Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2016

Integrated software fin erprinting via neural-
network-based control flow obfuscation

Haoyu MA
Nankai University

Ruigi LI
Nankai University

Xiaoxu YU
Nankai University

Chunfu JIA
Nankai University

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

DOI: https://doi.org/10.1109/TIFS.2016.2555287

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons, and the Software Engineering Commons

Citation

MA, Haoyu; LI, Ruigi; YU, Xiaoxu; JIA, Chunfu; and GAO, Debin. Integrated software fingerprinting via neural-network-based
control flow obfuscation. (2016). IEEE Transactions on Information Forensics and Security. 11, (10), 2322-2337. Research Collection
School Of Information Systems.

Available at: https://ink. library.smu.edu.sg/sis_research/3180

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TIFS.2016.2555287
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3180&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Integrated Software Fingerprinting via
Neural-Network-Based Control Flow Obfuscation

Haoyu Ma*, Ruiqi Li*, Xiaoxu Yu*, Chunfu Jia*, and Debin Gaof
*College of Computer and Control Engineering, Nankai University, Tianjin, 300071 China
¥School of Information Systems, Singapore Management University, Singapore, 188065 Singapore

Abstract—Dynamic software fingerprinting has been an im-
portant tool in fighting against software theft and pirating by
embedding unique fingerprints into software copies. However,
existing work uses methods from dynamic software watermark-
ing as direct solutions in which secret marks are inside rather
independent code modules attached to the software. This results
in an intrinsic weakness against targeted collusive attacks since
differences among software copies correspond directly to the
fingerprint-related components. In this paper, we suggest a novel
mode of dynamic fingerprinting called integrated fingerprinting,
of which the goal is to ensure all fingerprinted software copies
possess identical behaviors at semantic level. We then provide
the first implementation of integrated fingerprinting called Neu-
roprint on top of a control flow obfuscator that replaces program’s
conditional structures with neural networks trained to simulate
their branching behaviors [1]. Leveraging the rich entropy
in the outputs of these neural networks, Neuroprint embeds
software fingerprints such that a one-time construction of the
networks serves both purposes of obfuscation and fingerprinting.
Evaluations show that due to the incomprehensibility of neural
networks, it is infeasible to de-obfuscate the software transformed
by Neuroprint or attack the fingerprint using even the latest
program analysis techniques. Revealing information regarding
the hidden fingerprints via collusive attacks on Neuroprint is
difficult as well. Finally, Neuroprint also demonstrates negligible
runtime overhead.

Index Terms—Software fingerprinting, code obfuscation, neu-
ral network.

I. INTRODUCTION

With software industry growing rapidly, software developers
become to realize that more attention should be paid on soft-
ware security issues regarding potential intellectual property
violations. On one hand, the increasingly powerful reverse
engineering techniques have made software verification and
malware analysis more effective [2], [3]. Yet on the other
hand, they also unfortunately enable the so called man-at-the-
end (MATE) attacks [4] in which the adversary is assumed to
possess full control of the system and thus could thoroughly
inspect and analyze the running programs for purposes like
software theft, pirating, and cracking. With state-of-the-art
automatic software analyzing and testing techniques [5]-[8],
MATE adversaries are now not only able to dissemble and
analyze the code text of a tested software statically, but can
also dynamically monitor its execution. This allows an attacker
to reveal or even modify the software’s internal logic for
purposes like evading authorization checks, plagiarizing valu-
able modules, etc. Discouraging software theft and pirating

Corresponding author: Chunfu Jia (email: cfjia@nankai.edu.cn).

includes several security goals, out of which an important one
is to establish virtual uniqueness on software’s copies to be
distributed. Such uniqueness makes it possible to identify the
authorized user of any specific copy of a software so that
perpetrators can be found after the fact of proprietary right
violation. To achieve such an objective, software fingerprinting
technique has been considered as a promising strategy.

A. Dynamic Software Fingerprinting and Collusive Attacks

Software fingerprinting is generally known as a derivative
form of software watermarking. It typically requires to embed
a secret signature into the subject software such that a con-
cerned authorized party can reliably recognize it. Formally,
a software fingerprinting scheme F : {E(-), R(-)} consists
of two major portions: the embedding process E(-), which
is by all means a program transformation, and the recognition
protocol R(-). Given a subject program P, a fingerprint f, and
the secret input (or parameter) i as f’s trigger, F' produces the
corresponding fingerprinted program instance Py by

EP) L5 P, (1)

Later, using the same i, a recognition process should be able
to reliably output f from Py by computing

R(P;) 5 f.)

Due to the relation between software watermarking and finger-
printing, previous works tend to believe that the requirement
of fingerprinting can be sufficiently addressed using direct
transplantation of the existing watermarking schemes. Hence
software fingerprinting systems, as their watermarking rela-
tives, are also in either the static [9] or dynamic manner [10],
[11]. The difference between these two flavors is mainly on
whether the fingerprints are embedded as special features of
static program texts, or runtime-generated execution states/data
objects. This paper will focus on dynamic software fingerprint-
ing only, given that it is widely accepted as the better solution
among the two options regarding to the effectiveness against
attacks based on semantic-preserving transformations [10]-
[14].

Again, we emphasize that software fingerprinting techniques
are usually used for the purpose of tracing perpetrators after
the protected software has been pirated. For example, when
Alice discovers a pirated copy of a software of hers, she then
applies her fingerprint extractor to discover who purchased
the original copy. Due to this usage scenario, the fingerprint

embedded has to be unique for each individual copy of the
software. This makes software fingerprinting different from
software watermarking. What is often neglected (yet poten-
tially fatal) is: because of the difference on their scenarios,
solutions proposed for watermarking become rather vulnerable
when applied to fingerprinting.

Existing dynamic watermarking approaches work by for-
matting the secret signature to be embedded as outcomes of
certain payload code and then attach the payload code at one
or multiple position(s) in the subject software [9]-[11]. Let F
represent such a payload code corresponding to a fingerprint
f, then the embedding process E(-) in these designs works
by simply putting F together with the subject program after
creating it, i.e.

Py=P+F. 3)

In other words, F here is built to work only for watermarking
purpose, its execution has basically no affect on the software
‘P’s original functionality. Obviously, after the watermarking
schemes of this type are transplanted to server in the software
fingerprinting scenario, such characteristic remains true.
Problem is, being a piece of program itself, an independent
fingerprint module defines its own semantics. Let O(X) be the
structural operational semantics of program X, it is defined by
a triple (3(X),2(X), 7(X)) in which
e 3(X) is the set of all possible internal (both memory and
control) states of X’;
e 2(X) C X(X) is the set of all possible initial states that
X may start with; and
o T(X) C E(X)xX(X) is the set of all possible transition
relations in X.

To express f via executing the payload F, the method taken
by nowadays’ approaches is to define a mapping from f to:

o a trail of transition relations 7y = {9, 71, -, 7%} (in
which 7,¢(0.%) € 7(F)) to be found in F’s behavior; or
o the combination of internal states oy = {og, 01, , 0%}
(in which oycjo 4 € X(F), and Toecjon) = (0o—1,02))
that is in corresponding to 7.
In either case, f is seen as a straight-forward interpretation
of F’s semantics (or at least part of them), i.e., f C O(F).
As the result, given any two fingerprints f; # fo as well as
the corresponding program instances Py, , Py, where they are
embedded,

O(Py,) =O(P) + O(F1) # O(P) + 0(F2) = O(Pp,). 4)

Therefore, for a so fingerprinted program, the individualized
instances of it would demonstrate semantic-level differences,
which indicate nothing else but the fingerprint payload code.
This makes the adversary’s task of locating fingerprint-related
code much less challenging, since once he possesses multiple
fingerprinted copies of it, he only needs to look into the
semantically different portions to find the fingerprint payloads
(and this simple way of disclosing the supposed-to-be-hidden
fingerprint is known as the collusive attacks). We believe that
this inherent feature degrades the effectiveness of existing
dynamic fingerprinting schemes and makes collusive attacks a
critical threat to the technique.

B. Obfuscation Enhanced Software Fingerprinting

Being vulnerable to collusive attacks raises yet a secondary
problem for dynamic software fingerprinting: the compromised
resilience to attacks aiming to remove the fingerprint, or by all
means make it unrecognizable (which are known respectively
as the subtractive attacks and the distortive attacks). The basic
security assumption of dynamic watermarking/fingerprinting
approaches against these attacks lies in that any transformation
that preserves semantics of both the subject software and
the fingerprint payload will not compromise the fingerprint.
However, due to the lack of inter-dependency between these
two components, it becomes unnecessary for the attackers to
care about the integrity of fingerprint payload given that the
subject software would still be fully functional without it. This
makes the payload code of existing dynamic fingerprinting
designs rather fragile upon spotted, which is even worse with
the presence of collusive attacks.

One possible solution to enhance the security of current
dynamic fingerprinting approaches is to additionally apply
code obfuscation on fingerprinted software. According to
Palsberg et al. [15], the goal is to

« make the fingerprint payload code unrecognizable; or

« disguise it in a way so similar to the subject software, that
tampering with it seems to be endangering the software’s
integrity and/or correctness.

