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Alice started to her feet, for it flashed
across her mind that she had never be-
fore seen a rabbit with either a waistcoat-
pocket, or a watch to take out of it, and
burning with curiosity, she ran across the
field after it, and fortunately was just in
time to see it pop down a large rabbit-hole
under the hedge.
In another moment down went Alice after
it, never once considering how in the world
she was to get out again.

Lewis Carroll
Alice’s Adventures in Wonderland

Chapter 1 – Down to the Rabbit-Hole
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Chapter 1

Introduction

Nonlinear systems emerge as an active research topic of growing interest during the
last decades, due to their versatility when it comes to describing physical phenom-
ena [57, 289, 381]. Such scenarios are typically modelled by nonlinear differential
equations, whose mathematical structure has proved to be incredibly rich and fas-
cinating, but highly nontrivial to treat. In particular, a narrow but surprisingly
special group of this kind stands out regarding their truly remarkable properties:
the so-called integrable systems.

Nevertheless, a comprehensive definition of the term integrable has turned out to be
elusive. Therefore, there is not a unified notion of integrability, leading to different
interpretations for what the concept integrable system may be [3, 39,218,262,323].

1. Integrable systems

An intuitive but naive notion of integrability evokes, in some sense, the concepts of
exact solvability or regularity for the solutions of a given system. Conversely, the
term nonintegrable is generally associated to an irregular or chaotic behaviour for
such system.

The realm of integrable systems flourished in the context of Classical Mechanics, as
an attempt to find exact solutions to Newton’s equations [45], frequently described
by ordinary differential equations (ODEs). The first notions of integrability are in-
timately related to the study of dynamical systems in such scenarios, as a synonym
of solvability by quadratures. Hamiltonian systems play a crucial role in this frame-
work, where the term integrability refers to integrability in the Liouville sense [276].
Loosely speaking, this approach asserts that the identification of a sufficient num-
ber of analytic independent first integrals in involution enables the reduction of the
system to a form that can be explicitly integrated by quadratures. This notion of in-
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1.1. Integrable systems

tegrability is framed within Liouville-Arnold Theorem [39,276] and the action-angle
variables formalism [190,262].

1.1. Criteria of integrability for nonlinear systems

The next step lies in the consideration of systems with infinite degrees of freedom, de-
scribed by partial differential equations (PDEs). The addition of further dimensions
gives rise to a higher level of complexity in terms of the mathematical description of
the model, providing in turn a riveting and captivating dynamics with astonishing
properties. For example, there exist nonlinear PDEs that depict a regular behaviour
in their independent variables for any initial condition. These observations enable
to induce an analogy of the concept of integrability for this type of systems, which
are worth studying and characterizing.

Generally, nonlinear systems termed as integrable are proved to present many com-
mon remarkable properties in their mathematical description. One of the principal
indications that certain nonlinear PDEs might belong to this selected group lies with
the so-called solitary waves, solutions that represent the propagation of waves with a
permanent profile, among other peculiar properties. The experimental discovery of
such structures is credited to the Scottish engineer John Scott Russell in 1834 [366],
when he noticed a particularly rare travelling wave along a narrow canal, which he
described as

I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap
of water, which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished, and after
a chase of one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation [...] (Russell, 1844, pp. 319–320)

The full mathematical explanation of such phenomenon was later given in 1895 by
Korteweg and de Vries [249], who derived the following nonlinear dispersive equation
as a model describing the wave propagation on shallow fluid surfaces

ut + uxxx + 6uux = 0, (1.1)
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Chapter 1. Introduction

which constitutes the celebrated Korteweg-de Vries (KdV) equation.

This subject remained forgotten until the second half of the XX century, when the
mathematical characterization of nonlinear differential equations reemerged with re-
newed vigour. It was not until 1955, with the studies on nonlinear chains of coupled
oscillators conducted by Fermi, Ulam and Pasta [164], that nonlinear systems be-
came a topic of interest for the scientific community. The previous results on the
Fermi-Ulam-Pasta system motivated Zabusky and Kruskal to revisit this model in
1965 [426]. In the continuous limit of such system, they rediscover the KdV equa-
tion (1.1), obtaining numerical solutions that presented an analogous behaviour to
the nonlinear waves observed by Russell [366]. One of the most captivating features
of these solitary waves is found by analyzing their scattering properties, finding a
nontrivial behaviour more similar to particles than waves. Solitary waves of this
kind are localized structures that propagate with constant and related amplitude
and velocity. They may strongly interact among each other with the property that
they emerge unchanged from the collision apart from a phase shift in their propa-
gation directions. Then, Zabusky and Kruskal introduced, by consistency with this
particle-like behaviour, the term soliton to name this type of nonlinear waves [426].
In particular, these authors solved the initial value problem for the KdV equation
(1.1) and found the explicit expression for the soliton solution of this equation

u(x, t) = 2k2 sech2
[
k
(
x− 4k2t

)
+ ϕ0

]
, (1.2)

where {k, ϕ0} are arbitrary constants and it is easy to observe that the amplitude
a = 2k2 and the propagation velocity v = 4k2 are related via the wavenumber k.

The discovery of such structures gave rise to the beginning of a new area of study in
the field of Mathematical Physics, concerning nonlinear differential equations with
soliton solutions. Since then, a plethora of nonlinear PDEs have been reported to
possess soliton-like solutions, numerous mathematical techniques have been devel-
oped in order to understand them and countless applications have arisen in different
fields [3, 13,130,247,260,355].

Within the broad spectrum of mathematical tools employed for the analysis of inte-
grable systems, it is worth highlighting two of them, which may be regarded as two
critical pillars of the field itself:

• The Inverse Scattering Transform (IST), first developed by Gardner,
Green, Kruskal and Miura in 1967 [183], as an alternative method to solve the
KdV equation. This method can be understood as a nonlinear generalization of
the Fourier transform. The main idea lies in reconstructing the time evolution
of the potential u(x, t) from analyzing the time evolution of the associated scat-
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tering data for the known potential u(x, 0). The inverse scattering procedure
requires to solve the Gel’fand–Levitan–Marchenko integral equation [184].

• Lax formalism, first introduced by Lax in 1968 [263] in the context of analysis
of nonlinear evolution differential equations in 1 + 1 dimensions. It is possible
to express certain nonlinear (1 + 1)-PDEs as the compatibility condition of a
Lax pair, i.e., a pair of linear differential operators such that the corresponding
eigenvalue problem, encoded in the spectral parameter λ, is independent of the
evolution variable.

Both approaches are considered two solid and complementary proofs for the integra-
bility of a given nonlinear differential equation. They have also been applied to a
large number of nonlinear equations with soliton solutions [3, 13,130,247,263,264].

The rapid development and generalization of the IST method together with the Lax
formalism aroused a myriad of new approaches to address this kind of nonlinear mod-
els. Hence, several criteria of integrability for such systems may be constructed based
on their associated exceptional properties, among which it is worth highlighting:

1. Existence of soliton solutions [3, 130]

2. Solvability by the IST method [1,3, 13,247,428]

3. Existence of the associated spectral problem (Lax pair) [1, 3, 263]

4. Darboux transformations [296]

5. Transformations among families of integrable equations: Bäcklund and Miura
transformations [33, 260, 361, 362], hodograph transformations [97, 158], recip-
rocal transformations [217,243,358,359], etc.

6. (Multi-)Hamiltonian formalism and hereditary recursion operators [73,169,383]

7. Infinite number of conservation laws and infinite-dimensional Lie algebras [13,
130,398]

8. Formulation in terms of the Hirota’s bilinear formalism [204,211–213]

9. The nonlinear system is said to possess the Painlevé Property (up to a change
of variables) [9–12,332,417]

A separate issue regarding the integrability characterization is the inspection of the
analytical and geometric properties of such differential equations. This approach is
inspired by the works of the famous mathematicians Kovalevskaya, Fuchs or Painlevé,
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just to mention a few, on the study of singularities in the complex plane for differen-
tial equations [175, 250, 251, 330, 331]. The major breakthrough regarding this topic
is due to Painlevé and collaborators [176, 181, 332], whose investigations yielded an
analytical criterion of integrability for ODEs encoded in the so-called Painlevé Prop-
erty (PP). His conjecture mainly states that the solutions of integrable ODEs exhibit
no movable branch points, in other other words, solutions must be single-valued in
the initial conditions, but in an arbitrary number of isolated movable poles. This
approach provides a straightforward methodology, which may be algorithmically im-
plemented, to confirm whether or not a given ODE has the PP [9–12]. Besides, it can
be easily generalized to the study of PDEs [417]. The aforementioned algorithms,
based on the Painlevé Property, are often called Painlevé tests. The key advantage
of such tests is that they allow us to check the integrability of a given nonlinear
differential equation a priori, without the need to solve it.

There is still no rigorous proof of the relation among the integrability criteria based
on the PP and the unique features arising from soliton theory. Nevertheless, there
is ample evidence of the validity of both approaches when it comes to identifying
the integrability of nonlinear systems. Besides, there exist several procedures, such
as the singular manifold method (SMM) [410], that may shed some light about the
conjunction of these two conceptions. This particular methodology constitutes a
central axis of this doctoral thesis, as it will illustrated hereinafter.

1.2. Lie symmetries

Symmetry analysis emerges as one of the most fruitful techniques to study (nonlin-
ear) differential equations and derive exact analytical solutions for such equations.
This procedure was first developed by the Norwegian mathematician S. Lie in the
second half of the XIX century [273–275]. In his seminal work, S. Lie introduced the
notion of continuous groups, now known as (local) Lie groups, to unify and extend
several specialized methods to simplify problems in partial differential equations and
geometry. The basis of the theory of Lie symmetries lies in the invariance of differ-
ential equations under one-parameter groups of transformations of their variables.
Then, in this context, Lie groups naturally arise as local groups of transformations
acting on manifolds, such that any point is mapped into another point of the same
manifold. Besides, local properties of such transformation are sufficient to fully char-
acterize the transformation globally, by the analysis of the associated Lie algebra.
This method has been extensively investigated along the last decades and classical
references about this subject may be found in [50,323,378].

A standard method to find solutions of differential equations can be implemented
by using Lie’s method. This procedure has numerous applications in the context of
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(nonlinear) differential equations, among which it is worth highlighting:

• Integration of ordinary differential equations: symmetry groups on ODEs can
be used to reduce the order of the equation, and for first-order ODEs, the
reduction process leads to the complete integration (by quadratures) of the
equation.

• Reduction of partial differential equations: symmetry groups of PDEs allow
to reduce the total number of independent variables by one. If the symmetry
group is large enough, this process enables us to achieve a reduced problem
expressed in terms of ODEs, which can be integrated by the usual procedures.

• Obtain new solutions from old solutions: symmetry groups establish a map
between solutions for differential equations. Thus, the application of the sym-
metry group to a known solution of a given differential equation will yield a
family of new solutions.

• Classification of equations: symmetry groups can be used to classify differential
equations into equivalence classes [50].

• Conservation laws: there exists an intimate connection between symmetries
and conservation laws, due to Noether’s Theorem [318,394,395].

One of the underlying reasons for the tremendous success of Lie’s symmetry method,
apart from its numerous applications, relies on the fact that it provides a consoli-
dated framework to study any sort of problems involving differential equations. Lie
symmetry analysis does not depend upon whether or not the system is integrable.

Nevertheless, of avid interest will be the application of Lie symmetries to nonlin-
ear integrable systems, specially when it comes to analyzing the associated spectral
problems. In particular, the conjunction of the Lie symmetry formalism together
with their distinguished properties provides the perfect complement to give a unified
approach to these systems.

2. Structure of the thesis and further remarks

The present doctoral thesis focuses on the study of some of these extraordinary
properties observed for integrable systems. The ultimate purpose of this disserta-
tion lies in providing a unified theoretical framework that allows us to approach
nonlinear differential equations that may potentially be considered as integrable sys-
tems. In particular, the integrability characterization for such systems is addressed
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by means of the quest of the associated spectral problems, in conjunction with the
identification of analytical solutions of solitonic nature. Auto-Bäckund and Darboux
transformations play a critical role in this approach. In addition, a complementary
methodology based on Lie symmetries and similarity reductions is proposed so as to
analyze integrable systems by studying the symmetry properties of their associated
spectral problems.

Among the celebrated classical nonlinear PDEs spread out in the realm of integrable
systems, we find of particular interest the so-called nonlinear Schrödinger (NLS)
equation [3, 13, 130], which can be written as

iut + uxx + κ|u|2u = 0, (1.3)

where κ is a real parameter and u(x, t) is a complex field.

This equation is found to be integrable based on several of the criteria established
above and it also displays a rich spectrum of soliton solutions [13, 431, 432]. NLS
equation first arose in the context of Fluid Dynamics [202,380,427], and since then, it
has proved to be present in countless scenarios describing the most diverse nonlinear
phenomena [221,222,240,353,387]. More specifically, we will be truly interested in its
numerous applications in Condensed Matter Physics, with great relevance in Solid-
State Physics [2, 133, 335, 382, 388] or Bose-Einstein condensates [128, 194, 225, 344].
This nonlinear system also stands out in the field of Biological Physics, with the
modelization of energy transport phenomena in α-helical molecules by means of
Davydov’s theory [114, 122, 123]. Its overwhelming versatility makes this equation
an ideal starting point on which construct integrable generalizations with innumer-
able applications in diverse related disciplines. Hence, NLS equation (1.3) will be
considered as the central pillar of the nonlinear integrable systems to investigate in
the course of the present doctoral thesis.

The contents of this thesis are organized as follows. In Chapter 2 we provide a general
overview about some of the remarkable properties for nonlinear integrable systems.
In particular, we characterize a criterion of integrability for such systems based on
the so-called Painlevé Property. Besides, we define an algorithmic procedure which
lays the foundations of the methodology of analysis to be applied in the ensuing
Chapters. Chapters 3 and 4 are devoted precisely to the practical applications of
such machinery to integrable systems in 1 + 1 dimensions and 2 + 1 dimensions,
respectively. On the other hand, Chapter 5 is aimed at the theoretical description
from a geometric point of view of Lie symmetries and their applications to differential
equations. Similarity reductions and the computation of group invariant solutions
are also duly emphasized. Chapter 6 therefore addresses the applications of Lie’s
formalism to diverse integrable models in several dimensions. Appendices A and B
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include additional and supplementary calculations for Chapters 5 and 6, respectively.

It is should be duly stressed that the research conducted through this doctoral work
is purely analytic, all the expressions and solutions arising from the diverse analy-
ses are exact. Due to the high computational complexity, certain symbolic calculus
packages have been employed. MAPLE constitutes our principal source in this mat-
ter, to deal with both intermediate calculations and plots for the derived solutions.
MATHEMATICA has been used as support to obtain certain graphical representa-
tions, whilst the computer algebra system REDUCE has helped with the calculations
involving Lie symmetries.
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Chapter 2

Painlevé Property and the singular manifold meth-
od for differential equations

This Chapter attempts to give a thorough outline about some of the remarkable
properties stated in the Introduction for nonlinear integrable PDEs. More specifi-
cally, the particular techniques to be employed in the future research of this thesis
should be dully emphasized. The structure of this Chapter is given as follows.

The first Section provides a general setting concerning the fundamental aspects re-
lated to the Painlevé Property for differential equations. This purely analytic con-
dition allows to construct an extremely effective algorithmic criterion to evaluate
and successfully identify the integrability for such equations. Sections 2 and 3 are
devoted to the second and third keystones in the integrability analysis for differential
equations: the singular manifold method and Lax pairs. The relation between them
is deeply examined, together with the so-called binary Darboux transformations,
introduced in Section 4. The conjunction of these three elements results in an opti-
mal methodology to approach the study of nonlinear systems modelled by integrable
partial differential equations. This procedure may yield some of the extraordinary
properties of this kind of systems, among which it is worth highlighting the obtention
of the intriguing soliton solutions. Section 5 is aimed at the detailed illustration of
the whole procedure described above for a toy example: the nonlinear Schrödinger
(NLS) equation equation in 1 + 1 dimensions.

For further applications of this method to different integrable systems, defined in
several dimensions, we refer the reader to Chapters 3 and 4.
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1. Integrability and the Painlevé Property

The Section begins with a brief overview on the Painlevé Property for differen-
tial equations, developed from the pioneering work of the French mathematician P.
Painlevé [331,332], which is based on the singularity analysis in the complex plane for
such differential equations [207,228]. These ideas have enabled the construction of al-
gorithmic methods, known as Painlevé tests, which may act as a criterion (or at least
as an identificator) of integrability, for both ODEs [9–12] and PDEs [417]. The latter
constitutes a true cornerstone of this dissertation, since it will be the fundamental in-
gredient to identify the integrability of the nonlinear systems treated hereafter. Fur-
ther details on this topic may be found in the classical references [105,350,383,429].

1.1. Singularities in the complex plane

The beginning of the study of singularities in the complex plane for differential
equations dates to the XIX century, with the pioneering contribution of the French
mathematician A. L. Cauchy [74]. His main idea lies in the obtention of global solu-
tions for ordinary differential equations by analytical continuation to larger domains
starting from local solutions. This procedure requires knowledge of the singularities
of the solutions for the differential equation and their loci on the complex plane. In
this sense, singularities for ODEs of this kind can be classified as follows [4, 350]

• Fixed singularities: these singularities are determined by the coefficients of the
differential equation and their location on the complex plane does not depend
on the initial conditions.

• Movable singularities: the location of these singularities does depend on the
initial conditions of the differential equation.

A general property of linear ordinary differential equations is that all the singularities
of their solutions are fixed (cf. Theorem 3.7.3 in [4]). Let us consider the following
generic nth-order homogeneous ODE in the complex domain D

n∑
k=0

pk(z)
dkw

dzk
= 0, (2.1)

where one can assume pn(z) = 1 without loss of generality. The point z = z0 ∈ D
is said to be a regular point of the ODE if the coefficients pk(z), k = 0, . . . , n, are
analytic in a neighbourhood of z0, |z− z0| < R. Then, there exists a unique solution
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of (2.1) expressed as the Taylor series

w(z) =

∞∑
k=0

ck
k!

(z − z0)k, (2.2)

with constant coefficients ck, which converges in a neighbourhood of z0, |z−z0| < R.
Hence, the possible singularities of the solution of a linear equation are exclusively
located at the singularities of the coefficients pk(z), k = 0, . . . , n. And, therefore,
linear ordinary differential equations do not have movable singular points. All their
singularities are fixed by definition.

As opposed to their linear counterparts, nonlinear ODEs may exhibit both fixed or
movable singularities of diverse kinds.

Example 2.1. Let us consider the examples given in [4,383]. Firstly, let us analyze
the linear differential equation of first-order

dw

dz
+
w

z2
= 0. (2.3)

This ODE has a fixed singular point in z = 0, since p0(z) = 1
z2

is singular at this
point. The general solution of the equation above is given by

w(z) = a0e
1
z , (2.4)

where a0 is the constant of integration. This solution actually possesses an essential
singularity at z = 0.

Let us now consider the following initial value problem, given by the nonlinear dif-
ferential equation

dw

dz
+ wp = 0, w(0) = w0, p ≥ 2, (2.5)

whose solution is
w(z) = [(p− 1)(z − z0)]

1
1−p , (2.6)

where z0 is a constant of integration related to the initial condition w0, as z0 =

−w1−p
0
p−1 . Depending on the value of p, different types of singularities arise. The

function w(z) has a single pole at z = z0 if p = 2, whereas z = z0 behaves as a
branch point for p ≥ 3. In both situations the point z = z0 constitutes a movable
singularity, since it is directly related to the initial condition w0.

The former applications of singularity analysis to differential equations were initi-
ated by Fuchs [175] and Briot and Bouquet [60] with the inspection of Riccati-type
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equations. Major contributions were made by the Russian mathematician S. Ko-
valevskaya [250, 251], who studied the motion of a rotating rigid body and explored
the connection between its integrability and the presence of ordinary poles in the
associated solution.

Based on these primeval ideas, contemporary mathematicians such as Painlevé, Pi-
card, Gambier, Fuchs, etc. [176, 181, 331, 332, 339] focused their attention on the
classification problem of ordinary differential equations according to the types of
singularities of their solutions. It was Painlevé and collaborators who provided the
crucial breakthrough in this topic, as it will be illustrated in the next Section.

1.2. Painlevé Property

In the late XIX and the early XX centuries, Painlevé, Gambier et al. [176, 181, 332]
addressed the study and classification of the integrability of second-order ordinary
differential equations of the form

d2w

dx2
= F

(
z, w,

dw

dz

)
, (2.7)

where F is a rational function in dw
dz , algebraic in w and locally analytic in z. Painlevé

found that there were fifty canonical equations of the form (2.7) with the property
that their critical points (branch points and essential singularities) are fixed sin-
gularities. Forty-four of these equations may be integrated in terms of elementary
functions, such as Riccati equations, elliptic functions, linear equations, etc. The
remaining six equations do not have algebraic integrals and cannot be integrated by
quadratures. These six equations are known as the Painlevé equations (PI − PVI),
whose explicit expressions are given by

PI :
d2w

dz2
= 6w2 + z,

PII :
d2w

dz2
= 2w3 + zw + α,

PIII :
d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+
αw2 + β

z
+ γw3 +

δ

w
,

PIV :
d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
, (2.8)

PV :
d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
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+
δw(w + 1)

w − 1
,

PVI :
d2w

dz2
=

1

2

(
1

w
+

1

w − 1
+

1

w − z

)(
dw

dz

)2

−
(

1

z
+

1

z − 1
+

1

w − z

)
dw

dz

+
w(w − 1)(w − z)

z2(z − 1)2

(
α+

βz

w2
+
γ(z − 1)

(w − 1)2
+
δz(z − 1)

(w − z2

)
,

where α, β, γ, δ are arbitrary constants. These equations require the introduction
of new transcendental functions to solve them, giving rise to the so-called Painlevé
transcendents [95, 120,207,228].

The analytical feature underlying the Painlevé classification for second-order ODEs
allows us to introduce the concept of Painlevé Property (PP). An ODE is said to
possess the Painlevé Property if all the movable singularities of its solutions are ordi-
nary poles, i.e. its solutions exhibit no movable branch points. This condition implies
that the solutions are single-valued everywhere, in particular in the initial conditions,
but in an arbitrary number of isolated movable poles. The core contribution of
Painlevé rests on the fact that he established the foundations of a theory exclusively
based on the analytical properties of a differential equation (singularity analysis) that
addresses valuable information about its integrability a priori, without the need to
solve it.

Chazy [79] and Bureau [63] explored third-order ODEs as an attempt to extend
Painlevé’s ideas, and some works have been developed in this fashion for higher-
order ODEs [63, 64, 79, 110, 111, 192] and the references therein. Nevertheless, there
is not a complete classification for higher-order ODEs with the Painlevé Property
yet.

1.2.1. Painlevé Property for ODEs. ARS algorithm

The work of Painlevé faded into oblivion until the second half of the XX century.
During the decades of 1950 and 1960, great advances were made in the context
of nonlinear Mathematical Physics and integrable systems. In 1965, Zabusky and
Kruskal [426] introduced the concept of soliton as a travelling wave solution with
remarkable properties for the ubiquitous KdV equation [249]. In 1967, Gardner,
Green, Kruskal and Miura [183] first developed the now celebrated IST method,
successfully solving the KdV equation by this procedure. This technique [13] has also
been applied to a large number of integrable equations with soliton solutions [130].

The conspicuous success of the IST method led Ablowitz, Ramani and Segur (ARS)
[9–12] to develop an algorithm to determine whether a nonlinear ODE (or system of
ODEs) possesses the Painlevé Property. Strictly speaking, this algorithm provides
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2.1. Integrability and the Painlevé Property

the necessary conditions for the absence of movable branch points, or equivalently,
multivalued solutions in the initial conditions. This procedure does not contemplate
other types of singularities that are not branch points, such as essential singularities.
In the same fashion as the work of performed by Kovalevskaya, the ARS algorithm
focuses on the analysis of the local properties of the aforementioned ODE.

Let us consider an nth-order ordinary differential equation of the form (this procedure
can be analogously extended for systems of ODEs)

F

(
z, w,

dw

dz
, . . . ,

dnw

dzn

)
= 0, (2.9)

where F is analytic in z and rational in the remaining arguments.

The behaviour of its solutions is determined by a leading-order analysis around the
singularities. A solution of (2.9) is singled-valued in a neighbourhood of a movable
singularity z = z0 if it admits a local Laurent series expansion of the form

w(z) =

∞∑
j=0

aj(z − z0)j−α, (2.10)

where z0 denotes the arbitrary location of the singularity in the complex plane, the
coefficients aj , for all j, are constants to be determined and α is a positive integer.
If all the solutions of equation (2.9) are of the form (2.10), it is said that this ODE
has the Painlevé Property, and then, it is conjectured integrable.

The ARS algorithm consists on three steps, which are illustrated as follows:

1. Dominant behaviour

The leading-order analysis corresponds to the case j = 0 in the expansion
(2.10). We may determine the values of α and the first coefficient a0 by bal-
ance of the dominant terms. α should result in a positive integer, or else, z0

would be an algebraic branch point. In some cases, a change of variables suf-
fices to transform the equation into another equation without movable branch
points. Otherwise, other advanced techniques should be considered in order to
overcome this inconvenience [350,383].

The values of α and a0 are not necessarily unique, which means that the ODE
may have several branches of expansion. If so, we must then analyze all possible
dominant behaviours separately. This aspect of the algorithm turns out to be
crucial, since the absence of any of the cases in the analysis can directly lead
to misleading results.

2. Recursion relations and resonances
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Chapter 2. Painlevé Property and the singular manifold method

We should now substitute the complete series expansion (2.10) into the ODE
(2.9), which leads to recursion relations for the coefficient aj of the form

(j − β1) · · · · · (j − βn) aj = Fj(z, a0, . . . , aj−1), (2.11)

for some nonnegative integers βl, l = 1, . . . , n and where Fj ,∀j are some
analytic functions in the independent variable z and the coefficients al, l =
0, . . . , j − 1. Then, equation (2.11) allows us to obtain, in principle, the value
of any coefficient aj for a given j > 0, with the prior knowledge of a0. Nev-
ertheless, if j = βi, i = 1, ..., n, the left-hand side of (2.11) vanishes and the
associated aβi is arbitrary. These values of j, which retrieve arbitrary coeffi-
cients, are called resonances and the corresponding equation (2.11) is known
as the resonance condition.

The general solution of a nth-order ODE is expressed in terms of n arbitrary
constants. Since z0 is already an arbitrary constant, the series expansion (2.10)
must therefore depend on n − 1 arbitrary coefficients. This fact implies the
existence of n− 1 resonances of integer j in the present analysis.

3. Resonance conditions

The last step concerns about the validation of the resonance conditions. For
each j = βi, i = 1, . . . , n in (2.11), the resonance condition Fβi = 0 must be
identically satisfied, so that the ODE has the Painlevé Property (and then, it
is considered integrable). We should obtain the following:

• A resonance in j = −1, associated to the arbitrariness of z0.

• n−1 resonances for j ≥ 0, associated to the arbitrariness of the coefficients
aj in the power (z − z0)j−α for each j = βi. If there exists a resonance in
j = 0, it corresponds to the leading-order term being arbitrary.

Example 2.2. In order to illustrated the technique described above, let us consider
the following nonlinear ordinary differential equation

d2w

dz2
= 2w3, (2.12)

which is solvable in terms of Jacobi elliptic functions (cf. equation VII of [228]). We
consider the following Laurent series expansion for solutions of (2.12)

w(z) =

∞∑
j=0

aj(z − z0)j−α, (2.13)

33



2.1. Integrability and the Painlevé Property

where z0 is arbitrary and the coefficients aj , ∀j and α have to be determined. The
ARS algorithm to verify if equation (2.12) has the PP proceeds as follows:

1. The dominant behaviour of (2.13) is w(z) ∼ a0(z − z0)−α, whose substitution
into (2.12) results in

α(α+ 1)a0(z − z0)−α−2 = 2a3
0(z − z0)−3α. (2.14)

Equating the exponents in the powers of (z − z0) provides

α+ 2 = 3α ⇒ α = 1,

whilst the balance in the coefficients yields

2a0(a2
0 − 1) = 0 ⇒ a0 = ±1.

Since a0 is not unique, we will have two branches of expansion in (2.13), and
each of them should be analyzed separately. This fact implies that steps 2 and
3 from the ARS algorithm must be independently implemented and verified for
both cases a0 = 1 and a0 = −1.

2. The general series (2.13) becomes

w(z) =

∞∑
j=0

aj(z − z0)j−1, (2.15)

with a0 = ±1. Substitution of (2.15) in (2.12) gives rise to the following
recursion relations for the coefficients

(j + 1)(j − 4)aj = 2

j−1∑
n=1

aj−n

(
3a0an +

n−1∑
m=1

an−mam

)
, (2.16)

that provides the expression of aj in terms of the coefficients of lower order,
and where we have set a2

0 = 1.

From the left-hand side of (2.16) it is easy to see that the ARS algorithm
retrieves two resonances. The first resonance in j = −1 validates the arbitrari-
ness of z0, and the second resonance in j = 4 implies that a4 should be a free
parameter. Since equation (2.12) is a second-order ODE, we have obtained two
constants of integration, z0 and a4.

3. We should now verify if the resonance condition for j = 4 is identically satisfied.
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Chapter 2. Painlevé Property and the singular manifold method

By solving expression (2.16) recursively for the coefficients aj , one gets

j = 1 : a1 = 0,

j = 2 : a2 = 0,

j = 3 : a3 = 0,

j = 4 : 6
(
2a0a1a3 + a0a

2
2 + a2

1a2

)
= 0.

Since the coefficients a1, a2, a3 vanish, the resonance condition for j = 4 iden-
tically holds for any value of a0. Hence, the coefficient a4 turns out to be
arbitrary for both values of a0 = ±1.

The three steps of the ARS algorithm have been applied to equation (2.12), success-
fully verifying that the solutions of this equation can be expressed as (2.13). Thus,
we can conclude that the only movable singularities of (2.12) are poles, which means
that this equation has the PP and it is therefore integrable in the Painlevé sense.

1.2.2. Painlevé Property for PDEs. WTC algorithm

In view of the tremendous success of singularity analysis as a vehicle to identify
integrable ODEs, it is natural to wonder if it is possible to build a similar approach
for partial differential equations.

ARS conjecture

The first answer to this question was addressed by Ablowitz, Ramani and Segur [9–11]
and Hastings and McLeod [203] by means of the so-called ARS conjecture (also
referred as the Painlevé conjecture). This conjecture states that every nonlinear
ODE obtained by a similarity reduction of a nonlinear PDE solvable by the IST
method has the Painlevé Property (though perhaps only after a transformation of
variables). Only weaker versions of this conjecture have been proved [10, 11, 297].
ARS conjecture can be interpreted as follows: it provides a necessary condition for
the integrability of a PDE. Conversely, if a PDE is reduced to an ODE that does not
possess the PP, the aforementioned PDE is not completely integrable.

There exists an algorithmic method to compute the similarity reductions of a given
PDE arising from its Lie symmetry analysis (cf. Section 4 from Chapter 5 of this
manuscript). Nonetheless, the application of ARS conjecture to test the integrability
of a given PDE is not a simple procedure. This technique requires the obtention of
all possible similarity reductions, which is already a titanic task. Besides, there also
exist similarity reductions that cannot be obtained by the classical group techniques.

35



2.1. Integrability and the Painlevé Property

Thereupon, we should check whether the resulting reduced ODEs have the PP or
not, up to a change of variables.

WTC algorithm

Weiss, Tabor and Carnevale (WTC) proposed a generalization of Painlevé’s ideas by
extending the notion of the PP to partial differential equations [417].

Singularities of analytical functions of several complex variables are no longer iso-
lated [328]. Let w : (z1, . . . , zN ) ∈ D 7→ w(z1, . . . , zN ) ∈ C be a meromorphic
function depending on N complex independent variables z = (z1, . . . , zN ) defined in
a subdomain D ∈ Cn. Then, the singularities of w lie on analytic manifolds of di-
mension (2N−2), referred as singular manifolds, which are determined by conditions
of the form

φ(z1, . . . , zN ) = 0, (2.17)

where φ is analytic in the neighbourhood of the manifold defined as (2.17). When
this manifold depends on the initial conditions, it is called a movable singularity
manifold.

The existence of this kind of manifolds provides a natural extension of the concept of
Painlevé Property for PDEs. A PDE is said to possess the Painlevé Property if all its
solutions are single-valued in a neighbourhood of the movable singularity manifolds.
Weiss, Tabor and Carnevale then generalized the ARS algorithm for PDEs, giving
rise to the so-called WTC method. This procedure allows us to algorithmically test
the integrability of a given PDE, as it will be illustrated hereafter.

The solutions of the PDE under consideration should be locally expressed as a gen-
eralized Laurent expansion of the form

w(z1, . . . , zN ) =
∞∑
j=0

wj(z1, . . . , zN ) [φ(z1...zN )]j−α , (2.18)

where φ(z), wj(z), ∀j are analytic functions in a neighbourhood of the singular man-
ifold (2.17) and α must be an integer. Comparing the Laurent expansions for the
WTC algorithm (2.18) and the ARS algorithm (2.10), we may conclude that the
former one includes variable coefficients wj(z), ∀j and the associated expansion is
performed in a neighbourhood of the singular manifold φ(z) = 0.

Steps 1-3 from the ARS algorithm for ODEs should be slightly modified in order to
establish the new prescription for testing the integrability of PDEs:

1. Dominant behaviour
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Chapter 2. Painlevé Property and the singular manifold method

The leading-order analysis, corresponding to j = 0 in (2.18), also retrieves the
values of α and the first coefficient w0(z). Once again, if either α or w0(z)
turn out to be non-unique, several branches of expansion arise, which should
be analyzed independently.

2. Recursion relations and resonances

The substitution of (2.18) into the PDE, supposed to be of nth-order, now
provides a more general expression for the recursion relations for the coefficients
wj(z). These relations may incorporate terms on the derivatives up to order n
of the coefficients themselves or the singular manifold, as

(j − β1) · · · · · (j − βn)wj = Fj

(
z, wJ , φ,

∂wJ
∂zi

,
∂φ

∂zi
,
∂2wJ
∂zi∂zk

,
∂2φ

∂zi∂zk
, . . .

)
,

(2.19)
where J ≤ j − 1 and for all combinations i, k = 1, . . . , N .
The resonances are found in the values j = βl, l = 1, . . . , n and, consequently,
the associated coefficients wβl(z) should be arbitrary.
A nth-order PDE should possess a resonance in j = −1, representing the
arbitrariness of the singular manifold (2.17) and n− 1 resonances for j ≥ 0.

3. Resonance conditions

If every resonance condition Fβl = 0, l = 1, . . . , n is identically satisfied, we
may therefore say that the corresponding PDE has the Painlevé Property.
Sometimes the resonance conditions are satisfied for certain values of the pa-
rameters of the equation. In this case, the equation is said to be integrable in
the Painlevé sense only for those values of the parameters, and we should be
dealing with conditional integrability [71, 412].

A detailed example on the application of the WTC algorithm to a system of nonlinear
PDEs is given in Section 5 of the present Chapter of this manuscript.

1.3. Further remarks

Algorithmic methods based on the Painlevé Property, such as the ARS algorithm or
the WTC algorithm, are often referred as Painlevé tests. There exists a vast amount
of literature concerning this topic and its applications to differential equations [105,
107,314,350,377,383,429].

There is no rigorous proof about the connection between the Painlevé Property and
the complete integrability of a differential equation. Nonetheless, Painlevé tests ap-
pear to emerge as a potent criterion to identify integrable differential equations.
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2.2. The singular manifold method

Furthermore, Painlevé analysis may be used to derive other important information
of this kind of equations, such as Bäcklund transformations, Lax pairs or special
solutions [83, 186, 314, 383, 414]. These latter properties constitute one of the key-
stones of the present research. All these topics of paramount interest will be carefully
investigated in the ensuing Sections.

On the other hand, it should be taken into account that Painlevé tests present some
limitations. In the following, we exclusively mention two of them, further remarks
concerning this topic may be consulted in [253,350] and the references therein.

The core observation regarding this matter lies in the fact that the Painlevé Property
for a given differential equation is not preserved under transformations of the consti-
tuting variables of the equation. This means that a certain equation that does not
possess the Painlevé Property in a given set of variables may be considered integrable
in the Painlevé sense after a change of variables. Finding the suitable transformation
of variables in those cases may become a titanic task. In this context, transforma-
tions among families of integrable equations, such as Bäcklund and Miura trans-
formations [361, 362], hodograph transformations [97, 158] or reciprocal transforma-
tions [30,217,243,358,359], emerge as a useful tool when it comes to identifying their
integrability. These techniques have been successfully applied in literature, high-
lighting the work carried out by Estévez and collaborators [27,30,139,140,158,162],
two of which are contributions of the author of this thesis.

The Painlevé Property, as defined previously, might turn out to be an overly restric-
tive imposition to characterize the integrability of a differential equation, since it
exclusively considers ordinary poles for the singularities of the solutions. There exist
several variants of the Painlevé test in this context. First of all, it is worth mentioning
the so-called weak Painlevé test [350], related to the weak Painlevé Property, which
allows the presence of movable rational branch points (positive rational leading-
indices in the series expansions). Secondly, we shall remark other approaches, such
as the poly-Painlevé test, developed by Kruskal [253], or the perturbative Painlevé
test [106,170], which deals with negative resonances.

2. The singular manifold method

J. Weiss first introduced [410] and developed the first applications [410–414] of the
so-called singular manifold method (SMM). The SMM constitutes an algorithmic
procedure, based on the WTC method, which allows to derive crucial properties of
these (integrable) systems, such as Bäcklund transformations or Lax pairs. If a given
PDE has the PP, its solutions can be therefore expressed as a Laurent series of the
form (2.18). The SMM focuses on truncated solutions of this series expansion in
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order to obtain particular solutions of the PDE. Expression (2.18) may be truncated
at constant level (up to terms in the power φ0) as

w(z) =
α∑
j=0

wjφ
j−α = w0φ

−α + w1φ
1−α + · · ·+ wα, (2.20)

where the dependence in the independent variables z = (z1, . . . , zN ) has been omit-
ted.

If expression (2.20) is imposed to be a solution for the PDE under study, this yields
an overdetermined system of equations for φ, the coefficients wj , 0 ≤ j ≤ α and their
derivatives1. Hence, φ(z) is no longer an arbitrary function since it must fullfill this
system arising from the truncation condition. If w, as defined in (2.20), is a solution
of the PDE, then it is evident that wα is also a solution. Consequently, relation
(2.20) defines an auto-Bäcklund transformation between two solutions w and wα of
the PDE under consideration [410,411,414–416]. Or, in other words, the truncation
of the Painlevé series allows us to construct new solutions for the PDE, via this
auto-Bäcklund transformation, starting from a known initial solution wα, called the
seed solution.

The easiest way to proceed in order to deal with this system of equations for the
singular manifold requires to set as null every coefficient in the different powers of φ.
If these conditions hold, then it is possible to establish algebraic relations among the
seed solution, its derivatives and the singular manifold, which are called the singular
manifold equations. Occasionally, this imposition may turn excessively limiting, and
this procedure needs to be slightly modified [152].

The SMM may present a major flaw when it is applied to PDEs with several branches
of expansion. Several branches of expansion means that the truncation (2.20) needs
to be performed for every value of α and the leading-order coefficients, whilst the
procedure itself [410] restricts us to one of the branches. Nevertheless, the latter
restriction to just one of the possible branches may result in a lose of information
about the PDE under consideration [149]. There exist special techniques to overcome
this inconvenience. The first of them requires the splitting of fields of the PDE in
a certain mode [141, 150, 157], whilst the second one involves the use of the so-
called double singular manifold method [109, 148, 149, 191, 309]. In both cases, the
application of this modified SMM provides an additional Miura transformation that
relates the original PDE to another one with a single branch of expansion [28, 141,
149,191].

1Properly speaking, this overdetermined system may be expressed as a polynomial in powers of
φ with variable coefficients depending on the fields and their derivatives.
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Homographic invariance

As a property inherited from the PP for ODEs, the Painlevé Property for PDEs is
invariant under the action of the Möbius group (also referred as the projective group
or homographic transformations) [103,308,410,412], of the form

φ → aφ+ b

cφ+ d
, ab− cd 6= 0. (2.21)

Hence, it is expected that the invariants of this group play an important role in the
Painlevé analysis for the PDE under study. In fact, the relations to be satisfied by φ
after the truncation ansatz required by the SMM can be expressed more conveniently
in terms of these invariants. There exists indeed an alternative reformulation of the
SMM, developed by Conte and collaborators [102–104,340] based on the homographic
invariants.

For PDEs defined in 1 + 1 dimensions, with coordinates (x, t), the first of the homo-
graphic invariants are

s ≡ (Sφ)(x) = {φ, x} =
∂

∂x

(
φxx
φx

)
− 1

2

(
φxx
φx

)2

=
φxxx
φx
− 3

2

(
φxx
φx

)2

, (2.22)

which corresponds to the so-called Schwarzian derivative [171,172,207]. The second
invariant [103,308] is given by

r =
φt
φx
. (2.23)

If we introduce the quantity

v =
φxx
φx

, (2.24)

the compatibility condition φxxt = φtxx then provides the following identities, which
are valid for every (1 + 1)-PDE

vt = (rx + vr)x,

st = rxxx + 2srx + rsx.
(2.25)

Finally, the equations for the singular manifold φ arising from the SMM, expressed in
terms of the variables {v, r, s}, together with expressions (2.25), constitute an alter-
native (and more approachable) setting to describe the singular manifold equations.

It should be worth highlighting that this procedure may be easily generalized to
higher dimensions [141,144,148,340,412], as it will be illustrated in Chapter 4.
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3. Lax pairs

The SMM has proved to be an extraordinarily fruitful procedure to derive Lax pairs
for PDEs by means of the linearization of the singular manifold equations [102,103,
141, 149, 410–412, 414]. The key aspect of the Lax pair associated to a (nonlinear)
PDE lies in the fact that it is consider a proof of integrability for such differential
equation and it may constitute an useful tool for its resolution [3,13]. In general, there
is not any standard formalism to obtain a Lax pair for a given nonlinear PDE, and
the quest for Lax pairs may become an arduous task. In this sense, although it is not
a trivial procedure, the SMM provides a straightforward and algorithmic technique
to deduce Lax pairs for differential equations. The fundamentals about Lax pairs
will be exhibited hereunder, following the references [3, 13, 263, 264]. Throughout
the present dissertation, the notion of Lax pair for nonlinear differential equations
will play a primary role, since it will be considered as a synonym of the integrability
of such equations. Lax pairs also constitute a key cornerstone in the obtention of
soliton-like solutions of these equations, as expounded in the ensuing Sections.

3.1. Lax formalism

The concept of Lax pair emerges from the modern studies of integrable systems in
the 1960s. Its formulation was first introduced by the mathematician P. Lax [263]
in the context of the analysis of nonlinear evolution differential equations in 1 + 1
dimensions

ut = K(x, t, u, ux, . . . ), (2.26)

where u = u(x, t) is defined in some function space B. The concept of Lax pair is
referred to a set of differential operators whose compatibility condition provides the
starting evolution problem (2.26).

A Lax pair, also known as (the associated linear) spectral problem, consists in a pair
of linear operators L(t), A(t), acting on a Hilbert space H, which satisfy the so-called
Lax equation

Lt + [L,A] = 0, (2.27)

where t is the evolution variable, which usually alludes to the evolution in time,
Lt ≡ dL

dt and [L,A] = LA − AL is the usual commutator between two differential
operators. Moreover, L(t) is a self-adjoint operator, whilst A(t) is skew-symmetric
for all t.

Lax equations (2.27), also known as the Lax representation of (2.26), can be regarded
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as the compatibility condition of the linear problem

Lψ = λψ, (2.28a)
ψt = Aψ, (2.28b)

where the operator L characterizes the associated eigenvalue problem and A accounts
for the operator governing the evolution in time. ψ = ψ(x, t) ∈ H is the spectral
function or eigenfunction and λ is the so-called spectral parameter or eigenvalue. The
operator L is said to be isospectral if its spectrum is independent of the evolution
variable t, i.e. λt = ∂λ

∂t = 0. Thus, equation (2.27) provides an isospectral evolution
equation for L(t), since the isospectrality condition holds [3]. Then, the eigenvalues
of L constitute a set of integrals (conserved quantities in time) for the evolution
equation (2.26). Moreover, detL and trLk, k ∈ N are spectral invariants as well.

Lax showed in [263,264] that the isospectrality of L(t) follows from the fact that the
operators L(t), considered as a one-parameter family of self-adjoint operators in H,
are unitarily equivalent to each other. In particular L(t) is similar to L(0), i.e., there
exists a one-parameter family of unitary operators U(t) such that

L(0) = U?(t)L(t)U(t), ∀t ∈ R, (2.29)

where U?(t) denotes the adjoint operator of U(t) and L(0) is independent of t. The
unitary operator U(t) in (2.29) is solution of the initial value problem

Ut ≡
dU

dt
= A(t)U(t), U(0) = I, (2.30)

for any A?(t) = −A(t) and where I is the identity operator in H. Then, by dif-
ferentiating (2.29), it is straightforward to see that the operators L(t), A(t) satisfy
(2.27). The spectra of L(t) and L(0) coincide [357] and hence the eigenvalues of L
are conserved in time. Finally, the eigenvalue problem (2.28) reads

L(0)ψ = λψ ⇒ L(t)ψ̃ = λψ̃ with ψ̃ = U(t)ψ ∈ H. (2.31)

Lax equation (2.27) is invariant under similarity transformations

L→ L̃ = gLg−1, A→ Ã = gAg−1 + gtg
−1, (2.32)

where g is an invertible linear operator on H and gt ≡ dg
dt . Then, the associated

spectral problem propagates as

L̃ψ̃ = λψ̃, ψ̃t = M̃ψ̃, with ψ̃ = gψ ∈ H. (2.33)
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There exists an infinite number of Lax pairs which are gauge equivalent through
(2.32), and hence, one may conclude that a Lax pair is nowise unique.

Thus, we state that integrable nonlinear differential equations may be written, in an
completely equivalent form, as the compatibility condition of an spectral problem of
the form (2.28). As already mentioned above, finding Lax pairs for a given nonlinear
PDE is not a trivial quest. In that sense, it will be shown that the singular manifold
method emerges as a powerful procedure to obtain Lax pairs. It is worthwhile to
remark that one of the advantages of Lax formulation is that the associated linear
equations are easier to treat and solve than the starting nonlinear PDE [138,141,159].
Lax formulation is also linked to a plethora of techniques related to the resolution of
nonlinear differential equations, such as the IST method [3,183].

There also exists a relaxed condition regarding the Lax formalism, called weak Lax
pair [3,13]. Boiti et al. [53–56] considered this approach in the inspection of integrable
evolution equations in 2 + 1 dimensions, and successive applications have appeared
in literature regarding this matter [206,255,279,285,347]. The Lax pair is conceived
as a pair of differential operators whose compatibility condition retrieves the desired
nonlinear evolution equation. Conversely, in a weak Lax pair this condition only
needs to be satisfied in the subspace of solutions of the spectral problem.

3.2. Zero-curvature representation

The Lax formalism, given by the pair of linear operators L,A satisfying (2.27) and
(2.28), admits a geometric reformulation in terms of the so-called zero-curvature
representation [13, 361, 434]. We may rewrite the eigenvalue problem (2.28) as the
auxiliary linear system

Ψx = UΨ, Ψt = VΨ, (2.34)

where U, V are a pair of linear operators on H, depending on the spectral parameter
λ, and Ψ ∈ H is a matrix eigenvector whose size depend on the order of L. Hence,
the compatibility condition of (2.34) is translated into the relation

Ut − Vx + [U, V ] = 0. (2.35)

Both representations are proved to be equivalent [3, 6] and the preference for one
or the other formalism depends on each case under consideration. As in the Lax
formalism, the zero-curvature representation (2.35) is invariant under the similarity
transformation

U → Ũ = GUG−1 +GxG
−1, V → Ṽ = GV G−1 +GtG

−1, (2.36)
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2.4. Darboux transformations and soliton solutions

where G is an invertible matrix operator and Gx = ∂G
∂x , Gt = ∂G

∂t , such that (2.34)
transforms as

Ψ̃x = ŨΨ̃, Ψ̃t = Ṽ Ψ̃, with Ψ̃ = GΨ. (2.37)

Example 2.3. The revisited Korteweg-de Vries (KdV) equation [249]

ut + uxxx − 6uux = 0, (2.38)

can be written as the compatibility condition of the linear system [263]

ψxx = (u− λ)ψ,

ψt = (2u+ 4λ)ψx − uxψ,
(2.39)

where λ is the spectral parameter and ψ acts as the eigenfunction. The system of
equations (2.39) corresponds to the following Lax representation

L = −∂xx + u, A = −4∂xxx + 6u∂x + 3ux. (2.40)

It is easy to check that if the operators defined in (2.40) satisfy the Lax equation
(2.27), u therefore satisfies (2.38). Hence, the linear system (2.39) is said to be a
(scalar) Lax pair for (2.38).

The zero-curvature representation for the above scalar spectral problem (2.39) can
be easily obtained as

Ψx =

(
0 1

u− λ 0

)
Ψ, Ψt =

(
−ux 2u+ 4λ

2u2 + 2uλ− 4λ2 − uxx ux

)
Ψ, (2.41)

by considering Ψ = (ψ,ψx)ᵀ as the eingenvector, where the ᵀ notation indicates the
transpose of the corresponding vector. It is immediate to see that condition (2.35)
retrieves (2.38), and then, (2.41) constitutes a Lax pair for KdV equation.

4. Darboux transformations and soliton solutions

Transformations among (integrable) nonlinear partial differential equations consti-
tute a valuable and advantageous technique to deal with such equations, specially
in the study of nonlinear evolution equations [220]. In this Section we review two
of the most important transformations among integrable differential equations, the
so-called Bäcklund transformations and Darboux transformations [361]. We will also
illustrate their connection with the SMM method and the Lax formalism described
in the previous Sections, and their potential to derive solutions of major significance
in nonlinear differential equations arising from soliton theory.
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4.1. Bäcklund transformations

Bäcklund transformations were introduced by the Swedish mathematician A. V.
Bäcklund in the late XIX century [67] as generalized surface transformations in
differential geometry. They have proved to be of special relevance in the field of
Mathematical Physics with numerous applications [129,359,361,362]. In the context
of this dissertation, Bäcklund transformations constitute explicit relations between
the solutions of two nonlinear differential equations (also extendable to hierarchies of
PDEs). Hence, Bäcklund transformations provide a powerful method for generating
solutions to nonlinear PDEs [362]. From the classical point of view, it is worthwhile to
mention the Clairin’s method to generate Bäcklund transformations [88, 259], while
a modern approach can be found in [33, 342, 343] or by means of the Wahlquist-
Estabrook procedure [401,402].

Example 2.4. A well-known example of a Bäcklund transformation is the celebrated
Miura transformation [303]

u = v2 ± vx, (2.42)

that establishes a relation between two solutions of the KdV equation [249]

ut + uxxx − 6uux = 0, (2.43)

and the solution v for the modified Korteweg-de Vries (mKdV) equation [425]

vt + vxxx − 6v2vx = 0. (2.44)

A Bäcklund transformation which relates solutions of the same equation is called an
auto-Bäcklund transformation. Many examples of auto-Bäcklund transformations
for renowed integrable equations may be found in [259, 361, 362] and the references
therein. Then, auto-Bäcklund transformations may yield an iterative procedure to
construct solutions once a particular solution is known. As already said, the trun-
cated series expansion arising from the Painlevé analysis (2.20) constitutes an auto-
Bäcklund transformation between w and wα.

4.2. Darboux transformations

Another important class of transformations with their origin in the XIX century cor-
responds to the so-called Darboux transformations, introduced by the French mathe-
matician G. Darboux [115,116], based on the previous work of M. Moutard [305,306],
in the study of the Sturm-Liouville problem for differential equations of physical
relevance. More advances concerning the Sturm-Liouville problem were performed
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2.4. Darboux transformations and soliton solutions

by Crum in [112] and several classical generalizations and early applications were
developed in [43, 44, 46, 269, 293–295, 398]. Further remarks can be found in the
monographs [70,195,296,361].

Given a nonlinear PDE, the basis of Darboux transformations lies in the invariance
of its associated spectral problem under a simultaneous and combined mapping be-
tween both the fields and the corresponding eigenfunctions. It may be formulated as
a covariance principle for the corresponding operators [296]. This type of transforma-
tions have proved to be extremely useful to construct exact solutions for integrable
nonlinear PDEs. In particular, this technique provides an iterative algebraic proce-
dure that allows to construct multi-soliton solutions by the sequential application of
Darboux transformations together with solutions of the associated Lax pair and the
evolution equation. This approach has been widely applied in the recent years for a
plethora of multi-dimensional integrable systems [86,265,266,296,361].

Example 2.5. Let us consider two different eigenfunctions ψ, χ for the spectral
problem (2.39) for the KdV equation (2.38), defined in terms of the field u and the
spectral parameter λ. Then, this Lax pair admits the following Darboux transfor-
mation [296]

û = u− 2

(
ψx
ψ

)
x

,

ψ̂ = χx − χ
ψx
ψ
,

(2.45)

such that ψ̂, û solves the linear problem (2.39) with spectral parameter λ. Hence, it
is easy to check that the linear problem (2.39) is invariant under the simultaneous
transformation u→ û, ψ → ψ̂.

4.3. Binary Darboux transformations

The approach developed in the present research offers a slightly different perspective.
The solid methodology to be used in the following is based on the previous work of
Estévez and collaborators [141, 148, 152, 153, 157, 161], among other references. The
core idea resides in the conjunction of the SMM and the Darboux transformations to
obtain exact solutions for nonlinear integrable equations whose associated spectral
problem is known. The aforementioned procedure is outlined hereinafter.

Let us consider a pth-order nonlinear differential equation in 1 + 1 dimensions, de-
pending on the independent variables (x, t) and a single field u = u(x, t)2. This

2This procedure can be easily generalized to both higher dimensions or number of fields, as it
will be illustrated in the examples from Chapters 3 and 4.
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nonlinear PDE is supposed to pass the Painlevé test3, and then, be considered in-
tegrable in the Painlevé sense. We may apply the SMM in order to derive a Lax
pair for it, which means that the solution of the PDE u admits a truncated series
expansion at constant level in a neighbourhood of the singular manifold φ = 0 of the
form

u(x, t) =
α∑
j=0

ajφ
j−α = aα +

aα−1

φ
+ · · ·+ a0

φα
, (2.46)

where aj = aj(x, t), 0 ≤ j ≤ α. The coefficient a0(x, t) and the leading index α
are determined by the balance of the dominant terms. The remaining coefficients
aj(x, t), j = 1, . . . , α are either determined or arbitrary by virtue of the Painlevé
analysis.

The application of the SMM over the nonlinear PDE under study straightforwardly
leads to the singular manifold equations. The linearization of such equations allows
us to introduce the eigenfunctions and a free parameter (that will act as the spectral
parameter) such that the arising linear system possesses a Lax pair structure. The
corresponding spectral problem may be generally expressed as a system of 2µ dif-
ferential equations, depending on µ eigenfunctions ψl, l = 1, . . . , µ and the spectral
parameter λ, of the form

Sr

(
x, t, u, u(k), ψ

l,
∂ψl

∂x
, . . . ,

∂mψl

∂xm
, λ

)
= 0,

Tr

(
x, t, u, u(k′), ψ

l,
∂ψl

∂x
, . . . ,

∂m−1ψl

∂xm−1
,
∂ψl

∂t
, λ

)
= 0,

r = 1, . . . , µ, (2.47)

where u(k) denotes the set of all the derivatives of u up to order k (cf. Section 2
from Chapter 5), with k, k′ < p and either k + 1 = p or m + k′ = p. The system of
equations Sr = 0, r = 1, . . . , µ is often referred as the spatial part of the Lax pair,
since it only involves spatial derivatives of the eigenfunctions, up to a highest order
m. The system of equations Tr = 0, r = 1, . . . , µ represents the temporal part of the
Lax pair, due to the presence of the temporal derivatives ∂ψl

∂t . In principle, it is not
possible to determine a priori the number of required eigenfunctions µ to construct
the Lax pair, nor its orderm, since this information depends on the particular process
of linearization of the corresponding singular manifold equations in each case.

The SMM method also retrieves the relation between the eigenfunctions ψl, l =
1, . . . , µ and the singular manifold φ, which may depend on the spectral parameter

3Without loss of generality, we will assume that the series expansion has a unique branch of
expansion. If it is not the case, there exist several techniques [141, 149] that allow us to properly
treat this scenario.
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and the field, as

P

(
x, t, u, ψl,

∂ψl

∂x
, . . . ,

∂mψl

∂xm
, λ, φ, φx, φt

)
= 0, (2.48)

which might be occasionally expressed as an exact derivative.

