first group is composed of indoor environments; the cate-

gories of places in this group are halls, gyms, laundromats, and coffee shops. We

define halls as internal spaces with high ceilings with hollow central spaces and

columns separating the space. In the case of coffee shops, we observe that for chain

establishments (i.e., franchised locations), different locations have similar layouts,

appliances, building structures, and users conform to similar behaviors. Therefore,

we selected one chain of coffee shops in the city with at least 11 distinct locations.

Laundromats and gyms are similar in the sense that there would be a high con-

centration of machines (electric and otherwise) performing periodic tasks (e.g., a

treadmill, a rowing machine, a washing machine). Thus, we made measurements to

reflect these machines and the general ambience of each location.

The second group is comprised of outdoor environments. As proof-of-concept

examples we considered parks, bus stops, and bridges. Parks were chosen as ex-

ample of non-built open spaces. In terms of territorial expansion, the smallest of

the parks we visited had an area of 19 acres, while the biggest an area approxi-

mately 350 acres. Bridges are usually instead located close to other buildings or

built infrastructure. The bridges visited are all of the same approximate length (the

difference between shortest and longest structure is 112 meters) but vary in terms of

use (i.e., we sampled bridges with both pedestrian and automotive traffic) and the

intensity of that traffic as well as bridge design.

Finally, the third group contains subway stations characterized by deep un-

derground structures (as well as the moving trains) and long-distance train stations

(i.e., above-ground, open areas). Also in this group we include parking lots were

all locations visited can be described as underground structures (some with several

parking levels) characterized by pillars, cars, low ceilings, and little or no pedestrian

activity. Locations, excluding the parks, are contained in an area of 9.7 mi2. In any
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case, parks are contained within the greater metropolitan area of the city taken into

consideration in this study.

6.3.3 Similarity Between Measurements

In Section 6.2 and again in Section 6.4 we describe the method used to separate

one class from another and our rate of success in accomplishing this task. How-

ever, as part of exploration of the dataset, we now focus on the similarity between

the observations of the same class. Figure 6.3 shows a histogram of the distance

matrix between the observations. From the plots we can see that most of the obser-

vations within a class are similar to each other. The class that corresponds to Gym,

for example, has the most similar observations (using cosine distance as a metric).

This indicates that separating the distinct locations is particularly hard in this case.

On the other hand, accurate classification and clustering require both minimizing

distances within a class and maximizing distances between classes. Given the prox-

imity of the observations, low classification scores may indicate that the similarity

between classes makes this separation a difficult task.

6.4 Results
In this section we present the evaluation of the four time-series classification meth-

ods, which we discussed in Section 6.2.1, constructed to infer the location-types

using magnetic field readings. As discussed in Section 6.2.2, we evaluate each

method using three criteria: (i) all places, all devices, (ii) leave-a-place-out, and

(iii) leave-a-device-out.

6.4.1 All Places, All Devices Evaluation

This evaluation corresponds to a scenario where the classifier has been trained with

data originating from the device being tested at the location in question (i.e., we

have labeled data for all devices at every location). The separation between training

and testing occurs over the temporal component of each observation. We convert

each observation into ten 1 minute segments and randomly select 3 segments to

form the testing set. The remaining 7 segments become the training set. We repeat

this process 30 times to reduce the impact of the random selection in the results.
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This evaluation criterion results in 100% accuracy for location-type identification

from all devices.

In this scenario, the attack requires having labeled data from all devices at

each target location (i.e., building a map per device with all locations). In a de-

ployed system this would require having real-time labeled data to use as the basis

of the map. Because of the pervasiveness of mobile devices this could be possible

however, this would be the equivalent of the brute-force approach. In the following

sections we present two scenarios where we explore how to generalize the method

for new devices and places.

6.4.2 Leave-a-Place-Out Evaluation

In this evaluation scenario, we use the data of a single location (from all devices)

as the test set and the data for the remaining 109 places as train set. We repeat this

until we use the data for each of the 110 places for testing, then aggregate the results

of all iterations to determine the overall performance.