That said, to our best knowledge, the only existing obfuscation
enhanced dynamic watermarking/fingerprinting design is the
Droidmarking system proposed in [14]. This approach turns
its payload snippets into the so called self-decrypting code
(first proposed in [16]), such that they are made statically
unreadable. Only when the protected software takes certain
branches (where such code snippets are placed) at runtime will
the obfuscated code blocks be correctly decrypted and become
functional. However, since the so constructed payload snippets
are still independent to the subject software, Droidmarking has
to accept a significant trade-off between stealth and resilience.
In fact, it is claimed to be completely “non-stealthy”. Even so,
each of the Droidmarking’s code snippets is still guaranteed
to be unprotected status upon being reached and revealed into
functional executable at runtime, afterward they can be safely
removed.

C. Contributions of This Paper

As explained above, for the existing works on dynamic
fingerprinting, the fundamental idea of payload code’s work
mode has become a source of problems. Therefore, when
it comes to exploring a better solution, one question natu-
rally raises: is it possible to merge dynamic fingerprints into
software’s original functionality? Motivated by the question,
this paper proposes a novel dynamic fingerprinting mode
called integrated fingerprinting. Our new model suggests that
the embedding of software fingerprint should be a semantic-
preserving transformation on the subject software so that the
collusive attack to perform differential analysis on the finger-
printed instances would not work. This transformation turns
software’s original execution into an equivalent yet special
new form, which, under a pre-determined situation, exhibits

the fingerprint information as runtime side effects. The goal
of integrated fingerprinting mode is to bond the fingerprint
to the carrier software’s integrity. Thus under this mode, to
isolate or erase the embedded fingerprint while keeping the
fingerprinted software itself functional becomes difficult.

To take one step further, we propose the first realization of
integrated fingerprinting — named Neuroprint — on top of a pre-
viously proposed neural-network-based software control flow
obfuscation approach of ours [1]. Our underlying obfuscator
protects software’s control flow integrity by simulating branch-
ing logic of its conditional structures with neural network
computation. Specifically, our trained neural network outputs
offset of destination code blocks of the protected conditional
branch according to the value of its input variable(s), then use
the offset to perform the replaced control transfer correctly. In
addition to the obfuscation, over all the protected conditional
branches, our Neuroprint system selects a relatively small set
of them on a particular execution trail (which corresponds to
the user-specified secret input, henceforth the fingerprint trail),
and inject fingerprint in the selected branches. Neural networks
for obfuscating these branches are trained to “remember” not
only control information, but also fractions of the fingerprint
message. Later, upon being invoked on this trail, these special
networks release the fractions they carry via their computation
results (the same ones that also provide control offsets for
the obfuscated branches) in the same time of performing
the obfuscated control transfers. Neuroprint’s recognizer can
therefore reconstruct the complete fingerprint by monitoring
the execution procedure and collecting the released fractions.

Intuitively, the well-known complexity in comprehending
the rules represented by neural networks ensures that whatever
knowledge they are trained with (including both the branching
logic and fingerprint information) cannot be explained using
symbolic rule combinations of a reasonable scale [17]-[19].
Meanwhile, by making the neural networks “multi-tasking”,
our approach turns the fingerprint into an inner component
of carrier software’s (obfuscated) conditional branches, thus
manages to avoid using independent payload code. The result
of these together is that it is made impractical for Neuroprint’s
adversaries to

« on semantic-level, reliably distinguish the fingerprinted

branches from those obfuscated-only ones; or

o with an acceptable cost, recover any of the obscured

control transfers via automated reverse-engineering tech-

niques based on reasoning systems.
In other words, to compromise a fingerprint embedded using
Neuroprint is at least as difficult as to perform a comprehensive
de-obfuscation on the transformed software, which is next
to impossible as well. We evaluated our Neuroprint design
on several aspects, including its strength, the validity of
fingerprint recognition, and performance. Results indicate that
Neuroprint effectively resists major attack scenarios targeting
either control obfuscation or software fingerprinting while
introducing acceptable overhead.

As an extension of [1], this paper makes a more comprehen-
sive exploration on applying the intrinsic security value neural
network into a new software security scenario other than code
obfuscation, namely the designing of software fingerprinting.

We for the first time propose the integrated fingerprinting mode
to be a novel solution that may address the major drawbacks of
existing dynamic fingerprinting approaches. To this end, in our
Neuroprint system we re-define the output formatting of neural
networks in the original obfuscator to include a fingerprint
section along side the control data of obfuscated branches.
Neuroprint also establishes a self-authenticated fingerprint
recognition protocol to ensure the correct extraction of the
fingerprint. The amendments create a way of dynamically
carrying fingerprint messages within program’s own semantics
via transformations difficult to be undone, which has not been
accomplished before.

II. BACKGROUND ON NEURAL NETWORK

Artificial neural network (e.g. feedforward neural network,
like demonstrated in Fig. 1) is a connectionist model consisting
of an interconnected group of artificial neurons. It is known
to be a distributive and fault-tolerant system capable of rep-
resenting non-linear algorithms with powerful computational
capability. During the 1990s, several researches suggested
that a neural network of the above representative model is a
universal function approximator and should be able to simulate
arbitrary functions [20], [21]. Researches on deep learning
have also shown that networks with more hidden layers could
be even more powerful [22], [23]. In this paper, we show
that neural network also provides solid security properties in
software protection.

Input
Layer

Output
Layer

3 Hidden 3
" Layer !

Fig. 1: An example of feedforward neural network [1].

A. Rule Extraction from Neural Network

Researchers generally believe that a main weakness of
neural network is the absence of a capability to explain either
its process of arriving at a specific decision/result, or in gen-
eral, the knowledge embedded in it in human-comprehensible
form [17]. In 1996, Golea studied the intrinsic complexity of
rule extraction from neural network and came out with key
results that the following two problems are both NP-hard [18],
[19].

o Extracting the minimum Disjunctive Normal Form ex-
pression from a trained (feed-forward) neural network;
and

o Extracting both the best monomial rule and the best M-
of-N rule from a single perceptron within a trained neural
network.

To the best of our knowledge, existing rule extracting
solutions could at most generate relatively large combinations

of symbolic rules in approximating the knowledge embedded
in neural networks [24], [25]. Some approaches work only on
networks of limited types [26]. Also, we find that for scenarios
like code obfuscation and software watermarking/fingerprint-
ing, understanding of logic embedded in neural networks
could be not just unnecessary but unwanted. In such case, the
incomprehensibility of neural networks becomes an valuable
feature to build security approaches on.

B. Training of Neural Networks and its Randomness

Since extracting rules represented by a neural network is
typically hard, the general usage of neural network is to
construct one that represent some given logic. This con-
struction process is usually called training. Neural network
training typically starts by assigning network parameters (i.e.
the weight and bias factors) with some initiate states, then
progressively adjusts their values with the goal of reducing
the difference between output distribution of the network and
that of the training sample to an acceptable degree. Since the
network is of distributive structures, the training algorithms are
“greedy”, i.e. they find the best local solutions for each neuron
rather than trying to achieve global optimum. Consequently,
they require that the network be initialized randomly in order
to avoid being stuck in a local minima.

The random initialization inevitably brings a side effect to
neural network training, which is the obscure and indetermi-
nate relationship between a neural network’s explicit properties
and its behavior. This is in fact rather obvious since even with
the same training sample and network topology, every single
training of the neural network with a different initialization
vector would result in a solution with a distinct parameter
set. We make use of this randomness property in our proposal
of software fingerprinting, i.e. the Neuroprint, to fight against
collusive attacks, which is further explained in Section IV-A.

ITI. NEURAL-NETWORK-BASED CONTROL FLOW
OBFUSCATION [1]

Before bringing out the new dynamic fingerprinting design,
we first present the basic unit of our system, namely the neural-
network-based control flow obfuscation.

In programming, conditional logic is used to selectively
transfer control to multiple execution paths based on the
result of evaluation on some input. We, on the other hand,
provide an equivalent interpretation of such logic as shown
in Fig. 2. In this interpretation, a conditional operation is
considered a binomial classification task where all possible
values of the input space are classified into two groups, each
corresponding to a determined execution path. Any particular
input is examined and classified into one of the groups, then
the program’s control is directed to the corresponding path.

As there are various mathematical models that can precisely
represent a binomial classification, this suggests that it is
possible to choose one that provides some desirable security
property of control flow obfuscation. We choose neural net-
work as the candidate to build our obfuscator on, not only
because it is a well-understood model in classification, but

'
Input space —)‘
Execution [~ Category A *”"CfitEgOry B"{
Path B v

Execution
Path A

Fig. 2: Conditional execution and binomial classification

also due to the incomprehensible nature of its reasoning pro-
cedure. The extreme complexity of extracting rules embedded
inside neural networks could help providing resistance against
reverse engineering techniques that aim to reverse engineer the
embedded logic of the obfuscated program routines.