We shall consider now a Darboux transformation for the Lax pair (2.47), i.e. simul-
taneous transformations for the fields and the eigenfunctions such that the spectral
problem remains invariant. The sheer novelty of this formulation with respect to the
classical Darboux approach rests on the fact that these transformations have to be
extended to the singular manifold, such that expression (2.48) is also preserved. This
implies that iterated solutions for the field u, the eigenfunctions ψl, l = 1, . . . , µ and
the singular manifold φ must be constructed. The SMM therefore plays a crucial
role in this process, since it will precisely prescribe those transformations.

The truncated series expansion (2.46) defines an auto-Bäcklund transformation for
the field of the form

u[1] = u[0] +
α−1∑
j=0

aj
φα−j

, (2.49)

where u[0] denotes the seed solution (aα in (2.46), which clearly satisfies the starting
nonlinear PDE) and u[1] represents the iterated solutions (u in (2.46)), which also
satisfies the same differential equation.

Let us consider now two different sets of eigenfunctions {ψl1, ψl
′

2 }, l, l′ = 1, . . . , µ,
satisfying the linear problem (2.47) for the seed solution u[0] with two different eigen-
values {λ1, λ2}, respectively, as

Sr

(
x, t, u[0], ψl1, λ1

)
= 0, Tr

(
x, t, u[0], ψl1, λ1

)
= 0, (2.50a)

Sr

(
x, t, u[0], ψl

′
2 , λ2

)
= 0, Tr

(
x, t, u[0], ψl

′
2 , λ2

)
= 0, (2.50b)

for r, l, l′ = 1, . . . , µ, and where we have omitted the dependence in the derivatives
of the fields and the eigenfunctions for simplicity.

The consideration of two sets of eigenfunctions with their respective spectral param-
eters needfully defines two singular manifolds {φ1, φ2} through (2.48) as

P
(
x, t, u[0], ψl1, λ1, φ1

)
= 0, (2.51a)

P
(
x, t, u[0], ψl

′
2 , λ2, φ2

)
= 0. (2.51b)
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Following the ideas developed in [83,248], the spectral problem (2.47) should be now
regarded as a coupled system of nonlinear differential equations depending on the
field u and the eigenfunctions ψl, l = 1, . . . , µ. Thus, the SMM can be now applied
to the Lax pair itself. This procedure requires the following simultaneous Painlevé
expansions, both constructed in a neighbourhood of the singular manifold φ1 = 0,
which can be truncated at constant level as

u[1] = u[0] +
α−1∑
j=0

aj

φα−j1

, ψl1,2 = ψl2 +

βl−1∑
j=0

bj

φβl−j1

, (2.52)

where α, βl, l = 1 . . . , µ are the leading-order indices, and the coefficients aj(x, t),
bj′(x, t), j = 0, . . . , α− 1, j′ = 0, . . . , βl − 1 have to be determined by imposing that
the iterated solutions (u[1], ψl1,2), l = 1, . . . , µ satisfy the spectral problem

Sr
(
x, t, u[1], ψl1,2, λ2

)
= 0,

Tr
(
x, t, u[1], ψl1,2, λ2

)
= 0,

(2.53)

with associated spectral parameter λ2. The truncated expansion for u[1] should
coincide with the one provided for the nonlinear PDE (2.49). The coefficients
bj(x, t), j = 1, . . . , βl−1, ∀l may depend on the seed solution u[0], both sets of eigen-
functions {ψl1, ψl

′
2 }, their derivatives and the spectral parameters {λ1, λ2}. The first

iterated eigenfunction will be denoted as ψl1,2, ∀l, alluding to the fact that it is con-
structed in terms of two seed eigenfunctions {ψl′1 , ψl

′′
2 }, ∀l′, l′′, and the last subindex

ψl_,2 indicates the associated spectral parameter λ2 for this eigenfuction.

Besides, transformations (2.52) induce an analogous truncated series expansion for
the singular manifold as

φ1,2 = φ2 +

γ−1∑
j=0

cj

φγ−j1

, (2.54)

with γ ∈ N and coefficients cj(x, t), j = 0, . . . , γ − 1 to be determined such that

P
(
x, t, u[1], ψl1,2, λ2, φ1,2

)
= 0, l = 1, . . . , µ, (2.55)

is identically satisfied. The first iteration of the singular manifold is again denoted
as φ1,2, following the same notation convention as for the iterated eigenfunction.

The main difference of this approach with respect to the classical Darboux trans-
formations is that the series (2.52) use the singular manifold φ1 as the expansion
variable rather than the eigenfunction ψ1 of the former (2.47) spectral problem (cf.
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Example 2.5). Nevertheless, expansions (2.52) may be regarded as (binary) Dar-
boux transformations in the sense that these transformations leave invariant the Lax
pair (2.47), since (2.53) is satisfied by construction. Besides, relation (2.48) is also
preserved.

In summation, two sets of eigenfunctions {ψl1, ψl
′

2 }, l, l′ = 1, . . . , µ for the Lax pair
associated to the seed solution u[0] suffice to construct a new set of eigenfunctions
ψl1,2, l = 1 . . . , µ that solve the spectral problem for the iterated solution u[1]. Anal-
ogously, the additional introduction of two singular manifolds {φ1, φ2} allows us to
define a new singular manifold φ1,2 associated to these solutions u[1], ψl1,2, ∀l. Hence,
the SMM yields the suitable truncated expansions, interpreted as (binary) Darboux
transformations, which map the Lax pair into itself, providing and iterative method
to construct new solutions of the spectral problem and the initial nonlinear PDE
under consideration.

This procedure may be recursively applied in order to obtain further iterations, and
consequently, novel solutions. The nth iteration introduces the new triad {u[n],
ψl1,2,...,n,n+1, φ1,2,...,n,n+1}, l = 1, . . . , µ, such that {ψl1,2,...,n+1} represents the set of
eigenfunctions associated to the field u[n] with eigenvalue λn+1, and φ1,2,...,n+1 is the
associated singular manifold. This implies that the following relations hold

Sr
(
x, t, u[n], ψl1,2,...,n+1, λn+1

)
= 0,

Tr
(
x, t, u[n], ψl1,2,...,n+1, λn+1

)
= 0,

(2.56a)

P
(
x, t, u[n], ψl1,2,...,n+1, λn+1, φ1,2,...,n+1

)
= 0, (2.56b)

for every r, l,= 1, . . . , µ.

The triad {u[n], ψl1,2,...,n+1, φ1,2,...,n+1} can be expressed in terms of the following
quantities,

• Seed solution u[0],

• µ different sets of n + 1 eigenfunctions {ψl11 , ψ
l2
2 , . . . , ψ

ln+1

n+1 }, l1, . . . , ln+1 =

1, . . . , µ, for this seed solution u[0], each of them associated to n + 1 differ-
ent eigenvalues {λ1, λ2, . . . , λn+1}, respectively,

• n+ 1 singular manifolds {φ1, φ2, . . . , φn+1}

that satisfy (2.50) and (2.51), respectively.

This last statement implies that, with a suitable seed solution and the corresponding
resolution of the associated spectral problem, we will be able to generate an extensive
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Chapter 2. Painlevé Property and the singular manifold method

class of diverse solutions for the former nonlinear PDE. More specifically, this thesis
addresses the quest for solutions with solitonic nature, with special emphasis on the
particular case of rational solitons. Applications of this procedure can be found
in the references already cited above, as well as in the example described in the
following Section and the different models analyzed in Chapters 3 and 4 of the
present dissertation.

4.4. Connection to Hirota’s bilinear formalism

There also exists other methods to determine multi-soliton solutions for a given non-
linear PDE. Among them, the celebrated Hirota’s bilinear method, first introduced
in [208], should be duly emphasized. This technique provides a systematic procedure
to derive, in a relatively straightforward methodology, such kind of special solutions.

Hirota’s method requires that the nonlinear PDE is transformed, by means of a
(nontrivial) dependent variable transformation (cf. Section 1.7 in [213]), in a bilinear
differential equation, often called Hirota form, which should be expressed in terms
of the Hirota’s D-operators [211,212]

Dn
x(f, g) ≡ Dn

xf · g =

(
∂

∂x
− ∂

∂x′

)n
f(x)g(x′)

∣∣∣∣
x=x′

=
∂n

∂x′n
f(x+ x′)g(x− x′)

∣∣∣∣
x′=0

,

(2.57)
with n ∈ N. This operator acts as a bilinear derivative and a list of properties of
D-operators can be found in [210, 212, 213, 215]. Generalizations of these operators
to higher dimensions have been studied in [193].

Once that the former nonlinear PDE has been expressed in a bilinear form, the exact
solutions are obtained by a perturbation algebraic method. The N -soliton solution
formula can be expressed as quotients of Wronskian-type determinants in terms of the
Hirota’s τ -function [174,214], and soliton solutions appear as polynomials of a finite
number of exponential functions. In contrast to the IST method, this procedure
allows solutions to be obtained directly, so that it might be known as the direct
method. Countless applications of this method to remarkable nonlinear PDEs in
soliton theory can be found in the monograph [213] and the references therein.

Since the integrability of a given PDE has been connected to the existence of multi-
soliton solutions, Hirota’s method may be regarded as a criterion of integrability [204,
350]. The main problem of Hirota’s procedure lies in the process of bilinearization,
which is definitively not algorithmic neither obvious to perform. There have been
reported visible similarities between the bilinear transformation and the truncated
series expansion arising from the SMM [187, 205, 314]. Furthermore, the iterative
procedure arising from the combination of the SMM and the implementation of
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binary Darboux transformations to derive multi-soliton solutions may be related
with Hirota’s τ -function, as established and evidenced in [148,149,152,182].

5. Toy example: nonlinear Schrödinger Equation in 1+1
dimensions

In order to provide a complete overview of the procedure described above, this Chap-
ter closes with an illustrative and detailed example.

This Section is then devoted to the study of the so-called nonlinear Schrödinger
(NLS) equation [3,13,130], a classical integrable equation of reference in the field of
Mathematical Physics and soliton theory. NLS equation has been widely studied in
literature in recent years, in terms of integrability characterization and mathemat-
ical properties. This nonlinear dispersive equation appears in the description and
modelization of countless physical scenarios, with remarkable applications in diverse
applied disciplines.

NLS equation first emerges in the context of the evolution of gravity waves in fluid
dynamics, with the pioneering research of G. G. Stokes [380] and more recent works
[47,82,117,118,202,229,427]. It also plays an important role in the area of nonlinear
optics [42, 48, 240, 387], and it is found in the description of hydromagnetic and
plasma waves [221, 222, 374, 408, 409], Bose-Einstein condensates [128, 194, 225, 344],
propagation of heat pulses in solids [388] and other nonlinear waves in different
scenarios [114,122,123,335,353].

Besides to its physical relevance and applications, NLS equation presents numerous
remarkable mathematical properties and analytical solutions of interest. As it is well
known, NLS equation constitutes a complete integrable system, it was first solved by
Zakharov and Shabat via the IST method [431, 432] and it admits a Lax pair [13].
More properties regarding its integrability can be found in [13,130,385,386,430,432,
433]. This system has also been proved to exhibit a plethora of soliton-like solutions:
N -soliton solution [16, 313, 431, 432], breather solutions [19, 21, 132, 241, 242, 257,
284, 337], rogue waves [17, 18, 22, 35, 239], etc. There also exist diverse integrable
generalizations, such as multi-component generalizations [286], extensions to higher
dimensions [69],discretized [7] or quantized versions of NLS [200].

The following Section addresses the study of the so-called defocusing NLS equation4

in 1 + 1 dimensions, which is written as the following coupled system of differential
4The general NLS equation is usually written as iut+uxx+κ|u|2u = 0, as introduced in Chapter

1, with κ 6= 0. If κ > 0, this equation is also denoted as focusing NLS, whilst the case κ < 0 refers to
the defocusing NLS. Although these two equations appear in distinct physical scenarios and exhibit
different kinds of solutions, both of them possess remarkable properties regarding their integrability.
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equations
iut + uxx − 2u2w = 0,

−iwt + wxx − 2w2u = 0,
(2.58)

where u(x, t) is a complex valued functions and w(x, t) stands for its complex con-
jugate, u = w.

For practical purposes in the ensuing calculations, let us introduce a new real field
m(x, t), which is related to the density of probability of the system as mx = −|u|2 =
−uw. Then, NLS system (2.58) may be expressed in nonlocal form as

iut + uxx + 2mxu = 0,

−iwt + wxx + 2mxw = 0,

mx + uw = 0.

(2.59)

5.1. Painlevé test for NLS

The NLS system (2.59) defines a coupled system of three nonlinear PDEs of second
order. We should now apply the WTC algorithm, as described in Subsection 1.2.2 of
this Chapter, in order to verify if (2.59) has the Painlevé Property, and then satisfies
the necessary conditions to be integrable.

The Painlevé test for (2.59) requires the following generalized Laurent expansions
for the fields u, w, m of the form

u(x, t) =

∞∑
j=0

aj(x, t)φ(x, t)j−α,

w(x, t) =

∞∑
j=0

bj(x, t)φ(x, t)j−β,

m(x, t) =

∞∑
j=0

cj(x, t)φ(x, t)j−γ ,

(2.60)

where aj(x, t), bj(x, t), cj(x, t), ∀j are arbitrary coefficients for the series expansion,
α, β, γ are the leading indices and φ(x, t) is the so-called singular manifold.

1. A leading-order analysis for the case j = 0 results in

α = β = γ = 1, a0 b0 = φ2
x, c0 = φx, (2.61)

where we may appreciate that both indices and coefficients are uniquely deter-
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mined. The coupled relation a0b0 = φ2
x indicates the presence of a resonance

in j = 0, as it will be proved later.

2. Then, expressions (2.60) read

u =
a0

φ
+
∞∑
j=1

aj φ
j−1, w =

b0
φ

+
∞∑
j=1

bj φ
j−1, m =

φx
φ

+
∞∑
j=1

cjφ
j−1, (2.62)

where we have dropped the dependence in the independent variables, and
a0b0 = φ2

x.

If we substitute expressions (2.62) in the starting system (2.59), the following
recursion relations arise

j(j − 3)φ2
xaj + 2(j − 1)a0φxcj = −i∂aj−2

∂t
− ∂2aj−2

∂x2
− (j − 2)

[
iφt + φxx

]
aj−1

− 2(j − 2)φx
∂aj−1

∂x
− 2

j−1∑
k=1

(j − k − 1)φxakcj−k

− 2

j−1∑
k=0

ak
∂cj−k−1

∂x
, (2.63a)

j(j − 3)φ2
xbj + 2(j − 1)b0φxcj = i

∂bj−2

∂t
− ∂2bj−2

∂x2
+ (j − 2)

[
iφt − φxx

]
bj−1

− 2(j − 2)φx
∂bj−1

∂x
− 2

j−1∑
k=1

(j − k − 1)φxbkcj−k

− 2

j−1∑
k=0

bk
∂cj−k−1

∂x
, (2.63b)

b0aj + a0bj + (j − 1)φxcj = −∂cj−1

∂x
−

j−1∑
k=1

akbj−k, (2.63c)

where we have isolated the higher coefficients aj , bj , cj in the left-hand side of
(2.63). The resonance analysis is easily generalizable for systems of differential
equations, as prescribed in [350], providing the following resonance condition

j(j − 1)(j − 3)(j − 4)(j + 1) = 0, (2.64)

which retrieves five resonances. The resonance in j = −1 validates the arbi-
trariness of the singular manifold φ = 0. The remaining four resonances in
j = 0, 1, 3, 4 imply the presence of four arbitrary parameters in the associated
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coefficients for those values of j in the recursion relations (2.63). There is in-
deed a resonance in j = 0, ratified by the condition a0b0 = φ2

x, which implies
that either a0 or b0 are arbitrary.

3. The resonance conditions for j = 0, 1, 3, 4 have been verified with the aid of
MAPLE, successfully checking that all of them hold. In this case, the coeffi-
cients a0, c1, a3, c4 have been reported as arbitrary.

Hence, the NLS system (2.59) passes the Painlevé test, which means that it possesses
the Painlevé Property and it is therefore conjectured integrable.

5.2. Singular manifold method for NLS

The SMM requires that the generalized Laurent series expansion (2.60) shall be
truncated at constant level, i.e. j = 1. The presence of a resonance at leading-order
j = 0 implies the relation a0b0 = φ2

x, so that a0 and b0 are no longer independent.
This fact allows us to introduce the arbitrary function g0 = g0(x, t) such that a0 =
ig0φx and b0 = − iφx

g0
. Then, the truncated expansions (2.60) result in

u[1] = u[0] +
ig0φx
φ

, w[1] = w[0] − iφx
g0φ

, m[1] = m[0] +
φx
φ
, (2.65)

where both the triads {u[0], w[0],m[0]} (seed solution) and {u[1], w[1],m[1]} (iterated
solution) are solutions of the NLS system (2.59). Expression (2.65) therefore consti-
tutes an auto-Bäcklund for the involved fields.

At this point, it is convenient to introduce the quantities

v =
φxx
φx

, r =
φt
φx
, s = vx −

v2

2
, (2.66)

where r and the Schwarzian derivative s are the homographic invariants defined in
(2.22) and (2.23).

We should now substitute the truncated expansions (2.65) into the original NLS
system (2.59), yielding a polynomial result in the singular manifold φ. The usual (and
simplest) procedure to approach the resulting equations demands that the coefficients
associated to the different powers of φ vanish. This assumption, after some algebraic
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manipulations, provides

u[0] =
1

2
g0r − i

∂g0

∂x
− i

2
g0v,

w[0] =
r

2g0
− i

g2
0

∂g0

∂x
+

iv

2g0
,

(2.67a)

irx +

(
1

g0

∂g0

∂x

)
x

= 0, (2.67b)

i

g0

∂g0

∂t
+

3

g2
0

(
∂g0

∂x

)2

+
2ir

g0

∂g0

∂x
− r2

2
+ vx −

v2

2
= 0, (2.67c)

where the quantities {v, r, s} have been already introduced according to their defi-
nitions (2.66). Equation (2.67b) can be easily integrated as

g0 = ei(2λx−
∫
r dx), (2.68)

where λ is the constant of integration5.

Hence, expressions (2.67) may be rewritten as follows:

• The equations for the seed solutions (2.67a) yield

u[0] =
g0

2
(4λ− r − iv) , w[0] =

1

2g0
(4λ− r + iv) . (2.69)

• The singular manifold equations finally take the form

rt =

(
3

2
r2 − 8λr − vx +

v2

2

)
x

, (2.70a)

vt = (rx + rv)x, (2.70b)

where the second expression (2.70b) arises from the compatibility condition
φxxt = φxxt in (2.66).

The singular manifold equations can be expressed in terms of the homographic

5The appearance of this constant is crucial, since it will play the role of the spectral parameter
in the Lax pair for the NLS system (2.59), as it is shown later.
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invariants as the following system of nonlinear PDEs

rt =

(
3

2
r2 − 8λr − s

)
x

,

st = rxxx + 2srx + rsx.

(2.71)

5.3. Spectral problem for NLS

The SMM provides a straightforward procedure to construct the Lax pair for (2.59).
The next step concerns the linearization of the singular manifold equations (2.70)
in order to derive the associated spectral problem. This process is far from being
trivial and finding the suitable change of variables to linearize the system (2.70)
is not immediate. Once again, Painlevé analysis yields the successful linearization
scheme.

The singular manifold equations (2.70) can be regarded as a coupled nonlinear system
of two differential equations in the variables {v, r}. If we apply the Painlevé test to
such system, the fields {v, r} should behave as the series expansion

v =
∞∑
j=0

vj ψ
j−δ, r =

∞∑
j=0

rj ψ
j−η, (2.72)

in a neighbourhood of a new singular manifold ψ = 0. A leading-order analysis
provides

δ = 1, η = 1, v0 = ψx, r0 = ±iψx. (2.73)

The duality in the sign of r0 implies that this coefficient is not uniquely deter-
mined, and therefore we are dealing with two branches of expansions. It can be
trivially checked that the Painlevé test is satisfied for both branches of expan-
sions, with resonances in j = −1, 2 (double), 3. These leading terms render the
precise transformation that leads to the linearization of (2.70), [141, 148]. Since the
Painlevé expansion possesses two branches, we should introduce two singular mani-
folds {ψ, χ} [141, 148, 149, 191], one for each expansion branch, such that the fields
{v, r} are written as the truncated series expansion (2.72) at constant level

v =
ψx
ψ

+
χx
χ
, r = i

(
ψx
ψ
− χx

χ

)
+ 2λ, (2.74)

where we have introduced the additional term 2λ for convenience and simplicity in
the forthcoming calculations.
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Spatial Lax pair

Substitution of expressions (2.74) into the equations for the seed solutions (2.69)
directly provides the spatial part of the spectral problem for (2.59), which reads

ψx = −iλψ + iu[0]χ,

χx = iλχ− iw[0]ψ,
(2.75)

where {ψ, χ} are the eigenfunctions and λ plays the role of the spectral parameter.

Temporal Lax pair

The singular manifold equations (2.70) provide in this occasion the temporal part
of the spectral problem for (2.59). By substituting (2.74) into (2.70) and after per-
forming and integration in the variable x, we get the following system of PDEs

i

(
ψt
ψ
− χt
χ

)
+
ψxx
ψ

+
χxx
χ

+ 2iλ

(
ψx
ψ
− χx

χ

)
− 4

ψxχx
ψχ

− 2λ2 = 0,

ψt
ψ

+
χt
χ
− i
(
ψxx
ψ
− χxx

χ

)
− 2λ

(
ψx
ψ

+
χx
χ

)
= 0,

(2.76)

which can be solved and expressed in the following form with the aid of (2.75),

ψt = −i(u[0]w[0] + 2λ2)ψ + (2iλu[0] − u[0]
x )χ,

χt = i(u[0]w[0] + 2λ2)χ− (2iλw[0] + w[0]
x )ψ.

(2.77)

It is immediate to verify that the compatibility condition of the linear system (2.75)
and (2.77) retrieves the NLS system (2.59), and hence, expressions (2.75) and (2.77)
define a two-component spectral problem for the NLS equation.

Operator representations

The spectral problem (2.75) and (2.77) may be expressed in matrix form as the
zero-curvature Lax pair

Ψx =

(
−iλ iu[0]

−iw[0] iλ

)
Ψ, Ψt =

(
−i(u[0]w[0] + 2λ2) 2iλu[0] − u[0]

x

−2iλw[0] − w[0]
x i(u[0]w[0] + 2λ2)

)
Ψ,

(2.78)
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where we have defined the two-component eigenvector Ψ = (ψ, χ)ᵀ, which clearly
satisfies the compatibility condition (2.35).

On the other hand, the Lax representation of (2.75) and (2.77) is given in terms of
the matrix differential operators

L =

(
i∂x u[0]

w[0] −i∂x

)
, A =

 i
(

2∂xx − u[0]w[0]
)

2u[0]∂x + u
[0]
x

2w[0]∂x + w
[0]
x −i

(
2∂xx − u[0]w[0]

) Ψ,

(2.79)
where it is immediate to check that the Lax equation (2.27) successfully provides
(2.59).

Eigenfunctions and singular manifold

The combination of definitions (2.66) and the linearization ansatz (2.74) allows us
to write the relation between the singular manifold φ and the eigenfunctions ψ and
χ, as

φx = ψ χ, φt = 2λψχ+ i (ψxχ− ψχx) , (2.80)

which may be expressed in a more compact form through the exact derivative

dφ = ψχdx+
[
2λψχ+ i (ψxχ− ψχx)

]
dt. (2.81)

5.4. Darboux transformations for NLS

Let us proceed with an illustrative example of the Darboux transformation approach
hereunder. The SMM allows us to construct an iterative procedure to obtain non-
trivial solutions by means of the eigenfunctions of a trivial seed solutions.

Let
{
u[0], w[0],m[0]

}
be a seed solution for (2.59). Let us now consider two sets of

eigenfunctions {ψ1, χ1} and {ψ2, χ2} associated to this seed solution with respective
eigenvalues {λ1, λ2}, i.e.

ψ1,x = −iλ1ψ1 + iu[0]χ1,

χ1,x = iλ1χ1 − iw[0]ψ1,

ψ1,t = −i(u[0]w[0] + 2λ2
1)ψ1 + (2iλ1u

[0] − u[0]
x )χ1,

χ1,t = i(u[0]w[0] + 2λ2
1)χ1 − (2iλ1w

[0] + w[0]
x )ψ1,

(2.82)

and
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ψ2,x = −iλ2ψ2 + iu[0]χ2,

χ2,x = iλ2χ2 − iw[0]ψ2,

ψ2,t = −i(u[0]w[0] + 2λ2
2)ψ2 + (2iλ2u

[0] − u[0]
x )χ2,

χ2,t = i(u[0]w[0] + 2λ2
2)χ2 − (2iλ2w

[0] + w[0]
x )ψ2,

(2.83)

where the notation ψj,x, ψj,t stands for the derivatives of the eigenfunction ψj with
respect to x and t, respectively. The associated pair of singular manifolds {φ1, φ2}
are given by (2.81)

dφ1 = ψ1χ1 dx+
[
2λ1ψ1χ1 + i (ψ1,xχ1 − ψ1χ1,x)

]
dt, (2.84)

dφ2 = ψ2χ2 dx+
[
2λ2ψ2χ2 + i (ψ2,xχ2 − ψ2χ2,x)

]
dt. (2.85)

First iteration

The truncated series expansion (2.65) induces the iterated fields
{
u[1], w[1],m[1]

}
, and

then it is possible to define the eigenfunctions {ψ1,2, χ1,2} that satisfy the spectral
problem for these iterated fields, with spectral parameter λ2, of the form

(ψ1,2)x = −iλ2ψ1,2 + iu[1]χ1,2,

(χ1,2)x = iλ2χ1,2 − iw[1]ψ1,2,

(ψ1,2)t = −i(u[1]w[1] + 2λ2
2)ψ1,2 + (2iλ2u

[1] − u[1]
x )χ1,2,

(χ1,2)t = i(u[1]w[1] + 2λ2
2)χ1,2 − (2iλ2w

[1] + w[1]
x )ψ1,2.

(2.86)

As mentioned, the iterated eigenfunctions will be denoted with a set of subindices,
such that ψ1,2 concerns the eigenfunction associated to the spectral problem for the
first iterated solution, with fields

{
u[1], w[1],m[1]

}
, with eigenvalue λ2. The iterated

eigenfunctions {ψ1,2, χ1,2} satisfying (2.86) allow us to construct the corresponding
singular manifold φ1,2

dφ1,2 = ψ1,2 χ1,2 dx+
[
2λ2 ψ1,2 χ1,2 + i (ψ1,2)x χ1,2 − iψ1,2 (χ1,2)x

]
dt. (2.87)

The truncated series expansion arising from the application of SMM constitutes
auto-Bäcklund transformations for the constituting variables. If we consider now the
Lax pair (2.86) as a system of nonlinear differential equations that couples the fields{
u[1], w[1],m[1]

}
and the eigenfunctions {ψ1,2, χ1,2}, both fields and eigenfunctions

should be expressed in terms of a similar Painlevé series expansion [83,148,248], now
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constructed in a neighbourhood of the singular manifold φ1 = 0. The truncated
series expansion for the fields (2.65) can be rewritten as

u[1] = u[0] + i
ψ2

1

φ1
, w[1] = w[0] − iχ

2
1

φ1
, m[1] = m[0] +

ψ1χ1

φ1
. (2.88)

Under this perspective, this last series expansion should be accompanied by the
corresponding truncated expansion for the eigenfunctions, of the form

ψ1,2 = ψ2 − ψ1
∆1,2

φ1
, χ1,2 = χ2 − χ1

∆2,1

φ1
, (2.89)

where the functions ∆1,2(x, t), ∆2,1(x, t) have to be determined.

Analogously, (2.87) may be regarded as a nonlinear differential equation that couples
the eigenfunctions {ψ1,2, χ1,2} and the singular manifold φ1,2, so that the latter
should also admit a truncated expansion

φ1,2 = φ2 +
Ω1,2

φ1
, (2.90)

where the coefficient Ω1,2(x, t) is expected to be related with ∆1,2, ∆2,1 of the ex-
pansion for the eigenfunctions.

By substituting expressions (2.88)-(2.90) into equations (2.86) and (2.87), we get to
obtain the explicit expressions for the coefficients ∆1,2,∆2,1,Ω1,2, given by

∆1,2 = ∆2,1 =
i

2

(
χ1ψ2 − χ2ψ1

λ2 − λ1

)
, (2.91)

with derivatives

(∆1,2)x =
1

2

(
ψ1χ2 + ψ2χ1

)
,

(∆1,2)t = i
(
ψ1ψ2w

[0] − χ1χ2u
[0]
)

+ (λ1 + λ2) (χ1ψ2 + ψ1χ2) ,
(2.92)

which are clearly symmetric under the permutation 1↔ 2, and

Ω1,2 = −∆1,2∆2,1. (2.93)

Consequently, expansions (2.88)-(2.90) are viewed as binary Darboux transforma-
tions, which map the spectral problem (2.82)-(2.83) into the same spectral problem
(2.86), expressed in the new (iterated) variables.

For future calculations, it is convenient to define a 2 × 2 (symmetric) matrix ∆ ≡
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(∆i,j), i, j = 1, 2 whose elements are computed as ∆i,i = φi if i = j

∆i,j =
i

2

χiψj − χjψi
λj − λi

if i 6= j
, (2.94)

where the diagonal terms are established through the derivatives (2.92), compared
to (2.84)-(2.85), and the antidiagonal terms coincide with (2.91).

Second iteration and Hirota’s τ -function

Darboux transformations constitute the basis of an iterative process that allows to
obtain new solutions by recursively applying this procedure. In this regard, the first
iterated quantities {u[1], w[1],m[1], ψ1,2, χ1,2, φ1,2} may be employed to perform a sec-
ond iteration, such that the new fields {u[2], w[2],m[2]} can be constructed following
expressions (2.88), as

u[2] = u[1] + i
ψ2

1,2

φ1,2
, w[2] = w[1] − i

χ2
1,2

φ1,2
, m[2] = m[1] +

ψ1,2χ1,2

φ1,2
. (2.95)

This second iteration can be easily expressed in terms of the different variables asso-
ciated to the seed solution {u[0], w[0],m[0], ψ1, χ1, ψ2, χ2, φ1, φ2}, taking into account
their definitions given in (2.88)-(2.90), and resulting in

u[2] = u[0] + i
∆2,2ψ

2
1 − 2∆1,2ψ1ψ2 + ∆1,1ψ

2
2

τ1,2
,

w[2] = w[0] − i∆2,2χ
2
1 − 2∆2,1χ1χ2 + ∆1,1χ

2
2

τ1,2
,

m[2] = m[0] +
(τ1,2)x
τ1,2

= m[0] +
(

log τ1,2

)
x
,

(2.96)

where we have introduced the function τ1,2, henceforth referred as τ -function, whose
definition reads

τ1,2 = φ1φ1,2 = φ1φ2 −∆1,2∆2,1. (2.97)

In accordance with the definition of the ∆-matrix given in (2.94), we may write the
τ -function as

τ1,2 = det ∆ (2.98)

and the second iteration for the fields as

u[2] = u[0]+iΨᵀ∆−1Ψ, w[2] = w[0]−iXᵀ ∆−1 X, m[2] = m[0]+
(

log τ1,2

)
x
, (2.99)
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with τ1,2 = det ∆ 6= 0, ∆−1 is the inverse matrix of ∆ and where we have defined
the two-dimensional eigenvectors Ψ = (ψ1, ψ2)ᵀ and X = (χ1, χ2)ᵀ.

It is worthwhile to remark that the function τ1,2 for the second iteration is not a
singular manifold itself, but it can be constructed in terms of two singular manifolds
from the previous iterations. This function is closely related to the τ -function, first
introduced in [369], of Hirota’s bilinear formalism [208, 211, 212] (cf. Subsection 4.4
of this Chapter).

Iterations of nth-order

This procedure may be implemented repeatedly and generalized up to the nth itera-
tion. In general, once this point is reached, we are more concerned about the genera-
tion of the nth iteration for the fields, which leads to novel solutions for (2.59), rather
than the explicit obtention of the associated eigenfunctions {ψ1,2,...,n+1, χ1,2,...,n+1},
with spectral parameter λn+1, or singular manifold φ1,2,...,n+1.

In order to properly construct this nth iteration for the fields, we should need the
following elements:

• A seed solution {u[0], w[0],m[0]} for the original nonlinear problem (2.59),

• Two sets of n different eigenfunctions {ψ1, ψ2, . . . , ψn}, {χ1, χ2, . . . , χn} that
solve the spectral problem (2.75) and (2.77) for this seed solution with spectral
parameters {λ1, λ2, . . . , λn}, respectively. In other words, these eigenfunctions
satisfy the following Lax pairs

ψj,x = −iλjψ2 + iu[0]χj

χj,x = iλ2χj − iw[0]ψj

ψj,t = −i(u[0]w[0] + 2λ2
j )ψj + (2iλju

[0] − u[0]
x )χj

χj,t = i(u[0]w[0] + 2λ2
j )χj − (2iλjw

[0] + w[0]
x )ψj

, j = 1, . . . , n, (2.100)

• n singular manifolds {φ1, φ2, . . . , φn}, defined through (2.81) as

dφj = ψjχj dx+
[
2λjψjχj + i (ψj,xχj − ψjχj,x)

]
dt, j = 1, . . . , n. (2.101)

In this scenario, the iterated fields of order n {u[n], w[n],m[n]} may be expressed as

u[n] = u[0] + iΨᵀ∆−1Ψ,

w[n] = w[0] − iXᵀ ∆−1 X, (2.102)
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m[n] = m[0] +
(τ1,2,...,n)x
τ1,2,...,n

= m[0] +
(

log τ1,2,...,n

)
x
,

in terms of the n-dimensional eigenvectors Ψ = (ψ1, ψ2, . . . , ψn)ᵀ and X = (χ1, χ2, . . . ,
χn)ᵀ and the τ -function

τ1,2,...,n = φ1φ1,2 · · · · · φ1,2,...,n = det ∆, (2.103)

where ∆ ≡ (∆i,j), i, j = 1, . . . , n stands now for the generalization of (2.94) to a
n× n (symmetric) matrix of entries ∆i,i = φi if i = j

∆i,j =
i

2

χiψj − χjψi
λj − λi

if i 6= j
, i, j = 1, . . . , n. (2.104)

It is fundamental to note that the nth iteration for the fields exclusively depends on
the elements of the ∆-matrix defined in (2.104). Hence, the resolution of the spectral
problem associated to the seed solution suffices to obtain the consecutive iterated
solutions for the former nonlinear problem. The binary Darboux transformation
approach constitutes an ideal procedure to determine multi-soliton solutions, since
the n-soliton solution is closely related to the nth iteration of the fields. In particular,
the n-soliton solution for the NLS system (2.59) can be obtained as the nth iteration
for the probability density of the fields, i.e. the product

u[n]w[n] = −m[n]
x = −m[0]

x −
(

(τ1,2,...,n)x
τ1,2,...,n

)
x

, (2.105)

which remains the usual expression for the n-soliton solution in the Hirota formalism
[211,212].

5.5. Soliton-like solutions for NLS

In view of the previous results, we conclude that the binary Darboux transformation
method provides an algorithmic scheme to construct solutions of a given nonlinear
problem, which may be summarized as follows:

1. We should choose a seed solution
{
u[0], w[0],m[0]

}
for the initial NLS system (2.59).

This ansatz will condition the nature of the arising solutions in the iteration
process.

2. Secondly, the corresponding spectral problem for this seed solution (2.100) needs
to be solved, to obtain the associated eigenfunctions and spectral parameters.
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We should try to find as many solutions as desired iterations we would like to
implement.

3. The third step entails the computation of the n2 elements6 of the ∆-matrix as
defined in (2.104).

4. Once the elements ∆i,j , j = 1, . . . , n have been determined, we should now obtain
the expression for the τ -function τ1,2,...,n following (2.103).

5. Finally, the probability density for this solution u[n]w[n] = −m[n]
x is given by

(2.105).

Soliton solutions

Thereupon, we will be interested in the one and two soliton solutions for the defo-
cusing NLS system described in (2.59).

1. Seed solution

Since we attempt to find the standard soliton profile, it would be desirable to
select exponential seed solutions as

u[0] = j0e
−2ij20 t, w[0] = j0e

2ij20 t, m[0] = −j2
0x, (2.106)

where j0 is a free parameter.

2. Eigenfunctions and singular manifolds

We may find two sets of different eigenfunctions {ψ1, χ1} and {ψ2, χ2} for the
spectral problem (2.100) associated to the seed solution (2.106), with spectral
parameters {λ1, λ2}, respectively. These eigenfunctions possess exponential de-
pendence as

ψ1 = eiA1ej0 sin (2A1)(x+2λ1 t)e−ij
2
0 t, χ1 = e−iA1ej0 sin (2A1)(x+2λ1 t)eij

2
0 t, (2.107)

ψ2 = eiA2ej0 sin (2A2)(x+2λ2 t)e−ij
2
0 t, χ2 = e−iA2ej0 sin (2A2)(x+2λ2 t)eij

2
0 t, (2.108)

where Aj , j = 1, 2 are arbitrary parameters and the respective spectral problems
are given by

λ1 = j0 cos (2A1), λ2 = j0 cos (2A2). (2.109)

The singular manifolds follow from (2.101), whose explicit expressions read
6For the NLS system, the ∆-matrix is symmetric, so the number of elements to compute is

reduced to n(n−1)
2

.
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φ1 =
k1 + E2

1

2j0 sin (2A1)
, φ2 =

k2 + E2
2

2j0 sin (2A2)
, (2.110)

where kj , j = 1, 2 are arbitrary parameters and we have defined

Ej = ej0 sin (2Aj)(x+2j0 cos (2Aj)t), j = 1, 2. (2.111)

3. First iteration: one-soliton solution

With these ingredients, we are in the position to perform the first iteration for
the fields and therefore obtain the one-soliton solution for the NLS system (2.59).
Focusing on the field m[1]

x (the density of probability up to a sign), we obtain

m[1]
x = m[0]

x +

(
(φ1)x
φ1

)
x

= −j2
0 +

4j2
0 sin2(2A1)k1E

2
1

(k1 + E2
1)2

= j2
0

{
sin2(2A1) sech2

[
j0 sin (2A1)

(
x+ 2j0 cos (2A1) t

)
− 1

2
log k1

]
− 1

}
,

(2.112)
which is displayed in Figure 2.1. This solution represents, up to a constant back-
ground, a travelling solitary wave that propagates with velocity v = −2j0 cos (2A1),
amplitude a = j2

0 sin2(2A1), wavenumber k = j0 sin (2A1) and initial phase
ϕ0 = −1

2 log k1. As it typically happens with soliton solutions, the wave pa-
rameters {k, v, a} are related through the arbitrary constant A1, such that a =

k2, v =
√

1− 4k2. This solution constitutes the dark soliton solution
∣∣u[1]

∣∣2 for
the defocusing NLS equation (2.58) [201,432].

Figure 2.1: One-soliton solution m[1]
x for NLS, with j0 = 1, A1 = 4, k1 = 0.
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4. ∆-matrix and τ -function

According to its definition given in (2.104), we should now compute the different
elements of the 2× 2 matrix

∆1,1 = φ1 =
k1 + E2

1

2j0 sin (2A1)
, ∆2,2 = φ2 =

k2 + E2
2

2j0 sin (2A2)
,

∆1,2 = ∆2,1 =
sin (A1 −A2)E1E2

j0(cos (2A2)− cos (2A1))
,

(2.113)

where Ej , j = 1, 2 are defined in (2.111). Hence, the τ -function is written as

τ1,2 = φ1φ2 −∆1,2∆2,1 =
k1k2 + k2E

2
1 + k1E

2
2 +A1,2E

2
1E

2
2

4j2
0 sin (2A1) sin (2A2)

, (2.114)

with
A1,2 = 1− sin (2A1) sin (2A2)

sin2 (A1 +A2)
. (2.115)

5. Second iteration: two-soliton solution

Then, the second iteration of the fields straightforwardly yields the two-soliton
solution for NLS equation (2.59), as

m[2]
x = m[0]

x +

(
(τ1,2)x
τ1,2

)
x

, (2.116)

when τ1,2 is defined in (2.114).

Figure 2.2: Two-soliton solution m[2]
x for NLS, j0 = 1, A1 = 1, A2 = 2, k1 = 0, k2 = 0.
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The two-soliton solution has been plotted in Figure 2.2. This picture is displayed
in the center of mass reference frame, easily obtained by means of the Galilean
transformation x→ x+ j0[cos(2A1) + cos(2A2)].

Further solutions

It has been demonstrated that multi-soliton solutions can be successfully obtained by
this procedure. Furthermore, a plethora of additional soliton-like solutions may arise
for an appropriate choice of both the seed solutions and the associated eigenfunctions,
as it has been illustrated in [367]. The obtention of this kind of solutions will be
sketched in the following, briefly presented and without extensive details.

Special kinds of breather solutions [19–21, 257, 284] and rogue waves [17, 18, 22, 337]
can be easily obtained as particular cases of the two-solution solution for NLS (2.114).
Breather-like solutions are expected to exhibit a localized but oscillatory behaviour
in the τ -function, whilst rogue waves are presented as both spatially and temporally
localized structures that appear from nowhere and disappear without a trace [18].
The latter solutions are typically expressed in terms of explicit rational functions of
the constituent variables, therefore being known as rational solitons.

Let us consider the case A2 = −A1 + π
2 . This choice has been specifically made

such that the associated spectral parameters given in (2.109) satisfy λ2 = −λ1.
The aforementioned selection yields the following expressions for the elements of the
∆-matrix in (2.113)

∆1,1 = φ1 =
k1 + e2j0 sin(2A1)[x+2j0 cos (2A1)t]

2j0 sin (2A1)
,

∆2,2 = φ2 =
k2 + e2j0 sin(2A1)[x−2j0 cos (2A1)t]

2j0 sin (2A1)
,

∆1,2 = ∆2,1 =
e2j0 sin(2A1)x

2j0
,

(2.117)

where k1, k2 are arbitrary parameters. Taking the additional choice k1 = k2 =
cos(2A1), the resulting τ -function in (2.114) reduces to

τ1,2 =
e2j0 sin(2A1)x

2j2
0

{
cosh[2j0 sin(2A1)x]

tan2(2A1)
+

cos(2A1) cosh[2j2
0 sin(4A1) t]

sin2(2A1)

}
,

(2.118)
which exclusively depends on the arbitrary parameters j0 and A1. For particular
combinations of these two constants {j0, A1}, either real or complex, the following
classes of solutions are obtained:
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Chapter 2. Painlevé Property and the singular manifold method

1. Akhmediev breather: periodic solution in the coordinate x and hyperbolic
in t.

This solution can be easily derived by considering real values of A1 ∈ R and
purely imaginary values for j0 = ih0, h0 ∈ R, such that the hyperbolic trigono-
metric functions in (2.118) become ordinary circular functions and viceversa,
providing

τ1,2 ∼ cos (2A1) cos [2h0 sin (2A1)x] + cosh[2h2
0 sin (4A1) t], (2.119)

which corresponds to the so-called Akhmediev breather [19–21]. Figure 2.3
displays the corresponding solution m[2]

x associated to this τ -function through
expression (2.116).

Figure 2.3: Akhmediev breather m[2]
x for NLS system, with parameters h0 = 1, A1 = 4.

2. Kuznetsov-Ma breather: periodic solution in the coordinate t and hyper-
bolic in x.

A solution with these characteristics may be recovered by setting purely imag-
inary values of both j0 and A1, such that j0 = ih0, A1 = iB1 with h0, B1 ∈ R.
Then, the τ -function in (2.118) reads

τ1,2 ∼ cosh (2A1) cosh [2h0 sinh (2B1)x] + cos
[
2h2

0 sinh (4B1) t
]
, (2.120)

which provides the celebratedKuznetsov-Ma breather [257,284]. The associated
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soliton solutions is plotted in Figure 2.4.

Figure 2.4: Kuznetsov-Ma breather m[2]
x for NLS system, with parameters h0 =

1, B1 = 1
2 .

3. Peregrine soliton: localized solution in both coordinates (x, t).

For the particular ansatz A1 = 0, A2 = π
2 , j0 = ih0, h0 ∈ R, the different

elements of the ∆-matrix become polynomial functions in the variables (x, t).
By direct substitution of this choice in equations (2.107)-(2.110), we get that
the ∆-matrix read

φ1 = (x+ h1) + i(2h0t+ h2),

φ2 = (x+ h1)− i(2h0t+ h2),

∆1,2 = − i

2h0
,

(2.121)

where h1, h2 are two arbitrary real constants of integration. In this scenario,
the τ -function results in

τ1,2 = (x+ h1)2 + (2h0t+ h2)2 +

(
1

2h0

)2

, (2.122)

which does not vanish anywhere. The associated profile m[2]
x yields the well-

known Peregrine soliton [337], whose explicit representation is given in Figure
2.5.

70



Chapter 2. Painlevé Property and the singular manifold method

Figure 2.5: Peregrine soliton m
[2]
x for NLS system, with parameters h0 = 1, h1 =

0, h2 = 0.

The analysis performed for the NLS equation constitutes an enlightening exam-
ple that illustrates the potential of the procedure established in the foundations of
this Chapter. Regarding the integrability characterization, the conjunction of the
Painlevé analysis and the SMM allows us to straightforwardly obtain the associated
spectral problem for the nonlinear system. On the other hand, the (binary) Darboux
transformation approach provides an iterative method to construct an extensive va-
riety of solutions of diverse nature. This methodology has proved to be remarkably
fruitful when deriving soliton-like solutions for integrable systems, as it has been
validated in previous works [141, 142, 148, 150, 159, 161]. In particular, this thesis
addresses the analysis of integrable systems under this perspective, focusing on the
obtention of rational solitons of diverse kind. A detailed approach to several nonlin-
ear integrable models has been conducted in the ensuing Chapters 3 and 4, devoted
to the analysis of systems in 1 + 1 dimensions or 2 + 1 dimensions, respectively.
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Chapter 3

Applications to PDEs in 1 + 1 dimensions

The fundamental purpose of this Chapter lies in the different applications of the
methodology described in Chapter 2 to the analysis of two integrable models in 1+1
dimensions arising from the fields of Mathematical Physics, Materials Sciences and
Biology. In particular, the two nonlinear evolution systems are constructed from
integrable generalizations of the NLS equation [3, 130].

The approach to adopt, when studying these models, constitutes a direct application
of the one already illustrated in the previous Chapter. The characterization of the
integrability of these systems will be conducted by means of the Painlevé test, based
on the WTC method for partial differential equations [417]. Once the integrability
has been identified, we proceed to apply the SMM [410] with the subsequent aim of
obtaining the associated spectral problems. Finally, binary Darboux transformations
will be properly implemented to derive different families of soliton-like solutions,
depending on the case under consideration.

This Chapter is organized in two main Sections. Section 1 is devoted to the integra-
bility analysis of a model in 1+1 dimensions that aims to describe spin transport phe-
nomena in biological helical molecules. This model, proposed in [124, 125], emerges
as a theoretical attempt to characterize the physical effect known as chiral-induced
spin selectivity, reported by numerous experiments on electron transport through he-
lical molecules [113,198,300,310,354]. The helical conformation of dipoles induces an
unconventional Rashba-like interaction [65, 352] that couples the electron spin with
its linear momentum. Besides, an additional nonlinearity arises from the electron-
lattice interaction, enabling the formation of a plethora of stable soliton configura-
tions, depending on the focusing or defocusing nature of the nonlinear interaction.
The research conducted in this Section is fully covered in publications [26,125].

Section 2 addresses the study and characterization of the integrability of a modified
(1+1)-nonlinear Schrödinger equation with derivative-type nonlinearities. This kind
of generalizations provides the so-called derivative nonlinear Schrödinger (DNLS)
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3.1. NLS equation in 1 + 1 dimensions for a deformable helical molecule

equations. The Painlevé analysis for this generalized equation additionally leads to
other two differential equations of interest: a conservative PDE for the probability
density of the initial equation and a nonlocal Boussinesq-like equation. These three
equations are deeply analyzed regarding their integrability, providing two equivalent
Lax pairs for each equation and successfully deriving rational soliton solutions. The
content available in this Section is based on the author’s contributions [23,28].

1. Nonlinear Schrödinger equation in 1+1 dimensions for
a deformable helical molecule

It has been observed in experiments that the helical conformation of certain organic
molecules, such as DNA, may induce a sizable chiral-spin selectivity [37,113,134,189,
244, 300, 302, 310, 354, 421]. This effect results from the spin-orbit coupling (SOC)
between the electronic momentum and the electric field created by the helical con-
figuration of the molecule. Many theoretical models have been proposed to explain
these experimental evidences within different frameworks [68, 135, 196–199, 298, 299,
349,424], but there is not full agreement with experimental data yet.

Theoretical models usually assume rigid lattices and neglect the local deformation
of the molecule about the carrier. However, this assumption seems unrealistic to
describe charge transport in molecular systems like DNA [75]. Depending on the
energy scales involved, lattice deformation can play a significant role on transport
properties [173, 216, 312, 338]. Besides, non negligible molecule deformations, and
consequently, the interaction between quasiparticles (electrons or excitons) and the
lattice vibrations, have been proved to be particularly useful to describe charge and
energy transfer processes in α-helical molecules [126,246,288].

In this context, it is mandatory to mention Davydov’s soliton theory [81, 121, 122].
Davydov proposed a nonlinear mechanism to describe the energy transfer in α-helix
proteins, where their deformability is taken into account. The interaction between the
amide-I vibrations and the hydrogen bonds induce a self-trapping phenomenon that
enables the formation of collective excitations. These excitations behave as stable and
localized quasiparticles which propagate uniformly, the so-called Davydov solitons.
Besides, it is shown that the continuous limit of Davydov’s equations in the adiabatic
approximation reduces to NLS equation for the elementary excitations [123].

1.1. Description of the model

In the following, we introduce a nonlinear model in 1 + 1 dimensions describing the
spin dynamics of an electron that propagates along the axis of a deformable helical
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molecule [26,125]. From the theoretical point of view, this model is based on two main
contributions. The spin-molecule interaction is due to an unconventional Rashba-like
SOC over the propagating electronic current along the axis of the molecule, whilst
the lattice vibrations give rise to an additional nonlinear interaction.

Spin dynamics in a rigid helical molecule

This candidate generalizes the linear model formerly introduced by Gutiérrez et al.
[198], and recently revisited by Díaz et al. [124]. Firstly, the spin-molecule interaction
arises from an unconventional Rashba-like SOC, reflecting the helical symmetry of
molecules due to the electron motion in a helical arrangement of peptides dipoles
[124, 125]. To be specific, a helical conformation of tangentially oriented dipoles is
considered to be spin-orbit coupled to the electron motion directed along the axis.

The Hamiltonian of the propagating electrons can be expressed as

Ĥ =
p̂2

2m
+ µσ · (p̂×E), (3.1)

where p̂ is the linear momentum of the carriers and ĤSOC = µσ·(p̂×E) stands for the
SOC Hamiltonian. The strength of the SOC is given by µ = e~

(2mc)2
, σ = (σx, σy, σz)

is a vector whose components are the Pauli matrices and E is the electric field in the
rest frame of the electron that induces the magnetic field responsible of the SOC.

Assuming that the helical molecule is oriented along the Z axis, the resulting dimen-
sionless Hamiltonian Ĥ = 1

Eb
Ĥ reads [124,125,198]

Ĥ = −∂ξξ − 2πγ

(
0 e−i2πξ(i∂ξ + π)

ei2πξ(i∂ξ − π)

)
, (3.2)

where Eb = ~2
2mb2

, with m and b being the electron mass and pitch of the helix,
respectively. The (dimensionless) spatial coordinate is given by ξ = z

b , γ = ~µE0
2πbEb

stands for a dimensionless constant that is proportional to the magnitude of the SOC
and the subscript indicates differentiation with respect to ξ.

The dimensionless Hamiltonian (3.2) is readily diagonalized since it commutes with
the helical operator q̂ = p̂ + πσz. The corresponding normalized eigenfunctions
and eigenenergies, which satisfy the associated dimensionless Schrödinger equation
Ĥχ(ξ) = εχ(ξ), are found to be

χ(ξ) ≡ χqs(ξ) =

(
β1(s) ei(q−π)ξ

β2(s) ei(q+π)ξ

)
, εqs = q2 + π2 − 2πs

√
1 + γ2 q, (3.3)
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such that s = ±1, the coefficients β1(s) and β2(s) are given by

β1(s) =
1

2
[(1 + s) cos θ + (1− s) sin θ],

β2(s) =
1

2
[(1− s) cos θ − (1 + s) sin θ],

(3.4)

satisfying β2
1(s) + β2

2(s) = 1, and

tan θ =
γ

1 +
√

1 + γ2
. (3.5)

The helical conformation of the electric dipoles gives rise to an additional effective
momentum qs = sπ

√
1 + γ2, even in the absence of SOC. Previous studies report on

this fact as having an impact on the linear optical response as well [127].

The full dynamics of the electron current within the rigid helical molecule can be
obtained by solving the associated time-dependent Schrödinger equation

i∂tχ(ξ, t) = Ĥχ(ξ, t). (3.6)

In particular, publication [125], following [124], addresses the coherent dynamics
of an electron wave packet with an initial spatial Gaussian distribution. The spin
projection onto the helical axis of different initial configurations have been studied,
as well as its asymptotic behaviour, with the sole purpose of better understanding
the origin of spin selectivity found in experiments.

Spin dynamics in a deformable helical molecule

According to Davydov’s theory [122], the effects of the molecule deformability should
be reflected in the appearance of an additional nonlinear term within the adiabatic
approximation. In order to describe a deformable helical molecule where the electron
dynamics is affected by the lattice vibrations, we will assume that the different dipoles
vibrate along the molecule axis independently of each other. After a perturbative
analysis developed in [125], we may conclude that the first-order correction to the
potential energy of the electron in the electric field created by the dipoles due to the
lattice vibrations is given by

δV (z) = kχ†(z, t) · χ(z, t), (3.7)

computed in the adiabatic approximation and the continuum limit, with k being a
constant and where the dagger sign † henceforth denotes the conjugate transpose.
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This term should be now added to the Hamiltonian Ĥ discussed in (3.2) in order to
describe the electron dynamics in a deformable helical molecule. In such scenario, the
dimensionless Schrödinger equation (3.6) becomes a modified NLS equation in 1 + 1
dimensions, describing the dynamics of the spinor state χ(ξ, t) = [χ1(ξ, t), χ2(ξ, t)]ᵀ

by means of the evolution PDE

i∂tχ(ξ, t) = Ĥχ(ξ, t) + 2g
[
χ†(ξ, t) · χ(ξ, t)

]
χ(ξ, t), (3.8)

where Ĥ is given in equation (3.2) and where we have renamed k = 2g in (3.7). g is
therefore a free parameter that characterizes the nature of the nonlinear interaction,
considering hereafter both cases, g > 0 for the defocusing case and g < 0 for the
focusing case.

Equation (3.8) can be considered as a generalization of the Manakov system [286,345],
which is often also called vector NLS system [7, 8]. Integrability properties of this
Manakov system and the Painlevé Property are described in references [282, 404].
Different generalizations of the Manakov system can be found in [389] and, more
recently in [435]. Furthermore, equation (3.8) constitutes the only integrable case
of a recent model proposed by Kartashov and Konotov [234]. This one-dimensional
nonlinear model addresses the dynamics of spatially inhomogeneous Bose-Einstein
condensates with helical SOC, where it can be proved that the Gross-Pitaevskii
equation for this system reduces to equation (3.8) when the Zeeman splitting is
negligible.

Equation (3.8) may be rewritten in autonomous form through the substitution

χ(ξ, t) = Ng

(
e−iπ(ξ+πt) 0

0 eiπ(ξ−πt)

)
α(ξ, t), (3.9)

where α(ξ, t) = [α1(ξ, t), α2(ξ, t)]ᵀ constitutes the new spinor state, of components
αj(ξ, t), j = 1, 2, and the value of the constant Ng is given by

Ng =


√

1

g
for g > 0 (defocusing nonlinear interaction)

i

√
1

|g|
for g < 0 (focusing nonlinear interaction)

. (3.10)

In both cases, the change (3.9) yields the following system of differential equations(
i∂t + ∂ξξ − 2iπ∂ξ − 2α† ·α

)
α1 + 2iπγ ∂ξα2 = 0,

2iπγ ∂ξα1 +
(
i∂t + ∂ξξ + 2iπ∂ξ − 2α† ·α

)
α2 = 0.

(3.11)
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The ensuing Subsections will be devoted to the analysis of this latter model. For
subsequent calculations, we should preferably consider both the system (3.11) and
its complex conjugate. The integrability analysis arises from the Painlevé test, whilst
the Lax pair can be successfully derived by means of the SMM. The Painlevé Property
can also be used to derive Darboux transformations and an iterative procedure for
obtaining analytic solutions. It is precisely the electron-lattice interaction introduced
in (3.7) that enables the formation of stable soliton-like structures, providing an
extraordinarily rich dynamics in the spectrum of solutions for both regimes, either
in the focusing or the defocusing case.