Table 6.1: Leave-a-Place-Out.

Full Signal Matching
Distance Measure Accuracy
DTW 0.1862
Euclidean 0.1750
Cosine 0.1713
Bhattacharyya 0.1005
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Figure 6.4: Full-Signal Matching: Class
accuracy for Dynamic Time

Warping proximity based
classification.

In Table 6.1, 6.2, 6.3, and 6.4 we present the average accuracy for each clas-

sifier constructed for the feature extraction methods and evaluated using leave-a-

place-out evalutation criterion (discussed in Section 6.2.2). Overall, our results
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Table 6.2: Leave-a-Place-Out.

Statistical Descriptors
Classifiers Accuracy
kNN 0.1170
RF 0.2040
XGB 0.2100
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Figure 6.5: Statistical Descriptors: Class
Accuracy for XGB Classifier.

Table 6.3: Leave-a-Place-Out.

Automated Feature Extraction
CNN Layers Accuracy

2 0.0901
3 0.0907
4 0.0902 0
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Figure 6.6: Automated Features:
Classification Class Accuracy

for 4-Layers CNN.
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Table 6.4: Leave-a-Place-Out.

Shapelets
Classifiers Accuracy
kNN 0.2690
RF 0.4045
XGB 0.3920
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Figure 6.7: Shapelets: Class Accuracy for
RF Classifier.

Table 6.5: Leave-a-Place-Out: Shapelets
and Statistical Descriptors

Combined.

Combined Feature Set
Classifiers Accuracy
kNN 0.1860
RF 0.3907
XGB 0.3442 01
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Figure 6.8: Leave-a-Place-Out, Combined
Feature Set: Class Accuracy

for RF Classifier.

Table 6.6: Leave-a-Place-Out: Frequency domain.

Frequency Domain
Shapelets Statistical Descriptors Combined

kNN 0.1654 0.2066 0.2066
RF 0.1779 0.3333 0.2447
XGB 0.1667 0.3152 0.2915
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show that the classifier constructed with shapelets outperforms all others. The meth-

ods based on full signal matching (Table 6.1) and convolutional neural networks

(Table 6.3) exhibit approximately random behavior in terms of their performance

in predicting location-type. One important note is that we are not creating an abso-

lute rank of the feature-extraction and classification methods. Our intent is to show

that, for some applications, data aquisition is a real challenge (as is the case in this

study). For this and similar studies, traditional signal processing methods can be

outperformed by the method we propose: a combined shapelet classifier. As the

results show, even with limited data, there is a significant increase in classification

performance.

In particular, the classifiers based on statistical descriptors and shapelets are

optimized using three algorithms (i.e., kNN, RF, and XGB). Our results show that

both RF and XGB achieve the highest accuracy (with a negligible difference be-

tween them), whereas, kNN has the worst performance. On the other hand, full

signal matching classification is optimized through four different distance metrics

(i.e., DTW, Euclidean, Cosine, and Bhattacharya distances). We find that DTW is

the measure that performs best. Finally, we optimize automated feature classifica-

tion for different number of convolution layers (i.e., 2, 3, and 4 layers with 4, 8, and

16 filters, respectively). The results for this optimization show that the model with

3 and 4 convolution layers achieve the best accuracy.

We further investigate whether the two best methods (i.e., statistical descriptors

and shapelets) extract and exploit different information from the data. To this end,

we construct a new method that combines both of these feature sets as input. If both

methods extract the same information, then the accuracy of the combined model

should not improve. We compare the results of the new combined feature classifier

against statistical descriptors and shapelets used as baselines. We construct the new

combined feature set method by using the kNN, RF, and XGB classifiers.

In order to better understand the performance of all methods, in Figures 6.4,

6.5, 6.6, 6.7 and 6.8 we present the confusion matrices for the best performing pa-

rameters for each of the five methods (i.e., combined features and the four methods
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presented in Section 6.2.1). In each matrix, the average of the diagonal values cor-

responds to the overall accuracy of the indicated classifier.