A. Indirect Conditional Transfers

Constructing a neural network to represent the logic of
the conditional transfer is relatively straight forward by di-
rectly applying existing training algorithms of neural network.
However, doing so does not hide the behavior of the control
transfer. That is, an attacker would still be able to tell the
fact that there is a control transfer, and even the target of the
transfers, although he fails to uncover the trigger condition.
This is true for most existing obfuscating work in control flow
obfuscation [16], [27].

Considering the capability of neural network, we believe
we can do better — to even obfuscate the control transfer
behavior. A conditional branch usually decides whether to
direct control flow to a certain code block or to stay on
the current code stream. The address of the instruction to be
executed when a branch is taken is usually represented by a
relative offset to the value of the instruction pointer. Given
that neural networks are powerful enough to ‘“remember”
any predefined output values assigned to each group in the
classification, it is possible to train the network to output such
offsets directly (instead of outputting a boolean value in most
existing obfuscating work) and to effectively use the neural
network as a conditional dispatcher.

As shown in Fig. 3, our trained neural network outputs
either zero or the corresponding offset of the code block,
which is used to calculate the return address for the conditional
dispatcher when it finishes its execution. Our design of the
conditional dispatcher therefore maintains semantic equiva-
lence with the original program. However, the control flow
from the dispatcher to one of the code blocks (branch B as
shown in Fig. 3) is now obfuscated and invisible to most
automatic analysis tools.

Fig. 4 shows a simple program before and after we ob-
fuscated the conditional transfer if (y == 5). Recall that
our objective is to obfuscate not only the branch condi-
tion (y == 5 as in Fig. 4a) but also the control transfer
(jnz short loc_40100C as in Fig. 4b).

Function Conditional_Dispatcher () (of which the
detail implementation is given in Section V-C) replaces the
original branch logic which uses a neural network built from
function Network_Update () to maintain the same con-
trol behavior. As the result of our obfuscation, instruction

............... h A
---- conditional transfer |

I—P{ call conditional dispatcher’—l
1

I
| e TR B
i - T conditional
' | EIP dispatcher
: A 4 < output
EIP+offset (O/offset)
! return point Teum
i branch A manipulation
i ;
1
branch B

Fig. 3: Conditional dispatcher using neural network

y += x;, which is to be executed under certain condition,
now looks as if it is in the same code block as x++;. The
binary code of the corresponding loop and its obfuscation in
Figure 4b shows the same structural misunderstanding to an
analyzer caused by our obfuscating.

int x, v;

x = 0;

Network _Update () ;

for (v = 0; v < 10; y++)

int x, v;
x =0;
for (v = 0; v < 10; v++)

if (y == b)

Conditional_Dispatcher (v) ;
vy t=x;
x++:

v = x;
xt++

obfuscatiol>
J }

(a) Source code

xor eax, eax
lea ecx, [eax+5]
R # ¢ xor edi, edi
call ?Network_Update@@YAXXZ
loc_401005: xor esi, esi
cmp eax, 5 —'Li
jnz short loc_40100C TN
loc_401471:
mov eax, ecx mov eax, ?S? .
call ?Conditional_Dispatcher@@YAXH@Z
3 L] _ add esi, edi
LTl inc esi
inc edi
loc_40100C: cmp esi, 0Ah
inc eax j1 short loc 401471
inc ecx |
cmp eax, 0OAh v
jl1 short loc_401005
I —

(b) Binary code

Fig. 4: Example of control flow obfuscating

B. Applying Integer Neural Networks

One of the most important steps in the obfuscating is
to construct the neural network. Traditional neural network
uses sigmoid functions as neuron activators. However, due to
the uniqueness of sigmoid functions and the high precision
weight values assigned for network connections, these neural
networks are relatively easy to detect and recognize. This
potentially makes the embedded network easy targets to be
located or traced. Therefore, we choose to use integer neural
network to make the corresponding instructions for neural
network calculation less suspicious.

Integer neural networks limit their weights to integers only,
and apply simple step functions (which outputs 1 for a non-
negative input or -1 otherwise) as their neuron activator [28],
[29]. Due to the simple instruction profile in constructing
an integer neural network, it is also easier to diversify its
implementation.

Note that the input layer of integer neural networks is able to
process numerics of any valid type given to it (but the weight
factor of these nodes are still integers). So long as all the input
values are numeric, activator in the input nodes would be able
to properly map the input space to a enumeration of integer
values (e.g. {1,—1} in case of step functions), such that the
neural network would then work entirely on integers starting
from the subsequent hidden nodes. For branches with non-
numeric conditions, a transformation process can be inserted
before them to map the vector of its conditional variable(s)
to a numeric space, then feed neural networks with the image
vector. Thanks for the parallel structure of neural networks,
branches with compound conditions can be directly processed
without extra simplifying. Therefore, using integer neural
networks in our system does not mean that candidate branches
possible to be obfuscated are limited in any way.

C. Dynamic Network Construction

Obfuscating a program with neural network requires storing
the weight matrix of the network for computing. To make it
more difficult for an attacker to locate the matrix for analysis,
we store it as heap-allocated objects with pointer aliasing [30],
[31]. As shown in Fig. 5, data used by the neural network is
created and updated dynamically.

int *wMatrix=new int[size];

(create aliasing pointers
Ptr 1, Ptr_2)

T
|

.ee |

/ |

Update (wMatrix) ; |

vee f—i—&Ptr_l—|—

! |
|
Update (Ptr_1); | |
N !
ves |
\A;&Ptr_z_'_l_
Update (Ptr 2); I
netFunc (input,wMatrix) ; -

execute () ;

(update next neural network)

Neural Network
Weight Matrix

Fig. 5: Dynamic constructing and updating data for the neural
network

We first allocate a memory region for the weight matrix,
and then create pointers targeting different positions in the
region to establish complex aliasing effect. After that, a set
of instructions is deployed into the software’s code sections
to progressively update the allocated memory region (tar-
geted by the pointers) with their operands, until finally the
neural network matrix is constructed. This way, parameters
of the neural network are split into statically meaningless

subject software

subject software
(obfuscated)

i
I

17

L @
<o>

Neuroprint
transformation

™ Neuroprint
recognizer

iy

v

Fig. 6: Integrating fingerprints with the neural-network-based control obfuscating.

components inside instructions that are distributively placed
over the software’s code body. In addition, the updating of
the weight matrix is covered with complicated dynamic data
dependencies. Therefore, this makes it hard to determine the
resulting networks without actually reach the corresponding
obfuscated branches at runtime.

To add complexity in a potential analysis of the weight ma-
trix, we also use the same memory region for weight matrixes
of multiple neural networks. After one network finishes its
task, the weight matrix is updated into a new one for the
next neural network to be used. Updating of the matrix for
each network is only completed right before it being queried
in the control transfer, and it is overwritten right after the
transfer. An attacker could only obtain the correct view of a
network when program’s execution reaches the corresponding
conditional branch.

IV. NEUROPRINT: TOWARDS INTEGRATED
FINGERPRINTING

Remind in Section I-A we explained that to the existing
dynamic fingerprinting schemes, forming additional program
semantics that serve the watermark/fingerprint exclusively is a
principle by default. In this paper, we challenge the necessity
of doing so. Although we agree that it is inevitable to cause
changes to a program in order to introduce new information,
we doubt that such changes have to reach semantic level.
Dynamic fingerprinting should imitate the “perceptually in-
significant” objective in the design of digital fingerprinting,
and construct fingerprints in a semantically insignificant way.
Towards such direction, we suggest a new notion on dynamic
fingerprinting called integrated fingerprinting.

Let Fy : {E;(-), Rr(-)} represent an integrated fingerprint-
ing scheme. Given a program P = (3,4, 7) and any z € 1, we
use

(&)

to represent P’s transition sequence when initiated from z (in
which Vk € {0,1,--- ,n}, s € X). Fy then defines a pair of
encoding/decoding functions F,, and Fj.

T(JZ) = {(.13, 80)7 (307 51)’ M) (Sn—la Sn)}

o F,, receives a transition sequence 7(x) and a message
m as input, and outputs a new transition sequence such
that O(F,, (7(z),m)) = O(7(x));

o F,. consists of a combination of computations that, given
a transition sequence of a program, results in a message
that satisfies Fye(Fep(7(x), m)) = m.

Accordingly, we let Fy’s fingerprint embedding and recog-
nition be described by

Py = E(P,{f,i}) = <E/’ ,7') (6)
f=Ri(Py,i) = Fae(r'(i))
in WhiCh7 if Tf = Fen(T(i)vf)7 then ¥’ = ZLJTf and

7" = (1—7(3)) U 7. The meaning of such an F is that instead
of bringing in new functional modules into the program, the
fingerprint f here is turned into a secondary effect of 7/ (non-
semantic) while ensuring O(P;) = O(P). To decode a so
embedded fingerprint, Fy’s recognizer R; has to rely on the
protected program’s own behaviors. This bounds it with the
program such that the difficulty of removing or destroying
the fingerprint while keeping the program itself intact can be
increased. Furthermore, integrated fingerprinting could also
resist collusive attack since given any f; # fo, F1 keeps
O(Py,) = O(Py,). As a result, the adversary can hardly take
advantages of comparing instances of the program that carry
different fingerprints.