1.2. Painlevé test and integrability

We shall now apply the Painlevé test [417], based on the WTC algorithm, described
in Subsection 1.2.2 of Chapter 2, to analyze the integrability of the nonlinear system
(3.11). This procedure requires the following ansatz for the two components of α(ξ, t)

α1 =

∞∑
j=0

ajφ
j−β, α†1 =

∞∑
j=0

a†jφ
j−β,

α2 =

∞∑
j=0

bjφ
j−δ, α†2 =

∞∑
j=0

b†jφ
j−δ,

(3.12)

where aj(ξ, t), a
†
j(ξ, t), bj(ξ, t), b

†
j(ξ, t), ∀j are arbitrary coefficients for the series ex-

pansion, β, γ are the leading indices and φ(ξ, t) is the so-called singular manifold.
This ansatz means that the solutions are single valued in a neighbourhood of the
singular manifold φ(ξ, t) = 0.

1. The leading-order analysis for the case j = 0 trivially yields

β = δ = 1,

a0 = Aφξ, a†0 = A†φξ, b0 = Bφξ, b†0 = B†φξ,
(3.13)

such that
AA† +BB† = 1. (3.14)

The normalization condition (3.14) implies that the coefficients {A,A†, B,B†}
are not independent, indicating the presence of a resonance in j = 0. The num-
ber of independent coefficients will be given by the order of the aforementioned
resonance.
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2. A straightforward calculation provides the following resonance condition

j3(j − 3)3(j − 4)(j + 1) = 0, (3.15)

which retrieves eight resonances, given by the usual resonance in j = −1 asso-
ciated to the arbitrariness of the singular manifold φ = 0, triple resonances in
both j = 0 and j = 3 and a single resonance in j = 4. The triple resonance in
j = 0 indicates that three of the coefficients {A,A†, B,B†} are independent,
which means that one of them can be expressed in terms of the remaining ones.

3. The computation of the resonance conditions for j = 0, 3, 4 have been handled
with MAPLE, successfully checking that all of them are identically satisfied.

Therefore, we can conclude that the solutions are single valued around the singularity
manifold φ = 0 and the nonlinear system formed by (3.11) and its complex conjugate
possesses the Painlevé Property. Hence, the system under consideration has proved
to be integrable.

It is worth mentioning that the same Painlevé test, when applied to the model
introduced by Kartashov and Konotop in reference [234], is only satisfied when the
Zeeman splitting vanishes. Therefore, we are led to the conclusion that (3.11) is the
only integrable case of the model proposed by the authors in [234].

1.3. The singular manifold method

This Painlevé Property is usually considered as a proof of the integrability of the
equation, especially when it can be used to derive the associated spectral problem.
The equivalence between the Painlevé Property and the Lax pair can be achieved
through the SMM [410]. The SMM implies the truncation of the Laurent series (3.12)
at constant level

α
[1]
1 =

Aφξ
φ

+ α
[0]
1 ,

(
α

[1]
1

)†
=
A†φξ
φ

+
(
α

[0]
1

)†
,

α
[1]
2 =

Bφξ
φ

+ α
[0]
2 ,

(
α

[1]
2

)†
=
B†φξ
φ

+
(
α

[0]
2

)†
,

(3.16)

such that the normalization condition again implies AA† +BB† = 1.

Relations (3.16) constitute auto-Bäcklund transformations, where α[0] =
(
α

[0]
1 , α

[0]
2

)ᵀ
constitutes the seed solution and α[1] =

(
α

[1]
1 , α

[1]
2

)ᵀ
is the iterated one.

(
α[0]

)†
and

(
α[1]

)†, with their respective components, stand for the associated conjugate

79



3.1. NLS equation in 1 + 1 dimensions for a deformable helical molecule

transpose elements of α[0] and α[1], respectively.

Substitution of the truncated expansions (3.16) into the starting system (3.11) yields
polynomial expressions in powers of the singular manifold φ whose coefficients should
identically vanish. The standard approach to deal with the resulting equations in-
volves defining the following quantities

r =
φt
φξ
, v =

φξξ
φξ

, s = vξ −
v2

2
, (3.17)

where r and the Schwarzian derivative s are the so-called homographic invariants.

Expressions of the fields in terms of the singular manifold

With the aid of the definitions given in (3.17), the expressions of the seed fields α[0]

are

α
[0]
1 = −Aξ + iπ

(
A− γB

)
− A

2
(v + ir) ,

α
[0]
2 = −Bξ − iπ

(
B + γA

)
− B

2
(v + ir) ,

(3.18a)

while the conjugate transpose
(
α[0]

)† reads
(
α

[0]
1

)†
= −A†ξ − iπ

(
A† − γB†

)
− A†

2
(v − ir) ,(

α
[0]
2

)†
= −B†ξ + iπ

(
B† + γA†

)
− B†

2
(v − ir) ,

(3.18b)

Singular manifold equations

The equations that the singular manifold should satisfy in order to fulfill the trun-
cation ansatz can be written as

r = −2λ+ i
(
A†Aξ +B†Bξ

)
+ π

(
AA† −BB†

)
− γπ

(
AB† +A†B

)
, (3.19a)

At = iAξξ − 2iπ2
(
1 + γ2

)
A+A

(
−rξ + ivξ −

i

2
r2 − i

2
v2

)
+ 2πAξ − 2πγBξ + 2Ar

(
AA†ξ +BB†ξ

)
− 2iA

(
AξA

†
ξ +BξB

†
ξ

)
(3.19b)

+ 2Aπγ
(
AB†ξ −B

†Aξ +BA†ξ −A
†Bξ

)
− 2iAπγr

(
AB† +BA†

)
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− 2Aπ
[
ir
(
BB† −AA†

)
+ 2

(
B†Bξ +AA†ξ

)]
,

A†t = −iA†ξξ + 2iπ2
(
1 + γ2

)
A† +A†

(
−rξ − ivξ +

i

2
r2 +

i

2
v2

)
+ 2πA†ξ − 2πγB†ξ + 2A†r

(
A†Aξ +B†Bξ

)
+ 2iA†

(
AξA

†
ξ +BξB

†
ξ

)
(3.19c)

− 2A†πγ
(
AB†ξ −B

†Aξ +BA†ξ −A
†Bξ

)
+ 2iA†πγr

(
AB† +BA†

)
− 2A†π

[
−ir

(
BB† −AA†

)
+ 2

(
BB†ξ +A†Aξ

)]
,

Bt = iBξξ − 2iπ2
(
1 + γ2

)
B +B

(
−rξ + ivξ −

i

2
r2 − i

2
v2

)
− 2πBξ − 2πγAξ + 2Br

(
AA†ξ +BB†ξ

)
− 2iB

(
AξA

†
ξ +BξB

†
ξ

)
(3.19d)

+ 2Bπγ
(
AB†ξ −B

†Aξ +BA†ξ −A
†Bξ

)
− 2iBπγr

(
AB† +BA†

)
+ 2Bπ

[
−ir

(
BB† −AA†

)
+ 2

(
A†Aξ +BB†ξ

)]
,

B†t = −iB†ξξ + 2iπ2
(
1 + γ2

)
B† +B†

(
−rξ − ivξ +

i

2
r2 +

i

2
v2

)
− 2πB†ξ − 2πγA†ξ + 2B†r

(
A†Aξ +B†Bξ

)
+ 2iB†

(
AξA

†
ξ +BξB

†
ξ

)
(3.19e)

− 2B†πγ
(
AB†ξ −B

†Aξ +BA†ξ −A
†Bξ

)
+ 2iB†πγr

(
AB† +BA†

)
+ 2B†π

[
ir
(
BB† −AA†

)
+ 2

(
AA†ξ +B†Bξ

)]
,

where the subscript t denotes a time derivative and the arbitrary constant 2λ1 arises
from the integration of the invariant r.

Moreover, we should not forget the existing relation between {v, r} arising from the
compatibility condition of their definitions given in (3.17), such that

vt = (rξ + rv)ξ. (3.20)

1.4. Spectral problem

The equations for the fields (3.18) and the singular manifold equations (3.19) can
be linearized by introducing three new function {ψ(ξ, t), ω(ξ, t), η(ξ, t)} and their

1The multiplicative factor 2 is written for convenience in view of the forthcoming calculations.
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conjugates
{
ψ†(ξ, t), ω†(ξ, t), η†(ξ, t)

}
. Following the prescription described in [151,

410], we introduced the definitions

A =
ω

ψ
, A† =

ω†

ψ†
, B =

η

ψ
, B† =

η†

ψ†
, (3.21)

that allow us to write the normalization condition AA† +BB† = 1 as

ωω† + ηη† − ψψ† = 0. (3.22)

Therefore, the variables {v, r} can be written as

v =
ψξ
ψ

+
ψ†ξ
ψ†
, r = −2λ− i

(
ψξ
ψ
−
ψ†ξ
ψ†

)
. (3.23)

Spatial part of the Lax pair

If we define the eigenvectors

Ψ =

ψω
η

 , Ψ† =

ψ†ω†
η†

 , (3.24)

the definitions introduced in (3.21) in combination with (3.22) allow us to straight-
forwardly linearize the expressions for the seed fields given in (3.18), yielding the
spatial part for the spectral problem for (3.11), of the form

Ψξ = V1

[
α

[0]
1 , α

[0]
2

]
Ψ + iλV2Ψ + iπV3(γ)Ψ, (3.25a)

and its complex conjugate

Ψ†ξ = V1

[(
α

[0]
1

)†
,
(
α

[0]
2

)†]
Ψ† − iλV2Ψ

† − iπV3(γ)Ψ†, (3.25b)

where the parameter λ acts as the spectral parameter and the 3×3 matrices V1, V2, V3

have the expressions

V1

[
α

[0]
1 , α

[0]
2

]
=

 0 −
(
α

[0]
1

)†
−
(
α

[0]
2

)†
−α[0]

1 0 0

−α[0]
2 0 0

 , (3.26)
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V2 =

−1 0 0
0 1 0
0 0 1

 , V3(γ) =

0 0 0
0 1 −γ
0 −γ −1

 ,

such that the dependence of the spatial Lax pair with the parameter γ is encoded in
the matrix V3.

Temporal part of the Lax pair

A similar result can be found for the time derivatives of {Ψ,Ψ†}, obtained through
the linearization process of the singular manifold equations (3.19) and (3.20),

Ψt = iU1

[
α

[0]
1 , α

[0]
2

]
Ψ + πU2

[
γ, α

[0]
1 , α

[0]
2

]
Ψ− iπ2U3(γ)Ψ

− 2λ
(
V1

[
α

[0]
1 , α

[0]
2

]
+ iλV2

)
Ψ,

(3.27a)

and its complex conjugate

Ψ†t = −iU1

[(
α

[0]
1

)†
,
(
α

[0]
2

)†]
Ψ† + πU2

[
γ,
(
α

[0]
1

)†
,
(
α

[0]
2

)†]
Ψ†

+ iπ2U3(γ)Ψ† − 2λ

(
V1

[(
α

[0]
1

)†
,
(
α

[0]
2

)†]
− iλV2

)
Ψ†,

(3.27b)

where the matrices V1, V2 are given in (3.26) and we have introduced the additional
3× 3 matrices U1, U2, U3 as

U1

[
α

[0]
1 , α

[0]
2

]
=


α

[0]
1

(
α

[0]
1

)†
+ α

[0]
2

(
α

[0]
2

)†
∂ξ

[(
α

[0]
1

)†]
∂ξ

[(
α

[0]
2

)†]
−∂ξ

[
α

[0]
1

]
−α[0]

1

(
α

[0]
1

)†
−α[0]

1

(
α

[0]
2

)†
−∂ξ

[
α

[0]
2

]
−α[0]

2

(
α

[0]
1

)†
−α[0]

2

(
α

[0]
2

)†

 ,

U2

[
γ, α

[0]
1 , α

[0]
2

]
=

 0 γ
(
α

[0]
2

)†
−
(
α

[0]
1

)†
γ
(
α

[0]
1

)†
+
(
α

[0]
2

)†
γα

[0]
2 − α

[0]
1 0 0

γα
[0]
1 + α

[0]
2 0 0

 ,

U3(γ) =

1 + γ2 0 0
0 0 0
0 0 0

 ,

(3.28)
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where ∂ξ
[
α

[0]
j

]
, j = 1, 2 denotes the partial derivative of the fields α[0]

j with respect
to the coordinate ξ.

Equations (3.25) and (3.27) therefore constitute a three-component Lax pair [8,389],
whose compatibility condition yields (3.11) (and its complex conjugate).

Eigenfunctions and singular manifold

According to definitions (3.17) and the linearization ansatz (3.23), the singular man-
ifold φ can be obtained by integration of the differential

dφ = ψψ†dξ −
[
2λψψ† + i

(
ψξψ

† − ψψ†ξ
)]
dt, (3.29)

which is exclusively written in terms of the eigenfunctions {ψ,ψ†}, their derivatives
and the spectral parameter λ.

1.5. Darboux transformations

One of the main advantages of the SMM is that it allows to construct an iterative
procedure to obtain highly nontrivial solutions by means of the eigenfunctions of a
trivial seed solutions. Let

α[0] =

(
α

[0]
1

α
[0]
2

)
(3.30)

be such seed solution for the starting NLS system (3.11), and let

Ψj =

ψjωj
ηj

 , j = 1, 2 (3.31)

be two eigenvectors of the spectral problem associated to α[0] with eigenvalues λj ,
given by (3.25) and (3.27). These Lax pairs explicitly read

(Ψj)ξ = V1

[
α[0]

]
Ψj + iλjV2 Ψj + iπV3(γ)Ψj ,

(Ψj)t = i U1

[
α[0]

]
Ψj + πU2

[
γ,α[0]

]
Ψj − iπ2U3(γ)Ψj

− 2λj

(
V1

[
α[0]

]
+ iλjV2

)
Ψj ,

(3.32)

for j = 1, 2, where the notation (Ψj)ξ ≡ ∂ξΨj , (Ψj)t ≡ ∂tΨj denote the derivatives
of the eigenvector Ψj with respect to the coordinates ξ, t, respectively. The complex
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conjugate of (3.32) should be taken into account as well, but we omit its explicit
expression for simplicity.

The associated singular manifolds are defined through the following exact derivatives
(3.29)

dφj = ψjψ
†
j

(
dξ − 2λjdt

)
− i
[(
ψj

)
ξ
ψ†j −

(
ψ†j

)
ξ
ψj

]
dt, j = 1, 2. (3.33)

First iteration

According to the truncated expressions (3.16), we can use the first eigenvector Ψ1 =

(ψ1, ω1, η1)ᵀ, its complex conjugate Ψ†1 and the singular manifold φ1 to construct the
iterated solution α[1], which combined with the linearization ansatz (3.21) yields

α
[1]
1 = α

[0]
1 +

ω1ψ
†
1

φ1
,

(
α

[1]
1

)†
=
(
α

[0]
1

)†
+
ω†1ψ1

φ1
,

α
[1]
2 = α

[0]
2 +

η1ψ
†
1

φ1
,

(
α

[1]
2

)†
=
(
α

[0]
2

)†
+
η†1ψ1

φ1
.

(3.34)

Hence, after some algebraic manipulations regarding relations (3.34) and (3.25), we
obtain the following expressions for the modulus of the iterated solution α[1]

(
α

[1]
1

)† (
α

[1]
1

)
=
(
α

[0]
1

)(
α

[0]
1

)†
+
iπγ

(
ω1η

†
1 − ω

†
1η1

)
φ1

−

(
ω1ω

†
1

φ1

)
ξ

,

(
α

[1]
2

)† (
α

[1]
2

)
=
(
α

[0]
2

)(
α

[0]
2

)†
−
iπγ

(
ω1η

†
1 − ω

†
1η1

)
φ1

−

(
η1η
†
1

φ1

)
ξ

,

(
α[1]

)†
·
(
α[1]

)
=
(
α[0]

)†
·
(
α[0]

)
−
(

(φ1)ξ
φ1

)
ξ

.

(3.35)

We shall now construct the spectral problem associated to the iterated solution α[1].
Let

Ψ1,2 =

ψ1,2

ω1,2

η1,2

 (3.36)

be an eigenvector for α[1] with spectral parameter λ2 such that

(Ψ1,2)ξ = V1

[
α[1]

]
Ψ1,2 + iλ2V2 Ψ1,2 + iπV3(γ)Ψ1,2,
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(Ψ1,2)t = i U1

[
α[1]

]
Ψ1,2 + πU2

[
γ,α[1]

]
Ψ1,2 − iπ2U3(γ)Ψ1,2 (3.37)

− 2λ2

(
V1

[
α[1]

]
+ iλ2V2

)
Ψ1,2,

obtaining a similar expression for the complex conjugate eigenvector Ψ†1,2 associated

to the iterated solution
(
α[1]

)† with spectral parameter λ2. The introduction of such
eigenfunctions allows us to construct the corresponding singular manifold φ1,2, by
integrating

dφ1,2 =
(
ψ1,2

)(
ψ†1,2

)(
dξ − 2λ2dt

)
− i
[(
ψ1,2

)
ξ
ψ†1,2 −

(
ψ†1,2

)
ξ
ψ1,2

]
dt. (3.38)

The Lax pair (3.37) can be understood as a system of nonlinear equations that
couples the field α[1] and the eigenvector Ψ1,2. This implies that the Painlevé ex-
pansion (3.34) for the fields should be accompanied by a similar expansion for the
eigenfunctions that can be written in the following form

ψ1,2 = ψ2 − ψ1
∆1,2

φ1
, ω1,2 = ω2 − ω1

∆1,2

φ1
, η1,2 = η2 − η1

∆1,2

φ1
, (3.39a)

where their complex conjugates are given by

ψ†1,2 = ψ†2 − ψ
†
1

∆†1,2
φ1

, ω†1,2 = ω†2 − ω
†
1

∆†1,2
φ1

, η†1,2 = η†2 − η
†
1

∆†1,2
φ1

. (3.39b)

Substitution of expressions (3.39) in their respective spectral problems, in combina-
tion with (3.34) and (3.32), yields

∆i,j = ∆ (Ψi,Ψj) = i
ω†iωj + η†i ηj − ψ

†
iψj

2(λi − λj)
,

∆†i,j = ∆
(
Ψ†i ,Ψ

†
j

)
= −i

ω†jωi + η†jηi − ψ
†
jψi

2(λi − λj)
= ∆j,i,

(3.40)

for i, j = 1, 2, i 6= j, where Ψj is the eigenvector for the seed solution α[0] with
eigenvalue λj as defined in (3.32).

It is easy to see that a similar expansion could be applied to the singular manifold
φ1,2 in (3.38), retrieving the result

φ1,2 = φ2 −
∆1,2∆†1,2

φ1
. (3.41)

86



Chapter 3. Applications to PDEs in 1 + 1 dimensions

The corresponding ∆-matrix of dimension 2 can be therefore defined as
∆i,i = φi if i = j

∆i,j =
i

2

ω†iωj + η†i ηj − ψ
†
iψj

λi − λj
, ∆j,i = ∆†i,j if i 6= j

. (3.42)

Second iteration and τ-function

As far as φ1,2 is a singular manifold for α[1], we can now iterate expressions (3.34)
in order to construct the second iteration for the fields α[2] as

α
[2]
1 = α

[1]
1 +

(
ω1,2

)(
ψ†1,2

)
φ1,2

,
(
α

[2]
1

)†
=
(
α

[1]
1

)†
+

(
ω†1,2

)(
ψ1,2

)
φ1,2

,

α
[2]
2 = α

[1]
2 +

(
η1,2

)(
ψ†1,2

)
φ1,2

,
(
α

[2]
2

)†
=
(
α

[1]
2

)†
+

(
η†1,2

)(
ψ1,2

)
φ1,2

,

(3.43)

which combined with (3.34) yields

α
[2]
1 = α

[0]
1 +

ω1ψ
†
1

φ1
+

(
ω1,2

)(
ψ†1,2

)
φ1,2

,
(
α

[2]
1

)†
=
(
α

[0]
1

)†
+
ω†1ψ1

φ1
+

(
ω†1,2

)(
ψ1,2

)
φ1,2

,

α
[2]
2 = α

[0]
2 +

η1ψ
†
1

φ1
+

(
η1,2

)(
ψ†1,2

)
φ1,2

,
(
α

[2]
2

)†
=
(
α

[0]
2

)†
+
η†1ψ1

φ1
+

(
η†1,2

)(
ψ1,2

)
φ1,2

.

(3.44)

By inserting definitions (3.39) and (3.41) in the expressions above, we obtain the
recursion relations for the second iteration in terms of the eigenfunctions of the seed
equations as

α
[2]
1 = α

[0]
1 +

ψ†2∆1,1 ω2 + ψ†1∆2,2 ω1 − ψ†2∆1,2 ω1 − ψ†1∆†1,2 ω2

τ1,2
,

α
[2]
2 = α

[0]
2 +

ψ†2∆1,1 η2 + ψ†1∆2,2 η1 − ψ†2∆1,2 η1 − ψ†1∆†1,2 η2

τ1,2
,

(3.45a)

and the conjugate fields

(
α

[2]
1

)†
=
(
α

[0]
1

)†
+
ω†2∆1,1 ψ2 + ω†1∆2,2 ψ1 − ω†1∆†1,2 ψ2 − ω†2∆1,2 ψ1

τ1,2
, (3.45b)
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(
α

[2]
2

)†
=
(
α

[0]
2

)†
+
η†2∆1,1 ψ2 + η†1∆2,2 ψ1 − η†1∆†1,2 ψ2 − η†2∆1,2 ψ1

τ1,2
,

where we have defined the τ -function τ1,2 as

τ1,2 = φ1φ1,2 = φ1φ2 −∆1,2∆†1,2, (3.46)

with coincides with τ1,2 = det ∆ by virtue of the definition (3.42).

In conclusion, α[0] and its eigenvector Ψ
[0]
j , j = 1, 2 allow us to directly obtain the

first iterated solution α[1] as well as the second one α[2], through relations (3.34) and
(3.45), respectively.

1.6. Soliton-like solutions

This Section is devoted to the use of the procedure described above to build up
a plethora of soliton-like solutions for the modified NLS equation that describes
the spin dynamics in a deformable helical molecule (3.8). Solutions in this fashion
may be algorithmically constructed following analogous steps to the ones stated in
Subsection 5.5 of the previous Chapter.

1. Seed solution

We start with the following trivial seed solution

α[0] = j0e
−2ij20 t

(
β1

β2

)
, (3.47)

where j0 is an arbitrary constant and the coefficients β1 and β2 are parametrized
as in (3.4), of the form(

β1

β2

)
=

1

2

(
(1 + s) cos(θ0) + (1− s) sin(θ0)
(1− s) cos(θ0)− (1 + s) sin(θ0)

)
, (3.48)

depending on the arbitrary parameter θ0 ∈ [0, 2π) and s = ±1. Since β2
1 +β2

2 = 1,
it is immediate to see that the norm of the the seed solution (3.47) is

∣∣α[0]
∣∣2 =(

α[0]
)† · (α[0]

)
=
∣∣∣α[2]

1

∣∣∣2 +
∣∣∣α[2]

2

∣∣∣2 = |j0|2.

To deal with the focusing and defocusing cases together, j0 ought to remain as
a free parameter. Actually, j0 should be real in the defocusing case (g > 0) and
purely imaginary j0 = ih0, h0 ∈ R in the focusing one (g < 0).
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2. Eigenfunctions and singular manifolds

We shall now find two set of different eigenvectors {Ψ1, Ψ2} of the form (3.31),
such that they solve the corresponding Lax pair (3.32) for the seed solution (3.47)
with respective spectral parameters {λ1, λ2}. Such solutions read

ψj = ekj(ξ+cjt)e
im0π(ξ−m0πt)

2 eij
2
0 t,

ωj = dje
kj(ξ+cjt)e

im0π(ξ−m0πt)
2 e−ij

2
0 t,

ηj = hje
kj(ξ+cjt)e

im0π(ξ−m0πt)
2 e−ij

2
0 t,

(3.49)

for j = 1, 2, and where the parameters satisfy

γ = tan(2θ0), m0 =
s

cos(2θ0)
. (3.50)

Furthermore, the constants cj , λj , kj , j = 1, 2 are linked via the relations

cj = m0π − 2λj , k2
j +

(
λ2
j +

m0π

2

)2
= j2

0 . (3.51)

These expressions allow us to introduce a new parameter, the angle θj , such that

λj = −m0π

2
+ j0 cos(θj), kj = j0 sin(θj), (3.52)

for every j = 1, 2. Finally, the coefficients dj , hj , j = 1, 2 in (3.49) are

dj = − iβ1e
−iθj , hj = − iβ2e

−iθj , (3.53)

where the coefficients β1, β2 are given in (3.48).

The associated singular manifolds are therefore computed by using expression
(3.33), resulting in

φ1 =
a1 + E2

1

2j0 sin(θ1)
, φ2 =

a2 + E2
2

2j0 sin(θ2)
, (3.54)

where a1 and a2 are arbitrary constants of integration and

Ej = ej0 sin(θj)[ξ+2(m0π−j0 cos(θj)) t], j = 1, 2. (3.55)

3. ∆-matrix and τ -function

Equation (3.40) easily provides the antidiagonal terms of the ∆-matrix as
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∆1,2 =
sin(θ2 − θ1) + i [cos(θ2 − θ1)− 1]

2j0(cos θ1 − cos θ2)
E1E2,

∆†1,2 =
sin(θ2 − θ1)− i [cos(θ2 − θ1)− 1]

2j0(cos θ1 − cos θ2)
E1E2,

(3.56)

such that ∆1,1 = φ1, ∆2,2 = φ2 in (3.54) according to (3.42), and Ej , j = 1, 2 are
defined in (3.55).

The τ -function defined in (3.46) can be explicitly written as

τ1,2 =
a1a2 + a2E

2
1 + a1E

2
2 +A1,2E

2
1E

2
2

4j2
0 sin(θ1) sin(θ2)

, (3.57)

where
A1,2 = 1− 2 sin(θ1) sin(θ2) [1− cos(θ1 − θ2)]

(cos θ1 − cos θ2)2
(3.58)

and a1, a2 are free constants.

4. First and second iterations for the fields

The first iteration can now be obtained through (3.35) as

∣∣∣α[1]
1

∣∣∣2 = β2
1j

2
0

(
1− 1

j2
0

[
(φ1)ξ
φ1

]
ξ

)
,

∣∣∣α[1]
2

∣∣∣2 = β2
2j

2
0

(
1− 1

j2
0

[
(φ1)ξ
φ1

]
ξ

)
,

(3.59)

whilst the second iteration is deduced from (3.45) as

∣∣∣α[2]
1

∣∣∣2 = β2
1j

2
0

(
1− 1

j2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

∣∣∣α[2]
2

∣∣∣2 = β2
2j

2
0

(
1− 1

j2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
.

(3.60)

The arising solution essentially depends on up to four arbitrary parameters, {j0, θ0, θ1,
θ2}. Different combinations for the values of these parameters will retrieve diverse
solutions, as already illustrated in the prior Chapter, Subsection 5.5. In particu-
lar, we will be able to find the following kinds of solitary waves, defined in distinct
regimes:

• Dark solitons (g > 0)
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• Breathers (g < 0)

• Rogue waves (g < 0)

These solutions may be regarded as generalizations of the results previously derived
in (2.114), (2.119) and (2.120) or (2.122) for this novel NLS system (3.8) describing
the electron dynamics in a deformable helical molecule.

1.6.1. Dark solitons. Defocusing case (g > 0)

In the defocusing regime, equivalent to consider g > 0, j0 should be a real parameter
such that

∣∣α[j]
∣∣2 > 0, j = 0, 1, 2. According to expression (3.9), the first iteration

(3.59) then provides

∣∣∣χ[1]
1

∣∣∣2 = j2
0

1 + s cos(2θ0)

2g

(
1− 1

j2
0

[
(φ1)ξ
φ1

]
ξ

)
,

∣∣∣χ[1]
2

∣∣∣2 = j2
0

1− s cos(2θ0)

2g

(
1− 1

j2
0

[
(φ1)ξ
φ1

]
ξ

)
,

(3.61)

and the second iteration (3.60) yields

∣∣∣χ[2]
1

∣∣∣2 = j2
0

1 + s cos(2θ0)

2g

(
1− 1

j2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

∣∣∣χ[2]
2

∣∣∣2 = j2
0

1− s cos(2θ0)

2g

(
1− 1

j2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

(3.62)

such that j0 is a real free parameter, g > 0 and the singular manifold φ1 and the
τ -function τ1,2 are respectively given in (3.54) and (3.57). Regarding the initial
parametrization for the seed solution, the angle θ0 is related to the parameter of the
SOC through (3.50) and s = ±1.

This choice of the parameters provides dark solitons for the NLS system (3.8), which
are represented in Figures 3.1 and 3.2. The first iteration retrieves the one-soliton
solution, which reveals a travelling dark soliton that propagates along the direction
ξ + 2

[
sπ

cos(θ0) − j0 cos(θ1)
]
t = 0, as evidenced in Figure 3.1.
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3.1. NLS equation in 1 + 1 dimensions for a deformable helical molecule

Figure 3.1: One-soliton solution for the upper component
∣∣∣χ[1]

1

∣∣∣2, with parameters
g = 2, θ0 = 0.5, θ1 = 1, s = 1, j0 = 1, a1 = 1.

Regarding the second iteration, Figure 3.2 displays the upper component
∣∣∣χ[2]

1

∣∣∣2 of
a two-soliton solution in the system of center of mass obtained through the Galileo
transformation ξ → ξ − (c1+c2) t

2 , where the velocities are given in (3.51).

Figure 3.2: Two-soliton solution for the upper component
∣∣∣χ[2]

1

∣∣∣2. Parameters are
g = 2, θ0 = 0.5, θ1 = 1, θ2 = 1.2, s = 1, j0 = 1, and a1 = a2 = 1.
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Notice that the lower component and the upper component in both cases are related
through the identity∣∣∣χ[j]

2

∣∣∣2 =
1− s cos(2θ0)

1 + s cos(2θ0)

∣∣∣χ[j]
1

∣∣∣2 , j = 1, 2, (3.63)

so that the component
∣∣∣χ[j]

2

∣∣∣2 , j = 1, 2 possesses a complete analogous profile to the

one displayed in Figures 3.1 and 3.2 for
∣∣∣χ[j]

1

∣∣∣2 , j = 1, 2, respectively.

1.6.2. Breathers. Focusing case (g < 0)

In a similar fashion as proceeded in the quest for breather solutions for the standard
(1 + 1)-NLS equation (2.59) (cf. Subsection 5.5 of Chapter 2), we should consider
the ansatz

θ2 = π − θ1 (3.64)

such that λ2 + m0π
2 = −

(
λ1 + m0π

2

)
in accordance with (3.52). Moreover, the addi-

tional consideration a1 = a2 = cos θ1, together with this choice for the parameters
θ1, θ2, allow us to write the τ -function in (3.57) as the particular expression

τ1,2 ∼ cosh
[
2j2

0 sin(2θ1)t
]

+ cos θ1 cosh

[
2j0 sin θ1

(
ξ +

2sπ

cos(2θ0)
t

)]
. (3.65)

As it has been mentioned before, in order to derive solutions in the focusing regime
(g < 0), j0 should be purely imaginary, which means j0 = ih0 with h0 ∈ R. By
imposing this condition, the second iteration (3.62) yields bright solitons

∣∣∣χ[2]
1

∣∣∣2 = h2
0

1 + s cos(2θ0)

2|g|

(
1 +

1

h2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

∣∣∣χ[2]
2

∣∣∣2 = h2
0

1− s cos(2θ0)

2|g|

(
1 +

1

h2
0

[
(τ1,2)ξ
τ1,2

]
ξ

)
,

(3.66)

where the equivalent of expression (3.65) now reads

τ1,2 ∼ cosh
[
2h2

0 sin(2θ1)t
]

+ cos θ1 cos

[
2h0 sin(θ1)

(
ξ +

2sπ

cos(2θ0)
t

)]
. (3.67)

At this moment, the latter τ -function may provide oscillatory but localized solutions
in either the spatial coordinate ξ or the temporal coordinate t, yielding the well-
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known breather solutions for the system (3.8). It is possible then to distinguish
between two cases:

1. Akhmediev breather

A generalization of the Akhmediev breather [19–21,241,345] may be obtained
by considering real values of the angle θ1 ∈ R. Hence, the corresponding τ -
function is directly given by expression (3.67), which is a solution periodic in ξ
and hyperbolic in t. The associated graphical representation is given in Figure
3.3.

Figure 3.3: Generalization of the Akhmediev breather
∣∣∣χ[2]

1

∣∣∣2 with parameters g = −2,
θ0 = 5, θ1 = 2, s = 1, h0 = 3.

2. Kuznetsov-Ma breather

Besides considering purely imaginary values of j0, we should now set imaginary
values for the angle θ1, such that θ1 = iθ̂1, with θ̂1 ∈ R. Then, expression (3.67)
becomes

τ1,2 ∼ cos
[
2h2

0 sinh(2θ̂1)t
]

+ cosh θ̂1 cosh

[
2h0 sinh θ̂1

(
ξ +

2sπ

cos(2θ0)
t

)]
,

(3.68)
which is a solution periodic in t and hyperbolic in ξ. It is actually a general-
ization of the breather introduced by Kuznetsov and Ma [242,257,284].
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Figure 3.4: Generalization of the Kuznetsov-Ma breather
∣∣∣χ[2]

1

∣∣∣2 with parameters g =

−2, θ0 = 5, θ̂1 = −2, s = 1, h0 = 3.

1.6.3. Rogue waves I. Focusing case (g < 0)

In the last years, rogue waves have been described as a curious type of waves that
appears from nowhere and disappear without a trace. The well known Peregrine
soliton [241, 337] is an example of a rogue wave for the focusing NLS equation.
In [345], rogue waves for the Manakov system have been obtained. In this Subsection,
we will derive this type of solutions for the modified NLS system (3.8).

It is immediate to observe that there exist limiting cases of expressions (3.54) when
kj = 0, or in other words sin(θj) = 0, j = 1, 2. These cases arise when either θj = 0
or θj = π, for any j = 1, 2. The corresponding eigenfunctions are then

ψ1 = e
im0π(ξ−m0πt)

2 eij
2
0 t,

ω1 = −iβ1e
im0π(ξ−m0πt)

2 e−ij
2
0 t,

η1 = −iβ2e
im0π(ξ−m0πt)

2 e−ij
2
0 t

(3.69)

when θ1 = 0, λ1 = −m0π
2 + j0 and c1 = 2 (m0π − j0), whilst

ψ2 = e
im0π(ξ−m0πt)

2 eij
2
0 t,
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ω2 = iβ1e
im0π(ξ−m0πt)

2 e−ij
2
0 t, (3.70)

η2 = iβ2e
im0π(ξ−m0πt)

2 e−ij
2
0 t

emerge after considering θ2 = π, λ2 = −m0π
2 − j0 and c2 = 2 (m0π + j0).

The analysis of solutions in the focusing regime requires j0 = ih0, h0 ∈ R. We can
now compute the associated singular manifolds {φ1, φ2} and the τ -function following
expressions (3.33), (3.40) and (3.46), respectively. We obtain as results the expected
rational functions in the coordinates (ξ, t)

φ1 = ξ + 2πm0t− 2ih0t,

φ2 = ξ + 2πm0t+ 2ih0t,

τ1,2 = (ξ + 2πm0t)
2 + 4h2

0t
2 +

1

h2
0

.

(3.71)

Solutions are then obtained through expressions (3.66). The behavior of the upper

component
∣∣∣χ[2]

1

∣∣∣2 for the above value of τ1,2 is presented in Figure 3.5. The lower
component is obtained after the proper rescaling of the upper component. This
solution can be considered as a generalization of the Peregrine soliton [241,337].

Figure 3.5: Generalization of the Peregrine soliton
∣∣∣χ[2]

1

∣∣∣2 with parameters g = −2,
θ0 = 0.5, θ1 = 0, θ2 = π, s = 1 and h0 = 1.5.
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1.6.4. Rogue waves II. Focusing case (g < 0)

Preserving the ansatz θ1 = 0, θ2 = π, it is straightforward to prove that there exists
a slightly more complicated solution for the Lax pair (3.32). The eigenfunctions are
constructed as products of polynomial functions in (ξ, t) and exponentials, of the
form

ψ1 =

[
ξ + 2 (m0π − j0) t+

i

2j0

]
e
im0π(ξ−m0πt)

2 eij
2
0 t,

ω1 = −iβ1

[
ξ + 2 (m0π − j0) t− i

2j0

]
e
im0π(ξ−m0πt)

2 e−ij
2
0 t,

η1 = −iβ2

[
ξ + 2 (m0π − j0) t− i

2j0

]
e
im0π(ξ−m0πt)

2 e−ij
2
0 t

(3.72)

when θ1 = 0, λ1 = −m0π
2 + j0 and c1 = 2 (m0π − j0), and

ψ2 =

[
ξ + 2 (m0π + j0) t− i

2j0

]
e
im0π(ξ−m0πt)

2 eij
2
0 t,

ω2 = iβ1

[
ξ + 2 (m0π + j0) t+

i

2j0

]
e
im0π(ξ−m0πt)

2 e−ij
2
0 t,

η2 = iβ2

[
ξ + 2 (m0π + j0) t+

i

2j0

]
e
im0π(ξ−m0πt)

2 e−ij
2
0 t

(3.73)

for θ2 = π, λ2 = −m0π
2 − j0 and c2 = 2 (m0π + j0).

For the focusing case, we should choose j0 = ih0, h0 ∈ R, which yields the following
results through (3.33), (3.40) and (3.46)

φ1 = (ξ + 2πm0t)

[
1

3
(ξ + 2πm0t)

2 − 4h2
0t

2 − 1

4h2
0

]
+ ih0

[
−2t (ξ + 2πm0t)

2 +
3t

2h2
0

+
8

3
h2

0t
3

]
,

φ2 = (ξ + 2πm0t)

[
1

3
(ξ + 2πm0t)

2 − 4h2
0t

2 − 1

4h2
0

]
− ih0

[
−2t (ξ + 2πm0t)

2 +
3t

2h2
0

+
8

3
h2

0t
3

]
,

(3.74)

τ1,2 = (ξ + 2πm0t)
2

[
1

3
(ξ + 2πm0t)

2 − 4h2
0t

2 − 1

4h2
0

]2

+ h2
0

[
−2t (ξ + 2πm0t)

2 +
3t

2h2
0

+
8

3
h2

0t
3

]2

+ h2
0

[
(ξ + 2πm0t)

2 + 4h2
0t

2 +
1

4h2
0

]2

.
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Figure 3.6 displays the upper component of the solution
∣∣∣χ[2]

1

∣∣∣2 corresponding to the
substitution of the τ -function (3.74) in (3.66).

Figure 3.6: Two-soliton solution for the upper component
∣∣∣χ[2]

1

∣∣∣2 of a rogue wave II.
Parameters are g = −2, θ0 = 0.5, θ1 = 0, θ2 = π, s = 1 and h0 = 0.7.

1.7. Further solutions. Bright solitons. Focusing case (g < 0)

In the previous Subsection we have successfully derived a plethora of soliton solu-
tions through the combination of the SMM, the Lax pair formalism and the binary
Darboux transformation approach. The conjunction of these three procedures has
proved to be an extremely valuable technique to obtain this kind of solutions. Nev-
ertheless, it is also possible to determine new classes of soliton-like solution by means
of alternative procedures. To illustrate this point, this Subsection is devoted to the
computation of elliptic solutions for the starting NLS system (3.8).

Elliptic solutions may be easily obtained by considering the following ansatz for a
seed solution of (3.11),

α = e−iϕξ,t)F (z)

(
β1

β2

)
, (3.75)

where ϕ(ξ, t) and F (z) are functions to be determined and the coefficients {β1, β2}
are given in (3.48). We have introduced the new variable z = ξ+ ct, which plays the
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role of a reduced variable2 in the quest for travelling wave solutions for (3.11) of the
form (3.75).

Substitution of the ansatz (3.75) in the system of PDEs (3.11) provides the following
expression for the function ϕ(ξ, t),

ϕ(ξ, t) =
c

2

(
ξ +

c

2
t
)
− k2t− πm0(ξ + πm0t), (3.76)

and the elliptic ODE to the satisfied for F (z),

Fzz − 2F 3 − k2F = 0, (3.77)

where k is an arbitrary constant.

The aforementioned ODE (3.77) corresponds to the canonical equation VIII in [228]
and can be easily integrated in terms of Jacobi and Weierstrass elliptic functions
[66,207,418], giving rise to the solution

F (z) =
km√

1− 2m2
cn
(

kz√
2m2 − 1

,m

)
, (3.78)

where cn(·) is the Jacobi elliptic cosine and m is an arbitrary constant of integration.
The associated general solution for the focusing case (3.9) therefore reads

χ(ξ, t) =
kme−iϕ(ξ,t)√
|g|(1− 2m2)

cn
[

kz√
2m2 − 1

,m

] (
e−iπ(ξ+πt) β1

e iπ(ξ−πt) β2

)
. (3.79)

Bright solitons for this regime emerge in the hyperbolic limit m = 1 of the previous
solution, yielding the result

χ(ξ, t) =

√
1

|g|
k e−iϕ(ξ,t)

cosh [k(ξ + ct)]

(
e−iπ(ξ+πt) β1

eiπ(ξ−πt) β2

)
, (3.80)

where k still remains as an arbitrary parameter.

This solution can be straightforwardly normalized by imposing∫ ∞
−∞

χ†(ξ, t) · χ(ξ, t) dξ =
2k

|g|
= 1. (3.81)

Therefore, this expression implies k = |g|
2 , such that the normalized solution can be

2For further information regarding this methodology, we refer the reader to Subsection 5.3 from
Chapter 5 of this manuscript.
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finally written as

χ(ξ, t) =

√
|g|
2

eiΩ(ξ,t)

cosh

[
|g|
2

(
ξ + ct

)] (e−iπξ β1

eiπξ β2

)
, (3.82)

where

Ω(ξ, t) = −
[
c

2

(
ξ +

c

2
t
)
− g2

4
t

]
+ π

[
sξ

cos(2θ0)
+ πγ2t

]
(3.83)

and the coefficients {β1, β2} are given in (3.48), with s = ±1.

The behaviour of the square modulus of each component follows the expression

|χj |2 =
|g|
4

β2
j

cosh2

[
|g|
2

(
ξ + ct

)] , j = 1, 2, (3.84)

such that both component are linked via a relation analogous to (3.63).

This solution results in a travelling solitary wave with a bright soliton profile prop-
agating along the straight line ξ + ct = 0, plotted in Figure 3.7.

Figure 3.7: Generalization of the Davydov soliton |χ1|2 with parameters g = −2,
θ0 = 0.5, s = 1 and c = −1

4 .

Solution (3.82) may be regarded as the generalization of the Davydov soliton [122],
which also appears in reference [234]. Besides, the existence of two different bright
solitons due to the arbitrary choice of the constant s = ±1 is known as the Kramer
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doublet and it is directly related to the preservation of the time-reversal symmetry
in the model [125].

From the physical point of view, it is important to notice that the magnitude of
the SOC is relevant only in the expression of the phase Ω(ξ, t). In particular, it
was found that the generalized Davydov soliton (3.82) presents a well defined spin
projection onto the molecule axis, and most importantly, it is preserved during its
motion, in spite of the fact that the electron spin is not a constant of motion of the
linear Hamiltonian (g = 0). This spin polarization is found to be

|SP(t)| =
∫ ∞
−∞

χ†(ξ, t)σzχ(ξ, t)dξ = |β2
1 − β2

2 | =
1√

1 + γ2
, (3.85)

which clearly does not depend on the temporal coordinate t and it is proved to be
stable alongside the propagation of the soliton. Moreover, the value of the spin po-
larization exclusively depends on the strength of the SOC encoded in γ. A thorough
study of the dynamics of this solution, as well as a deeper analysis about the impact
of the model and connection with experiments have been conducted in [125].

2. Derivative nonlinear Schrödinger equation in 1 + 1 di-
mensions

Derivative nonlinear Schrödinger (DNLS) equations constitute a generalization of
the ubiquitous NLS equation with derivative-type nonlinearities. The most famous
integrable representative of this class was first introduced by Kaup and Newell in
[236], also denoted as the Kaup-Newell (KN) system,

imt −mxx − i
(
|m|2m

)
x

= 0, (3.86)

wherem = m(x, t) is a complex valued function and the subscripts x, t denote partial
derivatives.

The nonlinear dispersive equation (3.86) arises from the field of Physics and it
constitutes a particularly relevant model in plasma physics [78, 233, 363–365, 375]
and nonlinear optics [15, 32, 390]. From the integrability point of view, equation
(3.86) is known to possess an isospectral Lax pair and it is solvable by the IST
method [236]. KN system has attracted attention and it has been extensively
studied in literature during decades [224, 227, 232, 237, 238, 399]. It is also well
established that it presents a plethora of soliton-like solutions in diverse scenar-
ios [223,224,227,237,311,379,405,422,423].
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3.2. Derivative NLS equation in 1 + 1 dimensions

It has been shown by Kundu [256] that equations (3.86) is equivalent via a U(1)-
gauge transformation to other two celebrated DNLS equations, i.e. the Chen-Lee-Liu
(CLL) equation [80],

imt −mxx − i |m|2mx = 0, (3.87)

and the Gerdjikov-Ivanov (GI) equation [185]

imt −mxx + im2mx −
1

2
|m|4m = 0, (3.88)

where m denotes the complex conjugate of m. It is easy to demonstrate that if
m(x, t) is a solution of the KN system (3.86), then the new field m̂(x, t)

m̂(x, t) = m(x, t) e
iµ
2
θ(x,t), with θx = |m|2 , θt = i(mmx −mmx) +

3

2
|m|4 ,
(3.89)

satisfies the CLL equation (3.87) for µ = 1 and the GI equation (3.88) for µ = 2.
Gauge transformations constitute an useful tool to connect integrable evolution equa-
tions in soliton theory, since they provide Bäcklund transformations between those
equations as well as the relation of their associated linear problems [400]. In fact,
DNLS equations are also linked via gauge transformations [232,400] to several other
notorious integrable equations, such as the Ablowitz-Kaup-Newell-Segur (AKNS)
system [6], the NLS equation or the Wadati-Konno-Ichikawa (WKI) system [396,397].

In the light of the gauge equivalence for the aforementioned equations, we propose
the following generalized DNLS equation in 1 + 1 dimensions

imt −mxx + i(γ − 2) |m|2mx + i(γ − 1)m2mx −
1

4
γ(γ − 1) |m|4m = 0, (3.90)

depending on a real parameter γ. This equation includes the three former systems as
particular cases (γ = 0 for the KN system, γ = 1 for the CLL equation and γ = 2 for
the GI equation) and allows us to mix the derivative-type nonlinearites for any other
arbitrary value of γ. Besides, (3.90) is also gauge-equivalent to the previous equations
and the parameter γ can be easily removed by any U(1)-gauge transformation. This
equation can be regarded as a particular case for the generalization proposed by
Clarkon and Cosgrove in [96] with a = −(γ − 2), b = −(γ − 1) and c = 1

4γ(γ − 1).
Similar generalizations for DNLS equations can be found in [232,256].

The integrability of (3.90) via Painlevé analysis has been explored in [96], with
the introduction of a potential. After some algebraic manipulations, this equation is
proved to be integrable in the Painlevé sense. In this thesis we will conduct a different
approach. We will review the Painlevé integrability for (3.90) in an alternative
fashion, searching for the proper scenario where the SMM is applicable such that we
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can derive the associated Lax pair. In this process, three differential equations of
physical interest naturally emerge. By means of the link among the aforementioned
equations and with the aid of the SMM, we will be able to find the corresponding
spectral problems for each system, as well as soliton-like solutions of rational kind
for the starting generalized DNLS equation (3.90).

2.1. Painlevé test and integrability: Miura transformation

The generalized DNLS equation proposed in (3.90) may be written as a system of
coupled PDEs of the form

imt −mxx + i(γ − 2)mmmx + i(γ − 1)m2mx −
1

4
γ(γ − 1)m3m2 = 0,

−imt −mxx − i(γ − 2)mmmx − i(γ − 1)m2mx −
1

4
γ(γ − 1)m3m2 = 0,

(3.91)

where m = m(x, t) is the complex conjugate of m and |m|2 = m ·m.

The Painlevé test [417] has been proved to be a powerful criterion for the identifica-
tion of PDEs. This procedure requires that the fields {m,m} should be expressed as
generalized Laurent expansions of the form

m(x, t) =
∞∑
j=0

aj(x, t)φ(x, t)j−p, m(x, t) =
∞∑
j=0

bj(x, t)φ(x, t)j−q, (3.92)

where p, q ∈ N are the leading indices and φ(x, t) is so-called singular manifold.

Nevertheless, a cursory leading-order analysis provides noninteger indices for the
expansions, p = q = 1

2 . Consequently, the Painlevé test is unable to check the
integrability of DNLS equation (3.91), at least when it is expressed in terms of these
variables.

This fact allows us to introduce two new real fields α(x, t), β(x, t) of the form

m =
√

2αx e
i
2
β, m =

√
2αx e

− i
2
β. (3.93)

The introduction of (3.93) in the system (3.91) retrieves the following expressions
for the derivatives of the new field α(x, t)

αx =
1

2
|m|2 , αt =

i

2
(mmx −mmx)− 1

4
(2γ − 3) |m|4 , (3.94)
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whilst β(x, t) shall obey

β = (2γ − 3)α+

∫
αt
αx
dx. (3.95)

Taking these identities into account, the aforementioned ansatz yields a differential
equation for α that can be written in conservative form as

[
α2
x − αt

]
t

=

[
αxxx + α3

x −
α2
t + α2

xx

αx

]
x

. (3.96)

Notice that |m|2 = 2αx is the density of probability for the DNLS equation (3.91)
and therefore, αx is essentially the physically relevant field in the model under con-
sideration. This representative equation for the probability density will constitute
the second PDE of interest to consider in this Section, after the former DNLS system
(3.91) itself.

From the point of view of the Painlevé Property [417], the Painlevé test can be
applied to (3.96) due to the fact that the leading terms for αx and αt are

αx ∼ ± i
φx
φ
, αt ∼ ± i

φt
φ
, (3.97)

where φ(x, t) is the singular manifold. Nevertheless, the duality in the signs indicates
the existence of two Painlevé branches, which might be an inconvenient when the
singular manifold method is applied [141]. The restriction to just one of the two
possible signs means that we are loosing a lot of information about equation (3.96).
In compliance with previous studies [150, 157], the best method to confront this
problem requires the splitting of the field α as

α = i(u− u), (3.98)

where u = u(x, t) denotes a new field and u = u(x, t) stands for its complex conju-
gate. According to (3.96), the additional relation arises

α2
x − αt = uxx + uxx. (3.99)

The combination of (3.98) and (3.99) implies the Miura transformations [141]

uxx =
1

2

(
α2
x − αt − iαxx

)
, (3.100a)

uxx =
1

2

(
α2
x − αt + iαxx

)
, (3.100b)
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as well as a coupling condition between the field {u, u}, which reads

iut + uxx − iut + uxx + (ux − ux)2 = 0. (3.101)

The derivation of equations (3.100) with respect to t, yields

uxt =
1

2

(
αxxx + α3

x −
α2
t + α2

xx

αx

)
− i

2
αxt, (3.102a)

uxt =
1

2

(
αxxx + α3

x −
α2
t + α2

xx

αx

)
+
i

2
αxt, (3.102b)

where equation (3.96) has been used to perform an integration in x. In order to get
the equation to be satisfied by u(x, t), we can use (3.100a) and (3.102a) to obtain

αt = α2
x − iαxx − 2uxx,

αxxx = −α3
x +

α2
t + α2

xx

αx
+ iαxt + 2uxt,

αxx = i
(
uxx − α2

x

)
+

αx
2uxx

(uxxx + iuxt) .

(3.103)

Therefore, the compatibility condition (αt)xx = (αxx)t provides the following non-
linear partial differential equation to be satisfied for the field u(x, t)[

utt + uxxxx + 2u2
xx −

u2
xt + u2

xxx

uxx

]
x

= 0. (3.104)

Following exactly the same argument with equations (3.100b) and (3.102b), we can
easily prove that u(x, t) should satisfy the same equation (3.104). To summarize,
u(x, t) and u(x, t) are both solutions of the same PDE (3.104), being additionally
related by the Bäcklund transformation defined in (3.101).

Equation (3.104) is known as the nonlocal Boussinesq equation [261,419] and its con-
nection to DNLS equations, such as the Kaup system, has been extensively studied
in [141] from the point of view of the singular manifold method. This differential
equation represents the third PDE of physical relevance to be analyzed throughout
the present Section.

Painlevé test for (3.104)

We should now address the Painlevé integrability analysis for equation (3.104). By
imposing the usual Painlevé series
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u(x, t) =
∞∑
j=0

aj(x, t)φ(x, t)j−p, (3.105)

the leading-order analysis retrieves p = 0 as the leading index. As already mentioned,
the Painlevé test for PDEs based on the WTC method [417] is not able to manage
differential equations whose leading indices are not purely integers. There exist
distinct approaches to overcome this inconvenience, which customarily imply the
conception of generalized series expansion for the fields [170, 254, 340]. For null
leading indices, it has been suggested [89,90,341] that the modified series expansion
should include (a finite number of) linear logarithmic terms.

Following the prescription introduced in [90], we seek an expansion of the form

u(x, t) = ã0 log(φ) +
∞∑
j=0

ajφ
j , (3.106)

where ã0(x, t) and aj(x, t),∀j are analytic functions in the neighbourhood of the
singularity manifold φ = 0.

1. A leading-order analysis straightforwarly provides

ã0(x, t) = 1, (3.107)

which is uniquely determined. Therefore, the series (3.106) possesses a single
branch of expansion.

2. By introducing expansion (3.106) into the equation (3.104) and equating to
zero the different coefficients of powers of φ, it is easy to obtain the following
resonance condition

j(j + 1)(j − 1)(j − 2) = 0, (3.108)

which retrieves four resonances, consistent with the fourth order PDE (3.104).
The usual resonance in j = −1 is associated to the arbitrariness of the function
φ, while the additional single resonances in j = 0, 1, 2 correspond to the fact
that the coefficients a0, a1, a2 in expansion (3.106) should be arbitrary.

3. The resonance conditions for j = 0, 1, 2 are identically satisfied and the coef-
ficients a0, a1, a2 are found to be arbitrary. Besides, coefficients aj , j ≥ 3 can
be uniquely determined by the corresponding recursion relation series.

Thus, we shall conclude that equation (3.104) passes the Painlevé test and then, it
possesses the Painlevé Property.

106



Chapter 3. Applications to PDEs in 1 + 1 dimensions

The underlying observation is that the expansion (3.106) for u only contains a single
logarithmic term, which can be easily removed by differentiation. In fact, regarding
the differential equation (3.104), one may observe that it is exclusively defined in
terms of the derivatives ux, ut. It is precisely these first derivatives the ones that are
expressed in terms of the Laurent series in a neighbourhood of the singular manifold
φ = 0, rather than the solution u [89,90,141]. Then, the appearance of a logarithmic
term does not contradict the assertion of the Painlevé conjecture in this case.

Alternatively, if we introduce the nonlocal variables v = ux and w = ut, then (3.104)
is transformed into the system

wx = vt,[
wt + vxxx + 2v2

x −
w2
x + v2

xx

vx

]
x

= 0,
(3.109)

which has the Painlevé Property, where {v, w} follow the expansions

v(x, t) =
φx
φ

+
∞∑
j=1

vj(x, t)φ
j−1, w(x, t) =

φt
φ

+
∞∑
j=1

wj(x, t)φ
j−1. (3.110)

The resonances are located in j = {−1, 1 (double), 2}, such that the coefficients
v1, w1, w2 in (3.110) are found to be arbitrary. Then, expansions (3.110) can be
trivially integrated providing a series expansion for u of the form (3.106).

In view of the aforementioned arguments, we conclude that equation (3.104) has
therefore the Painlevé Property and hence, it is conjectured integrable.

2.2. The singular manifold method

The advantage of equation (3.104) is that besides having the Painlevé Property, it
also has just one Painlevé branch [141]. This fact allows us to easily perform the
singular manifold method in order to derive many of the properties associated to a
nonlinear partial differential equation, sumarized as

• The singular manifold equations

• The Lax pair and its eigenfunctions

• Darboux transformations of the Lax pair

• τ -functions

• Iterative method for the construction of solutions
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The SMM requires the truncation of the Painlevé expansion for u (3.106) at constant
level, which implies

u[1] = u[0] + log(φ). (3.111)

This truncation acquires the form of an auto-Bäcklund transformation between two
solutions u[0] and u[1] of the same equation (3.104). Besides that, the manifold φ(x, t)
is not longer an arbitrary function. The singular manifold equations to be satisfied
for φ can be obtained by direct substitution of (3.111) in (3.104).

