92 research outputs found

    Non-equilibrium dynamics of Bose Einstein condensates

    Get PDF

    Bright solitary waves and non-equilibrium dynamics in atomic Bose-Einstein condensates

    Get PDF
    In this thesis we investigate the static properties and non-equilibrium dynamics of bright solitary waves in atomic Bose-Einstein condensates in the zero-temperature limit, and we investigate the non-equilibrium dynamics of a driven atomic Bose-Einstein condensate at finite temperature. Bright solitary waves in atomic Bose-Einstein condensates are non-dispersive and soliton-like matter-waves which could be used in future atom-interferometry experiments. Using the mean-field, Gross-Pitaevskii description, we propose an experimental scheme to generate pairs of bright solitary waves with controlled velocity and relative phase; this scheme could form an important part of a future atom interferometer, and we demonstrate that it can also be used to test the validity of the mean-field model of bright solitary waves. We also develop a method to quantitatively assess how soliton-like static, three-dimensional bright solitary waves are; this assessment is particularly relevant for the design of future experiments. In reality, the non-zero temperatures and highly non-equilibrium dynamics occurring in a bright solitary wave interferometer are likely to necessitate a theoretical description which explicitly accounts for the non-condensate fraction. We show that a second-order, number-conserving description offers a minimal self-consistent treatment of the relevant condensate -- non-condensate interactions at low temperatures and for moderate non-condensate fractions. We develop a method to obtain a fully-dynamical numerical solution to the integro-differential equations of motion of this description, and solve these equations for a driven, quasi-one-dimensional test system. We show that rapid non-condensate growth predicted by lower-order descriptions, and associated with linear dynamical instabilities, can be damped by the self-consistent treatment of interactions included in the second-order description

    Integrability, rational solitons and symmetries for nonlinear systems in Biology and Materials Physics

    Get PDF
    [ES] Los sistemas no lineales constituyen un tema de investigación de creciente interés en las últimas décadas dada su versatilidad en la descripción de fenómenos físicos en diversos campos de estudio. Generalmente, dichos fenómenos vienen modelizados por ecuaciones diferenciales no lineales, cuya estructura matemática ha demostrado ser sumamente rica, aunque de gran complejidad respecto a su análisis. Dentro del conjunto de los sistemas no lineales, cabe destacar un reducido grupo, pero a la vez selecto, que se distingue por las propiedades extraordinarias que presenta: los denominados sistemas integrables. La presente tesis doctoral se centra en el estudio de algunas de las propiedades más relevantes observadas para los sistemas integrables. En esta tesis se pretende proporcionar un marco teórico unificado que permita abordar ecuaciones diferenciales no lineales que potencialmente puedan ser consideradas como integrables. En particular, el análisis de integralidad de dichas ecuaciones se realiza a través de técnicas basadas en la Propiedad de Painlevé, en combinación con la subsiguiente búsqueda de los problemas espectrales asociados y la identificación de soluciones analíticas de naturaleza solitónica. El método de la variedad singular junto con las transformaciones de auto-Bäcklund y de Darboux jugarán un papel fundamental en este estudio. Además, también se lleva a cabo un análisis complementario basado en las simetrías de Lie y reducciones de similaridad, que nos permitirán estudiar desde esta nueva perspectiva los problemas espectrales asociados. Partiendo de la archiconocida ecuación de Schrödinger no lineal, se han investigado diferentes generalizaciones integrables de dicha ecuación con numerosas aplicaciones en diversos campos científicos, como la Física Matemática, Física de Materiales o Biología.[EN] Nonlinear systems emerge as an active research topic of growing interest during the last decades due to their versatility when it comes to describing physical phenomena. Such scenarios are typically modelled by nonlinear differential equations, whose mathematical structure has proved to be incredibly rich, but highly nontrivial to treat. In particular, a narrow but surprisingly special group of this kind stands out: the so-called integrable systems. The present doctoral thesis focuses on the study of some of the extraordinary properties observed for integrable systems. The ultimate purpose of this dissertation lies in providing a unified theoretical framework that allows us to approach nonlinear differential equations that may potentially be considered as integrable. In particular, their integrability characterization is addressed by means of Painlevé analysis, in conjunction with the subsequent quest of the associated spectral problems and the identification of analytical solutions of solitonic nature. The singular manifold method together with auto-Bäckund and Darboux transformations play a critical role in this setting. In addition, a complementary methodology based on Lie symmetries and similarity reductions is proposed so as to analyze integrable systems by studying the symmetry properties of their associated spectral problems. Taking the ubiquitous nonlinear Schrödinger equation as the starting point, we have investigated several integrable generalizations of this equation that possess copious applications in distinct scientific fields, such as Mathematical Physics, Material Sciences and Biology