Table 6.6 shows the results for the Leave-a-Place-Out analysis using the gen-

eralized correlation coefficient. As we can see, computing the statistical descriptors

in the frequency domain results in higher classification accuracy. In contrast, clas-

sification based on shapelets in the frequency domain results in less than half the

accuracy obtained in the time domain.

6.4.3 Leave-a-Device-Out Evaluation

The readings collected by mobile devices have some error due to the quality of

the sensors, their age, and usage [112]. Each device has the software necessary to

compensate for the error and provide measurements close to the actual value. As

such, this error-correction enables us to crowd-source the data collection in order to

process and extract more robust descriptors for each location-type as we would be

able to observe the same places under different environmental settings. We evaluate

our methods using a leave-one-device-out scenario as discussed in Section 6.2.2.

Table 6.7: Leave-a-Device-Out.

Full Signal Matching
Distance Measure Accuracy
DTW 0.1852
Euclidean 0.2407
Cosine 0.1481
Bhattacharyya 0.1204 0
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Figure 6.9: Class accuracy for Euclidean
Distance proximity based

classification.

In Tables 6.7, 6.8, 6.9 and 6.10 we present the average accuracy for the four

classification approaches. Our results demonstrate that classifiers based on statis-

tical descriptors and shapelets outperform the others (i.e., full signal matching and
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Table 6.8: Leave-a-Device-Out.

Statistical Descriptors
Classifiers Accuracy
kNN 0.1776
RF 0.2998
XGB 0.2926
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Figure 6.10: Class Accuracy for RF
classifier.

Table 6.9: Leave-a-Device-Out.

Automated Feature Extraction
CNN Layers Accuracy
2 0.1025
3 0.1291
4 0.1274
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Figure 6.11: Classification Class Accuracy
for 3-Layers CNN.

automated feature extraction). Note that this result is consistent with the analysis in

Section 6.4.2.

Similar to the leave-a-place-out scenario, we optimized the methods based on

statistical descriptors and shapelets using the same three classifiers (i.e., kNN, RF,

and XGB). Our results remain consistent and show that both RF and XGB achieve

the highest accuracy (with a negligible difference between them). Full signal match-

ing classification is optimized through four different distance metrics (i.e., DTW,

Euclidean, Cosine, and Bhattacharya distances), and we found that the method that
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Table 6.10: Leave-a-Device-Out.

Shapelets
Classifiers Accuracy
kNN 0.2425
RF 0.3552
XGB 0.3593
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Figure 6.12: Class Accuracy for XGB
Classifier.

Table 6.11: Leave-a-Device-Out:
Shapelets and Statistical
Descriptors Combined.

Combined Feature Set
Classifiers Accuracy
kNN 0.1776
RF 0.4256
XGB 0.4200 01
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Figure 6.13: Leave-a-Device-Out,
Combined Feature Set: Class
Accuracy for RF Classifier.

works best uses Euclidean distance as its metric. Finally, we optimize the auto-

mated features classifier for different number of convolution layers (i.e., 2, 3, and 4

layers with 4, 8, and 16 filters respectively). The results are again consistent with

the previous analysis to show that the model with 3 and 4 convolution layers achieve

the best accuracy.

As discussed earlier in Section 6.4.2, we investigate whether the two best meth-

ods (i.e., statistical descriptors and shapelets) extract and exploit different informa-

tion from the magnetic field readings. We construct a new classifier that combines

both feature sets as input and compares the results against statistical descriptors and
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Table 6.12: Leave-a-Device-Out: Frequency domain.

Frequency Domain
Shapelets Statistical Descriptors Combined

kNN 0.1750 0.1701 0.1640
RF 0.2030 0.3095 0.2634
XGB 0.1675 0.3147 0.2790

shapelets based methods (used as baselines). The evaluation results show that the

classifier based on the combined features achieves an accuracy improvement of 7%

as compared to the best of the previous methods. The increase in performance by

the combined method can be attributed to the fact that the statistical descriptors ex-

clude the outlying values from a dataset, whereas they are included by the shapelets

in the temporal patterns [222]. Consequently, this shows the consistency of the two

methods (i.e., shapelets and statistical descriptors) for extracting complementary

information from the time-series data. In Figures 6.9, 6.10, 6.11, 6.12 and 6.13

we present the confusion matrices for the best performing models for each of the

five methods (the four methods presented in Section 6.2.1 and that based on the

combination of the best two features).