Expression of the field in terms of the singular manifold

The expressions for the derivatives of the seed field u[0] read as

u[0]
xx = −1

4

[
v2 + (r + 2λ)2

]
, (3.112a)

u
[0]
xt =

1

2

[
(r + 2λ)vx − vrx − (r + λ)

(
v2 + (r + 2λ)2

)]
, (3.112b)

where λ is an arbitrary constant and {v, r} are the usual functions related to the
singular manifold through the definitions

v =
φxx
φx

, r =
φt
φx
. (3.113)

Singular manifold equations

The equations to be satisfied by the singular manifold could be written as the system

rt =

(
−vx +

v2

2
+

3 r2

2
+ 4λr

)
x

, (3.114a)

vt = (rx + rv)x , (3.114b)

where the second equation (3.114b) is trivially obtained from the compatibility
condition (φxx)t = (φt)xx, arising from definitions (3.113).

It is relevant to remark that the singular manifold equations are easily related to the
Kaup system [235]. Actually, we can write system (3.114) as

γt = −ηxx + 2γγx, (3.115a)
ηt = γxx + 2γηx, (3.115b)
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through the following change of variables

γ = r + λ, ηx = vx −
v2

2
− (r + 2λ)2

2
. (3.116)

If the singular manifold equations can be considered as the intrinsic canonical form
of a PDE, we can conclude that our original DNLS equation (3.91) is nothing but a
different form of the Kaup system via Miura transformation.

2.3. Spectral problem

The SMM provides a direct procedure to construct spectral problems by means of
the linearization of the singular manifold equations. The treatment in this fashion of
equations (3.114) will successfully retrieve the Lax pair associated to the nonlinear
equation (3.104). Once this spectral problem is known, we might invert the different
changes of variables we have performed, i.e. relations (3.93) and (3.98), to straight-
forwardly derive the associated spectral problems for the former equations (3.96) for
the field α(x, t) and the original DNLS equation (3.91), respectively.

2.3.1. Spectral problem for u(x, t)

The question concerning the linearization of the singular manifold equation is not
trivial. These system of equations (3.114) can be understood as a coupled nonlinear
system of PDE of constituting variables {v, r}. If we propose similar Painlevé ex-
pansions in a neighbourhood of a new singular manifold ψ = 0 for these variables,
the dominant terms

v ∼ v0

ψp
, r ∼ r0

ψq
(3.117)

behave as
p = 1, q = 1, v0 = ψx, r0 = ±iψx. (3.118)

The duality in the sign of r0 implies the existence of two expansion branches in the
series, confirming the well known fact that the Kaup system [235] does also present
these two branches [108, 141, 149]. As illustrated in [141], an optimal procedure to
overcome this situation requires the introduction two singular manifold {ψ, χ}, such
that the fields v and r are written as

v =
ψx
ψ

+
χx
χ
,

r = i

(
ψx
ψ
− χx

χ

)
− 2λ,

(3.119)
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where the term −2λ in (3.119) is not essential, but it is useful to simplify the forth-
coming results.

Spatial part of the Lax pair

Definitions (3.119) constitute the linearization ansatz that will yield the appropriate
result when applied to equations (3.112). The new functions ψ(x, t), χ(x, t) will play
the role of the associated eigenfunctions and λ will act as the spectral parameter.
Without further ado, substitution of (3.119) in (3.112) gives rise to

u[0]
xx +

ψx
ψ

χx
χ

= 0, (3.120a)

u
[0]
xt +

ψx
ψ

χx
χ

(
i
ψxx
ψx
− iχxx

χx
+ i

ψx
ψ
− iχx

χ
− 2λ

)
= 0, (3.120b)

that can easily be combined in order to obtain the spatial part of the spectral prob-
lem, as

ψxx =

(
u

[0]
xxx − iu[0]

xt

2u
[0]
xx

− iλ

)
ψx − u[0]

xxψ, (3.121a)

χxx =

(
u

[0]
xxx + iu

[0]
xt

2u
[0]
xx

+ iλ

)
χx − u[0]

xxχ. (3.121b)

Temporal part of the Lax pair

Besides that, the corresponding substitution in the singular manifold equations
(3.114) provides the temporal part of the Lax pair

ψt = iψxx − 2λψx + i
(

2u[0]
xx + λ2

)
ψ, (3.122a)

χt = −iχxx − 2λχx − i
(

2u[0]
xx + λ2

)
χ. (3.122b)

It is immediate to verify that equations (3.121) and (3.122) constitute a Lax pair
for equation (3.104). Notice that the two eigenfuntions are also related by (3.120a).
This fact allows us to construct two equivalent and complementary Lax pairs for
(3.104). The elementary Lax pair for (3.104) is given by the conjunction of (3.121b)
and (3.122b)
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χxx =

(
u

[0]
xxx + iu

[0]
xt

2u
[0]
xx

+ iλ

)
χx − u[0]

xxχ, (3.123)

χt = −iχxx − 2λχx − i
(

2u[0]
xx + λ2

)
χ,

while the alternative Lax pair arise from the combination of (3.121a) and (3.122a)

ψxx =

(
u

[0]
xxx − iu[0]

xt

2u
[0]
xx

− iλ

)
ψx − u[0]

xxψ,

ψt = iψxx − 2λψx + i
(

2u[0]
xx + λ2

)
ψ,

(3.124)

such that {χ, ψ} are two complex conjugate eigenfunctions satisfying χx
χ
ψx
ψ +u

[0]
xx = 0

and λ is the spectral parameter.

In the following, we will focus our attention in the spectral problem defined by means
of the eigenfunction χ(x, t) (3.123), whereas the eigenfunction ψ(x, t) may be easily
obtained through (3.120a). Obviously, the complex conjugate form of (3.123) and
(3.124) retrieves two equivalent Lax pairs for u[0](x, t), which also satisfies (3.104).

Eigenfunctions and singular manifold

Definitions (3.119) can be easily combined with (3.113) to provide the singular man-
ifold through the exact derivative

dφ = ψ χdx+ [−2λψ χ+ i (χψx − ψ χx)] dt, (3.125)

whose integration allows us to obtain the iterated solution (3.111).

2.3.2. Spectral problem for α(x, t)

We can now use our previous results to derive a Lax pair for the field α(x, t). Com-
bination of (3.98) and the Painlevé expansion (3.111) gives a trunctaed expansion
for α of the form

α[1] = i
(
u[1] − u[1]

)
= α[0] + i log

(
φ

φ

)
, (3.126)

where ψ and χ should be introduced as the complex conjugates of ψ and χ, respec-
tively, in order to have the complex conjugate of (3.125). Besides that, the coupling
condition (3.101) should be fulfilled for u[0] and u[0]. It imposes an additional condi-
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tion for the singular manifold φ(x, t) and its complex conjugate φ(x, t) that can be
written as

φx
φ

(
χx
χ

+ iα[0]
x + iλ

)
+
φx
φ

(
χx
χ
− iα[0]

x − iλ
)

= 1. (3.127)

A Lax pair for α(x, t) can be easily obtained from (3.123) with the aid of (3.100)
and (3.102). The result is

χxx = i

α[0]
t +

(
α

[0]
x

)2
− iα[0]

xx

2α
[0]
x

+ λ

χx +

α[0]
t −

(
α

[0]
x

)2
+ iα

[0]
xx

2

χ,
χt = −iχxx − 2λχx + i

[
α

[0]
t −

(
α[0]
x

)2
+ iα[0]

xx − λ2

]
χ.

(3.128)

The alternative Lax pair can be obtained by substitution of (3.100) and (3.102) in
(3.124), whose explicit expression is

ψxx =
ψx

2α
[0]
x

 i
(
α

[0]
x

)4
+ 2iα

[0]
xxxα

[0]
x − 2

(
α

[0]
x

)2
α

[0]
xx − i

(
α

[0]
t

)2
− i
(
α

[0]
xx

)2
+ 2α

[0]
xtα

[0]
x

α
[0]
t −

(
α

[0]
x

)2
+ iα

[0]
xx


− iλψx + ψ

α[0]
t −

(
α

[0]
x

)2
+ iα

[0]
xx

2

 ,
ψt = iψxx − 2λψx − i

[
α

[0]
t −

(
α[0]
x

)2
+ iα[0]

xx − λ2

]
ψ.

(3.129)
The corresponding counterpart of equation (3.120a) that relates the eigenfunctions
{χ, ψ} in terms of α[0] now reads

2
ψxχx
ψχ

+
(
α[0]
x

)2
− α

[0]
t − i α[0]

xx = 0. (3.130)

2.3.3. Spectral problem for DNLS equation

The derivatives of α[0] in (3.94) can be now expressed in terms of the seed solutions
{m[0],m[0]} as

α[0]
x =

1

2

∣∣∣m[0]
∣∣∣2 , α

[0]
t =

i

2

(
m[0]m[0]

x −m[0]m[0]
x

)
− 1

4
(2γ − 3)

∣∣∣m[0]
∣∣∣4 , (3.131)
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which finally allow us to write the Lax pair (3.128) for the initial system (3.91) as

χxx = i

[
λ− γ − 2

2

∣∣∣m[0]
∣∣∣2 − im[0]

x

m[0]

]
χx +

1

2

[
im[0]m[0]

x −
γ − 1

2

∣∣∣m[0]
∣∣∣4]χ, (3.132)

χt = −iχxx − 2λχx + i

[
im[0]m[0]

x −
γ − 1

2

∣∣∣m[0]
∣∣∣4 − λ2

]
χ.

Analogously, the alternative Lax pair for m(x, t) is found to be

ψxx =

−iλ+
i(γ − 2)

2
|m|2 +

(
(γ − 1) |m|2m− 2imx

)
x

(γ − 1) |m|2m− 2imx

ψx
+

1

2

[
im[0]m[0]

x −
γ − 1

2

∣∣∣m[0]
∣∣∣4]ψ,

ψt = iψxx − 2λψx − i
[
im[0]m[0]

x −
γ − 1

2

∣∣∣m[0]
∣∣∣4 − λ2

]
χ,

(3.133)

such that the relation between the two eigenfunctions χ and ψ becomes

ψxχx
ψχ

− i

2
m[0]m[0]

x +
γ − 1

4

∣∣∣m[0]
∣∣∣4 = 0. (3.134)

2.4. Darboux transformations

As it has been previously shown, once the Lax pair have been obtained for a given
PDE by means of the SMM, a binary Darboux transformation can be constructed
in order to derive recursive solutions. Since the SMM has been applied to equation
(3.104), consequently yielding the spectral problems (3.123) and (3.124), the forth-
coming calculations regarding the binary Darboux transformation approach should
be performed over this linear problem.

Let u[0] be a seed solution for the nonlocal Boussinesq equation (3.104). Let χj , j =
1, 2 also be two different eigenfunctions for the associated spectral problem (3.123) for
this seed field u[0], corresponding to two different eigenvalues λj , j = 1, 2. Therefore,
we have

(χj)xx =

(
u

[0]
xxx + iu

[0]
xt

2u
[0]
xx

+ iλj

)
(χj)x − u[0]

xx χj ,

(χj)t = −i(χj)xx − 2λj(χj)x − i
(

2u[0]
xx + λ2

j

)
χj ,

(3.135)
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for j = 1, 2, and where the notation (χj)x, (χj)xx, (χj)t represents the derivatives of
the eigenfunction χj with respect to the corresponding coordinates.

Furthermore, two additional eigenfunctions ψj , j = 1, 2 arise from expression (3.120a),
in the form

u[0]
xx +

(ψj)x
ψj

(χj)x
χj

= 0, (3.136)

which means that we can introduce two different singular manifolds φj , j = 1, 2
defined by (3.125) through the exact derivative

dφj = ψj χj dx+ {−2λjψj χj + i [χj (ψj)x − ψj (χj)x]} dt. (3.137)

First iteration

As we have seen in the previous Subsection, the truncated Painlevé expansion (3.111)
can be considered as an auto-Bäcklund transformation

u[1] = u[0] + log(φ1), (3.138)

which allows us to obtain an iterated field u[1]. Analogously, an iterated Lax pair
can be defined for this iterated field u[1] with associated spectral parameter λ2 in the
form

(χ1,2)xx =

(
u

[1]
xxx + iu

[1]
xt

2u
[1]
xx

+ iλ2

)
(χ1,2)x − u[1]

xx (χ1,2),

(χ1,2)t = −i(χ1,2)xx − 2λ2(χ1,2)x − i
(

2u[1]
xx + λ2

2

)
(χ1,2),

(3.139)

such that
u[1]
xx +

(ψ1,2)x
ψ1,2

(χ1,2)x
χ1,2

= 0. (3.140)

Consequently, an iterated singular manifold φ1,2 can also be defined for the field u[1]

though expression (3.125)

dφ1,2 = ψ1,2 χ1,2 dx+ {−2λ2ψ1,2 χ1,2 + i [χ1,2 (ψ1,2)x − ψ1,2 (χ1,2)x]} dt. (3.141)

A Lax pair is usually considered a system of equations which is linear in the eigen-
fuctions. A different point of view lies in the consideration of the equations (3.139)
as nonlinear relations between the field u[1] and the eigenfunction χ1,2. According
to this new perspective, the Painlevé expansion for the field (3.138) should be ac-
companied by a similar truncated expansion for the eigenfunctions, performed in a
neighbourhood of the singular manifold φ1 = 0. Let
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χ1,2 = χ2 − χ1
∆1,2

φ1
, ψ1,2 = ψ2 − ψ1

Σ1,2

φ1
(3.142)

be such expansion, where ∆1,2(x, t) and Σ1,2(x, t) are functions to be determined
later. Besides that, (3.141) implies that we can also provide a Painlevé expansion
for the singular manifold in the form

φ1,2 = φ2 +
Ω1,2

φ1
(3.143)

in terms of the coefficient Ω1,2(x, t).

Substitution of (3.138), (3.142) and (3.143) in the spectral problem (3.139) and the
expression for the singular manifold (3.141) yields the following results

Σ1,2 = ∆2,1, Ω1,2 = −∆1,2∆2,1,

∆i,j = iψi
χi(χj)x − χj(χi)x

(λi − λj) (χi)x
.

(3.144)

Therefore, we can conclude that (3.138) and (3.142) are binary Darboux transfor-
mations for the Lax pair (3.139). These transformations exclusively depend on two
sets of eigenfunctions {χj , ψj}, j = 1, 2 for the seminal solution u[0], and these will
be the only tools required to construct the iterated solution (3.138).

Second iteration and τ-function

The singular manifold φ1,2, as defined in (3.141), can be used to perform a second
iteration such that a new field u[2] can be constructed as

u[2] = u[1] + log(φ1,2), (3.145)

that can be expressed in terms of the seed solution u[0] as

u[2] = u[0] + log(τ1,2), (3.146)

where we have introduced the τ -function τ1,2 through the definition

τ1,2 = φ1φ2 −∆1,2∆2,1. (3.147)

nth iteration

This procedure may be implemented repeatedly and generalized up to the nth-
iteration, which reads as
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u[n] = u[0] + log(φ1φ1,2 · · ·φ1,2,...,n) = u[0] + log(τ1,2,...,n). (3.148)

The τ -function for the nth iteration can be computed as

τ1,2,...,n = det ∆, (3.149)

where ∆ ≡ (∆i,j)n denotes the n× n matrix of entries ∆i,i = φi for i = j

∆i,j = iψi
χi(χj)x − χj(χi)x

(λi − λj) (χi)x
for i 6= j

(3.150)

that may be exclusively expressed in terms of n different pairs of eigenfunctions
{χk, ψk} of eigenvalues λk, for the seminal Lax pairs (3.135) and n singular manifolds
φk given by (3.137), k = 1, . . . , n.

2.5. Rational soliton solutions

In this Subsection, rational soliton-like solutions for the DNLS equation (3.91) are
obtained by applying the procedure described above. Solutions in this fashion may
be algorithmically constructed following analogous steps to the ones previously con-
sidered in Subsection 1.6 of this Chapter.

The density of probability for the DNLS equations, the relevant physical field asso-
ciated to the formation of solitons, may be expressed as

|m|2 = m ·m = 2i (ux − ux) . (3.151)

1. Seed solution

Let us consider the following seed solution for (3.91),

m[0] = j0 e
i
2
j20(z20−1)

[
x+

j20
2 (z20+1)t

]
,

m[0] = j0 e
− i

2
j20(z20−1)

[
x+

j20
2 (z20+1)t

]
,

(3.152)

where j0, z0 are arbitrary constants. This seed solution leads to a polynomial
solution in u and u for (3.104) as

u[0] = −j
2
0

4

[
j2
0z

2
0x
(x

2
+ j2

0(z2
0 + 1) t

)
+ i

(
x+ j2

0

(
z2

0 +
1

2

)
t

)]
, (3.153)
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u[0] = −j
2
0

4

[
j2
0z

2
0x
(x

2
+ j2

0(z2
0 + 1) t

)
− i
(
x+ j2

0

(
z2

0 +
1

2

)
t

)]
,

where condition (3.101) is identically satisfied.

2. Eigenfunctions and singular manifolds

We shall seek now a pair of eigenfunctions that solve the Lax pair (3.123) and
(3.124) for the seed solution (3.153). Such solutions may be constructed as

χσ = e
i
2
j20z0σ

[
x+j20

(
− σ

2z0
(z40+7z20+1)+3(z20+1)

)
t
]
,

ψσ = e
− i

2
j20z0σ

[
x+j20

(
− σ

2z0
(z40+7z20+1)+3(z20+1)

)
t
]
,

(3.154)

where these eigenfunctions depend on an additional binary real parameter σ, such
that σ2 = 1. The spectral parameter associated to these eigenfunctions is written
as

λσ =
j2
0

2

(
2σz0 − (z2

0 + 1)
)
, σ = ±1. (3.155)

By means of equation (3.137), we get the singular manifold, which also depends
on σ,

φσ = x− j2
0

(
σz0 − (z2

0 + 1)
)
t− i

j2
0z0(σ − z0)

, σ = ±1. (3.156)

3. First iteration and one-soliton solution

Then, it is possible to compute the first iteration through (3.138),

u[1]
σ =− j2

0

4

[
j2
0z

2
0x
(x

2
+ j2

0(z2
0 + 1) t

)
+ i

(
x+ j2

0

(
z2

0 +
1

2

)
t

)]
+ log

[
x− j2

0

(
σz0 − (z2

0 + 1)
)
t− i

j2
0z0(σ − z0)

]
,

u[1]
σ =− j2

0

4

[
j2
0z

2
0x
(x

2
+ j2

0(z2
0 + 1) t

)
− i
(
x+ j2

0

(
z2

0 +
1

2

)
t

)]
+ log

[
x− j2

0

(
σz0 − (z2

0 + 1)
)
t+

i

j2
0z0(σ − z0)

]
,

(3.157)

where we can check that u[1]
σ and u[1]

σ are complex conjugates.
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Hence, the density of probability for the first iteration is deduced from (3.151) as∣∣∣m[1]
σ

∣∣∣2 =
∣∣∣m[0]

σ

∣∣∣2 − 4 Im

[
(φσ)x
φσ

]
= j2

0 −
4

j2
0z0(σ − z0)

[
(x− vσt)2 + 1

j40z
2
0(σ−z0)2

] , (3.158)

where Im(·) refers to the imaginary part of the quantity in brackets, and σ =
±1. This solution corresponds to a travelling rational soliton-like wave along the
direction x− vσt = 0, of speed

vσ = j2
0

(
σz0 − (z2

0 + 1)
)
, σ = ±1, (3.159)

and constant amplitude

aσ = −j2
0 (4z0(σ − z0)− 1) , σ = ±1. (3.160)

One may observe that depending on the values of the parameters σ = ±1 and z0

is possible to obtain either bright or dark rational solitons.

These one soliton solutions
∣∣∣m[1]

σ

∣∣∣2 are displayed in Figure 3.8 at different times,
where a bright rational soliton is obtained for σ = −1 and a dark one for σ = 1.
The dynamics of a travelling rational soliton may be alternatively appreciated in
Figure 3.9, where a bright soliton has been displayed, whilst the corresponding
dark soliton presents a complete analogous profile.

Figure 3.8: One rational soliton solution
∣∣∣m[1]

σ

∣∣∣2 at times t = −75, 0, 75. The solid

blue line represents a dark soliton for σ = 1, j0 = 1, z0 = 1
6 , and the dashed red line

displays a bright soliton for σ = −1, j0 = 1, z0 = 1
6 .
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Figure 3.9: Bright rational soliton solution
∣∣m[1]

∣∣2 for parameters σ = −1, j0 =
1, z0 = 1

6 .

4. ∆-matrix and τ -function

In the following, we will identify the first set of functions {χ1, ψ1, λ1, φ1} as those
with σ = 1 in equations (3.154)-(3.156), and the second set, {χ2, ψ2, λ2, φ2},
with σ = −1, respectively. After this identification, it is immediate to obtain
the ∆-matrix and the τ -function through equations (3.144) and (3.147), of final
expressions

∆1,2 = − i

j2
0z0

e−ij
2
0z0 [x+3j20(z20+1) t ],

∆2,1 =
i

j2
0z0

eij
2
0z0 [x+3j20(z20+1) t ],

(3.161)

and

τ1,2 =
(
x+ j2

0(z2
0 + 1) t

)2 − j4
0z

2
0t

2 +
2ij2

0

(
x+ j2

0(z2
0 + 2) t

)
− 1

j4
0(z2

0 − 1)
. (3.162)

5. Second iteration and two-soliton solution

Therefore, the second iteration for u and u is given by (3.146)

u[2] =− j2
0

4

[
j2
0z

2
0x
(x

2
+ j2

0(z2
0 + 1) t

)
+ i

(
x+ j2

0

(
z2

0 +
1

2

)
t

)]
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+ log

[(
x+ j2

0(z2
0 + 1) t

)2 − j4
0z

2
0t

2 +
2ij2

0

(
x+ j2

0(z2
0 + 2) t

)
− 1

j4
0(z2

0 − 1)

]
,

u[2] =− j2
0

4

[
j2
0z

2
0x
(x

2
+ j2

0(z2
0 + 1) t

)
− i
(
x+ j2

0

(
z2

0 +
1

2

)
t

)]

+ log

[(
x+ j2

0(z2
0 + 1) t

)2 − j4
0z

2
0t

2 −
2ij2

0

(
x+ j2

0(z2
0 + 2) t

)
+ 1

j4
0(z2

0 − 1)

]
,

(3.163)

and the density of probability
∣∣m[2]

∣∣2 acquires the final form∣∣∣m[2]
∣∣∣2 =

∣∣∣m[0]
∣∣∣2 − 4 Im

[
(τ1,2)x
τ1,2

]

= j2
0 +

8
[(
x+ j2

0(z2
0 + 2) t

)2
+ j4

0(z2
0 − 1) t2 + 1

j40(z20−1)

]
j2
0(z2

0 − 1)

[((
x+ j2

0(z2
0 + 1) t

)2 − j4
0z

2
0t

2 − 1
j40(z20−1)

)2
+

4(x+j20(z20+2) t)
2

j40(z20−1)2

] .
(3.164)

6. Asymptotic behaviour
This solution asymptotically yields two rational solitons moving along the lines
x − vσt = 0 of the form (3.158), with speed (3.159) for σ = ±1, respectively. In
order to enlighten this point, the asymptotic behaviour for each rational soliton
may be performed. Let us consider the following transformation

X1 = x− v1t, v1 = −j2
0

(
z2

0 − z0 + 1
)
, (3.165)

that allows to write the limit of
∣∣m[2]

∣∣2 at t→ ±∞ as the static rational soliton∣∣∣m[2]
∣∣∣2 ∼ j2

0 +
4

j2
0z0(z0 − 1)

[
X2

1 + 1
j40z

2
0(z0−1)2

] , (3.166)

which correspond to the first iteration solution (3.158) for σ = 1.
A complete analogous analysis can be consider for the second soliton, by means
of the transformation

X2 = x− v2t, v2 = −j2
0

(
z2

0 + z0 + 1
)
,∣∣∣m[2]

∣∣∣2 ∼ j2
0 +

4

j2
0z0(z0 + 1)

[
X2

2 + 1
j40z

2
0(z0+1)2

] , (3.167)
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that leads to a similar profile for (3.158) with σ = −1.

Figure 3.10 displays the two-soliton solution
∣∣m[2]

∣∣2 at different times and in
Figure 3.11, a spatio-temporal plot of the two-soliton solution is also presented.
In both graphics, the scattering between the bright and the dark rational solitons
is explicitly appreciated.

Figure 3.10: Two rational soliton solution
∣∣m[2]

∣∣2 at times t = −250, 0, 250, for
j0 = 1, z0 = 1

6 .

Figure 3.11: Two rational soliton solution
∣∣m[2]

∣∣2 for parameters j0 = 1, z0 = 1
6 .

Both Figures 3.10 and 3.11 have been plotted in the center-of-mass reference
frame of the two colliding rational solitons, which may be achieved after the
galilean transformation x = XCM + 1

2 (v1 + v2) t. In this system of reference, the
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two rational solitons move with equal and opposite velocities c = 1
2 (v1 − v2) along

the lines XCM − σct = 0.

This Chapter has successfully addressed the study of nonlinear integrable systems in
1+1 dimensions, demonstrating therefore the effectiveness of this procedure to obtain
the spectral problem and a plethora of soliton-like solutions for such models. The
continuation of this research is depicted in the next Chapter, where this theoretical
machinery has been generalized, extended and adapted in order to study nonlinear
integrable systems with an additional spatial dimension, i.e. in 2 + 1 dimensions.
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Chapter 4

Applications to PDEs in 2 + 1 dimensions

This Chapter constitutes a continuation of the preceding ones, dedicated to the ap-
plication of the theoretical foundations exhibited in Chapter 2 for various integrable
models in 2 + 1 dimensions.

While the treatment concerning integrability and the obtention of spectral problems
is analogously developed to the case of 1 + 1 dimensions, the incorporation of extra
dimensions exerts a significant effect on the characterization of soliton solutions for
such kind of systems. Additional spatial dimensions enable the formation of a richer
class of novel soliton-like structures. More precisely, we find of particular interest the
solutions known as lumps or lump solitons. Generally speaking, lump solutions are
framed within the category of rational-like solitons, and they behave as localized wave
configurations that decay to an asymptotic value in all the spatial directions. Lump
solutions were first reported in the Kadomtsev–Petviashvili I (KP-I) equation [287],
and later studied in [168, 230, 283, 370]. Subsequently, countless standard PDEs
in soliton theory have been found to admit this kind of solutions, such as several
generalizations of the NLS equation in 2 + 1 dimensions [161, 370, 393], the BKP
equation [188], the Davey–Stewartson II (DS-II) equation [38], multidimensional sine-
Gordon equation [316], the Ishimori I equation [226] or the Toda lattice in 2 + 1
dimensions [277].

This Chapter is devoted to the study of two integrable systems in 2 + 1 dimensions
and the characterization of their soliton solutions of lump-type. Section 1 addresses
the integrability analysis of a multi-component NLS equation in 2 + 1 dimensions.
This PDE can be regarded either as one possible generalization of the Manakov sys-
tem [286] to 2+1 dimensions or as a vector generalization for the Fokas system [167].
Its integrability is fully explored by the obtention of the associated spectral problem.
Moreover, lump solitons can be directly constructed, with the consequent analysis
of their dynamics. These solutions are proved to exhibit an analogous behaviour to
the soliton configuration in 1 + 1 dimensions, either in terms of propagation or inter-
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4.1. Multi-component NLS equation in 2 + 1 dimensions

action. The research associated to this Section is partially enclosed in the author’s
publication [25]. The corresponding Lie symmetries and similarity reductions for this
nonlinear system, obtained in [24], have also been studied in this manuscript, which
can be consulted in Subsection 2.2 of Chapter 6.

Section 2 aims to investigate the so-called generalized Nizhnik-Novikov-Veselov (NNV)
equation, which constitutes a symmetric generalization of the KdV equation to 2 + 1
dimensions [53, 54, 317, 391, 392]. This equation, as other generalizations to higher
dimensions of KdV, such as the Kadomtsev–Petviashvili equation [231], is integrable
via the IST method [3, 53, 54] and present a wide spectrum of soliton-like solu-
tions [255,280,336,347,436]. The integrability of this equation is reviewed by means
of the Painlevé test and a Lax pair is easily obtained as a consequence of the ap-
plication of the SMM. We then exploit this formalism and employ the Darboux
transformation approach to generate lump soliton solutions of diverse kinds, whose
dynamics is deeply investigated. This Section is based on the research presented
in [29].

1. Multi-component NLS equation in 2 + 1 dimensions

This first Section will be focused in the study of the (2 + 1)-dimensional multi-
component nonlinear Schrödinger equation

iαt +αxx + 2mxα = 0,

−iα†t +α†xx + 2mxα
† = 0,(

my +αα†
)
x

= 0,

(4.1)

where α(x, y, t) = [α1(x, y, t), α2(x, y, t)]ᵀ is a two-dimensional vector whose com-
ponents are complex functions depending on two spatial dimensions (x, y) and one
temporal dimension t. The vector α† denotes the conjugate transpose of α and
m(x, y, t) is a real scalar function related to the probability density α · α† through
the third equation in (4.1).

The reduction x = y in (4.1) yields the Manakov system [286], which is often called
as vector NLS system [8]. Integrability properties of this Manakov system and its
Painlevé Property are described in references [282, 404]. Different generalizations of
this Manakov system with linear derivative-type terms and their solutions have been
recently studied by the author of this manuscript in the previous Chapter, Section
1 and references [26,125].

Furthermore, (4.1) constitutes a multi-component generalization of a system that
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has been discussed by several authors [76,167,348], sometimes referred as the Fokas
system, whose lump solutions have been extensively studied in [160,161,351,393].

1.1. Painlevé test and integrability

It is easy to check whether or not (4.1) has the Painlevé Property. The existence of
such property requires that all the solutions of (4.1) are single-valued in the initial
conditions. This requirement means that the fields {α,α†,m} should be expanded
as the Laurent expansion

α1 =

∞∑
j=0

ajφ
j−β, α†1 =

∞∑
j=0

a†jφ
j−β,

α2 =
∞∑
j=0

bjφ
j−γ , α†2 =

∞∑
j=0

b†jφ
j−γ ,

m =
∞∑
j=0

cjφ
j−δ,

(4.2)

where φ(x, y, t) = 0 is the manifold of movable singularities and the coefficients
aj(x, y, t), a

†
j(x, y, t), bj(x, y, t), b

†
j(x, y, t), cj(x, y, t), ∀j are still to be determined, to-

gether with the indices of the expansion β, γ, δ.

Substitution of (4.2) in (4.1) provides polynomials in powers of φ that should vanish.
It results in five recursion relations for the coefficients of the expansion {aj , a†j , bj , b

†
j ,

cj}, for a proper value of j.

1. A leading-order analysis easily provides

β = γ = δ = 1,

a0 = A1φx, a†0 = A†1φ
†
x, b0 = A2φx, b†0 = A†2φ

†
x, c0 = φx,

such that
A1A

†
1 +A2A

†
2 =

φy
φx
. (4.3)

The latter expression among the different coefficients indicates the presence of
a resonance at j = 0, as it will be proved later.

2. The recursion relations among the coefficients retrieve the following resonance
condition

j3(j − 1)(j − 3)3(j − 4)(j + 1) = 0, (4.4)
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which yields eight resonances, located in j = {−1, 0 (triple), 1, 3 (triple), 4}.
The usual resonance in j = −1 reasserts the arbitrariness of φ, whilst the triple
resonance in j = 0 indicates that three of the four coefficients at constant level
{A1, A

†
1, A2, A

†
2} should be arbitrary.

3. The calculation regarding the validation of the resonance conditions can be
easily performed with MAPLE. It is found that {a0, a

†
0, b0, a1, a3, a

†
3, b3, a4} are

arbitrary coefficients and then the resonance conditions are identically satisfied.
Therefore, we can conclude that the system of PDEs (4.1) has the Painlevé
Property.

1.2. The singular manifold method

The relation between integrability and Painlevé Property is an extremely interesting
topic. The existence of a Lax pair is usually considered as the best proof of the
integrability of a nonlinear PDE. The issue concerning the identification of such
spectral problem is a nontrivial matter that can be approached through the SMM
[410]. The SMM is based on the truncation of equation (4.2) at constant level, of
the form

α
[1]
1 = α

[0]
1 +

A1φx
φ

,
(
α

[1]
1

)†
=
(
α

[0]
1

)†
+
A†1φx
φ

,

α
[1]
2 = α

[0]
2 +

A2φx
φ

,
(
α

[1]
2

)†
=
(
α

[0]
2

)†
+
A†2φx
φ

,

m[1] = m[0] +
φx
φ
,

(4.5)

such that A1A
†
1 +A2A

†
2 =

φy
φx

. The vector α[0] =
(
α

[0]
1 , α

[0]
2

)ᵀ
and the scalar fieldm[0]

are the seed fields, whilst α[1] =
(
α

[1]
1 , α

[1]
2

)ᵀ
and m[1] are the iterated ones. The

truncation (4.5) can be therefore considered as an auto-Bäcklund transformation
between two solutions of the same initial problem (4.1).

Substitution of (4.5) in (4.1) yields five polynomials in powers of φ, where each coef-
ficient should identically hold. At this point, it is extremely convenient to introduce
the following quantities [141,148]

v =
φxx
φx

, r =
φt
φx
, q =

φy
φx
, (4.6)

that generalize to 2 + 1 dimensions the homographic invariants defined in (2.22)
and (2.23). The associated compatibility conditions for those definitions, given by
the identification of the cross derivatives φxxt = φtxx, φxxy = φyxx and φyt = φty,
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trivially yield

vt = (rx + r v)x , vy = (qx + q v)x , ry = qt + qrx − qxr, (4.7)

which can be understood as an extension of relations (2.25) to 2 + 1 dimensions.

Expressions of the fields in terms of the singular manifold

The introduction of (4.6) allows us to write, after performing some symbolic com-
putations with MAPLE, the seed fields α[0] in terms of the singular manifold in the
following form

α
[0]
1 = −

(
A1

)
x
−A1

(
v + ir

2

)
,

(
α

[0]
1

)†
= −

(
A†1

)
x
−A†1

(
v − ir

2

)
, (4.8a)

α
[0]
2 = −

(
A2

)
x
−A2

(
v + ir

2

)
,

(
α

[0]
2

)†
= −

(
A†2

)
x
−A†2

(
v − ir

2

)
, (4.8b)

m[0]
x = − 1

4

(
vx +

v2 + r2

2
+

∫
rt dx

)
. (4.8c)

Singular manifold equations

Truncation (4.5) therefore implies that the coefficients A1, A
†
1, A2, A

†
2 and φ should

now satisfy some nontrivial equations, the so-called singular manifold equations. The
expression for the coefficients can be listed as

−i
(
A1

)
t

=
(
A1

)
xx

+A1

(
vx + i rx + 2m[0]

x

)
, (4.9a)

i
(
A†1

)
t

=
(
A†1

)
xx

+A†1

(
vx − i rx + 2m[0]

x

)
, (4.9b)

−i
(
A2

)
t

=
(
A2

)
xx

+A2

(
vx + i rx + 2m[0]

x

)
, (4.9c)

i
(
A†2

)
t

=
(
A†2

)
xx

+A†2

(
vx − i rx + 2m[0]

x

)
, (4.9d)

such that the relations for the homographic invariants {r, q} read

q = A1A
†
1 +A2A

†
2, (4.10a)∫

ry dx = −q r + i
[
(A1)x A

†
1 −A1 (A1)†x + (A2)xA

†
2 −A2 (A2)†x

]
. (4.10b)

127



4.1. Multi-component NLS equation in 2 + 1 dimensions

1.3. Spectral problem

Equations (4.8) and (4.10) can be linearized (cf. [138]) through the introduction of
three-complex functions {ψ(x, y, t), χ(x, y, t), ρ(x, y, t)} and their conjugates {ψ†(x, y,
t), χ†(x, y, t), ρ†(x, y, t)}, such that

A1 =
χ

ψ
, A†1 =

χ†

ψ†
, A2 =

ρ

ψ
, A†2 =

ρ†

ψ†
. (4.11)

Then, the expression of the variables {v, r, q} in terms of this new triad of functions
{ψ, χ, ρ} can be written as

v =
ψ†x
ψ†

+
ψx
ψ
, r = i

(
ψ†x
ψ†
− ψx

ψ

)
, q =

χχ† + ρ ρ†

ψ ψ†
. (4.12)

Spatial part of the Lax pair

Substitution of the definitions (4.11)-(4.12) in equations (4.8) and (4.10b) trivially
yields the spatial part for the spectral problem for (4.1), as

ψy = −
(
α

[0]
1

)†
χ−

(
α

[0]
2

)†
ρ,

χx = −α[0]
1 ψ, (4.13a)

ρx = −α[0]
2 ψ,

and its complex conjugate

ψ†y = −α[0]
1 χ† − α[0]

2 ρ†,

χ†x = −
(
α

[0]
1

)†
ψ†, (4.13b)

ρ†x = −
(
α

[0]
2

)†
ψ†.

Temporal part of the Lax pair

A similar result arises from the substitution of equations (4.11)-(4.12) in (4.7) and
(4.9), which in combination with (4.13) successfully provides the temporal part of
the Lax pair as

ψt = −iψxx − 2im[0]
x ψ,
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χt = −i
[
α

[0]
1

]
x
χ+ iα

[0]
1 ψx, (4.14a)

ρt = −i
[
α

[0]
2

]
x
ρ+ iα

[0]
2 ψx,

and its complex conjugate

ψ†t = iψ†xx + 2im[0]
x ψ†,

χ†t = i

[(
α

[0]
1

)†]
x

χ† − i
(
α

[0]
1

)†
ψ†x, (4.14b)

ρ†t = i

[(
α

[0]
2

)†]
x

ρ† − i
(
α

[0]
1

)†
ψ†x.

It is immediate to test that the compatibility among equations (4.13) and (4.14)
retrieves the initial (2 + 1)-NLS system (4.1). Thus, the system of linear PDEs
(4.13)-(4.14) can be regarded as a three-component Lax pair for (4.1).

Eigenfunctions and the singular manifold

The relation between the singular manifold φ and the eigenfunctions {ψ, χ, ρ} can
be easily established by combining (4.6) and (4.12), providing the following exact
derivative

dφ = ψ ψ† dx+
(
χχ† + ρ ρ†

)
dy + i

(
ψ ψ†x − ψ† ψx

)
dt. (4.15)

The role of the spectral parameter

It is worthwhile to notice the absence of a spectral parameter in this spectral problem.
This circumstance is as a direct consequence of the fact that no additional arbitrary
element (that could act as the spectral parameter) arises in the linearization pro-
cess of the singular manifold equations (4.9) and (4.10). Nevertheless, the explicit
presence of a spectral parameter in the associated linear problem is not mandatory
for Lax pairs in higher dimensions, as it is evidenced in the literature [247]. Neither
does this situation affect the computation of solutions through the Darboux trans-
formation approach, as it has been extensively illustrated in [138,148,151,159,161].

As it was shown in Section 3 from Chapter 2, Lax equations are invariant under
similarity transformations and it is possible to construct gauge transformations such
that the spectral problem is properly introduced. The inner question concerning
the removability of the spectral parameter or the consideration of non-parametric
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Lax pairs is a controversial topic that has been addressed by several authors [291]
and the references therein. Another different approach regarding this matters lies
in the use of group techniques. The introduction of a spectral parameter in a linear
problem without spectral parameter through one-parameter groups of Lie symmetries
was proposed by Levi et al. [270, 271]. This group interpretation of the spectral
parameter has been subsequently studied by several authors [84,85,87,252,290,291].
In particular, it is possible to combine these techniques with the SMM approach to
introduce the spectral parameter in nonlinear problems in 2+1 dimensions [149,153].

1.4. Darboux transformations

Let the vector α[0] =
(
α

[0]
1 , α

[0]
2

)ᵀ
and the scalar field m[0] be a seed solution for

the initial multi-component NLS system (4.1). Let {ψj , χj , ρj}, j = 1, 2 also be two
different sets of eigenfunctions for the linear problem (4.13)-(4.14) associated to this
seed solution, which explicitly reads

(
ψj

)
y

= −
(
α

[0]
1

)†
χj −

(
α

[0]
2

)†
ρj ,

(
ψj

)
t

= −i
(
ψj

)
xx
− 2im[0]

x ψj ,(
χj

)
x

= −α[0]
1 ψj ,

(
χj

)
t

= −i
[
α

[0]
1

]
x
χj + iα

[0]
1

(
ψj

)
x
, (4.16)(

ρj

)
x

= −α[0]
2 ψj ,

(
ρj

)
t

= −i
[
α

[0]
2

]
x
ρj + iα

[0]
2

(
ψj

)
x
,

and where its complex conjugate is given by

(
ψ†j

)
y

= −α[0]
1 χ†j − α

[0]
2 ρ†j ,

(
ψ†j

)
t

= i
[
ψ†j

]
xx

+ 2im[0]
x ψ†j ,(

χ†j

)
x

= −
(
α

[0]
1

)†
ψ†j ,

(
χ†j

)
t

= i

[(
α

[0]
1

)†]
x

χ†j − i
(
α

[0]
1

)† [
ψ†j

]
x
, (4.17)(

ρ†j

)
x

= −
(
α

[0]
2

)†
ψ†j ,

(
ρ†j

)
t

= i

[(
α

[0]
2

)†]
x

ρ†j − i
(
α

[0]
1

)† [
ψ†j

]
x
,

where j = 1, 2 and the subindices {x, y, t, xx} denote the partial derivatives with
respect to the corresponding variables.

We are also able to introduce two singular manifolds φj , j = 1, 2 following (4.15), as

dφj = ψj ψ
†
j dx+

(
χj χ

†
j + ρj ρ

†
j

)
dy + i

[
ψj

(
ψ†j

)
x
− ψ†j

(
ψj

)
x

]
dt. (4.18)
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First iteration

The Painlevé truncated series (4.5) may be expressed in terms of the seed eigen-
functions {ψj , χj , ρj}, j = 1, 2 and the singular manifold φ1, giving rise to the first
iterated fields {α[1],m[1]} as

α
[1]
1 = α

[0]
1 +

χ1ψ
†
1

φ1
,

(
α

[1]
1

)†
=
(
α

[0]
1

)†
+
χ†1ψ1

φ1
,

α
[1]
2 = α

[0]
2 +

ρ1ψ
†
1

φ1
,

(
α

[1]
2

)†
=
(
α

[0]
2

)†
+
ρ†1ψ1

φ1
,

m[1] = m[0] +
(φ1)x
φ1

.

(4.19)

Proceeding in a similar fashion to the previous Chapter, we may construct the spec-
tral problem associated to the iterated solution {α[1],m[1]} defined in (4.19). Let us
define the corresponding eigenfunctions {ψ1,2, χ1,2, ρ1,2}, and their complex conju-
gates {ψ†1,2, χ

†
1,2, ρ

†
1,2}, such that the associated Laix pair reads(

ψ1,2

)
y

= −
(
α

[1]
1

)†
χ1,2 −

(
α

[1]
2

)†
ρ1,2,

(
ψ1,2

)
t

= −i
(
ψ1,2

)
xx
− 2im[1]

x ψ1,2,(
χ1,2

)
x

= −α[1]
1 ψ1,2,

(
χ1,2

)
t

= −i
[
α

[1]
1

]
x
χ1,2 + iα

[1]
1

(
ψ1,2

)
x
,(

ρ1,2

)
x

= −α[1]
2 ψ1,2,

(
ρ1,2

)
t

= −i
[
α

[1]
2

]
x
ρ1,2 + iα

[1]
2

(
ψ1,2

)
x
,

(4.20)
and(
ψ†1,2

)
y

= −α[1]
1 χ†1,2 − α

[1]
2 ρ†1,2,

(
ψ†1,2

)
t

= i
[
ψ†1,2

]
xx

+ 2im[1]
x ψ†1,2,(

χ†1,2

)
x

= −
(
α

[1]
1

)†
ψ†1,2,

(
χ†1,2

)
t

= i

[(
α

[1]
1

)†]
x

χ†1,2 − i
(
α

[1]
1

)† [
ψ†1,2

]
x
,(

ρ†1,2

)
x

= −
(
α

[1]
2

)†
ψ†1,2

(
ρ†1,2

)
t

= i

[(
α

[1]
2

)†]
x

ρ†1,2 − i
(
α

[1]
1

)† [
ψ†1,2

]
x
.

(4.21)
The introduction of these eigenfunctions allows us to straightforwardly define the
corresponding singular manifold φ1,2, by the exact derivative

dφ1,2 = ψ1,2 ψ
†
1,2 dx+

(
χ1,2 χ

†
1,2 + ρ1,2 ρ

†
1,2

)
dy + i

[
ψ1,2

(
ψ†1,2

)
x
− ψ†1,2

(
ψ1,2

)
x

]
dt.

(4.22)

The spectral problem given in (4.16) and (4.17) can be interpreted [83, 141, 248]

131



4.1. Multi-component NLS equation in 2 + 1 dimensions

as a system of nonlinear equations for the fields {α[1],m[1]} and the eigenfunctions
{ψ1,2, χ1,2, ρ1,2}. Hence, it is expected that these eigenfunctions may follow a similar
Painlevé expansion, constructed in a neighbourhood of the singular manifold φ1 = 0,
of the form

ψ1,2 = ψ2 − ψ1
∆1,2

φ1
, χ1,2 = χ2 − χ1

∆1,2

φ1
, ρ1,2 = ρ2 − ρ1

∆1,2

φ1
, (4.23a)

where their complex conjugates are given by

ψ†1,2 = ψ†2 − ψ
†
1

∆†1,2
φ1

, χ†1,2 = χ†2 − χ
†
1

∆†1,2
φ1

, ρ†1,2 = ρ†2 − ρ
†
1

∆†1,2
φ1

. (4.23b)

Substitution of (4.23) in their respective spectral problems provides the expressions
for the coefficients {∆1,2,∆

†
1,2} as exact derivatives. Those results are subsumed in

the 2× 2 ∆-matrix, defined as

d∆i,j = ψ†i ψj dx+
(
χ†i χj + ρ†i ρj

)
dy + i

[
ψj

(
ψ†i

)
x
− ψi

(
ψj

)
x

]
dt, (4.24)

for all i, j = 1, 2. If i = j, equation (4.24) reduces to expression (4.18), which implies
that ∆i,i = φi, i = 1, 2. If i 6= j, the identity ∆j,i = ∆†i,j holds.

The singular manifold φ1,2 can be expanded with a similar Painlevé series, of the
form

φ1,2 = φ2 −
∆1,2∆2,1

φ1
, (4.25)

such that φ1,2 satisfies (4.22) and the coefficients {∆1,2,∆2,1} are given in (4.24).

Second iteration and τ-function

Considering the fact that φ1,2 is the associated singular manifold for the iterated
solution α[1], we shall now construct the solution for the fields α[2] by iterating
expressions (4.19), obtaining

α
[2]
1 = α

[1]
1 +

χ1,2 ψ
†
1,2

φ1,2
,

(
α

[2]
1

)†
=
(
α

[1]
1

)†
+
χ†1,2 ψ1,2

φ1,2
,

α
[2]
2 = α

[1]
2 +

ρ1,2 ψ
†
1,2

φ1,2
,

(
α

[2]
2

)†
=
(
α

[1]
2

)†
+
ρ†1,2 ψ1,2

φ1,2
,

m[2] = m[1] +
(φ1,2)x
φ1,2

.

(4.26)
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The second iteration can be easily expressed in terms of the seed solution {α[0],m[0]}
by means of relations (4.19), giving rise to the following results

α
[2]
1 = α

[0]
1 +

ψ†2∆1,1 χ2 + ψ†1∆2,2 χ1 − ψ†2∆1,2 χ1 − ψ†1∆2,1 χ2

τ1,2
,

α
[2]
2 = α

[0]
2 +

ψ†2∆1,1 ρ2 + ψ†1∆2,2 ρ1 − ψ†2∆1,2 ρ1 − ψ†1∆2,1 ρ2

τ1,2
,

(
α

[2]
1

)†
=
(
α

[0]
1

)†
+
χ†2∆1,1 ψ2 + χ†1∆2,2 ψ1 − χ†1∆2,1 ψ2 − χ†2∆1,2 ψ1

τ1,2
, (4.27)

(
α

[2]
2

)†
=
(
α

[0]
2

)†
+
ρ†2∆1,1 ψ2 + ρ†1∆2,2 ψ1 − ρ†1∆2,1 ψ2 − ρ†2∆1,2 ψ1

τ1,2
,

m[2] = m[0] +

(
τ1,2

)
x

τ1,2
,

where the τ -function τ1,2 has been introduced as

τ1,2 = φ1φ1,2 = φ1φ2 −∆1,2∆2,1, (4.28)

with coincides with τ1,2 = det ∆ regarding definitions (4.24).

1.5. Lump solutions

This Subsection is aimed at the characterization of lump soliton solutions for the
multi-component NLS system defined in (4.1), whose spectral problem is given in
(4.13) and (4.14). Solutions of this kind may be straightforwardly constructed in a
similar fashion of the standard procedure considered in the previous Chapters. The
major difference rests on the fact that lumps solutions decay regularly and rationally
in all spatial dimensions. Therefore, the τ -function should present a polynomial de-
pendence in its constituting coordinates (x, y, t) in order to reproduce this behaviour
in the associated solutions.

1. Seed solution

Let us propose the following seed solution

α[0] =

(
β1

β2

)
, (4.29)
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where β1, β2 are two arbitrary complex constants. Henceforth, we will denote the
modulus of the seed solution

∣∣α[0]
∣∣2 as

µ =
∣∣∣α[0]

∣∣∣2 =
(
α[0]

)†
·
(
α[0]

)
= β†1β1 + β†2β2. (4.30)

Then, the seed solution for the probability density m[0]
y reads

m[0]
y = −

(
α[0]

)†
·
(
α[0]

)
= −µ. (4.31)

2. Eigenfunctions

This seed solution implies that the spectral problem defined in (4.16)-(4.17) may
be written as (

ψj

)
y

= −β†1χj − β
†
2ρj ,

(
ψj

)
t

= −i
(
ψj

)
xx
,(

χj

)
x

= −β1 ψj ,
(
χj

)
t

= iβ1

(
ψj

)
x
,(

ρj

)
x

= −β2 ψj ,
(
ρj

)
t

= iβ2

(
ψj

)
x
,

(4.32)

and its complex conjugate(
ψ†j

)
y

= −β1χ
†
j − β2 ρ

†
j ,

(
ψ†j

)
t

= i
(
ψ†j

)
xx
,(

χ†j

)
x

= −β†1ψ
†
j ,

(
χ†j

)
t

= −iβ†1
(
ψ†j

)
x
,(

ρ†j

)
x

= −β†2ψ
†
j ,

(
ρ†j

)
t

= −iβ†1
(
ψ†j

)
x
,

(4.33)

where j = 1, 2.

The key observation to construct the solutions for this spectral problem lies in the
fact that the linear system of PDEs constituting the Lax pair is fully decoupled in
the triads {ψj , χj , ρj} and {ψ†j , χ

†
j , ρ
†
j}, for j = 1, 2. Therefore, the eigenfunctions

for the spectral problem (4.32)-(4.33) may be written as

ψj(kj) = ekjR(x,y,t,kj) P [N ](x, y, t, kj),

χj(kj) = −β1

kj
ekjR(x,y,t,kj)Q[N ](x, y, t, kj),

ρj(kj) = −β2

kj
ekjR(x,y,t,kj)Q[N ](x, y, t, kj),

(4.34)
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and
ψ†j(hj) = e−hjR(x,y,t,hj) P̃ [M ](x, y, t, hj),

χ†j(hj) =
β†1
hj
e−hjR(x,y,t,hj) Q̃[M ](x, y, t, hj),

ρ†j(hj) =
β†2
hj
e−hjR(x,y,t,hj) Q̃[M ](x, y, t, hj),

(4.35)

for j = 1, 2, where {kj , hj} are arbitrary complex parameters, N,M ∈ N and
R(x, y, t, kj) is the linear polynomial

R(x, y, t, kj) ≡ R(kj) = x+
µ

k2
j

y − ikjt. (4.36)

P [N ](x, y, t, kj) and Q[N ](x, y, t, kj) are polynomials of degree N in x that can be
expressed in the form

P [N ](x, y, t, kj) =

N∑
l=0

al(y, t, kj)x
l, Q[N ](x, y, t, kj) =

N∑
l=0

bl(y, t, kj)x
l, (4.37)

defined for N ≥ 0 and where the leading coefficients in this representation can be
taken as aN = 1, bN = 1 without loss of generality.

Substitution of the eigenfunctions (4.34) into the spectral problem (4.32) yields
recursion relations for the coefficients al(kj), bl′(kj), l, l′ = 0, . . . , N−1 of the form

∂al
∂t

= −i (l + 1)
[
2kjal+1 + (l + 2) al+2

]
,

∂al
∂y

=
µ

kj
(bl − al) ,

∂bl
∂t

= −i (l + 1)
[
2kjbl+1 + (l + 2) bl+2

]
,

∂bl
∂y

= − l + 1

kj

[
∂bl+1

∂y
+
µ

kj
bl+1

]
,

(4.38)

where the following identity holds

al =
l + 1

kj
bl+1 + bl, l = 0, . . . , N − 1, (4.39)

and we have the freedom to set aN = 1, bN = 1, aN+1 = 0, bN+1 = 0 for a
fixed N , and consider P [N ](0, 0, 0, kj) = 0 for any N ≥ 0. For example, the first
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polynomials up to order N = 2 are given by

P [0](x, y, t, kj) = 1, (4.40a)

Q[0](x, y, t, kj) = 1,

P [1](x, y, t, kj) = x−

(
2ikjt+

(
β2

1 + β2
2

)
y

k2
j

)
, (4.40b)

Q[1](x, y, t, kj) = x−

(
2ikjt+

(
β2

1 + β2
2

)
y

k2
j

+
1

kj

)
,

P [2](x, y, t, kj) =

[
x−

(
2ikjt+

(
β2

1 + β2
2

)
y

k2
j

)]2

− 2

(
it−

(
β2

1 + β2
2

)
y

k3
j

)
,

Q[2](x, y, t, kj) =

[
x−

(
2ikjt+

(
β2

1 + β2
2

)
y

k2
j

+
1

kj

)]2

(4.40c)

− 2

(
it−

(
β2

1 + β2
2

)
y

k3
j

− 1

2k2
j

)
.

Moreover, the introduction of (4.35) in (4.33), combined with the subsequent
comparison with (4.38), allows us to establish the following relations for the poly-
nomials P̃ [M ](x, y, t, hj), Q̃

[M ](x, y, t, hj) with the former ones

P̃ [M ](x, y, t, hj) = P [M ](x, y,−t,−hj),
Q̃[M ](x, y, t, hj) = Q[M ](x, y,−t,−hj),

(4.41)

where P [M ](x, y, t, hj), Q
[M ](x, y, t, hj) defined in terms of the wavenumber hj are

the corresponding polynomials for eigenfunctions for (4.34), satisfying (4.38).

Hence, the proposed solutions for the spectral problem, together with the re-
cursion relations defined above, allow us to obtain an infinite number of possible
eigenfunctions in terms of the integers N,M and the parameters {kj , hj}, j = 1, 2,
which can be easily interpreted as wavenumbers.

The sole additional constraint to be fulfilled by the eigenfunctions (4.34)-(4.35) is
that the associated singular manifolds φj , j = 1, 2 in (4.18), the product ∆1,2∆2,1

in (4.24) and, consequently, the τ -function in (4.28), should reduce to polynomial
expressions in the independent variables (x, y, t). In order to achieve this goal,
equation (4.18) suggests the following relation between the wavenumbers kj , hj
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for the eigenfunctions defined in (4.34) and (4.35)

kj = hj , j = 1, 2. (4.42)

Besides, from (4.36) it is easy to see that
[
R(x, t, y, kj)

]†
= R

(
x, y, t,−k†j

)
,

whilst equations (4.38)-(4.40) provide
[
P [N ](x, t, y, kj)

]†
= P [N ]

(
x, y,−t, k†j

)
,[

Q[N ](x, t, y, kj)
]†

= Q[N ]
(
x, y,−t, k†j

)
. Regarding these identities and in view

of relations (4.18), (4.24) and (4.28), the following reasonable choice arises

k2 = −k†1. (4.43)

Gathering these previous results, the eigenfunctions for the spectral problem
(4.32)-(4.33) associated to the seed solution (4.29) may be finally written as

ψ1 = ek1R(k1) P [N ](x, y, t, k1), ψ†1 = e−k1R(k1) P [M ](x, y,−t,−k1),

χ1 = −β1

k1
ek1R(k1)Q[N ](x, y, t, k1), χ†1 =

β†1
k1
e−k1R(k1)Q[M ](x, y,−t,−k1),

ρ1 = −β2

k1
ek1R(k1)Q[N ](x, y, t, k1), ρ†1 =

β†2
k1
e−k1R(k1)Q[M ](x, y,−t,−k1),

(4.44)
and

ψ2 = e−k
†
1R
†(k1) P [M ](x, y, t,−k†1), ψ†2 = ek

†
1R
†(k1) P [N ](x, y,−t, k†1),

χ2 =
β1

k†1
e−k

†
1R
†(k1)Q[M ](x, y, t,−k†1), χ†2 = −β

†
1

k†1
ek
†
1R
†(k1)Q[N ](x, y,−t, k†1),

ρ2 =
β2

k†1
e−k

†
1R
†(k1)Q[M ](x, y, t,−k†1), ρ†2 = −β

†
2

k†1
ek
†
1R
†(k1)Q[N ](x, y,−t, k†1),

(4.45)
which depends on the complex parameter k1 and the integers N,M ≥ 0, where
R(k1) ≡ R(x, y, t, k1) is given in (4.36) and R†(k1) stands for its complex conju-
gate.