One may immediately come with a question: is integrated
fingerprinting feasible? On top of our neural-network-based
control obfuscation (see Section III), we further propose an
dynamic fingerprinting scheme called Neuroprint as the first
realization of integrated fingerprinting.

A. Design Overview

A key requirement of integrated fingerprinting is to embed
the fingerprints as a secondary characteristic of the execution
so that the semantics of the fingerprinted program remain
unchanged. Our idea of realizing this is to represent the
fingerprints as some kind of runtime memory states (non-
output) in program execution. In view of the attractive features
provided by neural networks, in particular, the incomprehen-
sibility as discussed in Section II-A, we find that embedding
the fingerprints as part of the neural network outputs, could
be an attractive solution.

Recall the definition of structural operational semantics
mentioned in Section I-A. Assume two programs P; and Ps
are semantically equivalent (i.e. ©(P1) = ©(P2)), it is then
necessary that one of their triples (X(P1),2(P1), 7(P1)) and
(3(P2),2(P2), 7(P2)) can be reduced to (but not necessarily
be equal with) the other. In other words, a program transfor-
mation can be semantic-preserving even when it is not state-
preserving. Code obfuscation is by principle a transformation

that aims to express a program’s original semantics with a set
of much more complex execution states, thus the difficulty
of reverse engineering the resulting software instance gets
increased. Therefore, if designed properly, the complicated
execution states created by code obfuscation might be useful
for exhibiting extra information (like software fingerprint) at
runtime.

In our neural-network-based obfuscator, the neural network
output is used as an offset to calculate the control transfer
target address. On the x86 architecture, conditional branching
via short jumps has an 8-bit offset to index the control transfer
target. Given that the obfuscator adopts integer neural network,
this leaves 24 bits unused in its output which is a 32-bit integer
when running on a 32-bit architecture. Such unused portion of
the neural network output makes it possible to encode dynamic
software fingerprints within program’s own semantics.

As demonstrated in Figure 6, given a secret input ¢ and a
fingerprint f, Neuroprint first runs the subject program with ¢
in order to traverse the corresponding execution trace (i.e. the
fingerprint trail as mentioned in Section I-C), during which:

« it selects on the fingerprint trail a collection of conditional
branches by, bo, - - , b, as candidates to carry f; and

e it records the input values 41,49, ,%, taken by each
bi(k=1,2,--- ,n) during this specific execution.

After that, Neuroprint divides f into a series of fractions
fi, f2,- -+, fn and replaces branches b; to b, with neural
networks Ny, N, ---, N,. Each Ni(k = 1,2, - ,n) here
is specifically constructed such that when input with 7, it
responses with an output containing both the control offset of
the destination branch and the assigned fingerprint fraction fj.
Later, the embedded fingerprint can be extracted by using an
external recognizer to observe the execution of the transformed
software with the input ¢, during which the fingerprint fractions
will be successively presented by the neural networks upon
being invoked to perform the conditional control transfers they
represent.

Furthermore, Neuroprint also performs obfuscation to the
program’s other branches using neural networks similar to Ny,
except that these networks possess no fingerprint fractions.
Such networks then take the role of decoys, providing cov-
ers for the fingerprinted networks. In fingerprinting different
copies of a program, Neuroprint makes sure that each distinct
neural network it generates is trained using a different ini-
tialization such that any two of them, whether simulating the
same branch of the program or not, would not be identical. As
the result, diff analyses on the resulting software copies, which
drives the collusive attacks, would hit on the construction code
of all the neural networks from both type. The large number
of decoys mixed in the identified differences, together with
the incomprehensibility of neural networks, make it harder to
determine the actual location where the fingerprint fractions
are deployed. Meanwhile, since the system is built on top
of the control flow obfuscator, compromising any of the
neural networks is as least equally difficult as if revealing the
conditional branch protected by that network.

In the next two subsections, we present details of the
fingerprint embedding and recognition processes.

B. Fingerprint Embedding

The design of fingerprint embedding has a large impact
on the security of its recognition. In practice, the recognition
process of a fingerprinting scheme must assume that integrity
of the fingerprinted software has already been compromised
in any possible way. For example, adversaries may also insert
bogus fingerprint components of their own into the software,
hoping that the forgeries would sabotage the actual fingerprint
from being correctly recognized. That is why our design of
the fingerprint embedding focuses on the integrity of the
fingerprint (fractions).

In addition to the control transfer offset and the fingerprint
fractions in the output of neural network, we also insert the
integrity check. To show how this works, we denote the four
distinct bytes of the neural network output as Byte0 to Byte3.
Out of these four bytes,

1) Byte0 is called the control section storing offset of the
control flow transfer;
2) Bytel is the fingerprint section containing the embedded
fingerprint fraction; and
3) Byte2 and Byte3 together make up the authentica-
tion section, which consist of 2 HMACs MacSIf and
MacMu.
Here MacSIf and MacMu denote the self authenticator
and the mutual authenticator, respectively. Let H(msg, key)
denote the last 8 bits of the output of a keyed hash func-

tion. Given any fingerprint fraction f; and its trigger input
Zk(k =12, 777‘),

ij, MacSlfk. = H(ka’Lk, i);
VEk # n,MacMuy, = H(fr+1||MacSH1,1); (7
MacMu,, = #H(f1||MacSlfy,).
In this way, each fingerprinted output provides authentica-
tion not only for itself but also for its successor. Fig. 7 shows

the structure of the reformatted neural network output used in
Neuroprint system.

Stack Neural Network

output
(32-bit integer)

stack growth direction———>

stack frame of Byte2 Bytel ByteO
conditional dispatcher in -
gerprint control
ki fraction offset
stack frame ptr d i
expand |
ret addr v
(to be modified) ‘—’ 0X000000 I ‘

authentication fingerprint, control
section section section

Fig. 7: Output of neural network and its location in memory

Training of the neural network makes sure that its output
conforms to the definition above with the correct input ig.
For those inputs that goes to the other branch (and all the
inputs of decoy neural networks), we let Byte3, Byte2 and
Bytel be some pre-determined random numbers. We present
the implementation of this design in Section V.

C. Fingerprint Recognition

Besides being able to work correctly on software copies
that are potentially sabotaged, the recognizer for a software
fingerprinting scheme should also require few code features
from the fingerprint modules, especially those that are observ-
able statically; otherwise, the pattern that the recognizer uses
could be exploited by the adversaries for malicious purposes.
For example, such features could be removed to make the
fingerprint unrecognizable. Therefore, we build the recognizer
of Neuroprint mainly based on data-level patterns as opposed
to code patterns and bound such data with original semantics
of the program.

The Neuroprint recognizer works by subjecting the software
copy to execute in hardware single-stepping during which the
recognizer records the neural network outputs. This requires
to first locate the conditional dispatchers (see Section III-A)
such that the neural network computation can be put under
monitoring. We do this by exploiting the special runtime
feature of the dispatcher that it does not return to its call-
site (due to obfuscated control flow) when the fingerprint
generation is activated.

As discussed in Section IV-B, the recognizer might be
dealing with software that has been compromised and mod-
ified. Therefore, it is essential that we accept only finger-
print fractions that are authentic. We do this by verifying
the authentication section of the neural network output. Let
o; = Byte3, ||Byte2, ||Bytel, |[Byte0, denote one of the
neural network outputs collected by the recognizer for an input
i to the program and i, to the corresponding dispatcher. We
check that

Byte2, = H(Bytel, ||i;,%) (8)

and

Byte3,, = #(Bytel |Byte20t+1 ,1) 9)

oual

before accepting the fingerprint fraction. Assuming the secrecy
of 4, it is hard for any unauthorized party to distinguish a
fingerprint fraction from a random padding. Meanwhile, our
recognizer is able to accept only authentic fingerprint fractions
and will reliably reconstruct the fingerprint.

Since an authentication protocol is adopted, possibility of
false recognition needs to be discussed. For Neuroprint, this
happens when the software is not running on the fingerprint
trail, yet output of an encountered neural network (carrying
no fingerprint fraction) happens to satisfy Equation 8 and 9.
Although the two MACs used in our design are each 8-bit
long only, we argue that the possibility of a false recognition
(as mentioned above) under such setting is still trivial. This is
because that a successful recognition would eventually require
a whole chain of mutual authentication be satisfied, which
is unlike to accidentally happen on an unexpected execution
trail.

V. IMPLEMENTATION

Our implementation of Neuroprint consists of mainly a
software analyzer, a neural network trainer, and a source code
analyzer/rewriter. The prove-of-concept implementation is of
fewer than 1000 LOC in total. The system takes as input

the source code of a program in C/C++, an input ¢, and the
fingerprint f, and outputs the modified source code which
can then be compiled into the obfuscated and fingerprinted
version. We start with analyzing the original subject program’s
source for the purposes of identifying and selecting conditional
branches for obfuscating and fingerprinting. We then insert
place holders to the source for neural network construction
and the dispatchers. The modified source is then compiled
into binary executable for more comprehensive static and
dynamic analysis to calculate control offsets. After that, we
train the neural networks and insert code into the place holders
correspondingly.