Finally, Table 6.12 presents the results for the GCC analysis in the Leave-

a-Device-Out evaluation. As compared to the Leave-a-Place-Out evaluation, the

pattern remains the same: the classification accuracy using statistical descriptors

improves while the accuracy using shapelets decreases.

6.4.4 Discussion

Shapelet-based classification derives time-series features that contain information

about the form (or shape) of a segment of the observation and its outlying values.

There is a two-fold bennefit to this method: first, shapelets make the classification

algorithm explainable, and second, they provide a mechanism where the classifica-

tion can run on the target device.

Explainability is addressed by considering that there might be a one-to-one

correspondence between shapelets and events. It would therefore be possible to add

to the shapelet dictionary a label to describe each event. This however requires a

more exhaustive data collection process and the detailed manual labeling of each
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reading and along with the variations that are allowed for each event. A data col-

lection project of such magnitude, while achievable, is beyond the scope of this

project.

In terms of resources, an application characterized by a disproportionate use

of memory (used to store readings) and battery (for network transmission contin-

uous observations) might look suspicious. In contrast, a system where shapelets

are computed offline and transferred to the phone for classification will be prac-

tically unnoticeable to the user. Indeed, after training, classification in itself is a

resource-efficient task. In our implementation, once computed, all shapelets (i.e.,

the features) required approximately 50 kB of storage.

One of the contributions of this work is to study the form of a signal as a valu-

able source of information. In the time domain, the form corresponds to events or

activities with a specific periodicity: a train moving towards the sensor or a per-

son walking by. This information is lost when the signal undergoes the frequency

transform, correspondingly the accuracy when classifying using shapelets drops sig-

nificantly between the time and the frequency domain. This loss of meaning then

extends into the combined feature set. Where before the two types of input where

complementary and the accuracy improved from their combined information, the

combination in the frequency domain results in a negative contribution making the

classes less separable and reducing the overall accuracy.

6.5 Summary

In this chapter we have presented a zero-permission attack based on the use of the

magnetometer and considered a variety of methods for identifying location-types

from their magnetic signature. In particular, we have discussed two novel effective

methods based on automated feature extraction using convolutional neural networks

through One Shot Learning and shapelets (in time and frequency domains). We have

discussed methodologies for selecting the parameters of these techniques.

In order to perform the experimental evaluation of the proposed attack, we

performed an in-the-wild measurement study. We collected over 91 hours of data
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from 10 location-types across a major metropolitan area and present our results from

a set of 110 distinct locations. The collection times at each location varied in terms

of time of day, day of the week, and, for some locations, the readings between

phones differ by up to a month. We expect that by allowing such variation, we

mitigated the impact of external influences on the generalizability of our results. We

have shown that we are able to identify the type of a place using devices that were

not used for collecting the data in the first place achieving accuracy equal to 40%

against a random baseline of approximately 10% for both of them. These results

show that there is an apparent privacy risk in terms of location inference associated

to the possibility of accessing the magnetometer readings without permission.



Chapter 7

Conclusions

The emphasis of this dissertation is on empirical work. Each chapter presents a

proof-of-concept study of an idea that can be generalized either in its methods, as is

the case of both metadata (Chapter 4) and localization (Chapter 6), or in its appli-

cation, as is the case with the traits used for device fingerprinting in Chapter 5. In

every chapter we have focused on data that is accessible for collection either through

public APIs or through the use of a sensing device. Our conclusions suggest that

data generated by users poses a risk of identification for the user or their environ-

ment. It is our hope that these findings may contribute to a broader discussion about

the appropriate use of data and its associated risks particularly by companies that

employ practices that have come to be known as surveillance capitalism [235, 236].