It should be worth noticing that this ansatz for the eigenfunctions is exclusively
written in terms of a unique wavenumber k1. This fact indicates that, despite per-
forming the second iteration for the fields and computing the τ -function τ1,2, the
arising solution cannot be properly considered as a “two-lump solution”, since it is
not a two-soliton solution. Actually, the associated τ1,2 will provide a one-soliton
solution displaying the interaction of a nontrivial number of travelling lumps of
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the same amplitude which depends on the choice of the integers N,M . The ob-
tention of the proper two-lump solution would require the presence of two sets
of eigenfunctions with two different (and non related) wavenumbers k1, k2. This
will yield the computation of the fourth iteration for the fields, with associated
τ -function τ1,2,3,4. An example regarding the analysis of the two-soliton solution
of lump kind for a nonlinear PDE in 2 + 1 dimensions is addressed in Section 2
of the present Chapter.

The ensuing Subsections are devoted to the characterization of the one-soliton
solution for the multi-component NLS system (4.1). Therefore, distinct lump so-
lutions will arise for different values of the polynomial degrees N,M . Hereafter,
the simplest three cases will be presented, corresponding to all possible combina-
tions for the choices N,M = 0, 1, respectively.

1.5.1. One-soliton solution of type 0 + 0 (One lump)

This case of study corresponds to the elementary choice N = 0, M = 0. Then,
according to (4.36) and (4.40a), we have

P [0](x, y,±t, κ) = 1, Q[0](x, y,±t, κ) = 1, R(κ) = x+
µ

κ2
y − iκt, (4.46)

where κ can take any of the following values κ = {±k1,±k†1}. The eigenfunctions in
(4.44)-(4.45) possess the expressions

ψj = ekjRj , χj = −β1

kj
ekjRj , ρj = −β2

kj
ekjRj ,

ψ†j = e−kjRj , χ†j =
β†1
kj
e−kjRj , ρ†j =

β†2
kj
e−kjRj ,

(4.47)

where j = 1, 2, Rj = R(kj) and k2 = −k†1, such that R2 = R
(
−k†1

)
= R†1.

The integration of equations (4.18) provides the following polynomial expressions for
the associated singular manifolds

φ1 = x− 2ik1t−
µy

k2
1

, φ2 = x+ 2ik†1t−
µy(
k†1

)2 , (4.48)

where µ = β†1β1 + β†2β2. We may thereupon compute the remaining terms of the
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∆-matrix following (4.24), whose integration provides

∆1,2 = −e
−k1R1e−k

†
1R
†
1

k1 + k†1
, ∆2,1 =

ek1R1ek
†
1R
†
1

k1 + k†1
. (4.49)

If we set k1 = a1 + ib1, k
†
1 = a1 − ib1, with a1, b1 ∈ R, expressions (4.48) and (4.49)

reduce to

φ1 =

[
x− 2b1t−

(a2
1 − b21)µy(
a2

1 + b21
)2
]

+ i

[
2a1b1µy(
a2

1 + b21
)2 − 2a1t

]
, φ2 = φ†1,

∆1,2 = −e
−k1R1e−k

†
1R
†
1

2a1
, ∆2,1 =

ek1R1ek
†
1R
†
1

2a1
,

(4.50)

where φ2 may be computed as the complex conjugate of φ1. Then, the corresponding
τ -function defined in (4.28) is therefore given by

τ1,2 =

[
x− 2b1t−

(a2
1 − b21)µy(
a2

1 + b21
)2
]2

+

[
2a1b1µy(
a2

1 + b21
)2 − 2a1t

]2

+
1

4a2
1

, (4.51)

which is a positive defined polynomial expression of second degree in the independent
variables (x, y, t) with no singularities.

The second iteration for each component of the vector α[2] can be easily computed
via expressions (4.27). The lump profile may emerge by analyzing the probability
density of such second iteration, encoded in the scalar field m[2]

y = −
(
α[2]

)† · (α[2]
)

by means of the third equation in the initial NLS system (4.1). According to (4.27),
the field m[2]

y takes the form

m[2]
y = m[0]

y +

[
(τ1,2)x
τ1,2

]
y

= −µ+

[
(τ1,2)x
τ1,2

]
y

, (4.52)

where τ1,2 is given in (4.51). Figure 4.1 displays the lump soliton solutionm[2]
y defined

in (4.52), which represents a localized travelling rational structure propagating along
the direction x− (a21−3b21)µy

(a21+b21)
2 = 0, as it will be shown later.

Asymptotic behaviour

It is possible to perform the following Galilean transformations
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x = X + vxt, vx =
a2

1 − 3b21
b1

,

y =

(
a2

1 + b21
)2

µ
(Y + vyt) , vy =

1

b1
,

(4.53)

such that the τ -function in (4.51) is expressed as

τ1,2 =
[
X −

(
a2

1 − b21
)
Y
]2

+
[
2a1b1Y

]2
+

1

4a2
1

. (4.54)

This τ -function retrieves a lump configuration of the form

[
(τ1,2)X
τ1,2

]
Y

∼

[
X − (a21+b21)

2
Y

a21−b21

]2

−
[

2a1b1(a21+b21)Y
a21−b21

]2

− 1
4a1[(

X −
(
a2

1 − b21
)
Y
)2

+
(

2a1b1Y
)2

+ 1
4a21

]2 , (4.55)

which corresponds to a static lump, with similar profile to the one displayed in
Figure 4.1, centered at the origin of the XY -plane, with constant amplitude A00 =

−(3a21−b21)
2
µ

(a21+b21)
2 .

Figure 4.1: One-soliton solution of type 0+0, m[2]
y , with β1 = 1, β2 = 1, a1 = 1

2 , b1 =
1
2 .

The direction of propagation of the travelling lump associated to the τ -function
(4.51) can be easily obtained by balance of the dominant terms depending on t.
According to (4.53), the spatial coordinates in the asymptotic regime behave as

x ∼ a21−3b21
b1

t, y ∼ (a21+b21)
2

µb1
t, which retrieves the relation x − (a21−3b21)µy

(a21+b21)
2 = 0 in the
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xy-plane as the direction of propagation of the corresponding solution.

1.5.2. One-soliton solution of type 0 + 1 (Two lumps)

A new class of lump solutions can be derived by setting N = 0 and M = 1. In
accordance with (4.38) and (4.40), the associated polynomials up to first degree are

P [0] = 1, Q[0] = 1, (4.56a)

P [1] = x−

(
2ik1t+

(
β2

1 + β2
2

)
y

k2
1

)
, Q[1] = P [1] − 1

k1
, (4.56b)

where we have omitted the explicit dependence of the polynomials in the coordinates
and the wavenumber k1 for simplicity. Then, the associated eigenfunctions in (4.44)-
(4.45) read

ψ1 = ek1R1 , χ1 = −β1

k1
ek1R1 , ρ1 = −β2

k1
ek1R1 ,

ψ†1 = P [1] e−k1R1 , χ†1 =
β†1
k1

(
P [1] +

1

k1

)
e−k1R1 , ρ†1 =

β†2
k1

(
P [1] +

1

k1

)
e−k1R1 ,

ψ2 =
(
P [1]

)†
e−k

†
1R
†
1 , χ2 =

β1

k†1

(
P [1] +

1

k1

)†
e−k

†
1R
†
1 , ρ2 =

β2

k†1

(
P [1] +

1

k1

)†
e−k

†
1R
†
1 ,

ψ†2 = ek
†
1R
†
1 , χ†2 = −β

†
1

k†1
ek
†
1R
†
1 , ρ†2 = −β

†
2

k†1
ek
†
1R
†
1 ,

(4.57)
where R1 ≡ R(x, y, t, k1) given in (4.36) as R1 = x+

µy

k2
1

− ik1t.

The different elements of the ∆-matrix have been defined in differential form in
(4.24), whose integration yields

φ1 =
1

2

[(
X −

(
a2

1 − b21
)
Y
)2
− 4a2

1b
2
1Y

2 −
2a1

(
a2

1 − 3b21
)

a2
1 + b21

(
Y +

t

b1

)]

+ i

[
2a1b1

(
X −

(
a2

1 − b21
)
Y
)
Y + t+

(
3a2

1 − b21
)

(b1Y + t)

a2
1 + b21

]
,

φ2 = φ†1, (4.58)

∆1,2 = − 1

2a1

[(
X −

(
a2

1 − b21
)
Y +

1

2a1

)2

+ 4a2
1b

2
1Y

2 +
1

4a2
1

]
e−k1R1e−k

†
1R
†
1 ,
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∆2,1 =
ek1R1ek

†
1R
†
1

2a1
,

where we have selected k1 = a1 + ib1 and the expressions have been written in terms
of the {X,Y } coordinates introduced in (4.53). The τ -function now is given by

τ1,2 =
1

4

[(
X −

(
a2

1 − b21
)
Y
)2
− 4a2

1b
2
1Y

2 −
2a1

(
a2

1 − 3b21
)

a2
1 + b21

(
Y +

t

b1

)]2

+

[
2a1b1

(
X −

(
a2

1 − b21
)
Y
)
Y + t+

(
3a2

1 − b21
)

(b1Y + t)

a2
1 + b21

]2

+
1

4a2
1

[(
X −

(
a2

1 − b21
)
Y +

1

2a1

)2

+ 4a2
1b

2
1Y

2 +
1

4a2
1

]
,

(4.59)

obtained by direct substitution of (4.58) in (4.28). It is worth stressing that τ1,2

is a positive defined polynomial expression of fourth degree in (X,Y ) and second
degree in t with no zeros for any value of the parameters. The lump soliton solutions

therefore arise from equation (4.52) by the computation of m[2]
y = −µ+

[
(τ1,2)x
τ1,2

]
y

,

where now τ1,2 is given by (4.59).

Asymptotic behaviour

With the aim of better characterizing the resulting lump solution, we shall analyze
the asymptotic behaviour of such solution. In order to achieve this, we propose the
following transformation

X = X̂ + (ct)
1
2 , Y = Ŷ + z (ct)

1
2 , (4.60)

such that τ1,2 in (4.59) is a polynomial expression of second degree in all the indepen-
dent variables (X̂, Ŷ , t) and where c, z are arbitrary parameters to be determined.

From expression (4.59), it is immediate to note that τ1,2 ∼ O(t2) whilst (τ1,2)X ∼

O(t) in the limit t → ±∞. This trivially retrieves lim
t→±∞

[
(τ1,2)X
τ1,2

]
Y

= 0, unless

the highest powers in t of (4.59) vanish, and then this limit may become nonzero.
The imposition of such condition allows us to obtain the following relations for the
coefficients c and z,

c =
2a1

b1
(
a2

1 + b21
) [(

a2
1 − b21

)
z − 1

]
z
,
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z2 +
z

2b1
− 1

2b21
(
a2

1 + b21
) = 0,

whose solutions are

c = − 1

4a1b31

[
a4

1 + 6a2
1b

2
1 − 3b41 + s

(
a2

1 + b21
) 3

2
(
a2

1 + 9b21
) 1

2

]
, (4.61)

z =
1

4b21
(
a2

1 + b21
) [− (a2

1 + b21
)

+ s
(
a4

1 + 10a2
1b

2
1 + 9b41

) 1
2

]
, (4.62)

where s = ±1. This asymptotic analysis retrieves two possible solutions for the set
of parameters {c, z}, which indicates the existence of two privileged directions for
transformation (4.60) in the asymptotic limit.

In this case, the dominant terms in τ1,2 behave as

τ1,2 ∼

[(
1− z

(
a2

1 − b21
) )
X̂ +

( (
a4

1 − 6a2
1b

2
1 + b41

)
z − a2

1 + b21

)
Ŷ −

a1

(
a2

1 − 3b21
)
z

a2
1 + b21

]2

+

[
2a1b1zX̂ + 2a1b1

(
1− 2z

(
a2

1 − b21
) )
Ŷ +

b1
(
3a2

1 − b21
)
z

a2
1 + b21

]2

+
1

4a2
1

[(
a2

1 + b21
)2
z2 − 2

(
a2

1 − b21
)
z + 1

]
,

(4.63)
which corresponds to a single static lump, presenting a similar profile of solution
(4.51). The derivation of this solution, in combination with results (4.61), allows us to
conclude that the one-soliton solution obtained in (4.58) will display the interaction
of two nonlinear waves of lump-type with the same amplitude travelling along the
lines Y = Ŷ +z

(
X − X̂

)
, where the values of z are about to be specified thereupon.

The illustration of such behaviour may be found in Figure 4.2.

The explicit asymptotic behaviour of the solution under consideration can be char-
acterized as follows. The corresponding analysis depends on the sign of the constant
c, which is given by the sign of the product a1b1 and the value of s. Assuming
a1b1 > 01, the asymptotic analysis reads:

• At t→ −∞, transformation (4.60) is well defined for c < 0, which is equivalent to
consider s = 1 in (4.61). The corresponding value of z results in

1In case a1b1 < 0, the criteria regarding the choice of s should be the opposite, and consequently,
the asymptotic directions are switched and the motion of the lump solution is reversed.
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z− =
1

4b21
(
a2

1 + b21
) [− (a2

1 + b21
)

+
(
a4

1 + 10a2
1b

2
1 + 9b41

) 1
2

]
> 0. (4.64)

Therefore, there exists two lump-like waves that approach along the direction
defined by Y = Ŷ + z−

(
X − X̂

)
.

• By an analogous analysis, at t→∞, c > 0 which implies s = −1, yielding

z+ = − 1

4b21
(
a2

1 + b21
) [(a2

1 + b21
)

+
(
a4

1 + 10a2
1b

2
1 + 9b41

) 1
2

]
< 0, (4.65)

such that Y = Ŷ + z+

(
X − X̂

)
defines the asymptotic direction followed by the

two lumps when moving away.

The scattering angle between the lumps, understood as the angle formed by the
two asymptotic directions, is given by

tan θS =

(
a4

1 + 10a2
1b

2
1 + 9b41

) 1
2

1− 2b21
(
a2

1 + b21
) . (4.66)

Figure 4.2 displays the one-soliton solution obtained from m
[2]
y with τ -function (4.59)

at different times. It is worth stressing that, despite the fact that this solution has
been computed as a one-solution solution, it presents two components of lump-type
with equal conformation.

(a) (b) (c)

Figure 4.2: One-soliton solution of type 0 + 1, m[2]
y , with parameters β1 = 1, β2 = 1,

a1 = 1, b1 = 2, at different times: (a) t < 0, (b) t = 0 and (c) t > 0.

The pictures reflect the interaction of those lump components, of asymptotic profile
(4.63), such that they gradually approach to each other (Fig. 4.2a), converge at the
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origin in t = 0 (Fig. 4.2b) and then drift apart (Fig 4.2c). The sole effect of the
interaction over the travelling lumps lies in a shift on their propagation direction
given by (4.66).

1.5.3. One-soliton solution of type 1 + 1 (Three lumps)

The last class of lump solutions to be analyzed for this example corresponds to the
choice N = 1 andM = 1. The associated polynomials P [1](x, y, t, k1), Q[1](x, y, t, k1)
for this case are given in (4.56b), which clearly satisfy (4.38). Expressions (4.44)-
(4.45) therefore give rise to the following eigenfunctions

ψ1 = P [1] ek1R1 , χ1 = −β1

k1

(
P [1] − 1

k1

)
ek1R1 , ρ1 = −β2

k1

(
P [1] − 1

k1

)
ek1R1 ,

ψ†1 = P [1] e−k1R1 , χ†1 =
β†1
k1

(
P [1] +

1

k1

)
e−k1R1 , ρ†1 =

β†2
k1

(
P [1] +

1

k1

)
e−k1R1 ,

ψ2 =
(
P [1]

)†
e−k

†
1R
†
1 , χ2 =

β1

k†1

(
P [1] +

1

k1

)†
e−k

†
1R
†
1 , ρ2 =

β2

k†1

(
P [1] +

1

k1

)†
e−k

†
1R
†
1 ,

ψ†2 =
(
P [1]

)†
ek
†
1R
†
1 , χ†2 = −β

†
1

k†1

(
P [1] − 1

k1

)†
ek
†
1R
†
1 , ρ†2 = −β

†
2

k†1

(
P [1] − 1

k1

)†
ek
†
1R
†
1 ,

(4.67)
where R1 = x+

µy

k2
1

− ik1t, R
†
1 = x+

µy(
k†1

)2 + ik†1t, from (4.36).

Following (4.24), the associated singular manifolds φ1, φ2 and the elements ∆1,2, ∆2,1

are given by

φ1 =

[
X −

(
a2

1 − b21
)
Y
]3

3
− 4a2

1b
2
1

[
X −

(
a2

1 − b21
)
Y
]
Y 2 − a4

1 − 6a2
1b

2
1 + b41(

a2
1 + b21

)2 (
Y +

t

b1

)

+ i

[
−8a3

1b
3
1Y

3

3
+ 2a1b1

(
X −

(
a2

1 − b21
)
Y
)2
Y −

4a1

(
a2

1 − b21
)

(b1Y + t)(
a2

1 + b21
)2

]
,

φ2 = φ†1,

∆1,2 = − 1

2a1

[(
X −

(
a2

1 − b21
)
Y +

1

2a1

)2

+ 4a2
1b

2
1Y

2 +
1

4a2
1

]
e−k1R1e−k

†
1R
†
1 ,

∆2,1 =
1

2a1

[(
X −

(
a2

1 − b21
)
Y − 1

2a1

)2

+ 4a2
1b

2
1Y

2 +
1

4a2
1

]
ek1R1ek

†
1R
†
1 ,

(4.68)
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where k1 = a1 + ib1 and the coordinates {X,Y } can be found in (4.53).
Hence, the τ -function (4.28) reads

τ1,2 =

[
−8a31b

3
1Y

3

3
+ 2a1b1

(
X −

(
a21 − b21

)
Y
)2
Y − 4a1 (a21 − b21) (b1Y + t)

(a21 + b21)
2

]2

+


(
X − (a21 − b21)Y

)3
3

− 4a21b
2
1

(
X −

(
a21 − b21

)
Y
)
Y 2 − a41 − 6a21b

2
1 + b41

(a21 + b21)
2

(
Y +

t

b1

)
2

+
1

4a21

[{(
X −

(
a21 − b21

)
Y
)2

+ 4a21b
2
1Y

2
}2

+ 4b21Y
2 +

1

4a41

]
, (4.69)

which is a positive defined polynomial of sixth degree in (X,Y ) and third degree in
t. Moreover, it possesses no zeros.

Asymptotic behaviour

The asymptotic analysis should follow in complete analogy to the previous one. In
order to study the behaviour at t→ ±∞ of the solution arising from (4.69), we shall
introduce a transformation of the form

X = X̂ + (ct)
1
3 , Y = Ŷ + z (ct)

1
3 , (4.70)

where c, z are arbitrary parameters to be determined such that the highest powers
in t of (4.69) identically hold. This condition immediately retrieves the following
equations for c and z,

c =
6
(
a2

1 − b21
)

b1
(
a2

1 + b21
) [(

a2
1 − 3b21

) (
3a2

1 − b21
)
z2 − 6

(
a2

1 − b21
)
z + 3

]
z
, (4.71a)

z3 − 3z(
a2

1 + b21
)2 +

2
(
a2

1 − b21
)(

a2
1 + b21

)4 = 0. (4.71b)

Expression (4.71b) defines a depressed cubic equation for z, which is proved to have
three real roots of the form [376]

zl =
2

a2
1 + b21

cos

(
θ

3
+

2πl

3

)
, with θ = arccos

(
−a

2
1 − b21
a2

1 + b21

)
, l = 0, 1, 2. (4.72)

The substitution of any of these three values for z provides a unique value of c by
means of (4.71a). This analysis results in three solutions for the set of parameters
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{c, z}, which implies the existence of three asymptotic directions given by Y =

Ŷ + zl

(
X − X̂

)
, l = 0, 1, 2.

Then, the asymptotic behaviour of τ1,2 in (4.69) is

τ1,2 ∼
[( (

a4
1 − 6a2

1b
2
1 + b41

)
z2 − 2

(
a2

1 − b21
)
z + 1

)
X̂

−
( (
a2

1 − b21
) (
a4

1 − 14a2
1b

2
1 + b41

)
z2 − 2

(
a4

1 − 6a2
1b

2
1 + b41

)
z + a2

1 − b21
)
Ŷ
]2

+ 4a2
1b

2
1

[
2
(

1−
(
a2

1 − b21
)
z
)
zX̂ +

( (
a2

1 − 3b21
) (

3a2
1 − b21

)
z2 − 4

(
a2

1 − b21
)
z + 1

)
Ŷ
]2

+
1

4a2
1

[(
9a4

1 + 2a2
1b

2
1 + 9b21

)
z2 − 18

(
a2

1 − b21
)
z +

9a4
1 − 14a2

1b
2
1 + 9b21(

a2
1 + b21

)2
]
, (4.73)

which represents a static lump. Thus, the τ -function (4.69) gives rise to three equal
components of lump-type, which travel along the lines Y = Ŷ + zl

(
X − X̂

)
, with

zl, l = 0, 1, 2 given in (4.72), and possess the ability to interact among them. The
behaviour of this solution may be appreciated in Figure 4.3, where the lump waves
come closer to each other (Fig. 4.3a), coalesce at the origin in t = 0 (Fig. 4.3b) and
then they move away (Fig 4.3c). It is also worth mentioning that in this case, the
lump solitons display no scattering upon interaction.

(a) (b) (c)

Figure 4.3: One-soliton solution of type 1 + 1, m[2]
y , with parameters β1 = 1, β2 = 1,

a1 = 1, b1 = 2, at different times: (a) t < 0, (b) t = 0 and (c) t > 0.

2. Generalized Nizhnik-Novikov-Veselov equation

Korteweg-de Vries (KdV) equation [249] is one of the most famous (1 + 1)-integrable
models in the realm of soliton theory and Mathematical Physics, widely studied
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in literature [3, 130, 183, 263, 303, 304, 373, 426]. Among the several generalizations
of KdV, we are interested in its integrable extensions to higher spatial dimensions,
particularly to 2 + 1 dimensions. One of the first integrable generalizations of KdV
is the ubiquitous Kadomtsev–Petviashvili (KP) equation [231], which is known to
share several of the truly remarkable properties with its one-dimensional counterpart
[3, 131,168,213,230,283,287,301,307,370].

Another renowed integrable generalization of KdV to 2 + 1 dimensions is the so-
called Nizhnik-Novikov-Veselov (NNV) equation, first introduced by the authors in
[317,319,391,392]. Boiti et. al. solved this equation by the IST method and obtained
a weak Lax pair in the subspace of coordinate space [53,54]. Furthermore, a plethora
of soliton-like solutions [360, 384, 407] and other kinds of localized structures [255,
280,336,347,436] have been found for this system via different procedures. Besides,
the boundary value problem for NNV equation has been studied in [360], Moutard
transformations [44] and auto-Bäcklund transformations [403] have been used to find
new exacts solutions, and a superposition rule has been given in [219].

This Section addresses the analysis of a generalized Nizhnik-Novikov-Veselov equa-
tion, understood as a symmetric generalization of the KdV equation to (2 + 1) di-
mensions, given by

ut + auxxx + buyyy + cux + duy − 3a(uv)x − 3b(uw)y = 0,

ux = vy,

uy = wx,

(4.74)

where a , b, c and d are arbitrary parameters. This equation, known to be completely
integrable, has been investigated in [255,347], where exponentially localized solutions
have been generated and their dynamics has been analyzed.

By introducing the change of variables,

u = 2mxy, v =
c

3a
− 2mxx, w =

d

3b
− 2myy, (4.75)

the system of PDEs given in (4.74) is transformed into the following nonlinear dif-
ferential equation

mxyt + a (mxxxy + 6mxxmxy)x + b (myyyx + 6myymxy)y = 0, (4.76)

where m = m(x, y, t) is a scalar field.
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2.1. Painlevé test and integrability

An integrability analysis for (4.76) can be easily performed by means of the Painlevé
test [417]. The field m is then required to possess a generalized Laurent expansion
of the form

m(x, y, t) =
∞∑
j=0

ajφ
j−α, (4.77)

in a neighbourhood of the singularity manifold φ(x, y, t) = 0. aj(x, y, t), ∀j are the
coefficients of the expansion, about to be determined, and α is the leading index
of the expansion. A preliminary inspection of the dominant terms at leading-order
immediately provides α = 0. According to the procedure illustrated in Subsection
2.1 of the previous Chapter, expansion (4.77) should be slightly modified as

m = m̃0 log(φ) +
∞∑
j=0

ajφ
j , (4.78)

in order to incorporate an additional logarithmic term in the series such that the
WTC method is prospectively applicable to equation (4.76).

1. A leading-order analysis results in

m̃0(x, y, t) = 1, (4.79)

which is uniquely determined, and therefore, (4.78) has one branch of expan-
sion.

2. The associated resonance condition is given by

j(j + 1)(j − 1)(j − 2)(j − 4)(j − 6) = 0, (4.80)

which yields five resonances, among which the resonance in j = −1 accounts
for the arbitrariness of the function φ.

3. The resonance conditions for j = 0, 1, 4, 6 identically hold, successfully retriev-
ing the coefficients a0, a1, a4, a6 as arbitrary.

Thus, we shall conclude that equation (4.76), and consequently the initial system
(4.74), passes the Painlevé test and then, it is precise to consider both of them as
integrable systems.
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2.2. Singular manifold method and spectral problem

According to the SMM [410], the truncated expansion arising from Painlevé analysis
for the field m should be

m[1] = m[0] + log(φ), (4.81)

which can be regarded as an auto-Bäcklund transformation between two solutions
for the initial equation (4.76), the seed solution m[0] and the iterated one m[1].

Substitution of relation (4.81) into the starting problem (4.76) yields an expression
in negatives powers of φ. The procedure to adopt in this Subsection has been subtly
modified in order to properly grapple with the arising singular manifold equations.

Since (4.76) is symmetric under the interchange of (x, a) ↔ (y, b), it is therefore
reasonable to suggest the ansatz

φt = aGa(x, y, t) + bGb(x, y, t), (4.82)

such that the terms in a and b cancel independently. If we substitute now relation
(4.82) into the singular manifold equations for φ, we obtain two polynomial expres-
sions in powers of φ, with separated contributions of terms in a and b, respectively.
If we require all the coefficients of these polynomials to be zero, after some algebraic
manipulations handled with MAPLE, the following results arise

Ga = −φxxx − 6φxm
[0]
xx, Gb = −φyyy − 6φym

[0]
yy, (4.83)

where the remaining contributions to the singular manifold equations can be inde-
pendently integrated as

φxy + 2φm
[0]
xy

φx
+K2(y) +K1(y)

∫ (
φ

φx

)2

dx = 0, (4.84)

φxy + 2φm
[0]
xy

φy
+H2(x) +H1(x)

∫ (
φ

φy

)2

dy = 0, (4.85)

being Hj(x), Kj(y) for j = 1, 2 arbitrary functions.

The compatibility of equations (4.84) and (4.85) yields

H1(x) = 0, H2(x) = 0, K1(y) = 0, K2(y) = 0, (4.86)

and therefore

φxy + 2φm[0]
xy = 0. (4.87)
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This latter equation, when combined with expressions (4.82) and (4.83), finally pro-
vides

φt + a
(
φxxx + 6φxm

[0]
xx

)
+ b

(
φyyy + 6φym

[0]
yy

)
= 0. (4.88)

It is immediate to verify that equations (4.87) and (4.88) constitute a Lax pair for
the generalized NNV equation defined in (4.76). The above spectral problem is in
sharp contrast to the notion of weak Lax pair postulated by Boiti et al. for this
equation [53,54].

As it has been illustrated, the associated linear problem in this case straightfor-
wardly arises from the direct integration of the singular manifold equations. The
introduction of additional variables as an intermediate step to linearize these equa-
tions has not been needed, and hence, the singular manifold φ will play the role of
the eigenfunction in this spectral problem. It is also worth mentioning that this Lax
pair does not explicitly possess a spectral parameter. This novel scenario will require
to consequentially adapt the Darboux transformation approach2 in order to derive
solutions for (4.76), as it is described in the following paragraphs.

2.3. Darboux transformations

Let us consider two singular manifolds φi, i = 1, 2 that behave in turn as eigenfunc-
tions for the spectral problem (4.87)-(4.88) with seed solution m[0], i.e.

(φi)xy + 2φim
[0]
xy = 0,

(φi)t + a
[
(φi)xxx + 6(φi)xm

[0]
xx

]
+ b

[
(φi)yyy + 6(φi)ym

[0]
yy

]
= 0,

(4.89)

for i = 1, 2.

First iteration

The truncated expansion given by equation (4.81) can be regarded as an iterative
method to construct new solutions for the initial equation (4.76), such that an iter-
ated solution m[1] can be obtained from the seed solution m[0], as

m[1] = m[0] + log(φ1). (4.90)

2Actually, the computation associated to the Darboux transformation procedure will be simpli-
fied, since the intermediate eigenfunctions no longer appear in the process, and hence, the successive
iterations are directly performed over the singular manifold itself.
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We should now denote φ1,2 as the corresponding eigenfunction for the iterated solu-
tion m[1], which satisfies the spectral problem

(φ1,2)xy + 2φ1,2m
[1]
xy = 0,

(φ1,2)t + a
[
(φ1,2)xxx + 6(φ1,2)xm

[1]
xx

]
+ b

[
(φ1,2)yyy + 6(φ1,2)ym

[1]
yy

]
= 0.

(4.91)

This Lax pair (4.91) can be considered as a nonlinear system in the fields and eigen-
function together. It means that the truncated Painlevé expansion given by (4.90)
should be combined with a similar expansion for the eigenfunction φ1,2, of the form

φ1,2 = φ2 −
∆1,2

φ1
, (4.92)

performed in a neighbourhood of the singular manifold φ1 = 0 and where ∆1,2(x, y, t)
is a coefficient to be determined. Substitution of equations (4.90) and (4.92) into
equations (4.91) yields the coefficients ∆i,j , i, j = 1, 2 as the exact derivative

d∆i,j = d∆(φi, φj) = 2φj(φi)xdx+ 2(φj)y φi dy

+ 2a
[
(φj)x (φi)xx − (φi)x (φj)xx − φj(φi)xxx − 6m[0]

xx φj (φi)x

]
dt

+ 2b
[
(φi)y (φj)yy − (φj)y (φi)yy − φi(φj)yyy − 6m[0]

yy φi (φj)y

]
dt,

(4.93)

where the following identity holds

∆i,j = 2φiφj −∆j,i. (4.94)

The Painlevé expansion given by equation (4.90) and equation (4.92) may also be
considered as a binary Darboux transformation that relates the Lax pairs given by
(4.89) and (4.91).

Second iteration and τ-function

The singular manifold φ1,2 allows us to iterate equation (4.90) again in the following
form

m[2] = m[1] + log(φ1,2), (4.95)

which in terms of the seed solution m[0] reads

m[2] = m[0] + log(τ1,2), (4.96)

where the τ -function is defined as
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τ1,2 = φ1,2 φ1 = φ1φ2 −∆1,2. (4.97)

In view of equation (4.94), it is trivial to obtain ∆1,1 = φ2
1, ∆2,2 = φ2

2, ∆2,1 =
2φ1φ2 −∆1,2, such that τ1,2 therefore satisfies

τ2
12 = det ∆, (4.98)

where ∆ is the 2× 2 matrix of entries ∆i,j , with i, j = 1, 2, defined in (4.93). Thus,
it is possible to construct the solution m[2] for the second iteration with the exclusive
knowledge of two eigenfunctions φ1 and φ2 for the seed solution m[0].

2.4. Lump solutions

This Subsection is devoted to the obtention of lump soliton solutions for the gener-
alized NNV equation (4.76). This kind of solutions can be straighforwardly derived
by employing a similar procedure to the one described in the previous Section 1 for
the multi-component NLS system.

Seed solution and eigenfunctions

Let us consider the seed solution

m[0] = q0xy, (4.99)

where q0 is an arbitrary constant.

Then, solutions of the associated spectral problem (4.89) can be obtained through
the following form

φi(x, y, t, ki) = eki[x+J(y,t,ki)]P [n](x, y, t, ki), i = 1, 2, (4.100)

depending of two complex parameters ki, i = 1, 2, where J(y, t, ki) is the linear
polynomial

J(ki) ≡ J(y, t, ki) = −2
q0

k2
i

y +

(
−ak2

i +
8bq3

0

k4
i

)
t (4.101)

and P [n](ki) ≡ P [n](x, y, t, ki) is a polynomial of degree n in the variable x of the
form

P [n](ki) =
n∑
l=0

aj(y, t, ki)ψ(x, y, t, ki)
l, (4.102)

with

ψ(ki) ≡ ψ(x, y, t, ki) = k2
i

(
x+

2q0

k2
i

y − 3

(
ak2

i +
8bq3

0

k4
i

)
t

)
. (4.103)
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The coefficients al(y, t, ki) for any l in (4.102) can be easily computed by substitut-
ing equations (4.100)-(4.103) into equations (4.89), obtaining after some algebraic
manipulations

∂al
∂y

= −ki(l + 1)
∂al+1

∂y
− 2q0ki(l + 1)(l + 2)al+2,

∂al
∂t

= (l + 1)

(
bki

∂3al+1

∂y3
− 12bq0

∂2al+1

∂y2
+

36bq2
0

ki

∂al+1

∂y

)
+ (l + 1)(l + 2)

(
2bq0ki

∂2al+2

∂y2
− 24bq2

0

∂al+2

∂y
− 3

ki

(
ak6

i − 16bq3
0

)
al+2

)
− (l + 1)(l + 2)(l + 3)

(
ak6

i + 8bq3
0

)
al+3,

(4.104)
where we can set an = 1, an−1 = 0. From the above, it is obvious that there are
an infinite number of possible eigenfunctions characterized by an integer n and a
wavenumber ki, i = 1, 2.

2.4.1. One-lump solution for n = 1 (One lump)

The simplest case corresponds to the choice n = 1, such that the eigenfunctions in
(4.100) possess the following form

φi(ki) = eki[x+J(ki)]ψ(ki), i = 1, 2, (4.105)

where J(ki) and ψ(ki) are given in (4.101) and (4.103), respectively.

According to equation (4.93), the coefficients ∆i,j , i = 1, 2 can be calculated as

∆i,j =
2ki

ki + kj

[(
ψ(ki) +

kikj
ki + kj

)(
ψ(kj)−

k2
j

ki + kj

)
+

k2
i k

2
j

(ki + kj)2

]
× eki[x+J(ki)]+kj [x+J(kj)].

(4.106)

Moreover, it is important to note that the following relation also vanishes 2φiφj =
∆i,j + ∆j,i.

A second iteration for the field m[2] now provides

m[2] = q0xy + log(τ1,2), (4.107)

such that the second iteration for the initial field u[2] in (4.74) can be easily obtained
from (4.75), as
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u[2] = −2m[2]
xy = −2

[
q0 +

(
(τ1,2)x
τ1,2

)
y

]
. (4.108)

The τ -function τ1,2 has been introduced in (4.97), which combined with (4.94), yields

τ1,2 =
1

2
(∆2,1 −∆1,2) . (4.109)

Substitution of the proper expressions for the coefficients ∆1,2 and ∆2,1 in (4.106)
allows to simplify the τ -function in (4.109) as

τ1,2 = −k1 − k2

k1 + k2
ek1[x+J(k1)]+k2[x+J(k2)]Ω1,2, (4.110)

where the coefficient Ω1,2 is given by

Ω1,2 =
[
ψ(k1) + g(k1, k2)

][
ψ(k2) + g(k2, k1)

]
+ d(k1, k2) (4.111)

and the functions g(ki, kj), d(ki, kj) are

g(ki, kj) =
2kjk

2
i

k2
i − k2

j

, d(ki, kj) =
2k2

i k
2
j (k

2
i + k2

j )

(k2
i − k2

j )
2

, i, j = 1, 2. (4.112)

Therefore, equation (4.108) reads

u[2] = −2

[
q0 +

(
(Ω1,2)x

Ω1,2

)
y

]
. (4.113)

In order to have real expressions, we should set k2 as the complex conjugate of k1,
by identifying

k1 = A+ iB, k2 = A− iB, A,B ∈ R. (4.114)

By using the ansatz (4.114) in (4.111), we finally obtain

Ω1,2 =

[
2ABx+ 12AB

(
−a(A2 −B2) +

4bq3
0

(A2 +B2)2

)
t− A2 +B2

2B

]2

+

[
(A2 −B2)x+ 2q0y +

(
3a(6A2B2 −A4 −B4)− 24q3

0

A2 −B2

(A2 +B2)2

)
t+

A2 +B2

2A

]2

+ (B2 −A2)

[
A2 +B2

2AB

]2

,

which has no zeros for B2 > A2. This means that equation (4.113) will not have

155



4.2. Generalized Nizhnik-Novikov-Veselov equation

singularities for those values of the parameters.

Asymptotic behaviour

Actually, it is possible to define a Galilean transformation of the form

x = X +X0 + vxt, y = Y + Y0 + vyt, (4.115)

where

X0 =
A2 +B2

4AB2
, vx =

[
6a(A2 −B2)− 24bq3

0

(A2 +B2)2

]
,

Y0 = −(A2 +B2)2

8q0AB2
, vy =

1

q0

[
−3a

2
(A2 +B2)2 + 24bq3

0

(A2 −B2)

(A2 +B2)2

]
.

(4.116)

The function Ω1,2 is expressed in the new coordinates as the static solution

Ω1,2 =
[
(A2 −B2)X + 2q0Y

]2
+ [2ABX]2 + (B2 −A2)

[
A2 +B2

2AB

]2

. (4.117)

The second iteration for u[2] is given in (4.113), and similarly, one can define the
iterations for v[2] and w[2] through (4.75), of the form

v[2] =
c

3a
− 2

[
q0 +

(
(Ω1,2)x

Ω1,2

)
x

]
, w[2] =

c

3b
− 2

[
q0 +

(
(Ω1,2)x

Ω1,2

)
x

]
. (4.118)

The lump solution for u[2] via (4.113) is represented in Figure 4.4. It is interesting
to note that one gets a similar lump profile for v[2] and w[2].

Figure 4.4: One-soliton solution u[2] for n = 1 when q0 = 0.3, A = 0.5, B = 1.
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2.4.2. One-soliton solution for n = 2 (Two lumps)

As already depicted in the analysis of lump solutions for the previous example,
displayed in Subsection 1.5 of this Chapter, the polynomial of lowest degree for the
eigenfunctions provide a travelling lump soliton that can be transformed in a static
solution after a Galilean transformation. Then, it is expected that when polynomials
of higher degrees are considered, the dynamics of the solutions become more intricate.
In particular, the following level of complexity is achieved by setting n = 2.

Substituting n = 2 into equation (4.100) straightforwardly provides

φi(ki) =
[
a0(ki) + ψ(ki)

2
]
eki[x+J(ki)], i = 1, 2, (4.119)

where J(ki) and ψ(ki) are given in (4.101) and (4.103), respectively, and

a0(ki) = −4q0kiy −
6

ki

(
ak6

i − 16bq3
0

)
t, (4.120)

which has been easily obtained from equations (4.104).

The different elements of the ∆-matrix can be computed through the integration of
equation (4.93), yielding

∆i,j

(
k1 + k2

2k1

)
e−ki[x+J(ki)]−kj [x+J(kj)] = −2k2

2ψ(k1)2ψ(k2)

k1 + k2
+

2k1k2ψ(k1)ψ(k2)2

k1 + k2

+ ψ(k1)2ψ(k2)2 +

[
a0(k2) +

2k4
2

(k1 + k2)2

]
ψ(k1)2 +

[
a0(k1)− 2k2k

3
1

(k1 + k2)2

]
ψ(k2)2

+
2k1k2

k1 + k2

[
a0(k2) +

2k3
2(k2 − 2k1)

(k1 + k2)2

]
ψ(k1)− 2k2

2

k1 + k2

[
a0(k1) +

2k3
1(k1 − 2k2)

(k1 + k2)2

]
ψ(k2)

+ a0(k1)a0(k2) +
2k2

(k1 + k2)2

[
k3

2a0(k1)− k3
1a0(k2)

]
+

4k2
2k1(k1 − k2)

(k1 + k2)2
ψ(k1)ψ(k2)

+
12k3

1k
4
2(k1 − k2)

(k1 + k2)4
.

(4.121)
Once the elements ∆i,j , i, j = 1, 2 have been computed, the τ -function immediately
arises from expression (4.109). Taking the ansatz (4.110) for τ1,2, the coefficient Ω1,2

can be written as

Ω1,2 =

[(
ψ(k1) + g(k1, k2)

)2
+ a0(k1)− k1

k2
g(k1, k2)2

]
×
[(
ψ(k2) + g(k2, k1)

)2
+ a0(k2)− k2

k1
g(k2, k1)2

]
(4.122)
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+ 4d(k1, k2)
[(
ψ(k1)− c(k1, k2)

)(
ψ(k2)− c(k2, k1)

)]
+ p(k1, k2),

where g(ki, kj), d(ki, kj) are defined in equation (4.112) and

c(ki, kj) = k2
i

k2
i − kikj + 2k2

j

(ki + kj)(k2
i + k2

j )
, p(ki, kj) =

8k4
i k

4
j (k

2
i + k2

j + kikj)

(k2
i + k2

j )(ki + kj)4
.

If we select k1 = A+ iB and k2 = A− iB, A,B ∈ R, Ω1,2 takes the form

Ω1,2 =
[(
A2 −B2)X + 2q0Y

)2 − 4A2B2X2 − 4Aq0Y + 8A2B2h1t

+
(3A2 −B2)(A4 −B4)

4A2B2

]2

+

[
4(A2 −B2)ABX2 + 8q0ABXY − 4q0BY

]
−8A2B2h2t+

(3A2 −B2)(A2 +B2)

2AB

]2

+
B2 − 3A2

B2 −A2

[
(A2 +B2)2

2A2

]2

+ (B2 −A2)

[
A2 +B2

2AB

]2 [
(A2 −B2)X + 2q0Y −

2A4 −A2B2 −B4

2A(A2 −B2)

]2

+ (B2 −A2)

[
A2 +B2

2AB

]2 [
2ABX +

A4 −A2B2 + 2B4

2B(A2 −B2)

]2

,

(4.123)
where h1 and h2 are constants defined by

h1 =
3

A(A2 +B2)2

[
8bq3

0 + a
(
3A6 −B6 + 5A4B2 +A2B4

)]
,

h2 =
3

B(A2 +B2)

[
8bq3

0 − a
(
3B6 −A6 + 5B4A2 +B2A4

)]
,

(4.124)

and {X,Y } are the coordinates introduced in equation (4.115). By analyzing equa-
tion (4.123), it is easy to see that Ω1,2 does not have zeros when B2 > 3A2.

Asymptotic behaviour

In the following, we wish to study the asymptotic behaviour at t→ ±∞ of the lump
solution (4.113) generated by the functions Ω1,2 obtained in (4.123). Therefore, we
need to perform a transformation of the form

X = X̂ + (ct)
1
2 , Y = Ŷ + z (ct)

1
2 , (4.125)
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such that parameters c and z should be fixed so as to cancel the higher powers in t
of expression (4.123). This requirement results in

c2 − 2h1c− h2
2 = 0, (4.126a)

z =
B2 −A2

2q0
+
ABh2

q0c
, (4.126b)

where h1, h2 are given in (4.124). Equation (4.126a) can be trivially solved, providing
c = h1 ±

√
h2

1 + h2
2, which yields two possible solutions for z when substituted in

(4.126b). These two solutions indicate the existence of two privileged directions at
t → ±∞ given by Y = Ŷ + z

(
X − X̂

)
. In the asymptotic limit, the function Ω1,2

behaves as

Ω1,2 ∼
[(

2h2(A2 −B2)− 4ABc
)
X̂ + 4q0h2Ŷ − 2Ah2 +

(
A2 −B2

B

)
c

]2

×
[(

4ABh2 + 2(A2 −B2)c
)
X̂ + 4q0cŶ − 2Bh2 +

(
A2 −B2

A

)
c

]2

+ (h2
2 + c2)(B2 −A2)

[
A2 +B2

2AB

]2

,

(4.127)

which corresponds to a static lump. Then, this one-soliton solution is expected to
exhibit two interacting components of lump-type with equal conformation, analo-
gously to the results found in the previous example for the lump solution of type
0 + 1 (cf. Subsection 1.5.2 of this Chapter).

Let us consider the two possible solutions of equation (4.127) separately.

• At t −→ −∞, transformation (4.125) is well defined if c < 0, which provides

c− = −
√
h2

1 + h2
2 + h1 < 0, z− =

B2 −A2

2q0
− ABh2

q0(
√
h2

1 + h2
2 + h1)

. (4.128)

Hence, there are two equal lumps approaching along the line X = X̂ + (c−t)
1
2 ,

Y = Ŷ +z− (c−t)
1
2 , which yields the direction Y = Ŷ +z−(X−X̂) in theXY -plane.

• At t −→∞, c should be selected as a positive parameter, i.e.

c+ =
√
h2

1 + h2
2 + h1 > 0, z+ =

B2 −A2

2q0
− ABh2

q0

(√
h2

1 + h2
2 + h1

) ,
such that there are again two equal lumps moving away along the line X = X̂ +
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(c+t)
1
2 , Y = Ŷ + z− (c+t)

1
2 , providing Y = Ŷ + z+(X − X̂).

The scattering angle between the two lump components is given by

tan θS =
8q0AB

√
h2

1 + h2
2

4q2
0h2 + 4ABh1(A2 −B2) + h2(A4 − 6A2B2 +B4)

. (4.129)

The one-soliton solution for u[2] is shown in Figure 4.5. It is interesting to note
that the same lump profile is obtained for v[2] and w[2]. Figure 4.5 represents the
interaction of the two aforementioned lump components, equally conformed. It is
immediate to observe that the effect of such interaction is a mere rotation in the
propagation direction of the lumps, with no exchange of energy. Figure 4.5b shows
the coalesced state of two components, wherein the two lumps just pass through each
other.

(a) (b) (c)

Figure 4.5: One-soliton solution u[2] for n = 2, when q0 = 0.5, a = 1, b = 66,
A = 0.5, B = 1, at different times: (a) t < 0, (b) t = 0 and (c) t > 0.

2.4.3. Two-soliton solution (Two different lumps)

In a similar manner to what was obtained in the previous Section, solution (4.100)
for the eigenfunctions retrieves the one-soliton solution through the second iteration
of the fields, which depends on a single wavenumber k1 and its complex conjugate
k2 = k†1. Conversely, the proper two-soliton solution would require the presence of
two different wavenumbers, giving rise to two independent lump configurations, of
different amplitude. It could be therefore inferred that, in order to introduce an
extra wavenumber, we should now consider four singular manifolds φi, i = 1, . . . , 4
for the spectral problem associated to the seed solution (4.89), instead of selecting
exclusively two of them. This fact obviously allows us to construct up to the fourth
iteration of the field m[4], with the consequent derivation of a τ -function τ1,2,3,4. The
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Chapter 4. Applications to PDEs in 2 + 1 dimensions

first and the third iteration introduce two different wavenumbers k1, k3, whilst the
second and the fourth iteration provide the respective complex conjugates k2 = k†1
and k4 = k†3, [161].

Generalized Darboux transformations

The Darboux transformation approach conducted in Subsection 2.3 should be slightly
modified in order to cope with this novel situation. This procedure has been con-
structed following the prescription developed in [161].

Let us therefore consider four eigenfunctions φi, i = 1, . . . , 4 for the spectral problem
(4.87)-(4.88) with seed solution m[0], given by

(φi)xy + 2φim
[0]
xy = 0,

(φi)t + a
[
(φi)xxx + 6(φi)xm

[0]
xx

]
+ b

[
(φi)yyy + 6(φi)ym

[0]
yy

]
= 0.

(4.130)

Let φ1,2 be the eigenfunction associated to the first iterated solution m[1] by means
of the Lax pair (4.91). Then, as it has been shown from (4.95), the second iteration
for the field m[2] can be obtained as

m[2] = m[1] + log(φ1,2). (4.131)

We may now recursively iterate expression (4.131) so as to derive the third and the
forth iteration for the field m[3] and m[4], of the form

m[3] = m[2] + log(φ1,2,3), m[4] = m[3] + log(φ1,2,3,4), (4.132)

such that φ1,2,3 and φ1,2,3,4 are the eigenfunctions associated to the second m[2] and
thirdm[3] iterations, respectively, satisfying the corresponding Lax pairs (4.87)-(4.88)

(φ1,2,3)xy + 2φ1,2,3m
[2]
xy = 0,

(φ1,2,3)t + a
[
(φ1,2,3)xxx + 6(φ1,2,3)xm

[2]
xx

]
+ b

[
(φ1,2,3)yyy + 6(φ1,2,3)ym

[2]
yy

]
= 0,

(4.133)
and

(φ1,2,3,4)xy + 2φ1,2,3,4m
[3]
xy = 0,

(φ1,2,3,4)t + a
[
(φ1,2,3,4)xxx + 6(φ1,2,3,4)xm

[3]
xx

]
+ b

[
(φ1,2,3,4)yyy + 6(φ1,2,3,4)ym

[3]
yy

]
= 0.

(4.134)
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4.2. Generalized Nizhnik-Novikov-Veselov equation

The truncated Painlevé expansion for φ1,2 given in (4.92) may be generalized as

φ1,j = φj −
∆1,j

φ1
, (4.135)

for j = 2, . . . , 4, such that any φ1,j satisfies the spectral problem (4.91) for the first
iteration m[1]. Then, the associated coefficients ∆1,j correspond to the elements in
first row of the restated 4× 4 ∆-matrix,

∆ =


∆1,1 ∆1,2 ∆1,3 ∆1,4

∆2,1 ∆2,2 ∆2,3 ∆2,4

∆3,1 ∆3,2 ∆3,3 ∆3,4

∆4,1 ∆4,2 ∆4,3 ∆4,4

 , (4.136)

whose generic entries can be easily computed by setting

∆i,j = ∆(φi, φj), i, j = 1, . . . , 4, (4.137)

according to their definition given in (4.93)

d∆i,j = d∆(φi, φj) = 2φj(φi)xdx+ 2(φj)y φi dy

+ 2a
[
(φj)x (φi)xx − (φi)x (φj)xx − φj(φi)xxx − 6m[0]

xx φj (φi)x

]
dt

+ 2b
[
(φi)y (φj)yy − (φj)y (φi)yy − φi(φj)yyy − 6m[0]

yy φi (φj)y

]
dt,

(4.138)

where identity (4.94) holds

∆j,i = 2φiφj −∆i,j , (4.139)

and whose direct application provides ∆i,i = φ2
i , i = 1, . . . , 4, for the diagonal terms.

A third iteration for the eigenfunctions immediately yields

φ1,i,j = φ1,j −
∆1,i,j

φ1,i
(4.140)

for i, j = 2, . . . , 4, where φ1,j is given in (4.135) and the coefficients of the expansion
∆1,i,j are found to satisfy

∆1,i,j = ∆(φ1,i, φ1,j) = ∆i,j −
∆i,1∆1,j

φ2
1

, (4.141)

by means of the definitions (4.138) and (4.139).
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Finally, the fourth iteration provides

φ1,i,j,k = φ1,i,k −
∆1,i,j,k

φ1,i,j
,

∆1,i,j.k = ∆(φ1,i,j , φ1,i,k) = ∆i,j,k −
∆1,j,i∆1,i,k

φ2
1,i

,
(4.142)

for i, j, k = 2, 3, 4 and where the different elements {φ1,i,k,∆i,j,k} can be recursively
obtained from expressions (4.140) and (4.141).

The fourth iteration for the field m[4], expressed in terms of the seed solution m[0],
then becomes

m[4] = m[3] + log(φ1,2,3,4)

= m[2] + log(φ1,2,3) + log(φ1,2,3,4)

= m[1] + log(φ1,2) + log(φ1,2,3) + log(φ1,2,3,4)

= m[0] + log(φ1) + log(φ1,2) + log(φ1,2,3) + log(φ1,2,3,4),

(4.143)

which can be summarized as

m[4] = m[0] + log(τ1,2,3,4), (4.144)

where the τ -function τ1,2,3,4 has been defined as

τ1,2,3,4 = φ1,2,3,4 φ1,2,3 φ1,2 φ1. (4.145)

With the previous definitions, we can construct the τ -function for the fourth iteration
m[4] from the eigenfunctions of the seed solution m[0] in the following form

τ1,2,3,4 =
1

4

(
∆2,1 −∆1,2

)(
∆4,3 −∆3,4

)
− 1

4

(
∆4,2 −∆2,4

)(
∆3,1 −∆1,3

)
+

1

4

(
∆4,1 −∆1,4

)(
∆3,2 −∆2,3

)
,

(4.146)

where every coefficient can be computed through the exact derivative (4.138) and we
have used identity (4.139) φiφj = 1

2(∆j,i + ∆i,j), i, j = 1, . . . , 4.

Analogously to (4.98), it is possible to express τ1,2,3,4 in a more compact form, by
means of the equation

τ2
1,2,3,4 = det ∆, (4.147)
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4.2. Generalized Nizhnik-Novikov-Veselov equation

where ∆ is given in (4.136).

Hence, the fourth iteration m[4] can be straightforwardly constructed starting from
four solutions φ1, φ2, φ3, φ4 of the spectral problem (4.130) associated to the chosen
seed solution m[0], selected as (4.99) in this case.

Two-soliton solution for n = 1 (Two lumps)

In the following, we shall consider the simplest possible case to characterize the two-
lump solution. In consequence, this restriction implies the choice n = 1. Then, the
eigenfunctions given by (4.100) again take the form established in equation (4.105),

φi(ki) = eki[x+J(ki)]ψ(ki), i = 1, . . . , 4, (4.148)

where J(ki) and ψ(ki) are given in (4.101) and (4.103), respectively. In this case,
and regarding expression (4.106), the coefficients of the ∆-matrix ∆i,j , i = 1, . . . 4
now read

∆i,j =
2ki

ki + kj

[(
ψ(ki) +

kikj
ki + kj

)(
ψ(kj)−

k2
j

ki + kj

)
+

k2
i k

2
j

(ki + kj)2

]
× eki[x+J(ki)]+kj [x+J(kj)].

(4.149)

Then, the fourth iteration for the field u[2] may be analogously computed as

u[2] = −2m[2]
xy = −2

[
q0 +

(
(τ1,2,3,4)x
τ1,2,3,4

)
y

]
, (4.150)

where τ1,2,3,4 is given in (4.146).

Regarding the ansatz (4.114), the wavenumbers k1, k2, k3, k4 should be chosen as

k1 = A1 + iB1, k2 = k†1 = A1 − iB1,

k3 = A2 + iB2, k4 = k†3 = A2 − iB2,
(4.151)

with A1, B1, A2, B2 ∈ R.
In view of the ensuing calculations, it is convenient to define a center of mass coor-
dinate system as

x = Xcm +
1

2

(
v1
x + v2

x

)
t y = Ycm +

1

2

(
v1
y + v2

y

)
t, (4.152)
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where
(
vix, v

i
y

)
, i = 1, 2 are the individual velocities of each soliton given in (4.116)

vix =

(
6a(A2

i −B2
i )− 24bq3

0

(A2
i +B2

i )2

)
, (4.153)

viy =
1

q0

(
−3a

2

(
A2
i +B2

i

)2
+ 24bq3

0

(A2
i −B2

i )

(A2
i +B2

i )2

)
.

Using the change of variables given in equations (4.152)-(4.153), the expressions of
the linear polynomials ψ(ki), i = 1, . . . 4 defined in (4.103) reduce to

ψ(k1) = k2
1(Xcm − Vxt) + 2q0(Ycm − Vyt),

ψ(k2) = k2
2(Xcm − Vxt) + 2q0(Ycm − Vyt),

ψ(k3) = k2
3(Xcm + Vxt) + 2q0(Ycm + Vyt),

ψ(k4) = k2
4(Xcm + Vxt) + 2q0(Ycm + Vyt),

(4.154)

such that the relative velocities in each spatial coordinate are defined as

Vx =
1

2

(
v1
x − v2

x

)
, Vy =

1

2

(
v1
y − v2

y

)
. (4.155)

In the center of mass system, the solution asymptotically yields two different and
completely independent lumps, of distinct conformation and amplitude, which move
with equal and opposite velocities. In order to clarify this point, let us proceed with
the study concerning the asymptotic behavior of each lump.