A. Source Code Analysis and Preliminary Rewriting

Recall that the dispatcher to be inserted into the obfus-
cated (and fingerprinted) version makes control transfers by
adding an offset to the return address. We therefore need
to find out such offsets before source code rewriting starts.
However, these offsets may change during re-compilation after
the source is modified. To handle this difficulty, we apply
a two-phase source code rewriting on the subject program
(similar approach is used in the original work of control flow
obfuscator [1]).

In the first phase, we select branches to be obfuscated
directly from the software’s source code and then perform
a preliminary rewriting to insert place holders for the source
code of neural network construction and the dispatcher. The
place holders contain actual code for Neuroprint’s corre-
sponding functionality, e.g. instructions of the conditional
dispatcher function (see Section III-A) and the weight matrix
updating code (see Section III-C). Except that operands in
these instructions are not yet of their correct values because at
this phase they are still underdetermined. After this rewriting,
the modified program source is compiled and the resulting
binary is statically analyzed to calculate the correct offset of
branches identified for obfuscating. We also perform dynamic
analysis to obtain the fingerprint trail and the corresponding
inputs to the conditional branches selected, see Section IV-A.

B. Neural Network Training

Training of the neural network resembles that in the control
flow obfuscator [1]. Recall that the goal is to let the networks
simulate software’s branching behaviors as if they are classifi-
cation tasks. Without loss of generality, program’s conditional
logic, let ¢ € I be its input variable, can be described as

l,LieACI
l(i):{’ze -

10
0,icB=1—A (10

Thus correspondingly, neural network used to replace such
logic should behave as

NG) = {vl,ZEAC]I

11
Ve, i €EB=T1—A an

in which the detailed format of v; and v, is as described in
Section IV-B. Training such a network requires to establish
a set of input-output samples that consists of 2 groups: one

contains samples with input values selected from A and target
output set to v;; while those of the other groups have input
from B and v, as target. After that, given a pre-defined
network topology, our training process randomly initiates a
set of network parameters, then apply the learning algorithm
to adjust the parameters until the resulting network fits the
behavior of the given training set.

Since for different input values from the same branch,
our neural network is meant to respond with the exact same
output, function N(-) in Equation 11 to be simulated by the
network is in fact quite simple. Therefore, thanks to neural
network’s powerful generalization ability, it is not necessary
to exhaustively pick all possible values from the general input
space I to build the training set. In fact, our experience shows
that when training samples are discretely selected from A and
B, simulation errors occurred in the resulting neural networks
(if any) appears only on input values that are close enough to
the “boundaries” between the two subspaces. Therefore, it is
feasible to let the training set focus only on this error-prone
area, and let the generalization effect take care of the rest
of the input space. Specifically, our training set includes the
same number of (possibly repeated) samples from each input
group with a higher density at close vicinity (££1000) of the
boundary values and a lower density elsewhere.

We apply practical swarm optimization (PSO), a sophisti-
cated algorithm widely applied in neural network training [32],
[33], as the network learning algorithm. The effectiveness of
PSO does not rely on the gradient of target distributions to
be simulated; therefore networks trained with it show better
accuracy even in the boundary regions. We construct our
neural networks to have one input and one output with at
most two hidden layers and no fewer than 7 nodes in each
of them. We also design a neural network verifier to confirm
the correctness of the networks trained. Any flawed neural
network that does not always behave correctly over the entire
input space will not be accepted, and the training will restart
until an accurate network is produced. Different to training
protocols for other application scenarios, in obfuscation we
already know that for our network, there exists no unexpected
input value that does not belong to I. Consequently, so long as
the selected training set is representative enough, it is preferred
for our training process to produce networks that are over-
fitting.

C. Filling Source Code Place Holders

After the neural networks are trained, operands in the place
holders of the neural network updating instructions can be
refreshed to their actual values, so that now they can correctly
construct the neural network weight matrixes upon executed.
Since only the value of certain operands are changed in
this step, the resulting binary executable has only minimal
changes to its instructions, which have no affect on their
corresponding addresses. The multi-layer structure of neural
networks also makes it easy to build the conditional dispatcher
into nested subroutines. For example, the dispatcher could first
invoke a subroutine to calculate the network’s hidden layer,
which would further invoke another subroutine for calculating

the output layer. This output layer calculator then uses the
network’s output to modify the dispatcher’s return address
that is not in its own stack frame. This way avoids straight-
forward return address tampering that may be easily noticed,
as suggested in [10].

VI. EFFECTIVENESS ANALYSIS

As described in Section I-A and I-B, in general a software
fingerprinting scheme considers attacks of the following styles:

o Additive attacks, which inject into the program bogus
components that may be mistakenly recognized as (part
of) the fingerprint, to prohibit the original one from being
correctly recovered;

o Subtractive/distortive attacks, which attempt to remove
or corrupt the fingerprint while preserving (most of) the
program’s original functionality; and

e Collusive attacks, which aim to locate the hidden finger-
print by comparing different copies of the program.

These attacks respectively target different aspects of software
fingerprinting: collusive attacks for exposing the fingerprint’s
location, additive attacks for confusing the recognition process
with bogus information, and subtractive/distortive attacks for
actually compromising the embedded message.

Nonetheless, when it comes to our Neuroprint system in
specific, not all the above attack styles could work effectively.
Due to our authentication protocol (see Section IV-C), it is
next to impossible for an adversary to forge bogus execution
states that can disrupt Neuroprint’s recognition process. This
means that additive attack can hardly become a threat. Our
analyses and evaluations therefore focus on the effectiveness of
our scheme against subtractive/distortive attacks and collusive
attacks.

A. Resilience to Subtractive/Distortive Attacks [1]

Given that our approach embeds fingerprint fractions in-
side neural networks that obfuscate program’s conditional
branches, attempts to remove or corrupt the fingerprint yields
to either de-obfuscate branches replaced by the networks, or
change the networks’ behaviors by tweaking their parameters.
However, even if a tweaking on the neural networks does
cause their output be modified, changes would occur on the
lower bits of such output first, then affect the higher bits
if the modification is significant enough. Therefore, due to
the output format of our neural networks (see Section IV-B),
such change would certainly compromise the control section
(and thus jeopardize the software’s integrity) before even
reaching the fingerprint section. As the result, our evaluation
focus on de-obfuscation as the major approach of launching a
subtractive/distortive attacks against Neuroprint.

We assume that our approach faces the typical MATE
adversary who is in full control of the system in which
the protected software executes. The objective of the attack,
specifically to the obfuscation part of our approach, is to reveal
the condition of the control flow that has been simulated using
neural networks. If the adversary succeeds, he is then able to
either recover the transformed conditional branches into their

TABLE I: Experiment settings for evaluating Neuroprint’s resilience against concolic testing

“Condition(Var)”s for testing applied network topology
PO « » « » . . # of hidden nodes

Var= Var> Var< # of inputs Tst Tayer 7nd Tayer # of outputs
16, 29 16 29 1 10 - 1

6, 11 6 11 1 15 - 1

4,20 4 20 1 8 8 1

2,13 2 13 1 12 12 1

original form, or replace the neural networks while keeping
the program semantics intact.

We focus on the worst possible scenario for the protected
program, in which the adversary applies latest state-of-the-
art dynamic analysis tools with symbolic/concolic testing in
the attack [5]-[8]. These are the latest dynamic analysis tools
with the purpose of reverse engineering all control flows of
a subject program. The typical analysis starts by executing
the subject program with a random input and obtaining the
corresponding trace information, i.e., branches and the cor-
responding conditions. It then uses the information collected
to deduce new inputs (with the help of symbolic testing and
usually a theorem prover) that may trigger different execution
traces (branching) until all possibilities are exhausted.

As already discussed in [1], because of the difficulty of
extracting rules from neural networks [17]-[19], revealing
conditions of our obfuscated control transfers with concolic
testing is computationally impractical. As shown in Fig. §,
each layer of the neural network involves neurons receiving
inputs from (every) neuron of the previous layer. Reversing
such logic leads to an undetermined linear formula of which
the number of potential solutions is extremely large. Chaining
such effect to multiple layers quickly enters into a combination
explosion that is beyond the computation capability of any
existing solver, which consequently stops concolic testing from
functioning.

(X% = (y) {wywayeegws}”

Fig. 8: Reversing the logic of one neuron in a neural network

To further evaluate the effectiveness of our scheme against
concolic testing, we performed a simulation in which an
extremely simple program

void main () {
int Var=SomeValue;
if (Condition (Var)) Var++;

}

is transformed using our approach and tested with concolic
testing tools afterward. We use such a subject program so
that the evaluation can exclusively focus on the effectiveness

of applying neural network in control obfuscation (given that
the program does not have other components except the
conditional logic to be obfuscated). For the same purpose,
we do not apply indirect control transferring to the subject
program in this evaluation to rule out the known drawbacks of
concolic testing while handling indirect branches [34]. Neural
networks used in the experiments are given a series of different
topologies, and the branch if (Condition (Var)) in the
program is given a series of equal/unequal branch conditions
as shown in Table I.