7.1 Summary of Contributions
Each chapter presents a different facet of privacy and identification, now, we present

the contributions of the dissertation, as a whole, in terms of the research questions

addressed in this thesis.

We first looked at the metadata information available with each message posted

to Twitter. We used the descriptors (or characteristics) of individual accounts cap-

tured in the metadata to distinguish between one account and another. We found

that using four numerical fields were sufficient to generate fingerprints for each

account, to the extent that we could distinguish one in 10,000 accounts with an ac-

curacy of 96%. Practically, we showed that metadata is useful for identification.
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This conclusion can potentially be extended to other services that record a user’s

interactions and behavior. Metadata is interesting in several respects. The nature of

the information makes it so that it does not always fall under the purview of data

protection legislation1 but it is nonetheless an integral component of services of-

fered by different providers. Similarly, users are aware that this type of information

is collected, but are generally unaware of the types of inferences that can be drawn

from it (phone records, for example, are a good example of users being aware that

companies keep logs of call duration and timestamps but have limited knowledge

of what this can say about them. Such as, for example, the place they live, where

they shop, etc.).

The focus of the following chapter was on the problem of device fingerprint-

ing. The aim was to find an identifier that would be universal, in other words, an

identifier that would be independent of the presence of a specific component in a

device as well as its manufacturer and model. In the second project, we looked at

the magnetic field generated by individual devices as a possible source of identi-

fication. The implications of such an identifier were heightened by the fact that,

for the first time, identification could be carried out without having network access

to the target device. We found that using the magnetic field we could generate a

robust fingerprint which could achieve (in our dataset) an accuracy of 98%. Sen-

sor readings are characterized as low-risk and are therefore not protected under the

permission-based architecture of mobile operating systems. Moreover, even if it

were, identification would still be feasible and impossible to detect.

The main work of the dissertation is complete with the localization problem

presented in Chapter 6. In this project, we make use of the magnetic field not for

identifying a device but a place, a location. Artifacts (e.g., refrigerators, coffee ma-

1Data protection legislation is only applicable to the processing of personal data of a natural
person, a right which they loose upon their death. Personal data are defined as the “any information
which are related to an identified or identifiable natural person. [13]”. While a broad interpretation
of the law is suggested to mean protection of data such as the one analyzed in this dissertation in
practice the law is mostly applied to personally identifiable information like name, birthday, and
credit card details to name a few and other sensitive information such as genetic, biometric and
health data, racial and ethnic origin, political opinions, religious or ideological convictions or trade
union membership. [237].
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chines), people, and structures (e.g., support columns that contain beams) generate

a distortion of the magnetic field in their vicinity. With the magnetometer contained

in each phone, we can match distinct locations to the likelihood of one or more

changes present at a similar locations. We tried to find commonalities across places

where the same activities (characterized by a particular distortion) might take place.

The work we present shows that the magnetometer can partially reveal the environ-

ment on which the user is located (as opposed to their exact location).

We believe that the contribution of this work is methodological in nature. In-

deed, the techniques presented can be applied to different and larger datasets. In

fact, as future work, we plan to study the robustness and generalizability of the pro-

posed methods by repeating the experiments for additional types of locations and

different cities. It would be interesting to see if the similarities across location-types

hold despite the baseline change in the magnetic field. Another interesting dimen-

sion to be investigated further is the stationarity of the magnetic signatures over

time for the same location, for example over several months or years.