• If we define the asymptotic coordinates

Xcm = X1 −X1
0 + Vxt, Ycm = Y1 − Y 1

0 + Vyt, (4.156)

it can be proven, after cumbersome intermediate calculations handled with MAPLE,
that the limit of the τ -function when t→ ±∞ can be written as the static lump

τ1,2,3,4 ∼
[
(A2

1−B2
1)X1+2q0Y1

]2
+
[
2A1B1X1

]2
+
(
B2

1 −A2
1

) [(A2
1 +B2

1)

2A1B1

]2

, (4.157)

where

X1
0 = −A

2
1 +B2

1

4A1B2
1

−
4A2

[
(A2

2 +B2
2)3 + (A2

2 − 3B2
2)(A2

1 +B2
1)2 + 2(A2

2 +B2
2)2(B2

1 −A2
1)
]

γ (A1, B1, A2, B2)
,
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q0Y
1

0 =
A2

1 +B2
1

8A1B2
1

− 2A2(A2
1 +B2

1)2[(A2
1 +B2

1)2 + (A2
2 − 3B2

2)(A2
2 +B2

2) + 2(A2
2 +B2

2)(B2
1 −A2

1)]

γ (A1, B1, A2, B2)
,

and the quantity γ (A1, B1, A2, B2) is defined as

γ (A1, B1, A2, B2) =
[

(A1 +A2)2 + (B1 −B2)2
][

(A1 −A2)2 + (B1 −B2)2
]

×
[

(A1 +A2)2 + (B1 +B2)2
][

(A1 −A2)2 + (B1 +B2)2
]
.

(4.158)

• Analogously, if we now define

Xcm = X2 −X2
0 − Vxt, Ycm = Y2 − Y 2

0 − Vyt, (4.159)

the limit of the τ -function when t→ ±∞ becomes the static lump

τ1,2,3,4 ∼
[
(A2

2−B2
2)X2+2q0Y2

]2
+
[
2A2B2X2

]2
+(B2

2−A2
2)

[
(A2

2 +B2
2)

2A2B2

]2

, (4.160)

where

X2
0 = −A

2
2 +B2

2

4A2B2
2

−
4A1

[
(A2

1 +B2
1)3 + (A2

1 − 3B2
1)(A2

2 +B2
2)2 + 2(A2

1 +B2
1)2(B2

2 −A2
2)
]

γ (A1, B1, A2, B2)
,

q0Y
2

0 =
A2

2 +B2
2

8A2B2
2

− 2A1(A2
2 +B2

2)2[(A2
2 +B2

2)2 + (A2
1 − 3B2

1)(A2
1 +B2

1) + 2(A2
1 +B2

1)(B2
2 −A2

2)]

γ (A1, B1, A2, B2)
,

with γ (A1, B1, A2, B2) given by (4.158).

In this system of reference, the asymptotic behaviour of the solution for t → ±∞
corresponds to two different lumps moving with equal and opposite velocities along
parallel lines as shown in Figures 4.6a and 4.6c. Figure 4.6b represents the coalesced
state of two lump solution where again the lumps seem to merge and move away in
opposite directions later. Similarly, it is possible to define analogous lump profiles
for v[2] and w[2].
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Chapter 4. Applications to PDEs in 2 + 1 dimensions

(a) (b) (c)

Figure 4.6: Two-lump solution u[2] for n = 1, with parameters a = 1, b = 0.2,
q0 = 0.5, A1 = 0.5, B1 = 1, A2 = 0.5, B2 = 4

3 , at different times: (a) t < 0, (b)
t = 0 and (c) t > 0.

This Chapter marks the end of the study of integrable systems from the perspective of
the SMM and the characterization of soliton solutions. The ensuing Chapters address
a different approach to nonlinear integrable models with a known Lax pair, focusing
on the analysis of Lie symmetries and their associated similarity reductions. In par-
ticular, this machinery provides valuable information about the geometric structure
of such systems. On the one hand, the reduction process allows us to explore the
limits of integrability by establishing relations among integrable systems defined in
diverse spatial dimensions. On the other hand, the analysis of Lax pairs from the
symmetry point of view presents a new framework to characterize and delve more
deeply into the role of the spectral parameter, where its isospectral or nonisospectral
nature turns out to be crucial.

167





Chapter 5

Lie symmetries for differential equations

One of the most celebrated methods to address the issue of finding symmetries for
differential equations is the so-called Lie’s method. This approach is framed within
the groundbreaking ideas of S. Lie in the XIX century [273–275], which would give rise
to the modern theory of Lie groups. Lie’s classical method can be straightforwardly
extended to the study of other kinds of symmetries for differential equations, such us
contact symmetries, Lie-Bäcklund or generalized symmetries, potential symmetries,
etc.

Lie group analysis has been proved to be a fundamental technique to study any sort
of systems involving differential equations. The study of symmetries represents a
crucial aspect of the analysis of integrability of such equations, since this invariance
property may be used to achieve partial or complete integration of the aforementioned
systems. For example, invariance under a given transformation implies the possibility
of reducing the number of independent variables.

There exist several generalizations of the concept of symmetry developed in Lie’s the-
ory, and its subsequent applications concerning the construction of group invariant
solutions for partial differential equations. One of the renowned approaches to this
matter lies in the so-called nonclassical symmetries, also known as conditional sym-
metries. The nonclassical method was first introduced by Bluman and Cole in [51] as
an attempt to obtain new generalized self-similar solutions for the linear heat equa-
tion. This procedure, later generalized by Olver and Rosneau [326, 327] throughout
the notion of weak symmetries, is based on the additional constraint imposed by the
invariance of certain submanifolds, the invariant surface conditions. This method
has proved to be extremely fruitful when calculating new similarity solutions for
nonlinear PDEs [40, 93, 101, 154, 156, 272, 320, 321] and further theoretical remarks
may be found in [31,49,99,100,420].

A second generalization to analyze similarity solutions of PDEs was due to Clarkson
and Kruskal [98], leading to the so-called direct method. This algorithmic procedure
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requires the choice of a particular ansatz for the solution of the PDE directly in
terms of the reduced variable and the reduced field, and it has been successfully
applied to numerous significant PDEs providing new symmetry reductions and exact
solutions for them [91, 98, 101, 278, 281, 322]. The major distinction of this method
over the ones described above is that the direct method is not based in group theory.
The controversial problem of correspondence between the nonclassical method and
the direct method have been addressed by several authors [94, 98, 101, 136, 272, 322,
346] and the conditions for the equivalence of both procedures have been widely
studied in literature [41,94,147,324]. It is also worthwhile to highlight the connection
between these generalizations of Lie’s classical theory with the singular manifold
method and their role in the analysis of integrability for nonlinear PDEs. The link
between the SMM and the direct method was first notice by Cariello and Tabor [72]
and in [136] a generalization of the direct method in combination with the SMM
is proposed as an alternative procedure to compute nonclassical symmetries. In a
series of publications [137,145–147], Estévez and Gordoa studied the synergy between
the SMM, the nonclassical symmetries and the direct method for several integrable
models.

This Chapter is devoted to the study and characterization of Lie symmetry method
and its applications to differential equations. We will review basic concepts related to
the general theory of Lie groups and the analysis of symmetries for PDEs, providing a
solid methodology for further practical applications. There exist different approaches
to describe the theoretical framework of Lie symmetries, and in this thesis we will
focus on the geometric point of view [323, 329]. A more algebraic approach can be
found in [50,52,378].

The first Section gives a basic outline of the general concepts concerning Lie groups,
Lie algebras and differential geometry, presenting a unified picture to set a solid the-
oretical framework for the ensuing Sections. Sections 2 and 3 provide the geometric
description of the theory of Lie symmetries for differential equations. Lie’s method
for classical symmetries is examined in depth, explicitly stating the quasi-algorithmic
procedure to compute the classical symmetries. The nonclassical method is also pre-
sented, and its comparison with the classical procedure, both at a theoretical and
computational level, is established. Section 4 is dedicated to the description of the
symmetry reduction method, which yields the associated similarity reductions. Fi-
nally, we close the Chapter with Section 5, which specifically illustrates every aspect
of the whole procedure described above for the toy example considered in this thesis,
the NLS equation in 1 + 1 dimensions.

Further applications of Lie’s classical method to a plethora of integrable models in
Physics and related disciplines described by systems of PDEs are extensively treated
in Chapter 6.
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Chapter 5. Lie symmetries for differential equations

1. Preliminaries on Lie groups, Lie algebras and differ-
ential geometry

In this Section we will be interested in the theory of Lie groups as a tool to study Lie
symmetries for differential equations within a geometric framework. A brief overview
of the main concepts regarding Lie groups and Lie algebras, and their connection
with group actions and local groups of transformations on manifolds, is presented.
The basic notions treated in this thesis are examined briefly and without proofs.
Advanced topics on Lie groups and Lie algebras may be found in [245, 406], whilst
notions on differential geometry and manifolds are widely treated in [14,267,372]. For
further discussion on applications of Lie groups, we refer to [371], and particularly
to [50,323,329,378] concerning the issue of symmetries for differential equations.

1.1. Lie groups of transformations

Local Lie groups

A Lie group is a group G that also carries the structure of a differentiable manifold,
such that the group operation of multiplication

µ : G×G → G,
(g, h) 7→ µ(g, h) = gh

(5.1)

and inversion
ι : G → G

g 7→ ι(g) = g−1 (5.2)

are smooth maps of manifolds.

Example 5.6. The simplest example of a Lie group is the additive groupG = (R,+),
which represents the set of real numbers under the group operation of addition
µ : R × R → R, µ(x, y) = x + y, for every x, y ∈ R. The inverse operation is
defined as ι : R → R, ι(x) = −x and the identity element is eG = 0. The group
(R,+) can be easily generalized to the n-dimensional case, giving rise to the abelian
Lie group (Rn,+), where the group operation is the vector addition in Rn.

We may not be interested in the consideration of the full Lie group,but only in the
group elements close to the identity. In this sense, the notion of local Lie group
arises.

Let us consider a n-dimensional smooth manifold N with a distinguished element
e ∈ N , and the open subsets V, W defined such that ({e} ×N) ∪ (N × {e}) ⊂ V ⊂
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5.1. Preliminaries on Lie groups, Lie algebras and differential geometry

N ×N and e ∈ W ⊂ N . A local Lie group G is a smooth manifold N , equipped with
an identity element eG ≡ e ∈ N , the smooth multiplication map µ : V → N and the
smooth inversion map ι : W → N , such that W × ι(W) ⊂ V and ι(W) ×W ⊂ V1,
which obeys the following properties:

(i) (Local associativity): If (x, y), (y, z), (µ(x, y), z), (x, µ(y, z)) are all well de-
fined and belong to V, then µ(x, µ(y, z)) = µ(µ(x, y), z).

(ii) (Identity): µ(e, x) = x = µ(x, e), for all x ∈ N .

(iii) (Local inverse): µ(ι(x), x) = e = µ(x, ι(x)), for all x ∈ W.

It is worthwhile to remark that the usual axiom of closure for global groups is omitted.
The manifold N is frequently assumed to be an open subset of the Euclidean space,
N ⊆ Rn, such that the product and inversion maps may be expressed in terms of a
local coordinate system.

Lie group action on manifolds

One of the most important applications of Lie groups to manifold theory involves
actions of Lie groups on manifolds. Lie groups arise naturally as groups of transfor-
mations acting smoothly on manifolds, which are closely related to symmetries, as it
will be shown later. For example, the groups SO(2,R) and SO(3,R) emerge as the
groups of rotation in the plane R2 or the Euclidean space, R3, respectively. Generally,
SO(n,R) accounts for the rotation group in Rn. The connection between Lie groups
and groups of transformations on manifold may be straightforwardly constructed.

Let N be a smooth manifold and G a (local) Lie group. Let U be an open neigh-
bourhood of {eG} ×N , being eG the identity element in G, such that {eG} ×N ⊂
U ⊂ G×N . A local group of transformations acting on N is determined by a (local)
Lie group G and a differentiable map

Φ : U → N,
(g, x) 7→ Φ(g, x)

(5.3)

for some g ∈ G and x ∈ N such that (g, x) ∈ U , with the following properties:

(i) Φ(g,Φ(h, x)) = Φ((gh), x) for g, h ∈ G, x ∈ N such that (h, x), (g,Φ(h, x)),
(gh, x) ∈ U .

1This condition is imposed in order to ensure that both left and right inverses of a group element
are defined. Regarding this matter, the definition of a local Lie group may vary from author to
author, the one presented here is based on [325].
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(ii) Φ(eG, x) = x for all x ∈ N .

(iii) Φ(g−1,Φ(g, x)) = x with g ∈ G, x ∈ N such that (g, x) and (g−1,Φ(g, x)) ∈ U .

The map Φ : U → N defines the local left-action2 of G on the manifold N and, in
the following, we will use the shorthand notation Φ(g, x) = g ·x. It can be seen from
(iii) that every local group of transformations is a diffeomorphism in its domain of
definition.

When U = G×N , the local action is said to be a global action, or simply an action,
i.e., g · x is defined for every g ∈ G and every x ∈ N and properties (i)-(iii) read

(i) Φ(g,Φ(h, x)) = Φ((gh), x),

(ii) Φ(eG, x) = x,
∀g, h ∈ G, x ∈ N, (5.4)

where property (iii) may be easily derived from (i) and (ii). Generally, a coordinate
neighbourhood of the identity in any Lie group is a local Lie group. This identifica-
tion, translated to actions of groups, implies that any global action of a Lie group
on a smooth manifold restricts to a local action on any sufficiently small coordinate
neighbourhood.

Orbit of a Lie group

Let G be a (local) group of transformations acting on a manifold N . A subset V ⊂ N
is called G-invariant or invariant under G if, for every g ∈ G, x ∈ V such that g · x
is defined, g · x ∈ V .

An orbit of a local group of transformations is defined as the minimal (nonempty)
G-invariant subset of the manifold N . A rigorous definition reads as follows. The
subset O ⊂ N is an orbit if it satisfies the following properties:

(i) If x ∈ O, g ∈ G such that g · x is defined, then g · x ∈ O.

(ii) If Õ ⊂ O and Õ satisfies (i), then either Õ = O, or Õ is empty.

Example 5.7. Let us consider the translation of a vector x ∈ Rn. Let y 6= 0 be a
fixed vector in Rn, and G = (R,+). The map

Φ(ε, x) = x+ εy, (5.5)

2It is possible to define a completely equivalent right-action and derive analogous properties and
results to the ones here presented. For further remarks on this formulation, we refer the reader to
any textbook on the subject of Lie groups, for example [406].
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where ε ∈ R is a real parameter, defines a global group action on N = Rn. Besides,
the orbits are straight lines parallel to the vector y.

1.2. Lie algebras

In the following theoretical description, only R-algebras will be considered, but the
present formulation may be easily generalized to K-algebras for a given field K. A
R-Lie algebra g is a R-vector space equipped with a binary operation, called Lie
bracket,

[·, ·] : g× g → g,
(u, v) 7→ [u, v]

(5.6)

which satisfies the following properties:

(i) (R-bilinearity) :

[au+ bv, w] = a[u,w] + b[v, w],

[u, av + bw] = a[u, v] + b[u,w],

(ii) (Anticommutativity) : [u, v] = −[v, u],

(iii) (Jacobi identity) : [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0,

(5.7)

for scalars a, b ∈ R and elements of the algebra u, v, w ∈ g.

The dimension of the Lie algebra is its dimension as a vector space over R.
Given a finite-dimensional Lie algebra g with basis B = {e1, e2, . . . , en} (for the
underlying vector space), it follows that the Lie bracket of all elements of the Lie
algebra is uniquely determined in the form

[ei, ej ] =

n∑
k=1

Ckijek, (5.8)

for each i, j = 1, . . . , n, and where the scalars Ckij ∈ R are called the structure
constants of g (with respect to the chosen basis B). It can be checked by direct
computation that the structure constants satisfy the following properties, inherited
from the properties of the Lie bracket,

(i) (Antisymmetry) Ckij = −Ckji,

(ii) (Jacobi identity)
n∑
l=1

(
C lijC

r
lk + C ljkC

r
li + C lkiC

r
lj

)
= 0,

for all i, j, k, r = 1, . . . , n.
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The structure constants play a crucial role in Lie algebra representations, specially
in the adjoint representation3, and also in the classification problem.

A derivation on a Lie algebra g is a linear map D : g→ g that satisfies the Leibniz
rule, i.e., for all u, v ∈ g,

D([u, v]) = [D(u), v] + [u,D(v)]. (5.9)

1.3. Notions of differential geometry

Let us consider a n-dimensional differentiable manifold N and let p be a generic
point of N . Let (V, ϕ) be a coordinate chart on N where V ⊂ N is an open subset of
N and the homomorphism ϕ : V → Rn is the coordinate map, with local coordinates
x = (x1, . . . , xn). Let us denote the set of real-valued differentiable functions on N
as C∞(N).

Vector fields

A tangent vector to N at a point p is denoted as vp and the set of all tangent vectors
at this given point define the tangent space to N at p, TpN . TpN is endowed with
an n-dimensional vector space structure and the isomorphism TpN ' Rn can be
established. The collection (disjoint union) of all tangent spaces corresponding to all
points p ∈ N is called the tangent bundle of N , denoted by

TN =
⊔
p∈N

TpN = {(p, v) : p ∈ N, v ∈ TpN}. (5.10)

There exists a canonical projection map π : TN → N, (p, v) 7→ π(x, v) = p, which
sends each vector in TpN to the point p at which it is tangent. Besides, the tangent
bundle TN comes equipped with a natural topology and a smooth structure, giving
rise to a 2n-dimensional smooth manifold.

A (smooth) vector field on N is a section of the tangent bundle, i.e. a smooth map

X : N → TN,
p 7→ Xp ≡ X(p)

(5.11)

with the property π ◦X = IdN , being IdN the identity on N . In other words, this
map assigns to every point p ∈ N to a tangent vector Xp ∈ TpN . Given a smooth

3Given a finite-dimensional Lie algebra g of a Lie group G, the adjoint representation is defined
as ad(X)(Y ) = [X,Y ] for X,Y ∈ g.
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coordinate chart (V, ϕ) for N , any vector field X may be expressed as

X =
n∑
i=1

Xi
∂

∂xi
=

n∑
i=1

ξi(x)
∂

∂xi
, (5.12)

where Xi is called the ith component of X in that chart, and it is given by the
differentiable function ξi : V → R, for all i = 1, . . . , n. Hence, X is actually a first
order differential operator. The set of all vector fields on N is denoted by X(N).
It can be proven that X(N) is a vector space under pointwise addition and scalar
multiplication, and also a module over the ring C∞(N) [267].

Vector fields may be regarded as derivations in the sense of definition (5.9) on the
algebra of real-valued differentiable functions on N . If X ∈ X(N), f ∈ C∞(N), the
vector field X defines a linear map

X : C∞(N) → C∞(N),
f 7→ (Xf)(p) = X(f)|p = Xpf

(5.13)

for all p ∈ N . Xpf has the geometric interpretation of the directional derivative at
p of the function f along any curve passing through p and having Xp as tangent at
p. Since tangent vectors satisfy the product rule by definition4, this property can be
easily translated to vector fields, giving rise to the Leibniz rule

X(fg) = X(f)g + fX(g) (5.14)

for all f, g ∈ C∞(N), which fulfills the definition of a derivation (5.9). Conversely,
every derivation D : C∞(N)→ C∞(N), f 7→ Df defines a vector field X ∈ X(N) as
Df = Xf , and usually, both characterization are identically identified.

Let N and N ′ be two smooth manifolds and F : N → N ′ be a smooth map. Then,
for each p ∈ N , the differential of F at p is the linear map dF |p : TpN → TF (p)N

′

defined by
dF |p(X)(f) = X(f ◦ F ), (5.15)

given X ∈ TpN and f ∈ C∞(N ′). If F is a diffeomorphism, the differential induces
the map of vector fields F∗ : X(N)→ X(N ′) defined by

(F∗X)q = dF |F−1(q)(XF−1(q)). (5.16)

4Roughly speaking, and avoiding some subtleties, a tangent vector vp to N at a point p ∈ N is
defined as a linear map vp : C∞(N) → R that satisfies the product rule at the point p of the form
vp(fg) = f(p)v(g) + v(f)g(p) for any f, g ∈ C∞(N). This definition allows us to interpret tangent
vectors as derivations on the space of smooth functions defined near a point p.
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Given two vector fields X,Y ∈ X(N) (regarded as derivations), the commutator
between them is given by the operation

[X,Y ] = X ◦ Y − Y ◦X, (5.17)

which turns out to be a vector field on N . This statement may be easily proven by
using the local description (5.12) for the vector fields X,Y . This operation is also
called the Lie bracket, and it is immediate (but tedious) to prove that (5.17) satisfies
the properties of R-bilinearity, anticommutativity and the Jacobi identity given in
definition (5.7). Thus, the vector space X(N) together with the binary operation
[·, ·] defined in (5.17) form an (infinite dimensional) Lie algebra.

Integral curves

A smooth curve on N can be parametrized by the map

γ : I → N,
ε 7→ p = γ(ε)

(5.18)

where I ⊆ R is an (open) interval of R. The velocity vector associated to that curve
at a point ε0 ∈ I is given by the tangent vector

γ̇(ε0) = dγ

(
d

dε

∣∣∣∣
ε=ε0

)
≡ dγ

dε

∣∣∣∣
ε=ε0

∈ Tγ(ε0)N, (5.19)

or, defined by its action on functions f ∈ C∞(N), as

γ̇(ε0)f =
d(f ◦ γ)

dε

∣∣∣∣
ε=ε0

. (5.20)

In local coordinates, for ε0 ∈ I, the coordinate representation of γ is given by γ(ε) =
(γ1(ε), . . . , γn(ε)) for ε sufficiently close to ε0, and then

γ̇(ε0) =

n∑
i=1

dγi
dε

∣∣∣∣
ε=ε0

∂

∂xi

∣∣∣∣
γ(ε0)

. (5.21)

Given a vector field X ∈ X(N), a smooth curve γ : I → N is said to be an integral
curve of X at p if its velocity vector coincides with the value of the vector field X
at that point,

γ̇(ε) = Xγ(ε) = X(γ(ε)), ∀ε ∈ I. (5.22)
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This definition requires that the following autonomous system of ordinary differential
equations holds 

γ̇1(ε) = X1(γ1(ε), . . . , γn(ε)),

...
γ̇n(ε) = Xn(γ1(ε), . . . , γn(ε)).

(5.23)

The Cauchy problem defined by (5.23) and the initial data set γ(0) = p0 ∈ N is
well-posed, i.e. the theorem of existence, uniqueness and smoothness for systems of
ODEs (cf. Theorem D.1 in [267]) guarantees that the solution exists, is unique and
varies smoothly on the initial conditions. In other words, for each point p0 ∈ N ,
there exists a unique integral curve of X given by the smooth curve γ : (−δ, δ)→ N ,
with δ > 0, such that γ(0) = p0. Uniqueness means that if there is any other integral
curve γ̃ : Ĩ → N of X such that γ̃(0) = p0, then γ̃(ε) = γ(ε) for ε ∈ Ĩ ∩ (−δ, δ).
A vector field X ∈ X(N) is complete if for any p ∈ N , there is an integral curve
γ : R → N such that γ(0) = p. The set of all complete vector fields on N may be
denoted by X∞(N).

Let X be now a complete vector field on N . Hence, for any p ∈ N , there exists a
unique integral curve γp : R→ N such that γp(0) = p.

Thus, for any fixed ε ∈ R we define the differentiable map

Φε : N → N,
p 7→ Φε(p) = γp(ε)

(5.24)

that possesses the following properties

(i) Φε ◦ Φε̃ = Φε+ε̃, ∀ε, ε̃ ∈ R,
(ii) Φ0 = IdN , being IdN the identity on N.

(5.25)

Proof. Property (i) may be demonstrated as follows. For any p ∈ N and any ε, ε̃ ∈ R,
both sides of identity (i) define integral curves of the vector field X,

γ1(ε) ≡ Φε ◦ Φε̃(p) = Φε(γp(ε̃)) = γγp(ε̃)(ε),

γ2(ε) ≡ Φε+ε̃(p) = γp(ε+ ε̃).

It is immediate to see that the initial conditions for both curves at ε = 0 provide the
same result,

γ1(0) = γγp(ε̃)(0) = γp(ε̃), γ2(0) = γp(0 + ε̃) = γp(ε̃).

As both γ1(ε) and γ2(ε) are integral curves of X and γ1(0) = γ2(0), hence, by
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uniqueness of integral curves, it follows that γ1(ε) = γ2(ε), and then, Φε ◦ Φε̃(p) =
Φε+ε̃(p).

Property (ii) holds by definition, since Φ0(p) = γp(0) = p for all p ∈ N .

Besides, Φε has an inverse, Φ−1
ε = Φ−ε for ε ∈ R, since Φε ◦ Φ−ε = Φ0 = IdN and

Φ−ε ◦ Φε = Φ0 = IdN . Hence, we can conclude that Φε : N → N is bijective and
as is differentiable by construction, then the map Φε : N → N is a diffeomorphism.
The family of maps {Φε}ε∈R defines a one-parameter group of diffeomorphisms on
N , where the group laws are given by (5.25).

Flow generated by a vector field

This construction allows us to define the flow generated by the vector field X as the
smooth map

Φ : R×N → N,
(ε, p) 7→ Φ(ε, p) = Φε(p)

(5.26)

with the properties

Φ(ε,Φ(ε̃, p)) = Φ(ε+ ε̃, p), Φ(0, p) = p, (5.27)

for all ε, ε̃ ∈ R and p ∈ N .

From those properties defined above and by virtue of (5.4), one may forthrightly
see that the flow generated by the vector field X (5.26) corresponds to a global left-
action of the additive group G = (R,+) on the n-dimensional manifold N . The flow
(5.26) is usually referred as a one-parameter group of transformations of N . Then, a
complete vector field X generates a one-parameter group of transformations where
the integral curves γp(ε) are the orbits for the group.

Conversely, every one-parameter group of diffeomorphisms {Φε}ε∈R allows us to de-
fine a vector field X̂ on N of the form

X̂Φ(p) =
dΦε(p)

dε

∣∣∣∣
ε=0

, (5.28)

or equivalently, by its action on functions,

X̂Φf =
d(f ◦ γp)

dε

∣∣∣∣
ε=0

, (5.29)

for all p ∈ N, f ∈ C∞(N), and where the integral curves are given by Φε(p) = γp(ε).
Then, every vector field X = X̂Φ(p) of the form (5.28) is called the the infinitesimal
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generator of the one-parameter group Φε.

If X is not complete, one can also derive a similar theory for local flows generated
by X, Φ : {0} × N ⊂ U → N , where the group laws (5.27) still hold for any
(ε̃, p), (ε,Φ(ε̃, p)), (ε + ε̃, p) ∈ U , p ∈ N , with parameters sufficiently close to the
identity. In this case, the set of maps {Φε}ε∈I with I ⊂ R such that {0} ∈ I, defines
a local one-parameter group of diffemorphims.

Thus, every vector field is equivalent to a local one-parameter group of transforma-
tions and viceversa. When X is complete, the identification extends globally.

If the vector field is expressed as X =
n∑
i=1

ξi(x)∂xi , then, the associated local one-

parameter group of transformations is given by

x̃i = Φ(ε, xi) = xi + εξi(x) +O
(
ε2
)
, i = 1, . . . , n, (5.30)

with ε ∈ R as the parameter of the group.

1.4. Lie algebra of a Lie group

The following lines are devoted to address the fundamental question regarding the
correspondence between Lie groups and Lie algebras. Given a Lie group G, we can
construct an associated Lie algebra g (as it will be shown shortly) that completely
captures the local structure of the group. This relation implies that all the infor-
mation in the group G is contained in its Lie algebra, and it enables us to study
Lie groups in terms of Lie algebras. In fact, many of applications of Lie groups to
differential equations, including Lie symmetries, are based on this connection.

For every g ∈ G we define the diffeomorphisms

Lg : G → G,
h 7→ µ(g, h) = gh,

Rg : G → G,
h 7→ µ(h, g) = hg,

∀h ∈ G,

(5.31)
which are called left and right translation maps, respectively. Since Lg ◦ Lh =
Lgh, Rg ◦ Rh = Rgh, their inverses are given by (Lg)

−1 = Lg−1 , (Rg)
−1 = Rg−1 .

Besides, left and right translation commute, Lg ◦Rh = Rh ◦ Lg.
A vector field X on G is called left-invariant if it is invariant under all left transla-
tions, i.e., for every g, h ∈ G,

dLg|h(Xh) = XLg(h) = Xgh. (5.32)

Since Lg is a diffeomorphism and by virtue of (5.16), expression (5.32) can be ab-
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breviated by (Lg)∗X = X. Analogously, X is right-invariant if (Rg)∗X = X.

Equivalently, any left-invariant vector field X is determined by its value at the iden-
tity Xe,

Xg = dLg|e(Xe), ∀g ∈ G, (5.33)

where e ≡ eG the identity of the group.

Let Lie(G) be the set of all left-invariant vector fields on a Lie group G. It can be
proven that Lie(G) is a Lie subalgebra of X(G) and it is therefore a Lie algebra.
Then, Lie(G) is said to be the Lie algebra associated to the Lie group G, and it will
be denoted by g. This fact, together with proposition (5.33), allows us to establish
an isomorphism between Lie(G) and the tangent space of G at the identity, TeG,
through the so-called evaluation map ε : Lie(G) → TeG, X 7→ ε(X) = Xe. Thus,
Lie(G) is a finite-dimensional R-vector space of dimension dim(G), which can be
fully identified with Lie(G) ' TeG. For every v ∈ TeG we can define a left invariant
vector field on G by vL

∣∣
g

= dLg|e(v) and the Lie bracket on TeG is simply given by

[v, w] =
[
vL
∣∣
g
, wL

∣∣
g

]
e
, for any v, w ∈ TeG.

A one-parameter subgroup of a Lie group G is a Lie group homomorphism ϕ : R→ G
from the additive group (R,+) to G such that

ϕ(ε+ ε̃) = ϕ(ε)ϕ(ε̃) (5.34)

for all ε, ε̃ ∈ R.
Given any tangent vector v ∈ TeG there is a unique one-parameter subgroup of G
ϕv : R → G such that ϕ̇v(0) = v. Furthermore, ϕv is characterized as the integral
curve for the associated left-invariant vector field Xg = dLg|e(v) ∈ Lie(G) with
ϕv(0) = e. Moreover, left-invariant vector fields on Lie groups are complete. That
means that Xg generates the corresponding flow Φ(ε, g) = gϕv(ε), which is defined
for all ε ∈ R.
This motivates the following definition. Given a Lie group G and its associated Lie
algebra g, we define the exponential map of the Lie algebra g into G by the map
exp : g→ G

exp : g → G,
v 7→ exp(v) = ϕv(1),

for any v ∈ g. (5.35)

By definition, its image lies in the connected component of the identity in G. The
exponential map is a smooth map, it possesses the following properties

exp((ε+ ε̃)v) = exp(εv) exp(ε̃v), exp(0) = e,

exp(−v) = (exp(v))−1,
(5.36)
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for all v ∈ g, ε, ε̃ ∈ R and the following relation holds

eεv ≡ exp(εv) = ϕv(ε), ∀ε ∈ R, (5.37)

where it can be checked that the unique one-parameter subgroup of G ϕv : R → G
is consistently defined by (5.37), since it satisfies the group laws (5.36).

Hence, this application maps the line εv in g onto the one–parameter subgroup
ϕv(ε), which is tangent to v at the identity e. In terms of the exponential map, the
associated flow generated by Xg is given by Φ(ε, g) = g exp(εv), with Xg = dLg|e(v).

Since exp(0) = e, exp is locally a diffeomorphism from a neighbourhood of zero onto
a neighbourhood of e in G, i.e., there exists an open subset V ⊂ g containing 0 and a
neighbourhood W ⊂ G containing e such that exp|V : V →W is a diffeomorphism.

Thus, in summary, by virtue of the arguments presented above, we may conclude
that there is a one-to-one correspondence between the following elements

1. One-parameter subgroups of G.

2. Left invariant vector fields on G.

3. Tangent vectors at e ∈ G.

which allow us to deeply understand the inner structure of Lie groups, and exploit
it in order to treat problems involving Lie groups and their action on manifolds by
the corresponding problem for the Lie algebras. As every Lie algebra g generates a
corresponding Lie group G, given a finite-dimensional Lie algebra of vector fields on a
manifold N , we can always reconstruct the (local) action of G via the exponentiation
process.

For further remarks on the connection between Lie groups and Lie algebra beyond the
work developed in the present manuscript, we refer the reader to [267]. This matter
is known as the Lie group-Lie algebra correspondence, which has been addressed, on
the local level, by the Fundamental Theorems of Lie (cf. Theorem 20.22 [267]).

2. Geometric structure of differential equations

Let us consider a system of partial differential equations of order p, involving n
independent variables x = (x1, . . . , xn) ∈ X ⊆ Rn and m dependent variables
u = (u1, . . . , um) ∈ U ⊆ Rm. The Euclidean space of independent and dependent
variables will be denoted as M = X × U , and let us consider that our system of
differential equations is defined in the open subset M ⊆ M. The solution for this
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system is locally given by the equations

uj = f j(x1, . . . , xn), j = 1, . . . ,m, (5.38)

or u = f(x) for brevity, where f : X → U is a smooth function defined in the
subdomain Ω ⊂X .

Given a smooth function f(x) = f(x1, . . . , xn) depending on n independent variables,

there exist nk ≡
(
n+ k − 1

k

)
different partial derivatives of f of order k. In

the following, let us introduce the multi-index notation and consider a set of n
nonnegative integers σ = (i1, . . . in) of order |σ| = i1 + · · · + in > 0. If we establish
|σ| = k, then

∂σf =
∂|σ|f

∂xσ
=

∂kf

∂xi11 · · · ∂x
in
n

(5.39)

represents the set of all kth derivatives of f .

Let us denote

ujσ = ∂σf j(x) =
∂kuj

∂xi11 · · · ∂x
in
n

, j = 1, . . . ,m, i1 + · · ·+ in = k, (5.40)

as the kth-order derivatives of the coordinate uj , or uσ for brevity. In the case with
|σ| = 0, we identify u0(x) ≡ u(x) with the function itself. Complementarily, we may
use the notation ujxi = ∂uj

∂xi
in reference to the derivative of uj with respect to a

particular coordinate xi, for i = 1, . . . , n, j = 1, . . . ,m.

We introduce the Euclidean space U k ⊆ Rm·nk , of dimension m · nk, endowed with
coordinates ujσ, j = 1, . . . ,m and all multi-indices σ = (i1, . . . , in) of order k. U k

constitutes the space of all the kth derivatives of u = f(x).

Hence, we may construct the Euclidean space

U(k) = U ×U 1 × · · · ×U k (5.41)

of dimensionm+m ·n1 + · · ·+m ·nk = m

(
n+ k
k

)
, whose coordinates represent all

the derivatives of the solution u = f(x) up to order, and including, k. A typical point
in U(k) will be denoted by u(k), and it represents not only the kth order derivative
of u, but also all the derivatives up to order k.

Thus, the total space M(k) = X × U(k) describes the space of independent and
dependent variables, together with all the derivatives up to order k. This space
M(k) is called the kth-order jet space ofM. Alternatively, we may use the notation
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Jk(M) for the kth-order jet space and jkxu to denote a general point of it. A local
coordinate system inM(k) is given by(

xi, u
j
(k)

)
≡
(
xi, u

j , uj1, . . . , u
j
k

)
, (5.42)

where the indices range i = 1, . . . , n, j = 1, . . . ,m and ujσ runs such that |σ| =
1, . . . , k.

Since the starting system of differential equations is defined overM , we may construct
the space

Jk(M) = M(k) = M ×U 1 × · · · ×U k (5.43)

as the kth-order jet space of M .

The main advantage of the geometric structure defined above is that it allows us to
treat and consider all the variables involved in a system of differential equations as
local coordinates in a higher space.

Example 5.8. Let us consider the case with two independent variables and two
dependent variables, n = 2 and m = 2, with local coordinates x = (x1, x2) ⊆ R2 and
u = (u1, u2) ⊆ R2, such that u1 = u1(x1, x2), u2 = u2(x1, x2).

The space U 1 ' R4 constitutes the space of first derivatives of the dependent vari-
ables, with coordinates (u1

x1 , u
1
x2 , u

2
x1 , u

2
x2). In a similar way, we construct the space of

second derivatives U 2 ' R6 with coordinates (u1
x1x1 , u

1
x1x2 , u

1
x2x2 , u

2
x1x1 , u

2
x1x2 , u

2
x2x2).

In general, the space U k will be isomorphic to R2(k+1), taking as local coordinates
the 2(k + 1) different partial derivatives of uj , ujk = ∂kuj

∂xi1∂x
k−i
2

, for j = 1, 2 and
i = 0, . . . , k.

Then, the space U(k) can be constructed as the Cartesian product space U(k) =

U ×U 1×· · ·×U k of dimension
k∑

n=0
2(n+ 1) = (k+1)(k+2), representing the space

of all derivatives up to order k of u = (u1, u2), with local coordinates (u1
(k), u

2
(k)) ≡

(u1, u2, u1
x1 , u

1
x2 , u

2
x1 , u

2
x2 , . . . , u

1
k, u

2
k).

3. Lie symmetries

Let us now consider a system S of q partial differential equations of order p, depend-
ing on n independent variables x = (x1, . . . , xn) ∈ X and m dependent variables
u = (u1, . . . , um) ∈ U , given by

Eν(x, u(p)) = 0, ν = 1, . . . , q, (5.44)
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where u(p) denotes the set of all the derivatives of u with respect to the variables x
up to order p. We may use the notation E(x, u(p)) = 0 or E = 0 to abbreviate and
refer to the system (5.44). This system of PDEs can be understood as a vanishing
collection of smooth functions Eν :M(p) → R, ν = 1, . . . , q defined on the pth-order
jet spaceM(p). Then, geometrically, the system (5.44) defines a submanifold inM(p)

of the form

SE = {(x, u(p)) : Eν(x, u(p)) = 0} ⊂ M(p), ν = 1, . . . , q. (5.45)

3.1. Notion of symmetry

We may say, as an intuitive approach, that a symmetry group of the system S is a
group of transformations that maps solutions of S into other solutions of S . Let
u = f(x) be a solution of S (5.44), where f : X → U a smooth function defined
in the subdomain Ω ⊂X , and let (x, u) ≡ (x, f(x)) ⊂M be its graph.

A continuous group G of symmetries for the system of partial differential equations
S is a local group of diffeomorphisms, acting on an open subset M ⊆ M, that
transforms solutions (x, u) of S into new solutions (x̃, ũ) = g · (x, u) of the system
S , for all g ∈ G.

Let X ∈ g be a generic element of the Lie algebra g associated with the Lie group of
transformations G. We consider vector fields of the form

X =

n∑
i=1

ξi(x, u)
∂

∂xi
+

m∑
j=1

ηj(x, u)
∂

∂uj
. (5.46)

Then, the local action of the symmetry group G is given by the map Φ : R×M→M,
which in coordinates yields

(x̃, ũ) = g · (x, u) = (Ξg(x, u),Ψg(x, u)) ⊂M (5.47)

for g ≡ g(ε) = exp(εX) ∈ G, ε ∈ R and some smooth functions Ξg : M → X , Ψg :
M → U . Hence, the following relations hold

ξi(x, u) =
dx̃i
dε

∣∣∣∣
ε=0

=
dΦg(ε)(x, u)

dε

∣∣∣∣
ε=0

,

ηj(x, u) =
dũj

dε

∣∣∣∣
ε=0

=
dΨg(ε)(x, u)

dε

∣∣∣∣
ε=0

,

(5.48)

with the initial conditions x̃i(x, u, ε)|ε=0 = xi, ũj(x, u, ε)
∣∣
ε=0

= uj , for i = 1, . . . , n
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and j = 1, . . . ,m.

This gives rise to a one-parametric group of infinitesimal transformations{
x̃i = xi + εξi(x, u) +O(ε2),
ũj = uj + εηj(x, u) +O(ε2),

i = 1, . . . , n, j = 1, . . . ,m, (5.49)

where ε ∈ R is the parameter of the group, and the associated vector field for the
group of transformations (5.49) is given by expression (5.46).

The infinitesimal transformation (5.49) is call a Lie point transformation if the associ-
ated infinitesimals ξi(x, u) and ηj(x, u) are functions of (x, u) for all i = 1, . . . , n, j =
1, . . . ,m, i.e they do not depend on higher-order derivatives of u. Hence, the asso-
ciated symmetry is said to be a Lie point symmetry. In the remainder of this thesis,
only Lie point symmetries will be considered.

Nevertheless, in the most general case, coefficients ξi(x, u, u1, . . . , uk), η
j(x, u, u1, . . . ,

uk) may be allowed to depend on higher-order derivatives of u up to some finite or-
der k. These kinds of transformations are usually called generalized symmetries or
Lie-Bäcklund symmetries. The formalism of point symmetries can be generalized to
construct an analogous geometric or algebraic framework to characterize those sym-
metries, as well as an algorithmic procedure to compute them [50, 323, 394, 395]. In
the particular case of dependence on the first derivatives u1, the infinitesimal trans-
formations are said to be contact transformations and the associated symmetries are
called contact symmetries. In fact, it can be proven that a contact transformation
is a extended point transformation for systems of PDEs with a single dependent
variable (m = 1), [50, 323].

3.2. Extended jet space and prolongations

Let us consider the local group of transformationsG acting onM ⊆M as a symmetry
group for (5.44). There exists an induced local action of G on the pth jet spaceM(p),
called the pth prolongation of G and denoted by pr(p)G. This extension is defined such
that the derivatives of the dependent variables u are naturally transformed in order to
preserve the contact structure of the associated submanifold (5.45). The prolonged
action of the group G amounts for the map Φ̃ : R × M(p) → M(p), (x, u(p)) 7→
(x̃, ũ(p)) = Φ̃(ε, x, u(p)) = pr(p)g · (x, u(p)). In this sense, we can reformulate the
notion of symmetry as follows.

G is a symmetry group of transformations for the system S (5.44) if its prolongation
leaves invariant the corresponding submanifold SE ⊂ M(p) (5.45). In terms of the
prolongation of the group action, the previous proposition means that, if for every
point (x, u(p)) ∈ SE , we have pr(p)g · (x, u(p)) ∈ SE for all g ∈ G such that this is
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defined, then G is a symmetry group for S .

We will be concerned about the infinitesimal description of this problem, formulated
in terms of the prolongation of the generating vector field of the group of transforma-
tions G. Let X be such vector field of the form (5.46), generator of the one-parameter
group of transformations (5.49) on M ⊆M. The pth prolongation of X, denoted by
pr(p)X or X(p), is the vector field defined on the pth jet space M(p) that generates
the prolonged one-parameter group of transformations pr(p)[exp(εX)]. Thus, for any
point (x, u(p)) ∈M(p),

pr(p)X
∣∣∣
(x,u(p))

≡ X(p)
∣∣∣
(x,u(p))

=
d

dε

∣∣∣∣
ε=0

pr(p)[exp(εX)](x, u(p)). (5.50)

It can be shown [323, 395] that the pth prolongation of a vector field X (5.46) may
be displayed in local coordinates as

X(p) =
n∑
i=1

ξi(x, u)
∂

∂xi
+

m∑
j=1

ηj(x, u)
∂

∂uj
+

m∑
j=1

∑
0<|σ|≤p

ηjσ(x, u, . . . , uσ)
∂

∂ujσ
, (5.51)

where the derivatives ujσ, j = 1, . . . ,m are given by (5.40) and σ = (i1, . . . , in) stands
for the usual multi-index such that 0 < |σ| = 11 + · · · + in ≤ p up to order p. The
coefficients {ηjσ(x, u, . . . , uσ)}, j = 1, . . . ,m are analytic functions of their variables
and denote the prolongations of ηj(x, u) for a given multi-index σ. Those coefficients
are usually called extended infinitesimals.

We may introduced the total derivative operator with respect to the coordinate xl,
defined inM(p), as the differential operator

Dxl =
∂

∂xl
+

m∑
j=1

∑
0≤|σ|≤p

∂ujσ
∂xl

∂

∂ujσ
, (5.52)

where the summation over the multi-index σ ranges such that 0 ≤ |σ| ≤ p, with the
ansatz uj0 ≡ uj and ∂ujσ

∂xl
= ∂|σ|+1uj

∂x
i1
1 ··· ∂x

il+1

l ··· ∂xinn
for all j = 1, . . . ,m. Given the above

multi-index notation, higher-order total derivatives are define by analogy with the
higher-order partial derivative case, as

Dσ = Di1
x1 ·D

i2
x2 · · · · ·D

in
xn . (5.53)

Thus, the explicit expression for the extended infinitesimals in (5.51) is given by the
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so-called general prolongation formula,

ηjσ(x, u, . . . , uσ) = Dσ

(
ηj(x, u)−

n∑
i=1

ξi(x, u)
∂uj

∂xi

)
+

n∑
i=1

ξi(x, u)
∂ujσ
∂xi

, (5.54)

for j = 1, . . . ,m and the multi-index 0 < |σ| ≤ p. This expression can be demon-
strated by induction, the sketch of the proof is illustrated in Appendix A.1.

The prolonged vector field X(p) (5.51) yields a natural extension or prolongation for
the infinitesimal transformations (5.49) up to derivatives of order p, giving rise to
the following one-parameter Lie group of extended transformations acting onM(p),
of the form 

x̃i = xi + εξi(x, u) +O(ε2),

ũj = uj + εηj(x, u) +O(ε2),

...

ũjσ = ujσ + εηjσ(x, u, . . . , uσ) +O(ε2),

(5.55)

for all i = 1, . . . , n, j = 1, . . . ,m and 0 < |σ| ≤ p.
Finally, we introduce the notion of the characteristic of a vector field X of the form
(5.46), which is usually referred to the collection of m functions defined by

Qj(x, u(1)) = ηj(x, u)−
n∑
i=1

ξi(x, u)
∂uj

∂xi
, j = 1, . . . ,m. (5.56)

With this definition, the general prolongation formula (5.54) may be alternatively
written as

ηjσ(x, u, . . . , uσ) = Dσ Qj +

n∑
i=1

ξi
∂ujσ
∂xi

, j = 1, . . . ,m, 0 < |σ| ≤ p. (5.57)

3.3. Classical Lie symmetries

In this context, the following fundamental result arises as a criterion of infinitesimal
invariance for partial differential equations. Theorem 5.1 fully characterizes a sym-
metry group G for a given system of PDEs from the infinitesimal point of view, and
provides a rigorous mechanism to performed the calculation of the aforementioned
symmetries.

Theorem 5.1. Let
Eν(x, u(p)) = 0, ν = 1, . . . , q, (5.58)
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be a system of q partial differential equations of order p, defined in the open subset
M ⊂M, understood as a submanifold on the jet spaceM(p) as

SE = {(x, u(p)) : Eν(x, u(p)) = 0} ⊂ M(p), ν = 1, . . . , q. (5.59)

A local group of transformations G acting on M is a symmetry group of (5.58) if

X(p)
[
Eν(x, u(p))

]∣∣∣
E=0

= 0, ν = 1, . . . , q, (5.60)

for every infinitesimal generator X =
n∑
i=1

ξi(x, u) ∂
∂xi

+
m∑
j=1

ηj(x, u) ∂
∂uj

of G.

Proof. In order to simplify the notation, let us denote jpxu ≡ (x, u(p)) ∈ M(p) as
a generic point of the pth-order jet space M(p) and jpx̃ũ = Φ̃(ε, jpxu) = (x̃, ũ(p)) =

pr(p)g ·(x, u(p)) as the transformed one under the action of the group G. By definition
of symmetry, G is a symmetry group for S if for every point jpxu ∈ SE , then
jpx̃ũ ∈ SE for every ε ∈ R. This condition is equivalent to say that if E(jpxu) = 0,
then E(jpx̃ũ) = 0. Hence, for every jpx̃ũ ∈ SE , we have

d

dε

∣∣∣∣
ε=0

E(jpx̃ũ) =
d

dε

∣∣∣∣
ε=0

E(Φ(ε, jpxu)) =
d

dε

∣∣∣∣
ε=0

E(jpxu) = 0. (5.61)

On the other hand, by applying the chain rule and considering the result given in
(5.28), we may write

d

dε

∣∣∣∣
ε=0

E(jpx̃ũ) =
d

dε

∣∣∣∣
ε=0

E(Φ(ε, jpxu)) = dE|jpxu
(
dΦε(j

p
xu)

dε

∣∣∣∣
ε=0

)
= dE|jpxu

(
X(p)(jpxu)

)
= X(p)(E)(jpxu).

(5.62)

Therefore, X(p)[E(jpxu)] = 0 whenever E(jpxu) = 0 for every jpxu ∈ SE , i.e., X(p)(E) =
0 on SE .

Theorem 5.1 provides an effective algorithmic procedure to compute the symme-
try group of a given system of PDEs. This process, often called Lie’s method, is
illustrated as follows:

Given a system of PDEs of order p of the form (5.44), let us consider an ε-
parametric group of transformations (5.49) generated by the vector field X
(5.46).
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1. In the first step, we should construct the pth-order jet space M(p) ⊂ M(p)

associated to the starting system of PDEs, defined in (5.43). Then, it is possible
to introduce the prolonged vector field X(p) as (5.51) and the extended group
of infinitesimal transformations (5.54).

2. Now, Theorem 5.1 can be applied to (5.44) as a criterion of infinitesimal in-
variance, providing a set of q differential equations, given by (5.60), involving
the variables (x, u), the derivatives of u up to order p, the coefficients ξi, ηj

and their prolongations up to order p.

Alternatively, one may introduce the extended Lie point transformations (5.54)
in the starting system of PDEs (5.44), and perform a Taylor expansion in the
group parameter ε, neglecting the second order and higher contributions O(ε2)
of the formal series. The leading-order terms allow us to recover the original
untransformed equations E = 0, and the first-order terms should provide the q
differential equations (5.60).

The restriction E = 0 in expression (5.60) can be implemented by isolating the
higher-order derivatives ujσ from (5.44) (if possible) and properly substituting
in the condition X(p)

[
Eν(x, u(p))

]
= 0.

3. We can introduce the explicit expressions for the prolonged infinitesimals ηjσ
given by (5.54). At this point, we should remind that expression (5.60) is de-
fined on the jet spaceM(p) and only Lie point symmetries are being considered,
i.e. ξi and ηj do not depend on derivatives of u. Therefore, we are able to
select the coefficients of the remaining unconstrained derivatives of u, treated
as independent coordinates in M(p), and set those terms equal to zero. This
procedure results in an overdetermined system of linear differential equations
for the infinitesimals ξi, ηj , called the determining equations, whose solution
provides the desired Lie symmetries.

As it is proved in [323], the resulting system of infinitesimal generators forms a
Lie algebra of symmetries, which fully characterizes the symmetry group for the
considered system of PDEs (5.44).

3.4. Nonclassical symmetries

Nonclassical symmetries may be understood as a generalization of the classical sym-
metries that not only leave invariant the system of PDEs under study but also certain
submanifolds defined by the invariant surface conditions. The description of the the-
oretical framework of the so-called nonclassical method can be found in [51,326,327].
The set of nonclassical symmetries is potentially larger than the one obtained by
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Lie’s classical approach, since there are fewer determining equations, and hence,
more symmetries. The additional symmetries provided by this method are inacces-
sible from the conventional Lie’s method, but they can be recovered (not always) by
other procedures, as the direct method [98]. Nevertheless, nonclassical symmetries no
longer transform all the possible solutions of the PDE into new solutions, they leave
invariant just a subset of them. In addition, nonclassical symmetries will not form a
Lie algebra. The computation of nonclassical symmetries requires the resolution of a
smaller system of PDEs for the infinitesimals, with the significant difference that the
resulting overdetermined system is nonlinear. This fact entails a remarkably harder
symmetry calculation.

Let us illustrate the nonclassical method to compute nonclassical symmetries here-
after. Let us consider a system of PDEs (5.44) and let SE = {(x, u(p)) : Eν(x, u(p)) =
0} ⊂ M(p) be the associated submanifold containing all the solutions of this system.
Let us consider now a one-parameter group of infinitesimal transformations for (5.44)
of the form{

x̃i = xi + εξi(x, u) +O(ε2),
ũj = uj + εηj(x, u) +O(ε2),

i = 1, . . . , n, j = 1, . . . ,m, (5.63)

associated with the vector field X =
n∑
i=1

ξi(x, u) ∂
∂xi

+
m∑
j=1

ηj(x, u) ∂
∂uj

.

The so-called invariant surface conditions are closely related with the characteristic
of this vector field (5.56) and are given by the m system of first-order PDEs

∆j(x, u(1)) ≡ ηj(x, u)−
n∑
i=1

ξi(x, u)
∂uj

∂xi
= 0, j = 1, . . . ,m, (5.64)

or ∆ = 0 for brevity.

The nonclassical method requires that the symmetry group (5.63) leaves invariant
not only the system (5.44) but also conditions (5.64). This implies that only the
subset of SE defined by

SE∆ =
{

(x, u(p)) : E(x, u(p)) = 0, ∆(x, u(1)) = 0
}
⊂ SE ⊂M(p) (5.65)

must remain invariant under the infinitesimal transformations (5.63). Other solutions
for the system (5.44) in SE that do not belong to the subset SE∆ are not necessarily
transformed back to the set SE .

This procedure yields the following criterion of infinitesimal invariance (analogous to
Theorem 5.1) for the nonclassical symmetries
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X(p)
[
Eν(x, u(p))

]∣∣∣
E=0,∆=0

= 0, ν = 1, . . . , q, (5.66a)

X(1)
[
∆j(x, u(1))

]∣∣∣
E=0,∆=0

= 0, j = 1, . . . ,m. (5.66b)

It is worthwhile to notice that condition (5.66b) is identically satisfied, since it can
be proven that (see Appendix A.2)

X(1)
[
∆j(x, u(1))

]
=

m∑
l=1

∆l ∂∆j

∂ul
, j = 1, . . . ,m, (5.67)

which holds for every ∆l = 0, l = 1, . . . ,m. This result implies that equation (5.66b)
impose no additional restriction over the coefficients of X, and hence, every classical
symmetry is also a nonclassical symmetry.

As (5.66b) does not provide further constraints in the infinitesimals, the invariant
surface conditions can be interpreted as restrictions on the first derivatives of the
dependent variables {ujxi}, i = 1, . . . , n, j = 1, . . . ,m, since due to (5.64) they are
not longer independent. Then, we could assume that at least one infinitesimal for
the independent variables is nonzero, ξα 6= 0 for a fixed 1 ≤ α ≤ n, and eliminate
the corresponding m first derivatives of ujxα from (5.64), as

∂uj

∂xα
=

ηj −
n∑

i=1,i 6=α
ξi
∂uj

∂xi

ξα
, ∀j = 1, . . . ,m. (5.68)

Besides equation (5.68), we should compute its differential consequences, i.e.

Dσ̂
(
∆j
)

= 0 (5.69)

for every multi-index σ̂ such that |σ̂| ≤ p− 1, for all j = 1, . . . ,m, in order to obtain
up to the pth higher-order derivatives associated to ujxα .

Direct substitution of these derivatives {ujxα , (ujxα)σ̂}, ∀j = 1, . . . ,m in (5.66a) and
setting the remaining derivatives equal to zero, will provide the overdetermined sys-
tem of PDEs for the infinitesimals whose solution gives rise to the desired nonclassical
symmetries. It is immediate to see that the resulting number of determining equa-
tions is smaller than the classical one, and consequently, the set of solutions will be
larger. Furthermore, the arising system of PDEs is in general highly nonlinear.

Thus, condition (5.66) can be summarize in the following compact and sufficient [346]
infinitesimal criterion of invariance associated to the nonclassical symmetries
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X(p)
[
Eν(x, u(p))

]∣∣∣
E=0,∆=0,Dσ̂(∆)=0

= 0, ν = 1, . . . , q, |σ̂| ≤ p− 1. (5.70)

Computationally speaking, the algorithm to determine the nonclassical symmetries
is completely analogous to the classical one described in the previous Section, with
the subtlety that now the criterion of invariance is given by (5.70). Moreover, a
plethora of different cases arise depending on whether the coefficients ξα, 1 ≤ α ≤ n
are null or not. Each of these cases should be analyzed separately, giving rise to a
richer spectrum of symmetries. Unfortunately, nonclassical symmetries do not form
a vector space and neither a Lie algebra, since they do not necessarily satisfy the
closure property [272].

4. Symmetry reduction and group invariant solutions

One of the central applications of Lie groups on differential equations is that sym-
metry group techniques provide methods to obtain solutions for those differential
equations. In particular, Lie symmetries may be exploited to derive exact or special
solutions of a given equation in terms of solutions of lower dimensional differential
equations. If a partial differential equation is invariant under a one-parameter sym-
metry group, then it is possible to reduce the total number of independent variables
by one by means of the invariants of the system. In the case of ordinary differential
equations, this procedure implies the reduction of order by one, where the solutions
to the original equation may be recover by quadratures from the solution of the re-
duced problem. For first-order ODEs, this method provides an explicit formula for
the general solution. This procedure is know as the symmetry reduction method or
similarity reduction method, the resulting equations after the reduction process are
called reduced equations (or simply, reductions) and their corresponding solutions
give rise to the similarity solutions. A detailed description of this technique is found
in [50,52,323].