We selected two popular analysis tools for the experiment,
KLEE [8] and TEMU of the Bitblaze platform [5]. KLEE
is chosen because it is a representative execution-generated
testing approach which provides powerful path exploration by
mixing concrete and symbolic execution [35], and is also well
maintained by an active community of contributors from both
academia and industry [36]. We use KLEE to test the effect of
our design in impeding analysis that aims to probe unexecuted
paths of the program to determine their trigger conditions.
TEMU, on the other hand, works directly on binary executable
and performs in-depth concolic testing for execution path
verification. To our best knowledge, this is currently the only
open source platform providing symbolic execution assisted by
dynamic taint analysis. When TEMU traces an execution path
of the program, it generates a constraint set in which symbolic
values are marked as tainted, then feeds it to the constraint
solver. The solver then solves for a test case that is supposed
to trigger the given execution path. Although TEMU doesn’t
actually do path exploration, bringing it into our evaluation
still provides a convincing demonstration on how our design
works against concolic testing.

1) Evaluation results with KLEE: As in Figure 9, analysis
result shows that while KLEE can easily explore both paths
of the original program (before obfuscation) and generate test
cases for them correspondingly, it can only detect a single
feasible path on the program obfuscated. This indicates that
our obfuscation successfully hinders concolic testing from
understanding the programs’ control structures.

Unfortunately we can only go this far since KLEE provides
no more information (e.g., errors occurred or unexpected
situations happened) to assist the user other than its final
analysis result!. According to the documentations [8], we
believe that KLEE reaches the branch obfuscated and is unable
to determine whether both branches are reachable because its
constraint solver fails to find a different output from the neural
network.

I'The output of KLEE includes only the number of paths it discovered along
with one test case for each path.

TABLE II: Result of TEMU’s execution verification on binary executable of the test cases.

statement (unequal) >16 [>6 [>4 [>2 [<29 [<11 [<20 [<13
input value -16
verification result ggfg]; :j;te 1 1_\]12
of constraints original 33
obfuscated 13751] 18759 [28931 [31584 [12809 [18759 [28931 [31658
statement (equal) =16 =6 =1 =2 =29 =11 =20 =13
input value 16 6 4 2 29 11 20 13
verification result original 16 6 4 2 29 11 20 13
obfuscated NA
of constraints original 2566
obfuscated 12809 [18759 [28931 [31584 [12809 [18759 [28931 [31584

dell@dell-OptiPlex-780:~$ klee SingleBranch.o
KLEE: output directory = "klee-out-0"

KLEE: done: total instructions = 23
KLEE: done: completed paths = 2
KLEE: done: generated tests = 2
dell@dell-OptiPlex-780:~$ ktest-tool --write-ints
001.ktest
ktest file : 'klee-out-0/test000001.ktest
args : ['SingleBranch.o']
num objects: 1
object 0: name: 'x'
object 0: size: 4
object 0: data: 0 *
dell@dell-OptiPlex-780:~$ ktest-tool --write-ints
002.ktest
lktest file : 'klee-out-0/test000002.ktest
args : ['SingleBranch.o']
num objects: 1
object 0: name: 'x'

j 0: size: 4

0: data: 2147483646

dell@dell-OptiPlex-780:~$ I

klee-out-0/test000

klee-out-0/test000

(a) On the original program

el1-OptiPlex-780:~$ klee Obfus_SingleBranch.
KLEE: output directory = "klee-out-1"
KLEE: done: total instructions = 1732
KLEE: done: completed paths = 1
KLEE: done: generated tests = 1
dell@dell-OptiPlex-780:~$ ktest-tool --write-ints
001.ktest
ktest file :

klee-out-1/test000

'klee-out-1/test000001.ktest
: ['Obfus_SingleBranch.o']

args
num objects: 1

object 0: name: 'x'
object 0: size: 4

object 0: data: 0
dell@dell-OptiPlex-780:~$ I

(b) On the obfuscated program
Fig. 9: Result of KLEE’s path exploration.

2) Evaluation results with TEMU: The experiment on
TEMU is more complex compare to that on KLEE. As shown
in Table II, 16 different settings of the conditions are given to
the example program, 8 of which are for inequality conditions
and the rest are for equality conditions. TEMU is then used to
perform execution verification on all 16 settings of the program
as well as their obfuscated versions, of which the results are
compared.

Good thing is that the above simulations show positive
results in consistence with the assumption we made. From
Table II we can see that for the original program with all 16
branch conditions, TEMU is able to precisely return the input
values that cause the execution paths it observes, indicating
successful verification. For all obfuscated programs, however,
the constraint expressions TEMU generated for the dynamic
tainted traces expanded significantly, and it fails to return a

valid input value. This result provides more solid evidence
indicating that our method managed to make the protected con-
ditional behaviors too complicated for the constraint solvers
to reason about.

It should again be emphasized that these evaluations are
taken on programs consisting of only a single obfuscated
control structure. It certainly infers that the complexity of
obfuscated control flow would be way beyond existing analysis
tools’ capability, should our method be applied on actual
applications.

B. Resilience to Collusive Attacks

To begin with, it is necessary to emphasize again that for
existing dynamic fingerprinting designs, the advantage provide
to the adversary by collusive attacks is a simple yet effective
way of locating the embedded fingerprint. Compromising the
fingerprint after its disclosure is not in the scope of this type
of attacks (it is still the job for subtractive/distortive attacks).

First we demonstrate a collusive attack launched against
conventional dynamic fingerprinting approaches. Specifically,
we apply the dynamic path-based watermarking proposed in

[10] (which is directly transplanted to work as fingerprinting
as said in Section I-A) on a benchmarking program bzip
picked from the SPEC2006 suites, and embed a message of
1-byte long inside its function compress. Two instances of
the program are embedded with individualized message 0x7A
and 0x5F. After that, their corresponding binary executables
(in which the entry of compress is at 0x004074C8, while
the location of fingerprint payload is from 0x00407508 to
0x00407569) are analyzed using IDApro, a well-known
binary analysis tool, with the purpose to mark out any static-
level differences between their code texts. As shown in Fig-
ure 10, in the diff analysis IDApro successfully located 3
different control transfers within the region of the payload
code, which corresponds to the 3 different bits between the
embedded fingerprints (of which binary form are respectively
01011111 and 01111010). It is therefore not hard to
infer that with enough instances of the program containing
different fingerprints, instructions representing all 8 embedded
bits would eventually be located, at which point the fingerprint
module is completely exposed. It is worth emphasizing that
although only the path-based watermarking is tested here,
the same result will also be observed on other conventional
dynamic watermarking/fingerprinting approaches, e.g. [11],
[12] and [37]. In this subsection, however, we show that when

b FILI EREL LINES

1o FILI EKED LIMNES:

13 FILTERED LIME=

13 FILTEFED LINES

=T
.text:004075268 jnz short loc_40752F A .text:00407528 Jjz short loc_40752F
14 FILTERED LINEE [14 FILTERED LIMES
.Lext:0040754D j=z short loc_ 407556 A .text:0040754D jnz short loc_ 407556
AFILTERED LINES [AFILTERED LINES
.Lext:00407567 jz short loc_ 407570 = .Cext:00407567 jnz short loc 407570
I+
r

Fig. 10: A demonstration on the effect of collusive attack against path-based fingerprinting.

launched against Neuroprint, collusive attacks can hardly bring
the same advantages to the adversary.

Again, we assume that the adversary we face is in full
control of the protected software, expect the input i for
triggering the fingerprint remains secret to him. Given that
collusive attacks work via diff analyses among program copies
containing distinct fingerprints, we also make a conservative
assumption that Neuroprint always selects the same set of
branches for fingerprinting and decoy in each copy of the
program, only every neural network it deploys is trained with a
distinct initialization as described in Section IV-A. Meanwhile,
the adversary is considered to have somehow overcome the
aliasing created during the dynamic construction of the neural
networks and had the parameters of each of them determined.

The above assumptions set up a scenario in favor of the
adversary, in which when 2 copies of the fingerprinted program
are compared in a collusive attack, instructions related to all
neural networks in both copies will be found out and grouped
in pairs according to their position in the program. For the
adversary, the task is simply to make a decision for each pair
of neural networks, to determine if

1) the two networks are functionally identical, i.e., they
have no fingerprint fraction embedded? Or
2) the networks are different, i.e., they are fingerprinted?

We show that even in this condition, the adversary is still not
able to reliably distinguish the fingerprinted neural networks
from the decoy ones.

In Section IV-B we already described the self and mutual
authentication of Neuroprint’s fingerprint formatting. Satisfy-
ing any of the two protocols requires both the secret input
1 for the program and each fingerprinted neural network’s
input during the execution triggered by ¢. And the fingerprint
is recognized only when a complete mutual authentication
chain checks out while each neural network output on the
chain passes self authentication (see Section I'V-C). Since the
adversary here is considered to have no knowledge about the
secret input ¢, investigating the input-output behavior of the
neural networks of our approach is not a feasible way for
him to find out the networks carrying fingerprint fractions
with high confidence. When performing the authentications
on an incorrect execution trail, the search would either find no
suspicious neural networks or come back with false candidates.