The sensitivity of the information that can be extracted from location data is

potentially very high. Having even partial information about location makes it pos-

sible for an attacker to predict where a user will be in the future (derived from

locations they have been to in the past), which might result in real personal risk to

the user, it might also reveal personal traits of the individual, as might be their pre-

ferred locations or religious, political, or professional affiliations when you cross

correlate this information with other datasets. While the ability to understand loca-

tion without the need to map is interesting and useful (and can be used to protect,

as would be the case if magnetic field localization were to be used instead of other

more accurate location sensors, or violate a user’s privacy, in case it were to be used

as a tool for following and tracking the owner) we present a methodology that is

new, readily accessible, and primed for discussion. Once again, the data and the

principles used in this work do not rely on a security flaw that can be “patched” but

on measurements of the environment, and as such, it bears consideration.
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7.2 Discussion

One broader point of this dissertation was to consider some aspects of the reality

of data privacy concerns in today’s technological landscape. In every chapter, we

have looked exclusively at data that is easy to access and difficult to protect. Data

generated by individuals reflect some aspect of that person. Accessing this data

is simple and deriving valuable information from it is a matter of persistence and

resources. In our view, it is unreasonable to think we can place restrictions on every

possible type of data. Even if we did, in some cases as was shown in Chapter 5, it is

still possible for a dedicated attacker to learn something about the user. Where then,

does this leave us? In Section 2.1 we discussed that privacy is essential in life as

we know it, and this author agrees: without privacy, trust and therefore friendship,

as well as many aspects of human relationships, would be unattainable. This is a

discussion (along with many others) on the impact of technological developments

on society. One suggestion might be to emphasize the importance of respect in a

culture where everything can be known. We should discourage any practice that

reduces people to objects to be studied or perhaps more realistically, financially

exploited.

One practical conclusion derived from this work relates to the ease of access

to potentially sensitive data. Permission-based security as defined in [52] has been

adopted by major mobile operating systems [214, 215, 213]. This provides users

with personalized controls in the trade-off between functionality and privacy. It al-

lows developers to request access to whatever functionality in the device they might

see fit and allows users the right to deny, revoke, or restrict access to the resources

of their devices. There is, even in this model, the risk of ‘function creep’. Function

creep is the term used to describe the practice of using legitimately-collected data

for an ulterior purpose [18]. While some form of function creep is almost expected

(e.g., when platforms use data for advertisement), this practice causes mistrust in

the system and represents an ethical breach. The work presented in Chapters 4,

5, and 6 of this dissertation fall within this problematic definition. From a user’s

perspective, a legitimate use of metadata would be to, for example, identify spam
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accounts as was demonstrated in [95, 98]. They would not however, expect to be

re-identified from secondary information, specially when the data was intended to

be anonymized. The same argument might be used in the work presented in Chap-

ter 6. Navigation and gaming are two areas where the use of the magnetometer is

central to the purpose of the task. Inferring any type of location information might

be, at first, unexpected.

7.3 Limitations

Starting from the most general, the limitations of the work presented in this disserta-

tion can be categorized as being either methodological or practical. Methodological

limitations include those that we accept when we chose the types of analysis. From

supervised learning, we inherit one of the most significant limitations: in our re-

sults, we are always comparing against classes that are known (i.e., the classes for

which we have observations). Using this approach we lack the flexibility of saying

that an observation belongs to an unknown class. Similarly, the features used for the

classifiers are not guaranteed to be optimal for the task at hand. This is particularly

true for the localization problem.

Practical limitations are those that are related to the characteristics of the

datasets and the observations contained in them. In terms of dataset, the key limita-

tion is perhaps sample size. The number of observations and classes in our datasets

is always limited (even for the Twitter study where the dataset included millions

of users). For this reason it was not possible to study experimentally the valid-

ity and scalability of the proposed methods with very large datasets. Our strategy

for robustness relied on randomizing the data collection process as an attempt to

minimize the likelihood of constraining results to a particular set of circumstances.

Any significantly larger dataset would require repeating the experiments to check

whether the hypothesis hold.

This limitation extends to the observations in the dataset. Measurement instru-

ments are not perfect and the data collection process happened organically. This

makes our results useful and applicable to the technology currently available but it
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also means that better instruments might lead to different results. Furthermore, all

readings were collected at a particular point in time and under some specific con-

ditions. We have a reasonable expectation that measurements at other times will be

similar however, it is not possible to conclude that this is generally guaranteed.