Let us consider a system of PDEs of order p of the form (5.44) and let (5.49) be a
one-parameter group of infinitesimal transformations onM for this system generated
by the vector field (5.46). A (local) invariant of the group of transformations (5.49)
is a real-valued smooth function F : M → R such that F is an invariant under the
action of the group, i.e.,

F (x̃, ũ) = F (g · (x, u)) = F (x, u) (5.71)

for all g ∈ G. Then, F (x, u) is solution of the following linear, homogeneous, first-
order partial differential equation
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X(F ) =
n∑
i=1

ξi
∂F

∂xi
+

m∑
j=1

ηj
∂F

∂uj
= 0 (5.72)

defined on M . The general solution of equation (5.72) may be achieved by the
so-called method of characteristics [163], which implies the integration of the char-
acteristic system of ordinary differential equations

dx1

ξ1(x, u)
= · · · = dxn

ξn(x, u)
=

du1

η1(x, u)
= · · · = dum

ηm(x, u)
. (5.73)

The solution of system (5.73) gives rise to a n+m−1 constants of integration, which
allow to construct n+m− 1 functionally independent invariants on M .

The standard procedure to solve the system of ODEs defined above is described in the
following. We should fix one of the independent variables, xn without of generality,
and integrate the system (5.73) by pairs. The reduced variables are obtained by
integrating the subsystem of (5.73) involving the independent variables

dz1 =
dx1

ξ1
− dxn

ξn
= 0, dz2 =

dx2

ξ2
− dxn

ξn
= 0, . . . , dzn−1 =

dxn1

ξn−1
− dxn

ξn
= 0,

(5.74)
giving rise to a set of n− 1 new reduced variables z = (z1, . . . , zn−1), which enables
us to reduce in one the number of independent variables of the associated reduced
problem. The reduced (scalar) fields are given by the integration of the system

dU1 =
du1

η1
− dxn

ξn
= 0, dU2 =

du2

η2
− dxn

ξn
= 0, . . . , dUm =

dum

ηm
− dxn

ξn
= 0,

(5.75)
providing the remaining m invariants U = (U1, . . . , Um) such that U = U(z). It
is worthwhile to remark that any smooth combination of functions involving the
reduced variables and/or reduced fields (z, U) is also and invariant (of the same
kind), since it is solution of (5.72).

Let us denote the following sets of coordinates as x̂ = (x1, . . . , xn−1). Hence, the
general solution for the characteristic system (5.73) may be expressed as

zk = zk(x̂, xn, u), U l = U l(x̂, xn, u) ∀k = 1, . . . , n− 1, l = 1, . . . ,m. (5.76)

We can always invert relations (5.76) such that

xi = xi(xn, z, U(z)), uj = uj(xn, z, U(z)), ∀i = 1, . . . , n− 1, j = 1, . . . ,m.
(5.77)

The above change of variables induces a transformation over the derivatives of uj , j =
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1, . . . ,m up to order p, which can be easily computed by means of the chain rule.
Hence, the desired reduced problem is obtained by introducing the change of variables
(5.77) and their differential consequences over the derivatives of u into the starting
problem (5.44), giving rise to a system of q partial differential equations of order
p depending on n − 1 independent variables z = (z1, . . . , zn−1) and m dependent
variables U = (U1, . . . , Um), of the form

Êν(z, U(p)) = 0, ν = 1, . . . , q. (5.78)

In particular, if n = 2, the starting problem (5.44) reduces to a system of q ordinary
differential equations.

5. Toy example revisited: NLS equation in 1 + 1 dimen-
sions

Let us illustrate the main procedure of Lie’s symmetry method described above for
the toy example considered before, the famous NLS equation [3, 13, 130] defined in
(2.58)

iut + uxx − 2u2w = 0,

−iwt + wxx − 2w2u = 0.
(5.79)

This system of PDEs is defined in 1 + 1 dimensions, it is expressed in terms of two
independent variables, the spatial coordinate x and time t, which implies n = 2, and
two complex conjugate scalar fields {u,w}, which providesm = 2. The associated jet
spaceM(2) may be constructed as in Example 5.8 for p = 2, with local coordinates

(x, t, u, w, ux, ut, wx, wt, uxx, uxt, utt, wxx, wxt, wtt) , (5.80)

so that the system (5.79) can be considered as a submanifold inM(2).

5.1. Classical Lie symmetries for NLS

Let us consider the following ε-parametric group of infinitesimal transformations
x̃ = x + εξ1(x, t, u, w) +O(ε2),

t̃ = t + εξ2(x, t, u, w) +O(ε2),

ũ = u + εη1(x, t, u, w) +O(ε2),

w̃ = w + εη2(x, t, u, w) +O(ε2),

(5.81)
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generated by the vector field

X = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η1

∂

∂u
+ η2

∂

∂w
. (5.82)

It is possible to extend these infinitesimal transformations up to second order deriva-
tives, 

ũx̃ = ux + ε(η1)x(x, t, u(1), w(1)) +O(ε2),

ũt̃ = ut + ε(η1)t(x, t, u(1), w(1)) +O(ε2),

w̃x̃ = wx + ε(η2)x(x, t, u(1), w(1)) +O(ε2),

w̃t̃ = wt + ε(η2)t(x, t, u(1), w(1)) +O(ε2),

ũx̃x̃ = uxx + ε(η1)xx(x, t, u(2), w(2)) +O(ε2),

ũx̃t̃ = uxt + ε(η1)xt(x, t, u(2), w(2)) +O(ε2),

ũt̃t̃ = utt + ε(η1)tt(x, t, u(2), w(2)) +O(ε2),

w̃x̃x̃ = wxx + ε(η2)xx(x, t, u(2), w(2)) +O(ε2),

w̃x̃t̃ = wxt + ε(η2)xt(x, t, u(2), w(2)) +O(ε2),

w̃t̃t̃ = wtt + ε(η2)tt(x, t, u(2), w(2)) +O(ε2),

(5.83)

where the corresponding prolonged vector field reads

X(2) = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η1

∂

∂u
+ η2

∂

∂w
+ (η1)x

∂

∂ux
+ (η1)t

∂

∂ut
+ (η2)x

∂

∂wx
+ (η2)t

∂

∂wt

+ (η1)xx
∂

∂uxx
+ (η1)xt

∂

∂uxt
+ (η1)tt

∂

∂utt
+ (η2)xx

∂

∂wxx
+ (η2)xt

∂

∂wxt
+ (η2)tt

∂

∂wtt
.

(5.84)
By applying Theorem 5.1 to (5.79), we arrive at the following system of determining
equations

i(η1)t + (η1)xx − 4uw η1 − 2u2η2 = 0,

−i(η2)t + (η2)xx − 4uw η2 − 2w2η1 = 0,
(5.85)

under the restriction imposed by the original NLS system uxx = −iut+2u2w, wxx =
iwt + 2uw2. The prolonged infinitesimals (ηj)t, (ηj)xx, j = 1, 2 can be computed by
the general prolongation formula (5.54), and the substitution of the expressions for
uxx and wxx in (5.85) yields

2 (ξ2,uux + ξ2,wwx + ξ2,x)uxt + ξ1,uuu
3
x +

(
−∂

2η1
∂u2

+ 2ξ1,uwwx + 2ξ1,xu + ξ2,uuut

)
u2x

+

[
2

(
ξ1,xw −

∂2η1
∂u∂w

+ ξ2,uwut

)
wx − 2

∂2η1
∂x∂u

+ 2ξ1,u(3u2w − iut) + 2ξ1,w(uw2 + iwt)

+ξ1,xx + iξ1,t]ux +
[
iξ2,t − 2iξ1,x + 2ξ2,uu

2w + 2ξ2,w(wt + uw2) + ξ2,xx + 2ξ2,xuux
]
ut
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+

(
ξ1,wwux + ξ2,wwut −

∂2η1
∂w2

)
w2
x + 2

[
(ξ2,xw − iξ1,w)ut −

∂2η1
∂x∂w

+ 2ξ1,wu
2w

]
wx

− 2i
∂η1
∂w

wt +

[
2

(
2ξ1,x −

∂η1
∂u

)
u2w − 2

∂η1
∂u

uw2 − ∂2η1
∂x2

− i∂η1
∂t

+ 4η1uw + 2η2u
2

]
= 0,

(5.86)

2 (ξ2,uux + ξ2,wwx + ξ2,x)wxt + ξ1,www
3
x +

(
−∂

2η2
∂w2

+ 2ξ1,uwux + 2ξ1,xw + ξ2,wwwt

)
w2
x

+

[
2

(
ξ1,xu −

∂2η2
∂u∂w

+ ξ2,uwwt

)
ux − 2

∂2η2
∂x∂w

+ 2ξ1,w(3uw2 + iwt) + 2ξ1,u(u2w − iut)

+ξ1,xx − iξ1,t]wx +
[
−iξ2,t + 2iξ1,x + 2ξ2,wuw

2 + 2ξ2,u(ut + u2w) + ξ2,xx + 2ξ2,xwwx
]
wt

+

(
ξ1,uuwx + ξ2,uuwt −

∂2η2
∂u2

)
u2x + 2

[
(ξ2,xu + iξ1,u)wt −

∂2η2
∂x∂u

+ 2ξ1,uuw
2

]
ux

+ 2i
∂η2
∂u

ut +

[
2

(
2ξ1,x −

∂η2
∂w

)
uw2 − 2

∂η2
∂u

u2w − ∂2η2
∂x2

+ i
∂η2
∂t

+ 4η2uw + 2η1w
2

]
= 0,

(5.87)
where the subscripts {x, t, u, w} denote partial derivation with respect the corre-
sponding variables. We should now extract the coefficients in the different derivatives
of u and w and equate them to zero, leading to an overdetermined system of linear
PDEs for the infinitesimals {ξ1, ξ2, η1, η2}, whose solution provides

ξ1(x, t, u, w) = a1 + a4x+ a5t,

ξ2(x, t, u, w) = a2 + 2a4t,

η1(x, t, u, w) =

(
ia5

2
x− a4 + ia3

)
u,

η2(x, t, u, w) =

(
− ia5

2
x− a4 − ia3

)
w,

(5.88)

where ai, i = 1, . . . , 5 are arbitrary real constants. Relations (5.88) constitute the
classical Lie symmetries for the NLS equation [92, 165, 166]. The associated vector
fields define the transformations

X1 = ∂x Space translation
X2 = ∂t Time translation
X3 = i (u∂u − w∂w) Phase translation
X4 = x∂x + 2t∂t − u∂u − w∂w Scaling
X5 = t∂x + ix

2 (u∂u − w∂w) Galilean boost

(5.89)

and constitutes the basis of a five-dimensional Lie algebra with nontrivial commuta-
tion relations
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[X1, X4] = X1, [X1, X5] =
1

2
X3, [X2, X4] = 2X2,

[X2, X5] = X1, [X4, X5] = X5.
(5.90)

This algebra is solvable and isomorphic to the one-dimensional extended Galilei-
similitude algebra sg(1), subalgebra of the so-called Schrödinger algebra sch(1) [180,
356]. The matter of classification of symmetry groups associated to generalized ver-
sions of n-dimensional Schödinger-like equations has been a subject of keen interest
during the past years [58,59,62,177,178,315], where Schrödinger groups Sch(n) and
extended Galilean groups Gal(n) play an important role. In particular, for the one-
dimensional case, the group Sch(1) ' SL(2,R) �W1 naturally arises, expressed as
the semidirect product of SL(2,R) and the Weyl-Heisenberg group W1, representing
the symmetry group of the (1 + 1)-linear Schrödinger equation for the free parti-
cle [59, 315].

5.2. Nonclassical Lie symmetries for NLS

Nonclassical Lie symmetries for NLS equation (5.79) can be analogously computed
by applying the procedure described in Subsection 3.4 of this Chapter.

Together with the extended group of infinitesimal transformations (5.84), we should
impose the invariant surface conditions (5.64), which are given by

∆ ≡

{
η1 − ξ1ux − ξ2ut = 0,

η2 − ξ1wx − ξ2wt = 0.
(5.91)

In view of equations (5.91), the nonclassical method applied to (5.79) gives rise to
two different cases of analysis:

1. ξ2 6= 0

Without loss of generality, we may set ξ2 = 1 in order to simplify the ensuing
calculations. Then, solving (5.91) for ut, wt, we get

ut = η1 − ξ1ux, wt = η1 − ξ1wx, (5.92)

whose differential consequences up to second order imply

uxt = Dx(η1)−Dx(ξ1)ux − ξ1uxx, utt = Dt(η1)−Dt(ξ1)ux − ξ1uxt,

wxt = Dx(η2)−Dx(ξ1)wx − ξ1wxx, wtt = Dt(η2)−Dt(ξ1)wx − ξ1wxt.
(5.93)

Finally, by applying condition (5.70) to (5.79), computing the corresponding pro-
longed infinitesimal by the general prolongation formula, and properly substitut-
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ing the restrictions imposed by (5.79) itself, (5.92) and (5.93), one arrives at the
following system of nonlinear PDEs

ξ1,uuu
3
x +

(
2ξ1,xu + 2iξ1,uξ1 −

∂2η1
∂u2

+ 2ξ1,uwwx

)
u2x +

(
ξ1,wwux −

∂2η1
∂w2

)
w2
x

+ 2

(
ξ1,xw −

∂2η1
∂u∂w

)
uxwx + 2

[
2ξ1,wu

2w − ∂2η1
∂x∂w

+ i(
∂η1
∂w

ξ1 − ξ1,wη1)

]
wx

+ 2

[
(3ξ1,uu+ ξ1,ww)uw − ∂2η1

∂x∂u
+ i(ξ1,wη2 − ξ1,u + ξ1,xξ1η1) +

1

2
(iξ1,t + ξ1,xx)

]
ux

+ 2

{[(
2ξ1,x −

∂η1
∂u

)
w + η2

]
u2 +

[
2η1 −

∂η1
∂w

w

]
uw − i

(
∂η1
∂w

η2 + ξ1,xη1

)}
−
(
∂η1
∂t

+
∂2η1
∂x2

)
= 0,

(5.94)

ξ1,www
3
x +

(
2ξ1,xw − 2iξ1,wξ1 −

∂2η2
∂w2

+ 2ξ1,uwux

)
w2
x +

(
ξ1,uuwx −

∂2η2
∂u2

)
u2x

+ 2

(
ξ1,xu −

∂2η2
∂u∂w

)
uxwx + 2

[
2ξ1,uuw

2 − ∂2η2
∂x∂u

− i
(
∂η2
∂u

ξ1 − ξ1,uη2
)]

ux

+ 2

[
(3ξ1,ww + ξ1,uu)uw − ∂2η2

∂x∂w
− i(ξ1,uη1 − ξ1,w + ξ1,xξ1η2)− 1

2
(iξ1,t − ξ1,xx)

]
wx

+ 2

{[(
2ξ1,x −

∂η2
∂w

)
u+ η1

]
w2 +

[
2η2 −

∂η2
∂u

u

]
uw + i

(
∂η2
∂u

η1 + ξ1,xη2

)}
−
(
∂η2
∂t

+
∂2η2
∂x2

)
= 0,

(5.95)
whose solutions for the infinitesimals have the following form

ξ1 =
b1 + x+ b4t

b2 + 2t
,

ξ2 = 1,

η1 =
i b42 x− 1 + ib3

b2 + 2t
u,

η2 = −
i b42 x+ 1 + ib3

b2 + 2t
w,

(5.96)

where bi, i = 1, . . . , 4 are arbitrary parameters. Nonclassical symmetries for NLS
(5.96) do not provide further information to the symmetry analysis, and, in fact,
they fully coincide with the classical ones (5.88) in that case.

2. ξ2 = 0, ξ1 6= 0
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For this case, we take ξ1 = 1, and the invariant surface conditions (5.64) and their
differential invariants provide

ux = η1, uxx = Dx(η1), uxt = Dt(η1),

wx = η2, wxx = Dx(η2), wxt = Dt(η2),
(5.97)

which yields the following system of PDEs for the infinitesimals (that do not
depend on any derivative of the dependent variables)

i
∂η1
∂t

+
∂2η1
∂x2

+ 2uw

(
∂η1
∂u

u− ∂η1
∂w

w

)
− 4η1uw − 2η2u

2 +
∂(η21)

∂w

∂η2
∂u

+
∂(η22)

∂w

∂η1
∂w

+ 2
∂η1
∂w

∂η2
∂x

+ 2η1η2
∂2η1
∂u∂w

+ 2η1
∂2η1
∂x∂u

+ 2η2
∂2η1
∂x∂w

+ η21
∂2η1
∂u2

+
∂2η1
∂w2

η22 = 0,

−i∂η2
∂t

+
∂2η2
∂x2

− 2uw

(
∂η2
∂u

u− ∂η2
∂w

w

)
− 4η2uw − 2η1w

2 +
∂(η21)

∂u

∂η2
∂u

+
∂(η22)

∂u

∂η1
∂w

+ 2
∂η2
∂u

∂η1
∂x

+ 2η1η2
∂2η2
∂u∂w

+ 2η2
∂2η2
∂x∂w

+ 2η1
∂2η2
∂x∂u

+ η22
∂2η2
∂w2

+
∂2η2
∂u2

η21 = 0,

(5.98)
whose solution is

ξ1 = 1,

η1 =
i(x+ c1)

c2 + 2t
u,

η2 = − i(x+ c1)

c2 + 2t
w,

(5.99)

where c1, c2 are arbitrary constants. This result constitutes, again, a subset of
the classical Lie symmetries for NLS.

The fact that the nonclassical method does not produce any result beyond the set
of classical Lie symmetries for NLS equation was already noticed in [272]. Unfortu-
nately, this situation also occurs for other famous integrable equations, such as KdV
or mKdV [98]. Nevertheless, some other systems as Burgers equation do possess
additional symmetries and reductions due to the nonclassical method [346].

5.3. Symmetry reduction: travelling wave solution

Let us implement, as an illustrative example, the reduction method as a tool to derive
solutions for the NLS equation in 1 + 1 dimensions (5.79). We will be interested in
travelling wave solutions, i.e. solutions of the form u(x, t) = f(x− vt) with velocity
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v. In order to achieve that, let us consider the following vector field

X = vX1 +X2 + γX3 = v
∂

∂x
+
∂

∂t
+ iγ

(
u
∂

∂u
− w ∂

∂w

)
, (5.100)

where we have taken γ 6= 0 in order to allow additional phase shifts in the fields.
The associated characteristic system to (5.100) is given by

dx

v
=
dt

1
=
dxu

iγu
= − dw

iγw
. (5.101)

The integration by pairs with the variable t of the system above results in the reduced
variable and the reduced fields of the form

z = x− vt, U(z) = u(x, t)eiγt, W (z) = w(x, t)e−iγt. (5.102)

Substitution into the original equations (5.79) provides the reduced equations as the
coupled system of ODEs

U ′′ = ivU ′ + γU + 2U2W,

W ′′ = −ivW ′ + γW + 2UW 2,
(5.103)

where U = U(z), W = W (z) and the prime denotes derivation with respect to z,
′ ≡ d

dz .

It is immediate to see that throughout this procedure, we have been able to reduce
the order by one, starting from the (1 + 1)-NLS equation (5.79) and leading to the
system of ODEs (5.103) in the reduced variable z. In order to solve (5.103), let us
introduce the change of coordinates

U(z) = ρ(z)eiϕ(z), W (z) = ρ(z)e−iϕ(z),

where ρ(z) and ϕ(z) are real functions. Then, system (5.103) reads

ρ′′ = ρ
(
ϕ′2 − vρ′

)
+ ρ

(
γ + 2ρ2

)
, (5.104a)

ϕ′′ = −
(
2ϕ′ − v

) ρ′
ρ
. (5.104b)

Equation (5.104b) can be easily integrated as

ϕ′ =
v

2
+
I2

ρ2
, I2 ∈ R,

with I2 as the arbitrary constant of integration. Thus, equation (5.104a) gives rise
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to the following second-order decoupled ODE for ρ

ρ′′ = 2ρ3 +

(
γ − v2

4

)
ρ+

I2
2

ρ3
. (5.105)

According to the seminal work of P. Painlevé [331,332], one should be able to classify
this equation in one of the 50 standard Painlevé type equations. Implementing the
ansatz ρ(z) = R(z)

1
2 , equation (5.105) may be easily expressed into the standard

form [228]

R′′ =
R′2

2R
+ 4R2 + 2aR+

2I2
2

R
, (5.106)

where we have defined a = γ− v2

4 . Equation (5.106) corresponds to equation XXXIII5

[228], and its first integral is

R′2 = 4
(
R3 + aR2 + I1R− I2

2

)
, (5.107)

where I1 is the arbitrary constant of integration. This first integral is solvable in
terms of Jacobi and Weierstrass elliptic functions, giving rise to a plethora of diverse
solutions, depending on the different values of the parameters {a, I2}, with different
behaviours for R(z). Solutions of this kind have been extensively studied in [179].

Let us examine, for example, the travelling wave solutions arising from the case
a 6= 0, I2 = 0. The form of the solutions depends on the value of I1, as well as the
nature of the roots of the polynomial in the right-hand side of (5.107). A particular
solution6 for this case reads

R(z) = δ2
1 sn

2 (δ2z + I3, k) , (5.108)

where sn(·) denotes the elliptic sine function, I3 is the constant of integration and
the parameters {δ1, δ2} and the elliptic modulus k are given by

δ2
1 = −a+

√
a2 − 4I1

2
, δ2

2 =
−a+

√
−a2 − 4I1

2
,

k2 = − a+
√
a2 − 4I1

−a+
√
a2 − 4I1

.

(5.109)

5This classification arises in the most general case when a 6= 0, I2 6= 0. If a = 0 = I2, equation
(5.106) corresponds to equation XVIII in [228], and if a 6= 0, I2 = 0, to equation XIX, respectively.
The corresponding first integrals for these subcases can be easily recover by selecting the particular
values of {a, I2} in (5.107).

6This solution is valid in the regime a2

4
> I1 > 0, where the elliptic integral (5.107) has three

real and different roots. Taking into account that R(z) > 0, the solution (5.108) has been computed
following expression 233.00 in [66].
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Thus, this result provides

ρ(z) = δ1 sn (δ2z + I3, k) , ϕ(z) =
v

2
z + I4, (5.110)

being I4 a constant of integration, which implies that the reduced fields are

U(z) = δ1 sn (δ2z + I3, k) ei(
v
2
z+I4), W (z) = δ1 sn (δ2z + I3, k) e−i(

v
2
z+I4), (5.111)

which identically satisfies relations (5.103). Finally, the solutions for the original
fields u and w have the form

u(x, t) = δ1 sn [δ2 (x− vt) + I3, k] ei[
v
2

(x−vt)+I4+γt],

w(x, t) = δ1 sn [δ2 (x− vt) + I3, k] e−i[
v
2

(x−vt)+I4+γt],
(5.112)

which constitutes bounded and periodic travelling waves for (5.79) where the param-
eters are given in (5.109). According to [179], there exist no other regular travelling
wave solutions for the (1 + 1)-defocusing NLS equation (5.79) with the choice of
I2 = 0 arising from symmetry reductions of the form (5.100).

It is worth studying the limiting case k = 1 arising from the elliptic functions, which
is equivalent to consider I1 = a2

4 . Hence, renaming a = −2δ2, solutions (5.112)
behave as

u(x, t) = δ tanh2 [δ (x− vt) + I3] e
i
[
v
2

(x−vt)+
(
v2

2
−2δ2

)
t+I4

]
,

w(x, t) = δ tanh2 [δ (x− vt) + I3] e
−i
[
v
2

(x−vt)+
(
v2

2
−2δ2

)
t+I4

]
,

(5.113)

which represens a bounded and non-periodic solitary wave known as kink.
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Chapter 6

Lie symmetries for spectral problems

This Chapter is devoted to the applications of Lie’s formalism of classical (and non-
classical) symmetries to several integrable models arising from the fields of Mathe-
matical Physics and Materials Sciences. Lie’s procedure will yield the direct com-
putation of the classical or nonclassical symmetries, which allows us to characterize
the underlying Lie algebra structure of such systems and investigate the associated
similarity reductions.

As already mentioned in Chapter 5, Lie symmetries were first introduced by S.
Lie [273–275] as a valuable technique to solve differential equations or reduce a system
of equations to a simpler form. The overwhelming advantages of this procedure are
evidenced by its countless successful applications when dealing with the study of
differential equations [50,323,378].

Throughout this thesis we will consider a slightly different approach. In this research
we will be more concerned about the application of Lie’s method to the spectral prob-
lem associated with these integrable systems. Lie symmetry analysis for any kind
of differential equations has been an extensively studied topic in the last decades.
Nevertheless, much less frequent is the identification of Lie symmetries for the asso-
ciated Lax pair in the case of integrable nonlinear problems. The first contributions
to this matter were developed in [268,292] and a fruitful work in this topic has been
conducted by Estévez and collaborators [61,143,144,154–156].

The inspection of Lax pairs is interesting since they are considered a proof of inte-
grability for the corresponding nonlinear differential equation [3,13]. The associated
linear problem can be characterized in terms of a system of PDEs, which linearly
depends on a new set of dependent variables, the eigenfunctions, and an additional
element: the spectral parameter (either isospectral or nonisospectral). As the Lax
pair constitutes an equivalent system to the former nonlinear equation, it is expected
that the symmetries of the spectral problem include the symmetries of the starting
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PDE [268]. Furthermore, Lie symmetries for Lax pairs yield much more informa-
tion than just the symmetries of a set of PDEs. This procedure allows us not only
to obtain the symmetry transformations of the fields, but also provides how the
eigenfunctions and the spectral parameter are transformed under the action of the
symmetry group [24,25,27,28,144,155].

This fact will play a crucial role in the study of symmetry reductions arising from
those systems. As already illustrated in the previous Chapter, each Lie point sym-
metry leads to a reduced version of the equation with the number of independent
variables diminished by one. Similarity reductions, when applied to a given Lax
pair, require to consider the eigenfunctions as usual fields and include the spectral
parameter as an independent variable for the eigenfunctions. This process allows to
simultaneously derive the reduction of the fields together with the reduction of the
eigenfunctions and the spectral parameter itself. Hence, this formalism straightfor-
wardly yields new families of integrable differential equations in lower dimensions
together with their associated spectral problems. This whole procedure is also ap-
plicable for hierarchies of PDEs [154,155].

Another core component of the symmetry analysis for Lax pairs rests on the spectral
parameter. Particular importance should be given to nonisospectral Lax pairs, i.e.,
associated linear problems where the spectral parameter is not constant, but a func-
tion of the independent variables of the system. In those cases, the spectral problem
generally satisfies an additional differential equation1 called nonisospectral condition
or nonisospectral equation. Nonisopectral Lax pairs generally appear in multidimen-
sional integral systems in 2 + 1 or higher dimensions, which typically describe more
realistic models and display a richer dynamics [247]. From the symmetry point of
view, the spectral parameter should be treated as a scalar field and the reduction pro-
cedure shall be extended to the nonisospectral condition. Thus, Lie symmetries for
nonisospectral Lax pairs allow us to analyze how the nonisospectral condition prop-
agates under the reduction, and eventually obtain nontrivial nonisospectral reduced
problems in lower dimensions [24,155,156].

This Chapter is organized as follows. Section 1 is aimed at the application of Lie’s
symmetry method to nonlinear systems in 1 + 1 dimensions and their associated
spectral problems. We analyze three nonlinear differential equation of interest, aris-
ing from the integrability analysis for the generalized DNLS equation described in
Section 2 from Chapter 3. As it has been shown, each of these equations possesses
two equivalent Lax pairs that are isospectral. The associated similarity reductions
will provide two equivalent reduced Lax pairs for each reduced ODE, linked by the

1Notice that the nonisospectral condition and the spectral problem do not necessarily present a
linear dependence with the spectral parameter.
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reduction of the compatibility condition in each case. The research conducted in this
Section is partially covered in publications [23,28]. Section 2 is dedicated to the sym-
metry analysis performed over nonlinear models in 2 + 1 dimensions. The dynamics
in multidimensional systems is richer than in the (1 + 1)-case due to the versatile
nature of the spectral parameter. In this Section we will analyzed two examples,
following the constributions [24, 25], respectively. The first example accounts for an
integrable generalization of the NLS equation in 2 + 1 dimensions with an associated
nonisospectral Lax pair. The second example displays a multi-component generaliza-
tion of NLS equation with a Lax pair that does not possess a spectral parameter. In
this case, the proper process of symmetry reduction for the spectral problem provides
a natural way to introduce the spectral parameter in the reduced problem.

1. Lie symmetries for nonlinear systems in 1 + 1 dimen-
sions

This Section is devoted to the Lie symmetry analysis applied to nonlinear systems of
physical relevance in 1 + 1 dimensions and their associated linear problems. In this
Chapter, we will not be concerned about the explicit obtention of the Lax pairs for
those equations, they will be taken as known. In particular, the spectral problems
treated hereafter have been derived by means of the SMM by the author of this
manuscript in [28].

1.1. Derivative NLS equation in 1 + 1 dimensions

We begin this Section with the symmetry analysis for the generalized DNLS equation
in 1 + 1 dimension proposed in Section 2 from Chapter 3. Equation (3.90) can be
rewritten as the system

imt −mxx + i(γ − 2)mmmx + i(γ − 1)m2mx −
1

4
γ(γ − 1)m3m2 = 0,

−imt −mxx − i(γ − 2)mmmx − i(γ − 1)m2mx −
1

4
γ(γ − 1)m3m2 = 0,

(6.1)

where m and m are, as usual, complex conjugates, |m|2 = m · m, and γ is a real
parameter.
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6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

It has been proven that equation (6.1) has an associated spectral problem given by

χxx =

[
iλ− i(γ − 2)

2
|m|2 +

mx

m

]
χx +

1

4

[
2immx − (γ − 1) |m|4

]
χ,

χt = −
[
λ+

γ − 2

2
|m|2 +

imx

m

]
χx −

[
iλ2 +

i(γ − 1)

4
|m|4 +

1

2
mmx

]
χ,

(6.2)

and its complex conjugate

χxx =

[
−iλ+

i(γ − 2)

2
|m|2 +

mx

m

]
χx +

1

4

[
−2immx − (γ − 1) |m|4

]
χ,

χt = −
[
λ+

γ − 2

2
|m|2 − imx

m

]
χx −

[
−iλ2 − i(γ − 1)

4
|m|4 +

1

2
mmx

]
χ,

(6.3)

where λ acts as the spectral parameter and it can be checked that the conjunction
of the compatibility conditions χxxt = χtxx and χxxt = χtxx retrieve (6.1). Equation
(6.1) is demonstrated to possess another Lax pair, which reads

ψxx =

−iλ+
i(γ − 2)

2
|m|2 +

(
(γ − 1) |m|2m− 2imx

)
x

(γ − 1) |m|2m− 2imx

ψx
+

1

4

[
2immx − (γ − 1) |m|4

]
ψ,

ψt = −

λ+
γ − 2

2
|m|2 −

i
(

(γ − 1) |m|2m− 2imx

)
x

(γ − 1) |m|2m− 2imx

ψx
+

[
iλ2 +

i(γ − 1)

4
|m|4 +

1

2
mmx

]
ψ,

(6.4)

and its complex conjugate

ψxx =

iλ− i(γ − 2)

2
|m|2 +

(
(γ − 1) |m|2m+ 2imx

)
x

(γ − 1) |m|2m+ 2imx

ψx
− 1

4

[
2immx + (γ − 1) |m|4

]
ψ, (6.5)
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ψt = −

λ+
γ − 2

2
|m|2 +

i
(

(γ − 1) |m|2m+ 2imx

)
x

(γ − 1) |m|2m+ 2imx

ψx
−
[
iλ2 +

i(γ − 1)

4
|m|4 − 1

2
mmx

]
ψ.

Both spectral problems (6.2)-(6.3) and (6.4)-(6.5) are linked via the conditions

ψxχx
ψχ

− i

2
mmx +

γ − 1

4
|m|4 = 0,

ψxχx
ψχ

+
i

2
mmx +

γ − 1

4
|m|4 = 0. (6.6)

Lie point symmetries

Thereupon, we proceed to analyze the Lie point symmetries of the spectral problem
for equation (6.1), given by the system of PDEs (6.2)-(6.6). Symmetry analysis for
Lax pairs requires to consider the spectral problems as a system of PDEs where the
eigenfunctions {χ, χ, ψ, ψ} are treated as fields depending on the variables (x, t, λ),
while {m,m} exclusively depend on (x, t). The inclusion of the dependence on λ for
the eigenfunctions constitutes the novelty and the cornerstone to the whole procedure
concerning the extension of Lie symmetries for Lax pairs. This fact will allow us
to naturally define the notion of infinitesimal transformation for this parameter as
well as for the eigenfunctions, leading to a straightforward framework to apply Lie’s
formalism. This approach successfully provides the correct criterion of invariance
for the spectral problem and the associated similarity reductions. Then, the space
of independent variables X has coordinates (x, t, λ) while the space of dependent
variables U is endowed with coordinates (m,m,χ, χ, ψ, ψ). Since we are dealing
with a second-order Lax pair, the set of PDEs (6.2)-(6.6) defines a submanifold in
the second-order jet spaceM(2) = X ×U(2).

In order to apply Lie’s symmetry method to the linear problem (6.2)-(6.6)2, let us

2Notice that Lax pairs (6.2)-(6.3) and (6.4)-(6.5) are completely decoupled in terms of the eigen-
functions {χ, χ} and {ψ,ψ}, and that the compatibility condition of each Lax pair successfully
provides equation (6.1). Then, we may conclude that each Lax pair should be considered indepen-
dent from the other, and that conditions (6.6) exclusively link two versions of the same problem.
Thus, from the symmetry point of view, it is not necessarily to consider the complete problem
(6.2)-(6.6), it suffices to analyze either (6.2)-(6.3) or (6.4)-(6.5) and the resulting symmetries should
be consistent by construction with conditions (6.6).

209



6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

consider the following one-parameter group of infinitesimal transformations

x̃ = x+ ε ξx(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

t̃ = t+ ε ξt(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

λ̃ = λ+ ε ξλ(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

m̃ = m+ ε ηm(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

m̃ = m+ ε ηm(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

χ̃ = χ+ ε ηχ(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

χ̃ = χ+ ε ηχ(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

ψ̃ = ψ + ε ηψ(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

ψ̃ = ψ + ε ηψ(x, t, λ,m,m, χ, χ, ψ, ψ) +O(ε2),

(6.7)

where ε is the parameter of the group. The associated vector field that generates the
transformation above reads as

X = ξx
∂

∂x
+ ξt

∂

∂t
+ ξλ

∂

∂λ
+ηm

∂

∂m
+ηm

∂

∂m
+ηχ

∂

∂χ
+ηχ

∂

∂χ
+ηψ

∂

∂ψ
+ηψ

∂

∂ψ
. (6.8)

This infinitesimal transformation induces a well known one in the derivatives of the
fields {m,m} and the eigenfunctions {χ, χ, ψ, ψ}, given by (5.55), such that it must
preserve the invariance of the starting system of PDEs,

m̃x̃ = mx + ε(ηm)x +O(ε2), m̃x̃ = mx + ε(ηm)x +O(ε2),

m̃x̃x̃ = mxx + ε(ηm)xx +O(ε2), m̃x̃x̃ = mxx + ε(ηm)xx +O(ε2),

χ̃x̃ = χx + ε(ηχ)x +O(ε2), χ̃x̃ = χx + ε(ηχ)x +O(ε2),

χ̃t̃ = χt + ε(ηχ)t +O(ε2), χ̃t̃ = χt + ε(ηχ)t +O(ε2),

χ̃x̃x̃ = χxx + ε(ηχ)xx +O(ε2), χ̃x̃x̃ = χxx + ε(ηχ)xx +O(ε2),

ψ̃x̃ = ψx + ε(ηψ)x +O(ε2), ψ̃x̃ = ψx + ε(ηψ)x +O(ε2),

ψ̃t̃ = ψt + ε(ηψ)t +O(ε2), ψ̃t̃ = ψt + ε(ηψ)t +O(ε2),

ψ̃x̃x̃ = ψxx + ε(ηψ)xx +O(ε2), ψ̃x̃x̃ = ψxx + ε(ηψ)xx +O(ε2),

(6.9)

where the different coefficients (ηΩ)x, (ηΩ)t, (ηΩ)xx for Ω = {m,m,χ, χ, ψ, ψ} can be
easily computed by the general prolongation formula (5.54) from Chapter 5. We have
analyzed both the classical and nonclassical approaches to Lie symmetries for the
spectral problem (6.2)-(6.6), following the theoretical prescriptions given in (5.60)
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Chapter 6. Lie symmetries for spectral problems

and (5.70), respectively. Unfortunately, nonclassical Lie symmetries do not provide
any further information, since they fully coincide with the classical symmetries, of
the form

ξx(x, t, λ,m,m, χ, χ, ψ, ψ) = A1x+A2,

ξt(x, t, λ,m,m, χ, χ, ψ, ψ) = 2A1t+A3,

ξλ(x, t, λ,m,m, χ, χ, ψ, ψ) = −A1 λ,

ηm(x, t, λ,m,m, χ, χ, ψ, ψ) =

(
−A1

2
+ iZ1(t)

)
m,

ηm(x, t, λ,m,m, χ, χ, ψ, ψ) =

(
−A1

2
− iZ1(t)

)
m,

ηχ(x, t, λ,m,m, χ, χ, ψ, ψ) = K1(λ)χ,

ηχ(x, t, λ,m,m, χ, χ, ψ, ψ) = K1(λ)χ,

ηψ(x, t, λ,m,m, χ, χ, ψ, ψ) = K2(λ)ψ,

ηψ(x, t, λ,m,m, χ, χ, ψ, ψ) = K2(λ)ψ,

(6.10)

where Ai, i = 1, ..., 3 are arbitrary constants, Z1(t) is an arbitrary real function
of t and Ki(λ), Ki(λ), i = 1, 2 are arbitrary complex (and conjugate) functions of
λ. It is easy to check that the infinitesimals {ξx, ξt, ηm, ηm} in (6.10) provide the
full set of Lie point symmetries for the nonlinear equation (6.1). The symmetry
associated with A1 amounts to a scale transformation, A2 and A3 define translations
in space and time, respectively, whilst Z1(t) creates a phase translation in the fields
m and m. The Lie symmetries for the associated Lax pair are augmented with the
corresponding transformations for λ and the eigenfunctions. The infinitesimal ξλ
allows to extend the scaling transformation to the spectral parameter. Symmetries
associated to Ki(λ), Ki(λ), i = 1, 2 represent a phase shift in the eigenfunctions due
to the linearity of the spectral problem.

Classification of the associated Lie algebra

Hereafter, we will characterize and classify the Lie algebra associated to the sym-
metry group for the spectral problem (6.2)-(6.6). Since the symmetry group (6.10)
depends on up to eight arbitrary elements, we may construct eight infinitesimal gen-
erators associated to these symmetries, listed as

X1 = x
∂

∂x
+ 2t

∂

∂t
− λ ∂

∂λ
− m

2

∂

∂m
− m

2

∂

∂m
,

X2 =
∂

∂x
,
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6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

X3 =
∂

∂t
,

Y{Z1(t)} = iZ1(t)

(
m

∂

∂m
−m ∂

∂m

)
, (6.11)

Γχ{K1(λ)} = K1(λ)χ
∂

∂χ
,

Γχ{K1(λ)} = K1(λ)χ
∂

∂χ
,

Γψ{K2(λ)} = K2(λ)ψ
∂

∂ψ
,

Γψ{K2(λ)} = K2(λ)ψ
∂

∂ψ
,

where generator X1−X3 arise exclusively from the arbitrary constants in the symme-
tries, Y{Z1(t)} depends on an arbitrary function of time and Γρ{κ(λ)} = κ(λ) ρ∂ρ denotes
the generic generator associated to the arbitrary functions κ(λ) = {Kj(λ), Kj(λ)},
j = 1, 2, and ρ = {χ, χ, ψ, ψ}.
It is worthwhile to remark the presence of arbitrary functions in the Lie symme-
tries. The influence of these arbitrary functions should not be taken lightly and it
deserves a meticulous analysis. According to [378], symmetry generators depending
on arbitrary constants will give rise to a Lie algebra, while generator depending on
arbitrary functions will not, since we are dealing with an infinite-dimensional basis
of generators. Notwithstanding this, the commutator of two symmetry generators is
still a generator of a symmetry, in a sense that will be highlighted later. Arbitrary
functions will play a decisive role in the symmetry analysis of differential equations,
specially in the case of higher spatial dimensions, as it is illustrated in Appendix B.

Commutation relations among the symmetry generators may be performed. The
results are summarized in the following table, where entry in row i and column j
symbolizes the operation [Vi, Vj ], with Vi, Vj two generators of the symmetry group,

X1 X2 X3 Y{Z1(t)} Γρ{κ(λ)}

X1 0 −X2 −2X3 Y{
2t

dZ1
dt

} Γρ{−λ dκdλ}
X2 X2 0 0 0 0
X3 2X3 0 0 Y{ dZ1

dt

} 0

Y{Z̃1(t)} −Y{
2t

dZ̃1
dt

} 0 −Y{ dZ̃1
dt

} 0 0

Γρ{κ̃(λ)} −Γρ{−λ dκ̃dλ}
0 0 0 0
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Chapter 6. Lie symmetries for spectral problems

Notice that the generic generator Γρ{κ(λ)} defined above satisfies that
[
Γρ{κ(λ)},Γ

ρ̂
{κ̂(λ)}

]
= 0 for any combination of the arbitrary functions κ(λ), κ̂(λ) and the eigenfunctions
ρ, ρ̂. As mentioned, it may be observed that every commutator of two infinites-
imal generators provides a nontrivial result, due to the presence of the arbitrary
functions [323]. However, every commutator can be expressed in terms of other
generators of the group, with the appropriate choice of its corresponding arbitrary
function. This property provides an analogous notion of closure with the finite-
dimensional case. In general terms, these infinitesimal generators do not form a Lie
algebra, but it is possible to obtain a finite-dimensional Lie algebra by adopting
special values for the arbitrary functions, [77,119].

In order to illustrate this, we will deeply review and classify the Lie algebra associated
to the Lie point symmetries of equation (6.1). This can be achieved by considering
the ansatz Z1(t) = A4 constant and K1(λ) = K2(λ) = 0. Hence, the resulting Lie
algebra has dimension four, and it is generated by the vector fields X1−X3 given in
(6.11) and X4 = im∂m − im∂m. Thus, the nontrivial commutation relations among
theses generators are

[X1, X2] = −X2, [X1, X3] = −2X3, (6.12)

which define a four-dimensional real Lie algebra which is solvable and decomposable
〈X1, X2, X3〉⊕X4, and it can be classified as Aa3,5⊕A1 for a = 1

2 [333,334]. This Lie
algebra in turn constitutes a subalgebra of the Schrödinger algebra sch(1) [178,180].

Similarity reductions

Let us proceed with the explicit computation of the similarity reductions of the spec-
tral problem (6.2)-(6.6). This procedure will allow us to simultaneously obtain the
reduction of the eigenfunctions and the spectral parameter. Since we have consid-
ered that the eigenfunctions possess a dependence on λ, the arising reduced spectral
problem will consist on a system of two PDEs for the reduced eigenfunctions on
terms of the reduced variables z,Λ. Nevertheless, the original nonlinear equation
(6.1) is described in 1 + 1 dimensions, and therefore the resulting reduced nonlinear
equation, obtained as the compatibility condition of the reduced spectral problem,
is expected to be an ODE in the reduced variable z.

In the following, we shall use the next notation regarding the reduced parameters in
the upcoming calculations
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6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

Original variables New reduced variables
Independent variables x, t, λ z, Λ

Fields m(x, t),m(x, t) M(z),M(z)

Eigenfunctions χ(x, t, λ), χ(x, t, λ) Φ(z,Λ), Φ(z,Λ)

ψ(x, t, λ), ψ(x, t, λ) Ψ(z,Λ), Ψ(z,Λ)

Similarity reductions may be computed by solving the characteristic system given by

dx

ξx
=
dt

ξt
=
dλ

ξλ
=
dm

ηm
=
dm

ηm
=
dχ

ηχ
=
dχ

ηχ
=
dψ

ηψ
=
dψ

ηψ
. (6.13)

The symmetries that will yield nontrivial reductions are those present in the transfor-
mations of the independent variables, i.e., the ones related to the arbitrary constants
A1, A2 and A3. The remaining symmetries will provide trivial reductions. Several
reductions may emerge for different values of these constants, yielding three different
cases with an independent reduction each. The relevant reductions correspond to
the cases

(i) A1 6= 0

(ii) A1 = 0, A2 6= 0, A3 6= 0

(iii) A1 = 0, A2 = 0, A3 6= 0

that should be studied separately.

Without loss of generality and for the sake of simplicity, we may consider all the
arbitrary functions Kj(λ), Kj(λ) j = 1, 2 to be zero, since the associated symmetries
are phase shifts over the eigenfunctions that are trivially satisfied due to the linearity
of the Lax pairs. Conversely, the arbitrary function depending on t, Z1(t), does need
to be taken into consideration.

• Case I. A1 6= 0

By solving the characteristic system (6.13) in the general case, the following results
have been obtained

– Reduced variable and reduced spectral parameter

z =
A1x+A2√

A1

√
A3 + 2A1t

, Λ =
λ√
A1

√
A3 + 2A1t. (6.14)
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– Reduced fields

m(x, t) =M(z)
A

1
4
1 e

i
∫ Z1(t)
A3+2A1t

dt

(A3 + 2A1t)
1
4

,

m(x, t) =M(z)
A

1
4
1 e
−i
∫ Z1(t)
A3+2A1t

dt

(A3 + 2A1t)
1
4

.

(6.15)

– Reduced eigenfunctions

χ(x, t, λ) = Φ(z,Λ), χ(x, t, λ) = Φ(z,Λ),

ψ(x, t, λ) = Ψ(z,Λ), ψ(x, t, λ) = Ψ(z,Λ).
(6.16)

– Reduced Φ-spectral problem (reduction of (6.2)-(6.3))

Φzz −
(
iΛ− i

2
(γ − 2)MM+

Mz

M

)
Φz

+
1

4

(
(γ − 1)M2M2 − 2iMMz

)
Φ = 0,

ΛΦΛ −
(
z − Λ− i

2
(γ − 2)MM− iMz

M

)
Φz

+

(
i

4
(γ − 1)M2M2

+
1

2
MMz + iΛ2

)
Φ = 0,

(6.17)

and its complex conjugate.

The link between the two equivalent reduced Lax pairs is given by the reduc-
tion of conditions (6.6), which provides

ΦzΨz

ΦΨ
+

1

4
(γ−1) |M|4− i

2
MMz = 0,

ΦzΨz

ΦΨ
+

1

4
(γ−1) |M|4+

i

2
MMz = 0.

(6.18)

– Reduced Ψ-spectral problem (reduction of (6.4)-(6.5))

Ψzz +
1

4
M
(

(γ − 1)MM2 − 2iMz

)
Ψ

+ i

Λ− 1

2
(γ − 2)MM+

(
i(γ − 1)MM2

+ 2Mz

)
z

(γ − 1)MM2 − 2iMz

Ψz = 0,

(6.19)
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ΛΨΛ +

Λ− z +
1

2
(γ − 2)MM−

(
i(γ − 1)MM2

+ 2Mz

)
z

(γ − 1)MM2 − 2iMz

Ψz

− i

4

(
(γ − 1)M2M2 − 2iMMz + 4Λ2

)
Ψ = 0,

and its complex conjugate.

– Reduced equation

The compatibility condition between both Lax pairs (6.17) and (6.19) and
their complex conjugates provide the reduced equation (and its complex con-
jugate), which may be integrated as[

iMzz

M
−
(
z +MM

)Mz

M
+ (γ − 1)

(
MM

)
z

+
i

4
γ(γ − 1)M2M2

]
z

= 0.

(6.20)

• Case II. A1 = 0, A2 6= 0, A3 6= 0

By applying the same procedure, integrating (6.13), we get

– Reduced variable and reduced spectral parameter

z =
A2

A3

(
x− A2

A3
t

)
, Λ =

A3

A2
λ. (6.21)

– Reduced fields

m(x, t) =

√
A2

A3
e
i
A3

∫
Z1(t) dtM(z),

m(x, t) =

√
A2

A3
e
− i
A3

∫
Z1(t) dt M(z).

(6.22)

– Reduced eigenfunctions

χ(x, t, λ) = Φ(z,Λ), χ(x, t, λ) = Φ(z,Λ),

ψ(x, t, λ) = Ψ(z,Λ), ψ(x, t, λ) = Ψ(z,Λ).
(6.23)

216



Chapter 6. Lie symmetries for spectral problems

– Reduced Φ-spectral problem

Φzz −
(
iΛ− i

2
(γ − 2)MM+

Mz

M

)
Φz

+
1

4

(
(γ − 1)M2M2 − 2iMMz

)
Φ = 0,(

1− Λ− i

2
(γ − 2)MM− iMz

M

)
Φz

−
(
i

4
(γ − 1)M2M2

+
1

2
MMz + iΛ2

)
Φ = 0,

(6.24)

and its complex conjugate.

Reduction of conditions (6.6) gives the same equation as (6.18).

– Reduced Ψ-spectral problem

Ψzz +
1

4
M
(

(γ − 1)MM2 − 2iMz

)
Ψ

+ i

Λ− 1

2
(γ − 2)MM+

(
i(γ − 1)MM2

+ 2Mz

)
z

(γ − 1)MM2 − 2iMz

Ψz = 0,

Λ− 1 +
1

2
(γ − 2)MM−

(
i(γ − 1)MM2

+ 2Mz

)
z

(γ − 1)MM2 − 2iMz

Ψz

− i

4

(
(γ − 1)M2M2 − 2iMMz + 4Λ2

)
Ψ = 0,

(6.25)

and its complex conjugate.

– Reduced equation

The compatibility condition between both Lax pairs (6.24) and (6.25) and
their complex conjugates provide the reduced equation[

iMzz

M
−
(
1 +MM

)Mz

M
+ (γ − 1)

(
MM

)
z

+
i

4
γ(γ − 1)M2M2

]
z

= 0.

(6.26)

• Case III. A1 = 0, A2 = 0, A3 6= 0

By integrating the characteristic system (6.13), the following results arise
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– Reduced variable and reduced spectral parameter

z = x, Λ = λ. (6.27)

– Reduced fields
m(x, t) = e

i
A3

∫
Z1(t) dtM(z),

m(x, t) = e
− i
A3

∫
Z1(t) dt M(z).

(6.28)

– Reduced eigenfunctions

χ(x, t, λ) = Φ(z,Λ), χ(x, t, λ) = Φ(z,Λ),

ψ(x, t, λ) = Ψ(z,Λ), ψ(x, t, λ) = Ψ(z,Λ).
(6.29)

– Reduced Φ-spectral problem

Φzz −
(
iΛ− i

2
(γ − 2)MM+

Mz

M

)
Φz

+
1

4

(
(γ − 1)M2M2 − 2iMMz

)
Φ = 0,(

Λ +
i

2
(γ − 2)MM+ i

Mz

M

)
Φz

−
(
i

4
(γ − 1)M2M2

+
1

2
MMz + iΛ2

)
Φ = 0,

(6.30)

and its complex conjugate.
Reduction of conditions (6.6) retrieves again equation (6.18).

– Reduced Ψ-spectral problem

Ψzz +
1

4
M
(

(γ − 1)MM2 − 2iMz

)
Ψ

+ i

Λ− 1

2
(γ − 2)MM+

(
i(γ − 1)MM2

+ 2Mz

)
z

(γ − 1)MM2 − 2iMz

Ψz = 0,

Λ +
1

2
(γ − 2)MM−

(
i(γ − 1)MM2

+ 2Mz

)
z

(γ − 1)MM2 − 2iMz

Ψz

− i

4

(
(γ − 1)M2M2 − 2iMMz + 4Λ2

)
Ψ = 0,

(6.31)

and its complex conjugate.
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– Reduced equation
Finally, the reduce equation reads[

iMzz

M
−MMz + (γ − 1)

(
MM

)
z

+
i

4
γ(γ − 1)M2M2

]
z

= 0. (6.32)

1.2. Conservative equation in 1 + 1 dimensions

Throughout the Painlevé analysis for DNLS equation (3.90) conducted in Chapter
3, we derived the following nonlinear equation expressed in conservative form

[
α2
x − αt

]
t

=

[
αxxx + α3

x −
α2
t + α2

xx

αx

]
x

, (6.33)

to be satisfied by the real field α(x, t) that is related with the probability density of
DNLS equations as 2αx = |m|2. Equation (6.33) is proved to have two equivalent
Lax pairs given by

χxx = χx

[
iλ+

iα2
x + αxx + iαt

2αx

]
+ χ

[
−α2

x + iαxx + αt
2

]
,

χt = χx

[
−λ+

αt − iαxx + α2
x

2αx

]
+ χ

[
−iλ2 +

iαt − αxx − iα2
x

2

]
,

(6.34)

and

ψxx = ψx

[
−iλ+

iα4
x + 2iαxxxαx − 2α2

xαxx − iα2
t − iα2

xx + 2αxtαx
2αx (−α2

x + iαxx + αt)

]
+ ψ

[
−α2

x + iαxx + αt
2

]
,

ψt = ψx

[
−λ− α4

x + 2αxxxαx + 2iα2
xαxx − α2

t − α2
xx − 2iαxtαx

2αx (−α2
x + iαxx + αt)

]
+ ψ

[
iλ2 +

−iαt + αxx + iα2
x

2

]
,

(6.35)

where λ represents the spectral parameter and the eigenfunctions satisfy

2
ψxχx
ψχ

+ α2
x − αt − i αxx = 0. (6.36)

We can easily check that the compatibility condition of (6.34) and (6.35), χxxt =
χtxx, ψxxt = ψtxx respectively, retrieves equation (6.33) in each case. Since α stands
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6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

for a real field, we do not have to additionally consider the complex conjugates of
the aforementioned linear problems.

Lie point symmetries

In order to compute the Lie symmetries for the spectral problem (6.34)-(6.36), we
analogously proceed by proposing the following infinitesimal transformation

x̃ = x+ ε ξx(x, t, λ, α, χ, ψ) +O(ε2),

t̃ = t+ ε ξt(x, t, λ, α, χ, ψ) +O(ε2),

λ̃ = λ+ ε ξλ(x, t, λ, α, χ, ψ) +O(ε2),

α̃ = α+ ε ηα(x, t, λ, α, χ, ψ) +O(ε2),

χ̃ = χ+ ε ηχ(x, t, λ, α, χ, ψ) +O(ε2),

ψ̃ = ψ + ε ηψ(x, t, λ, α, χ, ψ) +O(ε2),

(6.37)

with ε as the parameter of the symmetry group. The associated vector field is given
by

X = ξx
∂

∂x
+ ξt

∂

∂t
+ ξλ

∂

∂λ
+ ηα

∂

∂α
+ ηχ

∂

∂χ
+ ηψ

∂

∂ψ
. (6.38)

This transformation can be easily extended to the different derivatives of the de-
pendent variables by the usual procedure [323]. Notice that although the Lax pairs
are PDEs of second order, there appear third-order derivatives of α in (6.35), so
the associated prolongations have to be performed up to third order. Classical and
nonclassical Lie symmetries have been computed, finding that although the overde-
termined systems for the infinitesimals are different, the corresponding results give
rise to the same set of symmetries

ξx(x, t, λ, α, χ, ψ) = B1x+B2,

ξt(x, t, λ, α, χ, ψ) = 2B1t+B3,

ξλ(x, t, λ, α, χ, ψ) = −B1 λ,

ηα(x, t, λ, α, χ, ψ) = B4,

ηχ(x, t, λ, α, χ, ψ) = K1(λ)χ,

ηψ(x, t, λ, α, χ, ψ) = K2(λ)ψ,

(6.39)

where Bi, i = 1, ..., 4 are arbitrary real constants and Kj(λ), j = 1, 2 are arbitrary
complex functions of λ. The symmetry associated to B1 generates the usual scale
transformations, the ones associated to B2 −B4 induce translations in the variables
{x, t, α}, respectively, andKj(λ) are responsible for phase shifts in the eigenfunctions
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Chapter 6. Lie symmetries for spectral problems

due to linearity.

Similarity reductions

Similarity reductions can be achieved by integrating the associated characteristic
system

dx

ξx
=
dt

ξt
=
dλ

ξλ
=
dα

ηα
=
dχ

ηχ
=
dψ

ηψ
, (6.40)

giving rise to two nontrivial reductions

(i) B1 6= 0

(ii) B1 = 0, B2 6= 0, B3 6= 0

that should be treated independently.

The reduced variables will be denoted as usual as {z,Λ}, the reduced field will be
displayed as A(z) and the reduced eigenfunctions are Φ(z,Λ), Ψ(z,Λ). Without loss
of generality, we will consider K1(λ) = 0, K2(λ) = 0.

• Case I. B1 6= 0 (B4 = B1)

– Reduced variable and reduced spectral parameter

z =
B1x+B2√

B1

√
B3 + 2B1t

, Λ =
λ√
B1

√
B3 + 2B1t. (6.41)

– Reduced field
α(x, t) =

B4

2B1
log(B3 + 2B1t) +A(z), (6.42)

where log(·) denotes the natural logarithm.