What’s left for the adversary is to see whether comparing
parameters of the two neural networks in a pair may show
anything that helps distinguishing their functional differences.
However, as explained in Section II-B, the random initializa-
tion to neural network typically result in completely different
sets of parameters even when representing the same input-
output behavior. This makes it impossible to differentiate
neural networks all by their parameters. In order to verify

this argument, we assume a branch controlling a 37-byte-long
code block (i.e., the offset to skip the branch is 0x25) with
if (x==10) be its condition. Without loss of generality,
we also assume that there is a fingerprint fraction of 0x5F
and the other three bytes of the neural network output being
0xE70891 and 0xE708FF for the two branches, respec-
tively. We then train two groups of neural networks, with

o N, representing neural networks trained only to obfuscate
the branch with output being 0xE7089100 when input
is 10, or 0xE708FF25 otherwise;

e N, representing neural networks that carry the fin-
gerprint fraction when input is 10, i.e., output being
0xE7085F00 when the branch is taken, or else they
still output OxE708FF25.

The topology of all neural networks here consists of 1
input and output respectively, as well as 2 hidden layers
with 12 fully connected nodes in each (see the last row of
Table I). As we can see, neural networks in N, and N, are
different only on a single input-output pairing. We then use
a set of initialization I, which contains a total of 30 different
settings, to train the networks of both groups. Two networks
netA; € N, and netB; € N, are a pair resulting from
the same initialization. Finally, we merge the two groups of
networks together N = N, | JN; and apply a total of six well-
known clustering algorithms (provided in scikit-learn, an open
source data mining and analysis toolkit [38], see Table III) to
see whether N, and N; can be correctly separated.

TABLE III: Clustering algorithms

of clusters

Algorithm . Use case
& specified?
K-Means v Even cluster size, flat geometry,
not too many clusters
Mean-shift y Many clusters, uneven cluster
size, non-flat geometry
Many clusters, possibly connec-
AC! vV tivity constraints, non Euclidean
distances
DBSCAN % Non—ﬂat geometry, uneven cluster
sizes
5 Few clusters, even cluster size,
SC Vv
non-flat geometry
AP % Many clusters, uneven cluster

size, non-flat geometry

! Stands for Agglomerative Clustering.
% Stands for Spectral Clustering.
3 Stands for Affinity Propagation.

Figure 11 shows the result of the clustering. It appears
that K-Means, Agglomerative Clustering, and DBSCAN are
completely out in the analysis. Spectral Clustering labeled the
networks into 2 groups with significant errors. Both Mean-shift

N'3
Na M ' N'z Na'
I N’y
Np ; = Na ! Np
Np
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
(El) K-Means (b) Mean-shift (C) Agglomerative Clustering
Na Na© 1o —+
N W ,1:'7, :
b Np
0 5 10 15 20 25 30 0 5 10 20 25 30 0 5 10 15 20 25 30
(d) DBSCAN (e) Spectral Clustering (f) Affinity Propagation
_ netAy € N, - netBy; € N,
(k=1,2,...,30) (k=1,2,...,30)

Fig. 11: Results of clustering neural networks of N, [JN,, using the listed algorithms

and Affinity Propagation ended up creating multiple clusters
that do not exist. Note that unlike K-Means and Agglomerative
Clustering, DBSCAN doesn’t require the number of clusters
to be specified in advance. This shows that all networks
from both N, and N, are indistinguishable by clustering their
parameters.

Finally, it is worth mention that the only factor which
determines how a neural network works is its topology. This
means that given two neural networks that are built in the
same structure, serve for the same branch, then the computing
procedure of them are exactly the same even if their out-
puts contain different random padding or fingerprint. Put the
above in summary, the design of Neuroprint makes it hard
to discriminate its fingerprinted and decoy neural networks at
either semantic level or instruction level. Therefore, collusive
attacks on Neuroprint provides no extra advantage to the the
adversary, considering a comprehensive de-obfuscation (as in
a pure subtractive/distortive attack) on the protected program
is still the best possible case for him.

C. Performance Overhead

To evaluate the potential overhead that Neuroprint may
add to the software, we apply our technique on a group of
benchmarking programs selected from the SPEC2006 suites
and compare the performance of their Neuroprinted version
with that of the original ones. We still use the same 1-12-12-1
topology for the neural networks (as was in Section VI-B),
and the system is instructed to transform as many branches
as possible in an attempt to simulate the worst possible
performance cost. Table IV summarizes the average time
it takes for the programs to execute and the corresponding
overhead across 50 runs.

Results show that the overhead of Neuroprint ranges from
1.6% to 6.5% while transforming between 100 and 2200
conditional branches, which is small. Also note that our

TABLE IV: Overhead on SPEC benchmark programs

Program # of - Performance
branches Original Transformed Overhead

bzip2 155 103.59ms 105.46ms 1.805%
hmmer 500 1425.14ms 1448.66ms 1.650%
Ibm 102 82516.22ms 84939.60ms 2.937%
mcf 135 4431.11ms 4563.36ms 2.985%
sjeng 1738 6377.40ms 6755.29ms 5.925%
soplex 2148 102.80ms 109.46ms 6.479%

approach requires constant additional runtime memory space
for maintaining the neural network parameters since multiple
networks share the same memory units.

D. Limitation

Neuroprint is capable of defeating sophisticate automated
reverse engineering techniques. However, the mechanism of
obfuscation determines that any obfuscated control transfer can
be treated as a black-box and brutally tested for all possible
inputs. And within all kinds of conditional branches, those
with inequality conditions are particularly vulnerable because
intrinsically they can be explored using binary search. Thus
for control transfers of such type, Neuroprint is secure only
against automated analyses, but can be circumvented using
side-channel attacks, like the black-box testing mentioned
here. That said, we emphasize that the branches with equality
condition do not share the same vulnerability against black-
box testing. In such a control transfer, only a single input
triggers one of the execution pathes, which cannot be searched
heuristically. Therefore, by choosing equality branches as
fingerprint candidates, Neuroprint can avoid from letting its
effectiveness be undermined by the mentioned side-channel
attacks.

Furthermore, it is also worth mention that as a potent control
obfuscator, Neuroprint may also use its neural networks to

construct opaque predicates which appears like conditional
branches but in fact always directs execution to the same
position [39]. Determining whether a neural network repre-
sents an opaque predicate or an actual conditional branch
also requires to exhaustively test all possible inputs of it.
Therefore, selectively inserting such opaque predicates into
subject program, and consider them as available candidates
to carry fingerprints, would also increase the strength of
Neuroprint.

VII. RELATED WORKS
A. Software Watermarking and Fingerprinting

Despite their differences on application scenarios, the border
between software fingerprinting and watermarking has always
been quite vague (basically only on the usage of the embedded
secret signatures). Therefore, most of the previous works only
discusses watermarking since it seems the same techniques
can be easily extended to fingerprinting.

There has been extensive work on both static [40], [41]
and dynamic [10]-[14], [37], [42], [43] watermarking solu-
tions. The dynamic approaches mainly fall into two cate-
gories. Graph-based approaches, first introduced by Collberg
et al. [44] and currently the most well-understood technique,
encode the secret signatures into heap-allocated graph struc-
tures such that they could be picked up by the recognizer
via garbage collection [11], [12], [42]. In other dynamic
approaches, signatures to be embedded are turned into spe-
cialized execution states, e.g. multi-thread behavior [37], con-
ditional branches [10], [13], or opaque predicate values [43].
Existing work has not consider seriously the uniqueness of
software fingerprinting (especially that of dynamic fingerprint-
ing).

All the above designs insert to the subject program their
special components (e.g., data structures representing graph
nodes [11], [12] and special thread components [37]) as
well as related code blocks that make no valid contribution
to the software’s original functionality. In the fingerprinting
scenario, this significantly compromises their effectiveness
since the fingerprint-specific executions would inevitably bring
distinguishable semantic-level differences to each fingerprinted
software copy.

B. Control Flow Obfuscation

Control flow obfuscation is one of the major methods of
code obfuscation. It aims to make the control flow of a given
program difficult to understand [45]. Sharif et al. presented a
conditional code obfuscation scheme that uses hash function
and self-decrypting code to protect equal branch conditions
and the modules they control [16]. There were also attempts
to turn control transfers into signals (traps), and then introduce
dummy transfers and junk code to confuse static analysis [46].
Others exploit the limitation of symbolic execution in solving
unrolling loops [27].

Recently, a design that makes code obfuscation a constituent
part of software watermarking, namely the Droidmarking
system [14], was proposed. Exploiting self-decrypting code

as originally used in [16], Droidmarking establishes inter-
dependence between its watermark payloads and the carrier
software, and achieves satisfactory resilience against evading
attacks despite causing non-stealthy modifications. However,
the non-stealthy mode is not applicable to software finger-
printing since the embedded fingerprints are meant to be
only recognizable by authorized parties instead of making it
available to the public.