7.4 Future Work

The work presented in this dissertation is intended as a stepping stone in a much

greater body of knowledge. The objectives outlined in each chapter describe the

scope and methods used in each piece of research. Individually, these projects con-

tribute only small increments however, each of them opens new avenues of explo-

ration. This section presents a summary of ideas for future research that follow from

the contributions presented in each chapter of this dissertation.

Attribute Disclosure from Metadata In terms of privacy implications, at-

tribute disclosure gives some avenue for further studies. If metadata is distinct

enough to identify unique accounts then, it is sufficiently informative to poten-

tially disclose traits that might be shared across several accounts. Similar to the

works discussed in Chapter 2 on stylometry, analysis conducted on metadata and

combined with other sources of information could leak private attributes of the user

(e.g., employment status, travel patterns, relationships).

Missing Link. Another open problem that the work in this dissertation

might contribute towards resides in identifying the same entity across different

datasets. This problem, also known as entity resolution or de-duplication, would

be greatly simplified if there was a permanent unique identifier present across sev-

eral datasets [238]. There is ample literature in the area of device fingerprinting

to suggest that sensor readings include small variations that can lead to the iden-

tification of the measurement device used during collection [110, 111, 112, 206].

The work presented in Chapter 5 could lead to finding an underlying commonality

across all sensors present on the same device. If it were to be found, this features

could lead to the unification of independent measurements (from different datasets)

to the same entity.
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Automatic Device Recognition. The work presented in Chapter 5 suggests

that each device generates a distinct magnetic field. In that chapter, we made the

assumption that a single device is present during the measurement process. Building

on this work it would be interesting to see whether it is possible to build a network

of co-located (or frequently interacting) devices. This would require understanding

how to distinguish between the interfering signals of multiple devices and the range

of the emitted signal.

The privacy risk for users in this case is not in the identification of their per-

sonal device but rather, in the potential ability of devices identifying each other.

As an example, this could lead to an undetectable mapping of all the devices that

belong to the same individual. Or more generally, devices that repeatedly ‘meet’

which would indicate a some form of interaction between the owners (e.g., cowork-

ers, friends, commuters). In practice, applications of the resulting device networks

would be useful for both police investigations and commercial enterprises in their

understanding of customers.

Bio-Electric Fields. Following the work presented on Chapters 5 and 6, in

addition to the device and the environment, one other distinct entity that might con-

tribute with its own magnetic field are the users themselves. In Section 2.6.1 we

discuss the characteristics required for a trait to become a biometric and the traits

that have become ‘mainstream’ in this area.

Cells in the body are contained in fluids which are typically electrically neutral.

Body fluids become charged in the presence of conductive ions required for different

cell functions. Neurons, for example, use sodium, potassium, and chloride while the

combination of elements like sodium, potassium, and calcium are more prevalent in

the heart muscle [239]. In general, modern medical techniques measure bioelectric

phenomena with electrodes strategically placed in the surface of the body however

the magnetic field generated by any of these processes can be measured with a

magnetometer [239, 240, 241]. Given the results obtained for electrical devices, it

would be interesting to see whether the biomagnetic field is distinguishable from an

electronic one and whether it can be used as a biometric.
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7.5 Outlook
There is no way to stop the progress of technology nor would we want to. What

then is the way forward once we realize that anonymization of data might not be

the correct avenue in our pursuit of privacy? This author agrees with Zhang et

al. in [17] when they state that it is very reasonable to give control of the data to

the users. This has also been the legal trend. The benefits that technology brings

to our lives is definitely worthwhile however the insidiousness displayed by some

entities when sharing and analyzing data that was shared in good faith leaves a deep

seed of mistrust in users. This type of behavior should continue to be discouraged

through both the free market, by exposing data breaches and misuses, and state-

level regulations to specifically prevent behaviors that may be out of the hands of

consumers (e.g., company mergers and acquisitions). Research in privacy like that

presented through the dissertation aims to bring to light new aspects that have been

overlooked with the intent of enabling those with the power to make decisions with

the knowledge necessary to carry out their duty.
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