    Coherent impurity transport in an attractive binary Bose–Einstein condensate

    Get PDF
    We study the dynamics of a soliton-impurity system modeled in terms of a binary Bose–Einstein condensate. This is achieved by \u27switching off\u27 one of the two self-interaction scattering lengths, giving a two component system where the second component is trapped entirely by the presence of the first component. It is shown that this system possesses rich dynamics, including the identification of unusual \u27weak\u27 dimers that appear close to the zero inter-component scattering length. It is further found that this system supports quasi-stable trimers in regimes where the equivalent single-component gas does not, which is attributed to the presence of the impurity atoms which can dynamically tunnel between the solitons, and maintain the required phase differences that support the trimer state

    Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Get PDF
    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schrödinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz–Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations

    Roadmap on optical rogue waves and extreme events

    Get PDF
    The pioneering paper 'Optical rogue waves' by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of 'optical rogue waves'. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as 'an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses'. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms 'optical rogue waves' and 'extreme events' do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From this point of view, a number of the scientists who work in this area of research have come together to present their research in a single review article that will greatly benefit all interested parties of this research direction. Whether the authors of this 'roadmap' have similar views or different from the original concept, the potential reader of the review will enrich their knowledge by encountering most of the existing views on the subject. Previously, a special issue on optical rogue waves (2013 J. Opt. 15 060201) was successful in achieving this goal but over two years have passed and more material has been published in this quickly emerging subject. Thus, it is time for a roadmap that may stimulate and encourage further research.Peer ReviewedPostprint (author's final draft

    Bright solitary-matter-wave collisions in a harmonic trap: Regimes of solitonlike behavior

    Get PDF
    Systems of solitary waves in the one-dimensional Gross-Pitaevskii equation, which models a trapped atomic Bose-Einstein condensate, are investigated theoretically. To analyze the soliton nature of these solitary waves, a particle analogy for the solitary waves is formulated. Exact soliton solutions exist in the absence of an external trapping potential, which behave in a particlelike manner, and we find the particle analogy we employ to be a good model also when a harmonic trapping potential is present up to a gradual shift in the trajectories when the harmonic trap period is short compared with the collision time of the solitons. We find that the collision time of the solitons is dependent on the relative phase of the solitons as they collide. In the case of two solitons, the particle model is integrable, and the dynamics are completely regular. In the case of a system of two solitary waves of equal norm, the solitons are shown to retain their phase difference for repeated collisions. This phase preservation can be used to find regimes where there is agreement between the wave and particle models. This also implies that soliton regimes may be found in three-dimensional geometries where solitary waves can be made to repeatedly collide out of phase, stabilizing the condensate against collapse. The extension to three particles supports both regular and chaotic regimes. The trajectory shift observed for two solitons carries over to the case of three solitons. This shift aside, the agreement between the particle model and the wave dynamics remains good, even in chaotic regimes

    Many body effects in one-dimensional attractive Bose gases

    Get PDF
    In this thesis we investigate the properties of ultra-cold quantum gases in reduced dimension and the effects of harmonic confinement on soliton-like properties. We study regimes of agreement between mean-field and many-body theories the generation of entanglement between initially independent finite sized atomic systems. Classical solitons are non-dispersing waves which occur in integrable systems, such as atomic Bose-Einstein condensates in one dimension. Bright and dark solitons are possible, which exist as peaks or dips in density. Quantum solitons are the bound-state solutions to a system satisfying quantum integrability, given via the Bethe Ansatz. Such integrability is broken by the introduction of harmonic confinement. We investigate the equivalence of the classical field and many-body solutions in the limit of large numbers of atoms and derive numerical and variational approaches to examine the ground state energy in harmonic confinement and the fidelity between a Hartree-product solution and a quantum soliton solution. Soliton collisions produce no entanglement between either state and result only in an asymptotic position and phase shift, however external potentials break integrability and thus give the possibility of entangling solitons. We investigate the dynamical entanglement generation between two atomic dimers in harmonic confinement via exact diagonalisation in a basis of Harmonic oscillator functions, making use of the separability of the centre-of-mass component of the Hamiltonian. We show repulsive states show complex dynamics, but with an overall tendency towards states of larger invariant correlation entropy, whereas attractive states resist entanglement unless a phase matching condition is satisfied. This phase matching condition could in theory be used to generate states with highly non-Poissonian number superpositions in atomic systems with controlled number

    Exact Nonlinear Dynamics in Spinor Bose-Einstein Condensates

    Get PDF
    corecore