Our Neuroprint system differs from all existing dynamic
techniques in that it makes the fingerprint a built-in portion
of the software’s original semantics via control obfuscation.
Therefore, the resilience against attacks targeting weaknesses
of traditional dynamic fingerprinting is significantly improved.

VIII. CONCLUSION

We proposed a novel mode of dynamic software finger-
printing, namely the integrated fingerprinting mode, which
encodes fingerprint messages as a secondary effect of a special
semantic-preserving transformation on the subject program.
Furthermore, We presented a composite control obfuscation/-
dynamic fingerprinting approach named Neuroprint, as the first
realization of the integrated fingerprinting system. Evaluations
demonstrated that with the strong security properties of the
underlying neural-network-based obfuscator and the specifi-
cally designed fingerprint authentication mechanism, Neuro-
print achieves satisfactory resilience against various types of
attacks. Simulation on the SPEC benchmarks also indicated
that Neuroprint is efficient and comes with acceptable memory
cost.

We believe that a fresh and interesting view could be
opened by this work, indicating that it is possible to integrate
software fingerprints into semantic-preserving transformations
like program obfuscators.

REFERENCES

[11 H. Ma, X. Ma, W. Liu, Z. Huang, D. Gao, and C. Jia, “Control
flow obfuscation using neural network to fight concolic testing,” in
Proceedings of the 10th International Conference on Security and
Privacy in Communication Networks (SecureComm), 2014.

[2] G. Lee, J. Morris, K. Parker, G. A. Bundell, and P. Lam, “Using symbolic
execution to guide test generation,” Softw. Test. Verif. Rel., vol. 15, no. 1,
pp. 41-61, 2005.

[3] A.Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy (S&P), 2007, pp. 231-245.

[4] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski, “Guest editors’
introduction: Software protection,” IEEE Softw., vol. 28, no. 2, pp. 24—
27, 2011.

[5] D. Song, D. Brumley, H. Yin, J. Caballero, 1. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in Proceedings of the
4th International Conference on Information Systems Security (ICISS).
Keynote invited paper, 2008.

[6] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in Proceedings of the 18th International
Conference on Computer Aided Verification (CAV), 2006, pp. 419-423.

[7]1 C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“Exe: automatically generating inputs of death,” ACM Transactions on
Information and System Security (TISSEC), vol. 12, no. 2, pp. 10:1—
10:38, 2008.

[8] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the Sth USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008, pp. 209-224.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

K. Fukushima and K. Sakurai, “A software fingerprinting scheme for
java using classfiles obfuscation,” in Proceedings of Information Security
Applications: 4th International Workshop (WISA 2003), ser. LNCS, K.-
J. Chae and M. Yung, Eds., vol. 2908. Springer Berlin Heidelberg,
2004, pp. 303-316.

C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn,
and M. Stepp, “Dynamic path-based software watermarking,” in Pro-
ceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation (PLDI), 2004, pp. 107-118.

C. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic graph-
based software fingerprinting,” ACM Transactions on Programming
Languages and Systems, vol. 29, no. 6, p. 35, 2007.

W. Zhou, X. Zhang, and X. Jiang, “Appink: Watermarking android apps
for repackaging deterrence,” in Proceedings of the 8th ACM Symposium
on InformAtion, Computer and Communications Security (ASIACCS),
2013, pp. 1-12.

G. Myles and H. Jin, “Self-validating branch-based software watermark-
ing,” in Proceedings of the 7th International Workshop of Information
Hiding (IH), 2005, pp. 342-356.

C. Ren, K. Chen, and P. Liu, “Droidmarking: Resilient software water-
marking for impeding android application repackaging,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering (ASE), 2014, pp. 635-646.

J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang,
“Experience with software watermarking,” in Proceedings of the 16th
Annual Conference of Computer Security Applications (ACSAC), 2000,
pp. 308-316.

M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Impeding malware analysis
using conditional code obfuscation,” in Proceedings of the 16th Annual
Network & Distributed System Security Symposium (NDSS), 2008, pp.
321-333.

A. B. Tickle, R. Andrews, M. Golea, and J. Diederich, “The truth will
come to light: directions and challenges in extracting the knowledge
embedded within trained artificial neural networks,” IEEE Trans. Neural
Netw., vol. 9, no. 6, pp. 1057-1068, 1998.

M. Golea, “On the complexity of rule extraction from neural networks
and network querying,” in Proceedings of the Rule Extraction From
Trained Artificial Neural Networks Workshop, Society For the Study
of Artificial Intelligence and Simulation of Behavior Workshop Series
(AISB), 1996, pp. 51-59.

G. G. Towell and J. W. Shavlik, “The extraction of refined rules from
knowledge based neural networks,” Mach. Learn., vol. 13, no. 1, pp.
71-101, 1993.

G. Cybenko, “Approximations by superpositions of sigmoidal functions,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303-314, 1989.

K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.

Y. Be&gio, “Learning deep architectures for ai,” Foundations and
trends"> in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

J. Schmidhuber, “Deep learning in neural networks: An overview,’
Neural Networks, vol. 61, pp. 85-117, 2015.

J. Chorowski and J. M. Zurada, “Extracting rules from neural networks
as decision diagrams,” IEEE Transactions on Neural Networks, vol. 22,
no. 12, pp. 2435-2446, 2011.

D. Bhalla, R. K. Bansal, and H. O. Gupta, “Function analysis based rule
extraction from artificial neural networks for transformer incipient fault
diagnosis,” International Journal of Electrical Power & Energy Systems,
vol. 43, no. 1, pp. 1196-1203, 2012.

R. Setiono, B. Baesens, and C. Mues, “Rule extraction from minimal
neural networks for credit card screening,” International journal of
neural systems, vol. 21, no. 4, pp. 265-276, 2011.

Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to combat
symbolic execution,” in Proceedings of the 16th European Symposium
on Research in Computer Security (ESORICS), 2011, pp. 210-226.

C. Johansson and A. Lansner, “Implementing plastic weights in neural
networks using low precision arithmetic,” Neurocomputing, vol. 72, no.
4-6, pp. 968-972, 2009.

C. Tang and H. K. Kwan, “Multilayer feedforward neural networks with
single powers-of-two weights,” IEEE Trans. Signal Processing, vol. 41,
no. 8, pp. 2724-2727, 1993.

G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 5, pp.
1467-1471, 1994.

R. Ghiya and L. J. Hendren, “Is it a tree, a dag, or a cyclic graph?
a shape analysis for heap-directed pointers in ¢,” in Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), 1996, pp. 1-15.

(32]

(33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,
applications and resources,” in Proceedings of the 2001 Congress on
Evolutionary Computation (CEC), 2001, pp. 81-86.

J.-R. Zhang, J. Zhang, T.-M. Lok, and M. R. Lyu, “A hybrid particle
swarm optimization—back-propagation algorithm for feedforward neural
network training,” Applied Mathematics and Computation, vol. 185,
no. 2, pp. 1026-1037, 2007.

X. Qu and B. Robinson, “A case study of concolic testing tools and
their limitations,” in Proceedings of 2011 International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2011, pp.
117-126.

C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82-90,
2013.

E. F. Rizzi, “Discovery over application: A case study of misaligned
incentives in software engineering,” Master’s thesis, University of Ne-
braska, Lincoln, 2015.

J. Nagra and C. Thomborson, “Threading software watermarks,” in
Proceedings of the 6th International Workshop of Information Hiding
(IH), 2004, pp. 208-223.

“scikit-learn,” http://scikit-learn.org/dev/index.html.

C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-
silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1998, pp. 184-196.

G. Myles and C. Collberg, “Software watermarking through register
allocation: Implementation, analysis, and attacks,” in Proceedings of the
6th International Conference of Information Security and Cryptology
(ICISC), 2003, pp. 274-293.

P. Cousot and R. Cousot, “An abstract interpretation-based framework
for software watermarking,” in Proceedings of the 31th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
2004, pp. 173-185.

R. Venkatesan, V. Vazirani, and S.Sinha, “A graph theoretic approach
to software watermarking,” in Proceedings of the 4th International
Workshop of Information Hiding (IH), 2001, pp. 157-168.

G. Myles and C. Collberg, “Software watermarking via opaque pred-
icates: Implementation, analysis, and attacks,” Electronic Commerce
Research, vol. 6, no. 2, pp. 155-171, 2006.

C. Collberg and C. Thomborson, “Software watermarking: models and
dynamic embeddings,” in Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
1999, pp. 311-324.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscation
transformations,” Department of Computer Science, The University of
Auckland, Tech. Rep. 148, 1997.

1. Popov, S. Debray, and G. Andrews, “Binary obfuscation using signals,”
in Proceedings of the 16th conference on USENIX security symposium
(USENIX Security), 2007, pp. 321-333.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2016

	Integrated software fingerprinting via neural-network-based control flow obfuscation
	Haoyu MA
	Ruiqi LI
	Xiaoxu YU
	Chunfu JIA
	Debin GAO
	Citation

	tmp.1474894194.pdf.7vIV6