– Reduced eigenfunctions

χ(x, t, λ) = Φ(z,Λ), ψ(x, t, λ) = Ψ(z,Λ). (6.43)

– Reduced Φ-spectral problem

2Φzz −
(

2iΛ + iAz +
Azz + i

Az

)
Φz −

(
iAzz −A2

z + 1
)

Φ = 0,

2ΛΦΛ −
(

2z − 2Λ +Az +
iAzz + 1

Az

)
Φz +

(
2iΛ2 + iA2

z −Azz + i
)

Φ = 0.

(6.44)
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6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

– Reduced Ψ-spectral problem

2Ψzz −
(
−2iΛ +

2A2
zAzz + iA2

zz + i

Az (A2
z − iAzz − 1)

)
Ψz +

(
A2
z − 1

)2
+A2

zz

A2
z − iAzz − 1

Ψ = 0,

2iΛΨΛ +

(
2iΛ− 2iz +

2A2
zAzz + iA2

zz + i

Az (A2
z − iAzz − 1)

)
Ψz

+
(
2Λ2 −A2

z − iAzz + i
)

Ψ = 0.
(6.45)

The link between these two equivalent reduced Lax pairs is given by

2
ΦzΨz

ΦΨ
− iAzz +A2

z + zAz − 1 = 0. (6.46)

– Reduced equation[
Azzz −

A2
zz + 1

Az
+A3

z + z(A2
z +A)−

∫
(A−A2

z)dz

]
z

= 0. (6.47)

• Case II. B1 = 0, B2 6= 0, B3 6= 0 (B4 = B2
2/B3)

– Reduced variable and reduced spectral parameter

z =
B2

B3

(
x− B2

B3
t

)
, Λ =

B3

B2
λ. (6.48)

– Reduced field
α(x, t) =

B4

B3
t+A(z). (6.49)

– Reduced eigenfunctions

χ(x, t, λ) = Φ(z,Λ), ψ(x, t, λ) = Ψ(z,Λ). (6.50)

– Reduced Φ-spectral problem

2Φzz −
(

2iΛ + iAz +
Azz + i

Az

)
Φz −

(
iAzz −A2

z + 1
)

Φ = 0,(
2Λ− 2Az + iAzz −A2

z − 1
)

Φz +Az
(
2iΛ2 + iA2

z +Azz − 1
)

Φ = 0.
(6.51)
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– Reduced Ψ-spectral problem

2Ψzz −
(

2iΛ− 2A2
zAzz + iA2

zz + i

Az (A2
z − iAzz − 1)

)
Ψz +

(
A2
z − 1

)2
+A2

zz

A2
z − iAzz − 1

Ψ = 0,

(
−2Λ +

2iA2
zAzz +A2

zz − 2iA2
zAzz − 2A3

z −A2
z + (Az + 1)2

Az (A2
z − iAzz − 1)

)
Ψz

−
(
2iΛ2 − iA2

z +Azz + i
)

Ψ = 0,

(6.52)

where the two equivalent Lax pairs are connected via the transformation
(6.46).

– Reduced equation [
Azzz −

A2
zz + 1

Az
+A3

z +A2
z

]
z

= 0. (6.53)

1.3. Nonlocal Boussinesq equation in 1 + 1 dimensions

Painlevé analysis for the generalized DNLS equation in Section 2 from Chapter 3
yielded a third PDE of interest[

utt + uxxxx + 2u2
xx −

u2
xt + u2

xxx

uxx

]
x

= 0, (6.54)

which is known as the nonlocal Boussinesq equation [261, 419]. This equations has
proved to be integrable and its connection to the Kaup system has been studied
in [141]. The SMM provides the following spectral problem for (6.54)

χxx = χx

[
iλ+

uxxx + iuxt
2uxx

]
− uxxχ,

χt = χx

[
−λ+

−iuxxx + uxt
2uxx

]
− i
[
λ2 + uxx

]
χ,

(6.55)

ψxx = ψx

[
−iλ+

uxxx − iuxt
2uxx

]
− uxxψ,

ψt = ψx

[
−λ+

iuxxx + uxt
2uxx

]
+ i
[
λ2 + uxx

]
ψ,

(6.56)

where {χ, ψ} are two complex conjugate eigenfunctions satisfying ψxχx
ψχ + uxx = 0

and λ is the spectral parameter.
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6.1. Lie symmetries for nonlinear systems in 1 + 1 dimensions

As stated in Chapter 3, the complex conjugate of u, named as u, satisfies the same
equation (6.54). Then, the system (6.55)-(6.56) also constitutes a Lax pair for u.
Notwithstanding, u and u must obey the following coupling condition

iut + uxx − iut + uxx + (ux − ux)2 = 0 (6.57)

as a consequence of the ansatz (3.98) and relation (3.99).

Lie point symmetries

Lie symmetries for the Lax pair (6.55)-(6.56) and their conjugates have been com-
puted, as the associated spectral problems to the nonlinear equation (6.54) for u and
u, respectively. In this case, we also need to take into account the coupling condi-
tion (6.57) in the symmetry analysis. If we introduce a uniparametric infinitesimal
transformation of the form

x̃ = x+ ε ξx(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

t̃ = t+ ε ξt(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

λ̃ = λ+ ε ξλ(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

ũ = u+ ε ηu(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

ũ = u+ ε ηu(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

χ̃ = χ+ ε ηχ(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

χ̃ = χ+ ε ηχ(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

ψ̃ = ψ + ε ηψ(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

ψ̃ = ψ + ε ηψ(x, t, λ, u, u, χ, χ, ψ, ψ) +O(ε2),

(6.58)

and apply Lie’s method to compute the classical Lie symmetries, we obtain

ξx(x, t, λ, u, u, χ, χ, ψ, ψ) = C1x+ 2C4t+ C2,

ξt(x, t, λ, u, u, χ, χ, ψ, ψ) = 2C1t+ C3,

ξλ(x, t, λ, u, u, χ, χ, ψ, ψ) = −C1 λ+ C4,

ηu(x, t, λ, u, u, χ, χ, ψ, ψ) =

(
C5 +

iC4

2

)
x+ Z1(t) + iC6,

ηu(x, t, λ, u, u, χ, χ, ψ, ψ) =

(
C5 −

iC4

2

)
x+ Z1(t)− iC6, (6.59)

ηχ(x, t, λ, u, u, χ, χ, ψ, ψ) = (−2iC4tλ+K1(λ))χ,
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ηχ(x, t, λ, u, u, χ, χ, ψ, ψ) = (2iC4tλ+K1(λ))χ,

ηψ(x, t, λ, u, u, χ, χ, ψ, ψ) = (2iC4tλ+K2(λ))ψ,

ηψ(x, t, λ, u, u, χ, χ, ψ, ψ) = (−2iC4tλ+K2(λ))ψ,

where Ci, i = 1, . . . , 6 are arbitrary real constants, Z1(t) is an arbitrary real function
of t and Kj(λ), j = 1, 2, are arbitrary complex functions of λ. It is worth stressing
the presence of a complete new symmetry associated to C4, induced by the Miura
transformation applied over α (3.98). The nonclassical method provides exactly the
same Lie symmetries (6.59).

Similarity reductions

Similarity reductions for the spectral problem (6.55)-(6.56) are obtained by the usual
procedure described above, which requires the integration of the characteristic system

dx

ξx
=
dt

ξt
=
dλ

ξλ
=
d u

ηu
=
d u

ηu
=
dχ

ηχ
=
dχ

ηχ
=
dψ

ηψ
=
dψ

ηψ
. (6.60)

U(z) and U(z) will denote the reduced fields for u, u respectively, while the remaining
reduced variables follow the notation introduced in the above Subsections. In this
case we are particularly interested in the role of the constants C1 and C4 in the
similarity reductions. Hence, three nontrivial cases emerge, listed as

(i) C1 6= 0

(ii) C1 = 0, C3 6= 0, C4 6= 0

(iii) C1 = 0, C4 = 0, C3 6= 0, C5 6= 0

We will set C6 = 0, K1(λ) = 0, K2(λ) = 0 in order to perform the reductions. We
have selected particular values for some arbitrary constants in order to simplify the
resulting reduced problems.

• Case I. C1 6= 0

– Reduced variable and reduced spectral parameter

z =
C2

1x− (2C4(C1t+ C3)− C1C2)

C
3/2
1

√
C3 + 2C1t

, Λ =
C1λ− C4

C
3/2
1

√
C3 + 2C1t.

(6.61)
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– Reduced field

u(x, t) = U(z) +

∫
Z1(t)

C3 + 2C1t
dt

+

(
C5 +

iC4

2

)[
z
√
C3 + 2C1t

C
3/2
1

+
C4t

C2
1

− C1C2 − C3C4

2C3
1

log (2C1t+ C3)

]
.

(6.62)

– Reduced eigenfunctions

χ(x, t, λ) =

(
C1λ− C4t

C
3/2
1

)−iC3C
2
4

C3
1

e
−iC4

C3
1

(2C1(C3+C1t)−C4(C3+C1t))λ)
Φ(z,Λ),

ψ(x, t, λ) =

(
C1λ− C4t

C
3/2
1

)iC3C
2
4

C3
1

e
i
C4
C3
1

(2C1(C3+C1t)−C4(C3+C1t))λ)
Ψ(z,Λ).

(6.63)

– Reduced spectral problem

Φzz +

(
iz

2
− iΛ +

iUz − Uzzz
2Uzz

)
Φz − UzzΦ = 0,

ΛΦΛ +

(
−z

2
+ Λ +

Uz + iUzzz
2Uzz

)
Φz + i

(
Λ2 − Uzz

)
Φ = 0,

(6.64)

Ψzz +

(
− iz

2
+ iΛ− iUz + Uzzz

2Uzz

)
Ψz − UzzΨ = 0,

ΛΨΛ +

(
−z

2
+ Λ +

Uz − iUzzz
2Uzz

)
Ψz − i

(
Λ2 − Uzz

)
Ψ = 0,

(6.65)

that are linked via the relation ΦzΨz
ΦΨ − Uzz = 0.

– Reduced equation[
Uzzzz −

U2
zzz + U2

z

Uzz
− 2U2

zz + zUz
]
z

= 0. (6.66)

Similarity reductions for the field U and its associated spectral problem given
in terms of the eigenfunctions {Φ, Ψ} can be computed by taking the com-
plex conjugate of (6.64)-(6.65) and (6.66), respectively. Besides, the coupling
condition (6.57) that relates U and U reduces as

izUz − Uzz + U2
z − izUz − Uzz + U2

z − 2UzUz = 0. (6.67)
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• Case II. C1 = 0, C3 6= 0, C4 6= 0 (C2 = C
2/3
3 C

1/3
4 , C5 = 0)

– Reduced variable and reduced spectral parameter

z =
C

1/3
4

C
1/3
3

(
x− C2

C3
t− C4

C3
t2
)
, Λ =

C
1/3
3

C
1/3
4

(
λ− C4

C3
t

)
. (6.68)

– Reduced field

u(x, t) =
iC4

2C3

(
zt− C2

2C3
t2 − C4

3C3
t3
)

+

∫
Z1(t)

C3
dt+ U(z). (6.69)

– Reduced eigenfunctions

χ = e
−iC4t

2

C3

(
λ− C4

3C3
t
)

Φ(z,Λ), ψ = e
i
C4t

2

C3

(
λ− C4

3C3
t
)

Ψ(z,Λ). (6.70)

– Reduced spectral problem

Φzz +
1

2

(
i− 2iΛ− 1

2Uzz
− Uzzz
Uzz

)
Φz − UzzΦ = 0,

ΦΛ +
1

2

(
1− 2Λ− i

2Uzz
− iUzzz
Uzz

)
Φz − i

(
Λ2 − Uzz

)
Φ = 0,

(6.71)

Ψzz +
1

2

(
−i+ 2iΛ− 1

2Uzz
− Uzzz
Uzz

)
Ψz − UzzΨ = 0,

ΨΛ +
1

2

(
1− 2Λ +

i

2Uzz
+
iUzzz
Uzz

)
Ψz + i

(
Λ2 − Uzz

)
Ψ = 0,

(6.72)

such that ΦzΨz
ΦΨ − Uzz = 0.

– Reduced equation [
Uzzzz +

1− 4U2
zzz

4Uzz
− 2U2

zz − 2Uz
]
z

= 0. (6.73)

The associated reduced spectral problem for U can be deductible by the
complex conjugate of (6.71)-(6.72) and (6.73), where the coupling condition
(6.57) reduces as

iUz − Uzz + U2
z − iUz − Uzz + U2

z − z − 2UzUz = 0. (6.74)

• Case III. C1 = 0, C4 = 0, C3 6= 0, C5 6= 0 (C2 = C
2/3
3 C

1/3
5 )
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– Reduced variable and reduced spectral parameter

z =
C

1/3
5

C
1/3
3

(
x− C2

C3
t

)
, Λ =

C
1/3
5

C
1/3
3

(
λ− C2

2C3

)
. (6.75)

– Reduced field

u(x, t) =
C5

C3

(
C

1/3
3

C
1/3
5

zt− C2

2C3
t2

)
+

∫
Z1(t)

C3
dt+ U(z). (6.76)

– Reduced eigenfunctions

χ(x, t, λ) = Φ(z,Λ), ψ(x, t, λ) = Ψ(z,Λ). (6.77)

– Reduced spectral problem

Φzz −
1

2

(
2iΛ +

Uzzz − i
Uzz

)
Φz − UzzΦ = 0,

(2ΛUzz + iUzzz + 1) Φz −
(

2iU2
zz −

i

2
(2Λ + 1)2 Uzz

)
Φ = 0,

(6.78)

Ψzz −
1

2

(
−2iΛ +

Uzzz + i

Uzz

)
Ψz − UzzΨ = 0,

(2ΛUzz − iUzzz + 1) Ψz −
(
−2iU2

zz +
i

2
(2Λ + 1)2 Uzz

)
Ψ = 0,

(6.79)

such that ΦzΨz
ΦΨ − Uzz = 0.

– Reduced equation [
Uzzzz −

U2
zzz

Uzz
− 1

Uzz
− 2U2

zz

]
z

= 0. (6.80)

As usual, the associated reduced spectral problem for U can be obtained as
the complex conjugate of (6.78)-(6.79) and (6.80), where U and U satisfy

iUz − Uzz + U2
z − iUz − Uzz + U2

z − 2UzUz = 0. (6.81)
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2. Lie symmetries for nonlinear systems in 2 + 1 dimen-
sions

This Section is aimed at the application of the Lie symmetry analysis to two systems
of PDEs that represent integrable generalizations of NLS equations in 2 + 1 dimen-
sions, with their respective linear problems. The treatment of spectral problems in
higher spatial dimensions is extremely appealing due to the natural emergence of
nonisospectral Lax pairs, and their consequences.

2.1. Generalized NLS equation in 2+1 dimensions with higher-order
dispersive terms

In the present Subsection we consider an integrable system formulated in term of the
NLS equation in 2+1 dimensions with higher-order dispersive contributions. Higher-
order dispersion terms emerge in the theoretical description of diverse phenomena
in Physics or related disciplines. In particular, NLS equation constitutes a more
than suitable candidate for this role, given its myriad applications in the context of
nonlinear phenomenology. Several celebrated integrable generalizations of the (1+1)-
NLS equation have been proposed in this fashion, such as the Hirota equation [209],
the Sasa-Satsuma equation [368] or the Lakshmanan-Porsezian-Daniel equation [258].
The extension to higher spatial dimensions naturally arises in order to include more
degrees of freedom in the spatial coordinates and describe more complex scenarios.
Various extensions of NLS equation to 2 + 1 dimensions can be consulted in [5, 69,
167,428].

Estévez et al. proposed in [142] the following generalized NLS equation with higher-
order terms as a promising starting candidate to describe the dynamics of α-helical
proteins within the continuum approximation in multiple spatial dimensions,

iut + uxy + 2umy + iγ2 (uxxx − 6uwux)

+ γ1(uxxxx − 8uwuxx − 2u2wxx − 4uuxwx − 6wu2
x + 6u3w2) = 0,

−iwt + wxy + 2wmy − iγ2 (wxxx − 6uwwx)

+ γ1(wxxxx − 8uwwxx − 2w2uxx − 4wuxwx − 6uw2
x + 6u2w3) = 0,

(mx + uw)y = 0,

(6.82)

where u = u(x, y, t) and w = w(x, y, t) are complex conjugates and m = m(x, y, t) is
a real field. This equation can be considered as a higher-order nonlinear Schrödinger
equation that includes third (γ2 6= 0) and fourth (γ1 6= 0) order derivatives with
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respect to x. The system (6.82) generalizes to 2 + 1 dimensions the system proposed
by Ankiewitz et al in [34, 36], which contains as particular cases many on the inte-
grable generalizations cited above. Furthermore, for γ1 = γ2 = 0, (6.82) reduces to
the (2 + 1)-NLS equation described in [69].

The inspection of the integrability properties of (6.82) has been extensively studied
in [142] and it has been proved that this model has the Painlevé Property for arbitrary
values of γ1, γ2. It possesses a two-component Lax pair, deducible through the SMM,
and the Darboux transformation approach retrieves a wide family of lump solutions.
The associated spectral problem to (6.82) is a nonisospectral Lax pair of the following
form

ψx = −iλψ − uχ,
χx = iλχ− wψ,
ψt = 2λψy + λyψ + i (myψ − uyχ) + (γ2 − 2λγ1)A1(u,w, λ, ψ, χ)

+ iγ1A2(u,w, λ, ψ, χ),

χt = 2λχy + λyχ− i (myχ− wyψ) + (γ2 − 2λγ1)A1(w, u, λ, χ, ψ)

− iγ1A2(w, u, λ, χ, ψ),

(6.83)

where ψ(x, y, t), χ(x, y, t) are two complex conjugate eigenfunctions, λ = λ(y, t) is
the spectral parameter and

A1(u,w, λ, ψ, χ) = 3
(
uw + λ2

)
ψx − ψxxx − 3uxχx,

A2(u,w, λ, ψ, χ) =
(
3u2w2 + uxwx − uwxx − wuxx

)
ψ + (6uwux − uxxx)χ.

(6.84)

The compatibility condition of the linear problem (6.83) yields the starting system
(6.82) as well as the nonisospectral condition

λt − 2λλy = 0. (6.85)

Lie symmetries and similarity reductions for (2 + 1)-nonisospectral Lax
pairs

One of the crucial aspects of Lax pairs in higher spatial dimensions lies in their non-
isospectral nature. In those cases, the spectral parameter is expected to satisfy an
additional constraint, given by a (nonlinear) PDE, as in (6.85). Then, Lie’s formal-
ism should be slightly modified in order to incorporate this supplementary condition.
Lie symmetries should now leave invariant not only the system of equations defin-
ing the Lax pair (6.83) but also the nonisospectral condition for λ (6.83). In such
scenario, the spectral parameter should be therefore treated as a scalar field of its
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constituting variables. This fact establishes a clear difference between the isospec-
tral and the nonisospectral case from the symmetry point of view. Actually, this
distinction enables the possibility of finding nonisospectral linear problems when a
nonisospectral Lax pair in higher dimensions is reduced.

Then, the space of independent variables X has coordinates (x, y, t) while the space
of dependent variables U is endowed with coordinates (u,w, λ, ψ, χ). After some
manipulations, the spectral (6.83) can be expressed as a zero-curvature Lax pair of
first-order in the eigenfunctions. Nevertheless, third-order derivatives for the fields
u,w appear in the aforementioned linear problem, which need to be taken into ac-
count. Then, the spectral problem (6.83) defines a submanifold in the third-order
jet spaceM(3) = X ×U(3).

Lie’s symmetry method for the linear problem (6.83) requires the considerations of
the following one-parameter group of infinitesimal transformations

x̃ = x+ εξ1(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

ỹ = y + εξ2(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

t̃ = t+ εξ3(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

ũ = u+ εη1(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

w̃ = w + εη2(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

m̃ = m+ εη3(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

λ̃ = λ+ εη4(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

ψ̃ = ψ + εφ1(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

χ̃ = χ+ εφ2(x, y, t, u, w,m, λ, ψ, χ) +O(ε2),

(6.86)

where ε is the parameter of the group and ξ1, ξ2, ξ3, η1, η2, η3, η4, φ1 and φ2 are the
associated infinitesimals, which define the vector field

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ η1

∂

∂u
+ η2

∂

∂w
+ η3

∂

∂m
+ η4

∂

∂λ
+ φ1

∂

∂ψ
+ φ2

∂

∂χ
. (6.87)

The infinitesimal transformation (6.86) can be extended to the different derivatives
of the dependent variables as introduced in Chapter 5. This procedure, when applied
to (6.83), yields an overdetermined system of PDEs, whose solution provides the Lie
symmetries.

We shall remark that Lie’s approach, either classical or nonclassical, requires the
substitution of the highest-order derivatives in the system of PDEs under study.
The order of the highest derivatives in (6.83) is different depending whether γ1 and
γ2 are (one or both) null or not. This means that it will necessary to split the
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6.2. Lie symmetries for nonlinear systems in 2 + 1 dimensions

problem in four different cases depending on the different combinations of γ1 and
γ2, and each of them should be analyzed separately. In this context, the following
integrable equations arise:

1. Generalized NLS equation in 2 + 1 dimensions [142] (γ1 6= 0, γ2 6= 0)

2. Lakshmanan-Porsezian-Daniel equation [258] in 2+1 dimensions (γ1 6= 0, γ2 =
0)

3. Hirota equation [209] in 2 + 1 dimensions (γ1 = 0, γ2 6= 0)

4. Standard NLS equation in 2 + 1 dimensions [69] (γ1 = 0, γ2 = 0)

where each equation can be obtained by selecting the proper values of the parameters
γ1, γ2 in (6.82). The associated spectral problems for each case may be easily found
by taking the same ansatz for γ1, γ2 in (6.83).

It is worthwhile to mention that we have calculated both the classical and the non-
classical symmetries for each case described above. The computational complexity
presented in the nonclassical method substantially rises when considering more de-
grees of freedom, as well as when higher orders of derivation are involved. Therefore,
the nonclassical symmetry analysis emerges as an intractable problem, due to the
highly nonlinear nature of the overdetermined system for the infinitesimals. When
solvable (for the simplest cases with ξi 6= 0, i = 1, . . . , 3), the overdetermined sys-
tem for the nonclassical symmetries provides the same result than the classical one.
Therefore, the results displayed in the ensuing Sections correspond to the classical
Lie symmetries for each pertinent case under consideration.

Hence, in the following we will be dealing with the classical Lie symmetries and reduc-
tions for (6.83). These symmetries obviously provide the corresponding symmetries
and reductions for the nonlinear equation (6.82) as well as for the nonisospectral
condition (6.85). Lie symmetries for any of the aforementioned cases have been an-
alyzed in deep and their associated commutation relations are reflected in Appendix
B.1. Once the classical symmetries (6.86) have been computed, we may conduct
the symmetry reduction procedure to obtain the associated similarity reductions by
the standard method described in Chapter 5. We can achieve that by solving the
characteristic system

dx

ξ1
=
dy

ξ2
=
dt

ξ3
=
du

η1
=
dw

η2
=
dm

η3
=
dλ

η4
=
dψ

φ1
=
dχ

φ2
. (6.88)

Similarity reductions for (6.83) will provide reduced problems defined as systems of
PDEs depending on two independent variables p, q. Λ(p, q) represents the reduced
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spectral problem, whose isospectral or nonisospectral nature is yet to be determined,
and it will depend on the reduction considered in each particular case. F (p, q),
H(p, q), N(p, q), Φ(p, q,Λ) and Ω(p, q,Λ) denote the invariants that arise from the
integration of the charasteristic system (6.88). They correspond to the integration
in u, w, m, ψ and χ, respectively. These notation can be summarized in the table:

Original variables New reduced variables
Independent variables x, y, t p, q

Spectral parameter λ(y, t) Λ(p, q)

Fields u(x, y, t), w(x, y, t) F (p, q), H(p, q)

m(x, y, t) N(p, q)

Eigenfunctions ψ(x, y, t, λ), χ(x, y, t, λ) Ω(p, q,Λ), Φ(p, q,Λ)

The following lines present the Lie symmetry analysis and different similarity reduc-
tions for the four cases under consideration mentioned above. We will proceed in
each case as described in the previous paragraphs.

2.1.1. Generalized NLS equation in 2 + 1 dimensions (γ1 6= 0, γ2 6= 0)

This case corresponds to the most general scenario for the integrable system (6.82),
where both parameters γ1, γ2 are considered to be nonzero. Then, by applying the
infinitesimal transformation (6.86) to (6.83) and following the standard procedure
already described, the classical Lie symmetries for the spectral problem (6.83) turn
out to be

ξ1 = K1 (t) ,

ξ2 = α1,

ξ3 = α2,

η1 = iu
(
K̇1(t)y + 2K2 (t)

)
,

η2 = −iw
(
K̇1(t)y + 2K2 (t)

)
,

η3 =
1

4
K̈1(t)y2 + K̇2(t)y + δ(x, t),

η4 = 0,

φ1 = ψ

(
i

2
K̇1(t)y + iK2 (t) + ζ (y, t, λ)

)
,

φ2 = χ

(
− i

2
K̇1(t)y − iK2 (t) + ζ (y, t, λ)

)
,

(6.89)
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where we have omitted the dependence of the infinitesimals in the variables {x, y, t, u,
w,m, λ, ψ, χ} for the sake of simplicity. The dot notation implies derivation with
respect to t, · ≡ d

dt .

The set of Lie symmetries is described in terms of two arbitrary constants α1, α2,
two arbitrary real functions of t, K1(t), K2(t), one arbitrary real function of {x, t},
δ(x, t), and the arbitrary function ζ(y, t, λ) that satisfies the nonlinear differential
equation

∂ζ

∂t
− 2λ

∂ζ

∂y
= 0. (6.90)

Classical Lie symmetries for the most general case (6.89) therefore depend on up to six
arbitrary parameters. It can be easily checked that both (6.82) and the nonisospectral
condition (6.85) remain invariant under the action of this symmetry group. This fact
is straightforwardly depicted in the associated reductions. Commutation relations
among the associated infinitesimal generators to (6.89) are displayed in Appendix
B.1.1.

The symmetries that yield nontrivial reductions are those related to K1(t), α1, α2

and henceforth, we exclusively analyze the reductions associated to these three cases.
In what follows, we consider diverse subcases depending on whether these parameters
are different from zero or not. In each subcase only a single arbitrary constant or
function will be taken as nonzero, whilst the remaining ones are set as null.

• Case I. K1(t) = 1

– Reduced variables
p = y, q = t. (6.91)

– Reduced spectral parameter

λ(y, t) = Λ(p, q). (6.92)

– Reduced fields

u(x, y, t) = F (p, q), w(x, y, t) = H(p, q),

m(x, y, t) = N(p, q).
(6.93)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q,Λ), χ(x, y, t, λ) = Ω(p, q,Λ). (6.94)

Nevertheless, this is not an interesting reduction because the reduced equa-
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tions can be easily integrated providing a trivial solution

F (p, q) = b0e
iZ(p,q),

H(p, q) = b0e
−iZ(p,q),

N(p, q) = −3γ1b
4
0p+

1

2

∫
∂Z(p, q)

∂q
dp,

(6.95)

where b0 is an arbitrary constant and Z(p, q) is an arbitrary function.

• Case II. α1 6= 0

– Reduced variables
p = x, q = t. (6.96)

– Reduced spectral parameter

λ(y, t) = Λ(q). (6.97)

– Reduced fields

u(x, y, t) = F (p, q), w(x, y, t) = H(p, q),

m(x, y, t) = N(p, q).
(6.98)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q,Λ), χ(x, y, t, λ) = Ω(p, q,Λ). (6.99)

– Reduced spectral problem

Φp + iΛ Φ + FΩ = 0,

Ωp − iΛ Ω +HΦ = 0,

Φq +
[
iγ1B1(F,H,Λ) + (2Λγ1 − γ2)B2(F,H) + 2iΛγ2(2Λ2 + FH)

]
Φ

+
[
iγ1B3(F,H,Λ) + (2Λγ1 − γ2)B4(F,H,Λ) + 2iΛγ2Fp

]
Ω = 0,

Ωq −
[
iγ1B1(F,H,Λ) + (2Λγ1 + γ2)B2(F,H) + 2iΛγ2(2Λ2 + FH)

]
Ω

+
[
− iγ1B3(H,F,Λ) + (2Λγ1 − γ2)B4(H,F,Λ)− 2iΛγ2Hp

]
Φ = 0,

(6.100)
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where

B1(F,H,Λ) = −8Λ4 − 4Λ2FH − 3F 2H2 +HFpp + FHpp − FpHp,

B2(F,H) = FpH −HpF,

B3(F,H,Λ) = Fppp − 6FHFp − 4Λ2Fp,

B4(F,H,Λ) = Fpp − 2F 2H − 4Λ2F.

(6.101)

The compatibility condition of (6.100) requires that the resulting reduced
problem is isospectral

Λ = constant. (6.102)

– Reduced equations

γ1

(
8FHFpp + 6HFp

2 + 2F 2Hpp + 4FFpHp − Fpppp − 6F 3H2
)

+ iγ2 (6FHFp − Fppp)− iFq = 0,

γ1

(
8FHHpp + 6FHp

2 + 2H2Fpp + 4HFpHp −Hpppp − 6F 2H3
)

− iγ2 (6FHHp −Hppp) + iHq = 0.

(6.103)

This reduction successfully yields the equations and the isospectral Lax pair
of reference [36].

• Case III. α2 6= 0

– Reduced variables
p = x, q = y. (6.104)

– Reduced spectral parameter

λ(y, t) = Λ(q). (6.105)

– Reduced fields

u(x, y, t) = F (p, q), w(x, y, t) = H(p, q),

m(x, y, t) = N(p, q).
(6.106)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q,Λ), χ(x, y, t, λ) = Ω(p, q,Λ). (6.107)
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– Reduced spectral problem

Φp + iΛ Φ + FΩ = 0,

Ωp − iΛ Ω +HΦ = 0,

2ΛΦq =
[
iγ1B1(F,H,Λ) + (2Λγ1 − γ2)B2(F,H) + 2iΛγ2(2Λ2 + FH)− iNq

]
Φ

+
[
iγ1B3(F,H,Λ) + (2Λγ1 − γ2)B4(F,H,Λ) + 2iΛγ2Fp + i Fq

]
Ω,

2ΛΩq = −
[
iγ1B1(F,H,Λ) + (2Λγ1 + γ2)B2(F,H) + 2iΛγ2(2Λ2 + FH)− iNq

]
Ω

+
[
− iγ1B3(H,F,Λ) + (2Λγ1 − γ2)B4(H,F,Λ)− 2iΛγ2Hp − iHp

]
Φ,

(6.108)
where B1 − B4 are defined in (6.101). The compatibility condition of this
Lax pair implies Λ = constant, i.e., the spectral problem defined above is
isospectral.

– Reduced equations

γ1

(
8FHFpp + 6HFp

2 + 2F 2Hpp + 4FFpHp − Fpppp − 6F 3H2
)

+ iγ2 (6FHFp − Fppp)− 2FNq − Fpq = 0,

γ1

(
8FHHpp + 6FHp

2 + 2H2Fpp + 4HFpHp −Hpppp − 6F 2H3
)

− iγ2 (6FHHp −Hppp)− 2HNq −Hpq = 0,

FHq +HFq +Npq = 0.

(6.109)

2.1.2. Lakshmanan-Porsezian-Daniel equation in 2 + 1 dimensions (γ1 6=
0, γ2 = 0)

In this Subsection we are considering (6.83) when γ2 = 0. The resulting nonlin-
ear PDE and its spectral Lax pair constitute a generalization to 2 + 1 dimensions
of the Lakshmanan-Porsezian-Daniel equation [258]. If we apply the infinitesimal
transformation (6.86), then we obtain the following classical Lie symmetries

ξ1 = K1 (t) + α3,

ξ2 = α1 + 3α3 y,

ξ3 = α2 + 4α3 t,

η1 = iu
(
K̇1(t)y + 2K2 (t)

)
− α3 u,

η2 = −iw
(
K̇1(t)y + 2K2 (t)

)
− α3w, (6.110)
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η3 =
1

4
K̈1(t)y2 + K̇2(t)y + δ(x, t)− α3m,

η4 = α3 λ,

φ1 = ψ

(
i

2
K̇1(t)y + iK2 (t) + ζ (y, t, λ)

)
,

φ2 = χ

(
− i

2
K̇1(t)y − iK2 (t) + ζ (y, t, λ)

)
,

where αi, i = 1, . . . , 3 are arbitrary constants and Kj , j = 1, 2 and δ are arbitrary
real functions of the indicated variables. The function ζ(y, t, λ) satisfies the equation
(6.90). These Lie symmetries depend on seven arbitrary parameters, which coincide
with the infinitesimals in (6.89), except for those terms related to the additional
constant α3, representing the scaling symmetry. The computation of the commuta-
tion relations among the elements of the symmetry group (6.110) are addressed in
Appendix B.1.2.

According to (6.110), we have four nontrivial reductions related to K1(t), α1, α2, and
α3, but only the last one gives us a new result. The other three reductions provide
the same results as in the previous Subsection, by imposing γ2 = 0 in equations
(6.95), (6.100) and (6.108). This extra symmetry yields a nonisospectral Lax pair in
1 + 1 dimensions after the symmetry reduction process.

• Case I. α3 6= 0

– Reduced variables

p = t−
1
4 x, q =

t
3
4

y
. (6.111)

– Reduced spectral parameter

λ(y, t) = t−
1
4 Λ(q). (6.112)

– Reduced fields

u(x, y, t) = t−
1
4F (p, q), w(x, y, t) = t−

1
4H(p, q),

m(x, y, t) = t−
1
4N(p, q).

(6.113)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q,Λ), χ(x, y, t, λ) = Ω(p, q,Λ). (6.114)
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– Reduced spectral problem

Φp + iΛ Φ + FΩ = 0,

Ωp − iΛ Ω +HΦ = 0,(
8 Λ q + 3

4

)
qΦq + i

(
Λ p

4
+ q2Nq

)
Φ + q2ΛqΦ +

(
pF

4
− iq2Fq

)
Ω

+ iγ1

[
B1(F,H,Λ)Φ +B3(F,H,Λ)Ω

]
+ 2Λγ1

[
B2(F,H)Φ +B4(F,H,Λ)Ω

]
= 0,(

8 Λ q + 3

4

)
qΩq − i

(
Λ p

4
+ q2Nq

)
Ω + q2ΛqΩ +

(
Hp

4
+ iq2Hq

)
Φ

− iγ1
[
B1(F,H,Λ)Ω +B3(H,F,Λ)Φ

]
+ 2Λγ1

[
B2(H,F )Ω +B4(H,F,Λ)Φ

]
= 0,

(6.115)
whereB1−B4 are defined in (6.101). The compatibility of the above equations
(6.115) implies the following:

– Nonisospectral condition

Λq =
Λ

q (8 Λ q + 3)
. (6.116)

– Reduced equations

γ1

(
−6F 3H2 + 2F 2Hpp + 8FHFpp + 4FFpHp + 6HF 2

p − Fpppp
)

+ 2q2 FNq + q2Fpq +
i

4
(pFp − 3 qFq + F ) = 0,

γ1

(
−6F 2H3 + 2H2Fpp + 8FHHpp + 4HFpHp + 6FHp

2 −Hpppp

)
+ 2q2HNq + q2Hpq −

i

4
(pHp − 3 qHq +H) = 0,

FHq +HFq +Npq = 0.
(6.117)

2.1.3. Hirota equation in 2 + 1 dimensions (γ1 = 0, γ2 6= 0)

In this Subsection we analyze the spectral problem (6.83) when γ1 = 0. The resulting
integrable system can be regarded as a generalization of the Hirota equation [209]
to higher dimensions. Lie’s formalism for this system yields the infinitesimals listed
below

ξ1 = K1 (t) + α3 x,

ξ2 = α1 + 2α3 y,
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ξ3 = α2 + 3α3 t,

η1 = iu
(
K̇1(t)y + 2K2 (t)

)
− α3 u,

η2 = −iw
(
K̇1(t)y + 2K2 (t)

)
− α3w, (6.118)

η3 =
1

4
K̈1(t)y2 + K̇2(t)y +K3(x, t)− α3m,

η4 = −α3 λ,

φ1 = ψ

(
i

2
K̇1(t)y + iK2 (t) + ζ (y, t, λ)

)
,

φ2 = χ

(
− i

2
K̇1(t)y − iK2 (t) + ζ (y, t, λ)

)
,

where αi, i = 1, . . . , 3 are arbitrary constants, Kj , j = 1, 2, and δ are arbitrary
real functions, while ζ(y, t, λ) obeys relation (6.90). We can easily see that the
scaling symmetry mediated by the constant α3 appears once more in this case. The
associated commutation relations can be found in Appendix B.1.3.

From results (6.118) we can realize that, as in the previous Subsection, we have four
nontrivial reductions related to K1(t), α1, α2, and α3. The first three reductions
provide the same results of Subsection 2.1.1 by setting γ1 = 0. Conversely, the
reduction associated to the new symmetry α3 represents the counterpart to the
reduction of the prior Subsection for a NLS equation in 2+1 dimensions with fourth-
order derivatives. This symmetry also gives out a nonisospectral reduced Lax pair.

• Case I. α3 6= 0

– Reduced variables

p = t−
1
3x, q =

t
2
3

y
. (6.119)

– Reduced spectral parameter

λ(y, t) = t−
1
3 Λ(q). (6.120)

– Reduced fields

u(x, y, t) = t−
1
3F (p, q), w(x, y, t) = t−

1
3H(p, q),

m(x, y, t) = t−
1
3N(p, q).

(6.121)
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– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q,Λ), χ(x, y, t, λ) = Ω(p, q,Λ). (6.122)

– Reduced spectral problem

Φp + iΛ Φ + FΩ = 0,

Ωp − iΛ Ω +HΦ = 0,(
2

3
q + 2 Λ q2

)
Φq +

p

3
(FΩ + iΛ Φ) + q2 (ΛqΦ + iNqΦ− i FqΩ)

+ γ2

[
2iΛ2(Λ2 + FH)−B2(F,H)

]
Φ + γ2

[
2iΛFp −B4(F,H,Λ)

]
Ω = 0,(

2

3
q + 2 Λ q2

)
Ωq +

p

3
(HΦ− iΛ Ω) + q2 (ΛqΩ− iNqΩ + iHqΦ)

− γ2

[
2iΛ2(Λ2 + FH)−B2(F,H)

]
Ω− γ2

[
2iΛHp +B4(H,F,Λ)

]
Φ = 0,

(6.123)
with B1 − B4 being defined in (6.101). The compatibility of this Lax pair
retrieves the following:

– Nonisospectral condition

Λq =
1

2

Λ

q (3 Λ q + 1)
. (6.124)

– Reduced equations

iγ2 (6FHFp − Fppp) +
i

3
(F + pFp − 2qFq) + q2 (Fpq + FNq) = 0,

−iγ2 (6FHHp −Hppp)−
i

3
(H + pHp − 2qHq) + q2 (Hpq +HNq) = 0,

FHq +HFq +Npq = 0.
(6.125)

2.1.4. Standard NLS equation in 2 + 1 dimensions (γ1 = 0, γ2 = 0)

The generalization of NLS equation to 2+1 dimensions proposed by Calogero in [69]
and its associated spectral problem are comprised in (6.83) by taking γ1 = 0 and
γ2 = 0. The symmetries obtained in this case are give by
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6.2. Lie symmetries for nonlinear systems in 2 + 1 dimensions

ξ1 = K1 (t) + α3 x+ 2α5 xt,

ξ2 = α1 + α4 y + 2α6 t+ 2α5 yt,

ξ3 = α2 + α3t+ α4t+ 2α5t
2,

η1 = iu
(
K̇1(t)y + 2K2 (t) + 2x(α5y + α6)

)
− (α3 + 2α5t)u,

η2 = −iw
(
K̇1(t)y + 2K2 (t) + 2x(α5y + α6)

)
− (α3 + 2α5t)w,

η3 =
1

4
K̈1(t)y2 + K̇2(t)y + δ(x, t)− (α3 + 2α5t)m,

η4 = −α3 λ− α5 (2tλ+ y)− α6,

φ1 = ψ

(
i

2
K̇1(t)y + iK2 (t) + ζ (y, t, λ)

)
+ ψ (ix (α5y + α6)− α5t) ,

φ2 = χ

(
− i

2
K̇1(t)y − iK2 (t) + ζ (y, t, λ)

)
+ χ (−ix (α5y + α6)− α5t) ,

(6.126)

where αi, i = 1, . . . , 6 are arbitrary constants and Kj , j = 1, 2, and δ are arbitrary
real functions of the indicated variables, whilst ζ(y, t, λ) should additionally satisfy
equation (6.90). The results obtained depend on up to ten arbitrary parameters,
four of which, α3 − α6, represent new symmetries compared to the ones found in
(6.89). The symmetry associated with α3 defines a scale transformation, α4 stands
for a hyperbolic rotation in the (y, t)-plane, α5 describes a kind of a conformal point
symmetry and α6 represents a Galilean boost. The commutation relations for (6.126)
are given in Appendix B.1.4.

In accordance with the previous Subsections, these additional symmetries will allow
us to obtain four novel nontrivial reductions. The similarity reduction associated to
α3 retrieves again a nonisospectral Lax pair in 1 + 1 dimensions.

• Case I. α3 6= 0

– Reduced variables
p =

x

t
, q = y. (6.127)

– Reduced spectral parameter

λ(y, t) =
Λ(q)

t
. (6.128)
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– Reduced fields

u(x, y, t) =
F (p, q)

t
, w(x, y, t) =

H(p, q)

t
,

m(x, y, t) =
N(p, q)

t
.

(6.129)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q,Λ), χ(x, y, t, λ) = Ω(p, q,Λ). (6.130)

– Reduced spectral problem

Φp + iΛ Φ + FΩ = 0,

Ωp − iΛ Ω +HΦ = 0,

2 Λ Φq =

(
1

2
+ ipΛ− iNq

)
Φ + (pF + iFq) Ω,

2 Λ Ωq =

(
1

2
− ipΛ + iNq

)
Ω + (pH − iHq) Φ.

(6.131)

The compatibility of the system (6.131) implies the following results:

– Nonisospectral condition

Λq = −1

2
. (6.132)

– Reduced equations

2FNq + Fpq − ipFp − iF = 0,

2HNq +Hpq + ipHp + iH = 0,

FHq +HFq +Npq = 0.

(6.133)

• Case II. α4 6= 0

– Reduced variables
p = x, q =

t

y
. (6.134)

– Reduced spectral parameter

λ(y, t) = Λ(q). (6.135)
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– Reduced fields

u(x, y, t) = F (p, q), w(x, y, t) = H(p, q),

m(x, y, t) = N(p, q).
(6.136)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q), χ(x, y, t, λ) = Ω(p, q). (6.137)

– Reduced spectral problem

Φp + iΛ Φ + FΩ = 0,

Ωp − iΛ Ω +HΦ = 0,

Φq − iqΩFq + iqΦNq + 2 Λ qΦq = 0,

Ωq + iqΦHq − iqΩNq + 2 Λ qΩq = 0,

(6.138)

whose compatibility condition requires its isospectrality.

– Reduced equations
−iFq + 2q FNq + qFpq = 0,

iHq + 2q HNq + qHpq = 0,

HqF +HFq +Npq = 0.

(6.139)

• Case III. α5 6= 0

– Reduced variables
p =

x

t
, q =

y

t
. (6.140)

– Reduced spectral parameter

λ(y, t) =
−qt+ Λ(p, q)

2t
. (6.141)

– Reduced fields

u(x, y, t) =
F (p, q)

t
exp (itpq) , w(x, y, t) =

H(p, q)

t
exp (−itpq) ,

m(x, y, t) =
N(p, q)

t
.

(6.142)
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– Reduced eigenfunctions

ψ(x, y, t, λ) =
Φ(p, q)√

t
exp

(
itpq

2

)
, χ(x, y, t, λ) =

Ω(p, q)√
t

exp

(
−itpq

2

)
.

(6.143)

– Reduced spectral problem

Φp +
1

2
iΛΦ + FΩ = 0,

Ωp −
1

2
iΛΩ +HΦ = 0,

Λ Φq − i FqΩ + iNqΦ = 0,

Λ Ωq + iHqΦ− iNqΩ = 0,

(6.144)

whose compatibility condition implies that we are dealing with an isospectral
linear problem, Λ = constant.

– Reduced equations
2FNq + Fpq = 0,

2HNq +Hpq = 0,

FHq +HFq +Npq = 0.

(6.145)

• Case IV. α6 6= 0

– Reduced variables
p = x, q = t. (6.146)

– Reduced spectral parameter

λ(y, t) =
2Λ(p, q)− y

2q
. (6.147)

– Reduced fields

u(x, y, t) = F (p, q) exp

(
i
p

q
y

)
, w(x, y, t) = H(p, q) exp

(
−i p

q
y

)
,

m(x, y, t) = N(p, q).
(6.148)

– Reduced eigenfunctions

ψ(x, y, t, λ) = Φ(p, q) exp

(
i
p

2q
y

)
, χ(x, y, t, λ) = Ω(p, q) exp

(
−i p

2q
y

)
.

(6.149)
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6.2. Lie symmetries for nonlinear systems in 2 + 1 dimensions

– Reduced spectral problem

qΦp + q F Ω + iΛ Φ = 0,

qΩp + q H Φ− iΛ Ω = 0,

−2 q2Φq + 2 pq FΩ + 2ipΛ Φ− qΦ = 0,

−2 q2Ωq + 2 pq HΦ− 2ipΛ Ω− qΩ = 0,

(6.150)

which is an isospectral Lax pair.

– Reduced equations
pFp + qFq + F = 0,

pHp + qHq +H = 0.
(6.151)

2.2. Multi-component NLS equations in 2 + 1 dimensions

This Subsection is devoted to the study of the (2 + 1)-dimensional multi-component
NLS equation introduced in Section 1 from Chapter 4, which can be regarded as an
extension to higher dimensions of the Manakov system [286], also known as vector
NLS [8]. This equation reads

iαt +αxx + 2mxα = 0,

−iα†t +α†xx + 2mxα
† = 0,(

my +αα†
)
x

= 0,

(6.152)

where α has two components, α(x, y, t) =

(
α1(x, y, t)
α2(x, y, t)

)
, α† stands for its complex

conjugate and m(x, y, t) is a real scalar function.

System (6.152) has proved to be integrable in the Painlevé sense and a three-
component Lax pair has been successfully derived via the SMM by the author of
this manuscript in [25]. The associated spectral problem has the expression

ψy = −α†1χ− α
†
2ρ,

χx = −α1ψ, (6.153a)
ρx = −α2ψ,

ψt = −iψxx − 2imxψ,

χt = −i (α1)x χ+ iα1ψx, (6.153b)
ρt = −i (α2)x ρ+ iα2ψx,
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where ψ(x, y, t), χ(x, y, t), ρ(x, y, t) are the three complex eigenfunctions, (6.153a)
describes the spatial part of the Lax pair and (6.153b) stands for the temporal
counterpart. It is important to remark that we should need to consider the complex
conjugate of (6.153) in order to fully characterize the spectral problem associated to
(6.152), by virtue of the SMM procedure developed in Section 1 of Chapter 4. It is
also worth noticing that this spectral problem is not explicitly written in terms of a
spectral parameter.

Classical Lie symmetries

Lie symmetries for the spectral problem (6.153) can be straightforwardly calculated
following the prescription indicated in the previous Sections. The space of indepen-
dent variables X is endowed with the usual coordinates (x, y, t) and the space of de-
pendent variables U is now characterize with local coordinates (α1, α2, α

†
1, α
†
2,m, ψ,

χ, ρ, ψ†, χ†, ρ†). Since (6.153) is a second-order Lax pair, it can be understood as a
submanifold of the second-order jet spaceM(2) = X ×U(2).

Let us consider a one-parameter Lie group of infinitesimal transformations given by

x̃ = x+ ε ξ1(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

ỹ = y + ε ξ2(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

t̃ = t+ ε ξ3(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

α̃1 = α1 + ε η1(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

α̃2 = α2 + ε η2(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

α̃†1 = α†1 + ε η3(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

α̃†2 = α†2 + ε η4(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

m̃ = m+ ε η5(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

ψ̃ = ψ + ε φ1(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

χ̃ = χ+ ε φ2(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

ρ̃ = ρ+ ε φ3(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

ψ̃† = ψ† + ε φ4(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

χ̃† = χ† + ε φ5(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

ρ̃† = ρ† + ε φ6(x, y, t, α1, α2, α
†
1, α
†
2,m, ψ, χ, ρ, ψ

†, χ†, ρ†) +O(ε2),

(6.154)

where ε is the group parameter and ξi, ηj , φk, i = 1, . . . , 3, j = 1, . . . , 5, k = 1, . . . , 6
are the components of the related vector field
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X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ η1

∂

∂α1
+ η2

∂

∂α2
+ η3

∂

∂α†1
+ η4

∂

∂α†2
+ η5

∂

∂m

+ φ1
∂

∂ψ
+ φ2

∂

∂χ
+ φ3

∂

∂ρ
+ φ4

∂

∂ψ†
+ φ5

∂

∂χ†
+ φ6

∂

∂ρ†
.

(6.155)

This infinitesimal transformation induces a well known one in the derivatives of the
fields, as shown in Chapter 5, and it must leave invariant the set of solutions of
(6.153). At this point we should decide between either the classical or nonclassical
approach. We have proceeded with both methods, and the nonclassical formalism,
when the associated overdetermined system of PDEs for the infinitesimal is solvable,
provides the same results than the classical setting in a remarkably more complicated
way. Then, we will be essentially dealing with the classical Lie symmetries for (6.153)
and its complex conjugate problem, which result in

ξ1 = 4 K̇1(t)x+ 2K2(t),

ξ2 = 2C1(y),

ξ3 = 8K1(t),

η1 =
[
i
(
K̈1(t)x2 + K̇2(t)x+K3(t) + C2(y)

)
− 2 K̇1(t)− C ′1(y)

]
α1

+ [C4(y) + i C5(y)]α2,

η2 =
[
i
(
K̈1(t)x2 + K̇2(t)x+K3(t) + C3(y)

)
− 2 K̇1(t)− C ′1(y)

]
α2

− [C4(y)− i C5(y)]α1,

η3 =
[
−i
(
K̈1(t)x2 + K̇2(t)x+K3(t) + C2(y)

)
− 2 K̇1(t)− C ′1(y)

]
α†1

+ [C4(y)− i C5(y)]α†2, (6.156)

η4 =
[
−i
(
K̈1(t)x2 + K̇2(t)x+K3(t) + C3(y)

)
− 2 K̇1(t)− C ′1(y)

]
α†2

− [C4(y) + i C5(y)]α†1,

η5 = − 4 K̇1(t)m+
1

6

...
K1(t)x3 +

1

4
K̈2(t)x2 +

1

2
K̇3(t)x+ δ(y, t),

φ1 =
[
−i
(
K̈1(t)x2 + K̇2(t)x+K3(t)

)
− 2 K̇1(t) + λ

]
ψ,

φ2 =
[
i C2(y)− C ′1(y) + λ

]
χ+ [C4(y) + i C5(y)] ρ,

φ3 =
[
i C3(y)− C ′1(y) + λ

]
ρ− [C4(y)− i C5(y)]χ,

φ4 =
[
i
(
K̈1(t)x2 + K̇2(t)x+K3(t)

)
− 2 K̇1(t) + λ†

]
ψ†,

248



Chapter 6. Lie symmetries for spectral problems

φ5 =
[
−i C2(y)− C ′1(y) + λ†

]
χ† + [C4(y)− i C5(y)] ρ†,

φ6 =
[
−i C3(y)− C ′1(y) + λ†

]
ρ† − [C4(y) + i C5(y)]χ†,

where we have used the convention ˙≡ d
dt and

′ ≡ d
dy .

These Lie symmetries depend on a set of nine arbitrary real functions and two arbi-
trary complex constants, listed as,

• Three arbitrary real functions Kj(t), j = 1, ..., 3, which depend exclusively on
the temporal coordinate t.

• Five arbitrary real functions Cj(y), j = 1, ..., 5, which depend on the coordinate
y.

• An arbitrary real function δ(y, t).

• Furthermore, these symmetries include two arbitrary constants λ, λ†, which
can be taken as complex conjugates given that we have considered the spectral
problem (6.153) and its complex conjugate. We shall prove later that this
complex constant will play the role of the spectral parameter in the (1 + 1)-
reductions of the Lax pair under study.

Lie symmetries for the Lax pair (6.153) generalize, extend and include all the Lie
symmetries obtained for the multi-component NLS (6.152). Symmetries given by
ξ1 − η5 in (6.156) can be analogously derived by implementing a similar procedure
over the starting system of PDEs (6.152), whereas symmetries φ1 − φ6 correspond
to the transformation of the eigenfunctions of the Lax pair. It is also worthwhile
to remark that the only additional symmetry that corresponds strictly to the Lax
pair itself is the one associated with the arbitrary constant λ. The symmetry group
(6.156) is spanned by eleven infinitesimal generators, whose explicit expressions and
commutation relations are given in Appendix B.2.

Similarity reductions

Similarity reductions may be achieved by solving the characteristic system

dx

ξ1
=
dy

ξ2
=
dt

ξ3
=
dα1

η1
=
dα2

η2
=
dα†1
η3

=
dα†2
η4

=
dm

η5

=
dψ

φ1
=
dχ

φ2
=
dρ

φ3
=
dψ†

φ4
=
dχ†

φ5
=
dρ†

φ6
.

(6.157)
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The process of symmetry reduction provides the corresponding reduced problem
with the number of independent variables diminished by one, leading to similarity
reductions in 1+1 dimensions. We shall summarize the notation used for the reduced
parameters in the following table.

Original variables New reduced variables
Indep. variables x, y, t p, q

Fields α1(x, y, t), α2(x, y, t) F (p, q), H(p, q)

α†1(x, y, t), α†2(x, y, t) F †(p, q), H†(p, q)

m(x, y, t) N(p, q)

Eigenfunctions ψ(x, y, t), χ(x, y, t), ρ(x, y, t) Φ(p, q), Σ(p, q), Ω(p, q)

ψ†(x, y, t), χ†(x, y, t), ρ†(x, y, t) Φ†(p, q), Σ†(p, q), Ω†(p, q)

The symmetries that will yield nontrivial reductions are those related to the arbi-
trary functions K1(t), K2(t) and C1(y), associated to the transformations of the
independent variables. The rest of the symmetries provide trivial reductions (phase
shifts and rotations for the fields and the eigenfunctions). Several reductions may
emerge for different values of K1,K2, C1, giving rise to three independent reductions.

We introduce the shorthand notation to be used in the forthcoming calculations:

I0(t) =
1

4

∫
K2(t)

K1(t)
3
2

dt, I1(t) =
1

4

∫
K2(t)2

K1(t)2
dt, I2(t) =

1

512

∫
K2(t)3

K1(t)
5
2

dt.

(6.158)

For the sake of simplicity, in the following we will only display the similarity re-
ductions arising from (6.153), while the reduced version of the complex conjugate
problem can be easily derived by conjugation in the results presented hereafter.

• Case I. K1(t) 6= 0, K2(t) 6= 0, C1(y) 6= 0

By solving the characteristic system (6.157), the following results have been ob-
tained

– Reduced variables

p =
x

K1(t)
1
2

− I0(t), q = 4

∫
dy

C1(y)
−
∫

dt

K1(t)
. (6.159)

250



Chapter 6. Lie symmetries for spectral problems

– Reduced fields

α1(x, y, t) =
2F (p, q)

K1(t)
1
4 C1(y)

1
2

e

{
i
8

[
K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}
,

α2(x, y, t) =
2H(p, q)

K1(t)
1
4 C1(y)

1
2

e

{
i
8

[
K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}
,

m(x, y, t) =
x3

24K1(t)
1
2

[
K1(t)

1
2

]
tt

+
x2

32K1(t)
1
2

[
K2(t)

K1(t)
1
2

]
t

− x

32
İ1(t) +

N(p, q) + I2(t)

K1(t)
1
2

.

(6.160)

where the subscript (·)t denotes the derivative with respect to the coordinate
t.

– Reduced eigenfunctions

ψ(x, y, t) =
Φ(p, q)

2K1(t)
1
4

e

{
− i

8

[
K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]
+λ

8

∫
dt

K1(t)

}
,

χ(x, y, t) =
Σ(p, q)

C1(y)
1
2

e

{
λ
8

∫
dt

K1(t)

}
,

ρ(x, y, t) =
Ω(p, q)

C1(y)
1
2

e

{
λ
8

∫
dt

K1(t)

}
.

(6.161)

– Reduced spectral problem

Φpp +

(
2Np −

i

8
λ

)
Φ− i F †Σ− iH†Ω = 0,

Σp + F Φ = 0, (6.162a)
Ωp +H Φ = 0,

Φq + F †Σ +H†Ω = 0,

Σq + i (F Φp − Fp Φ)− λ

8
Σ = 0, (6.162b)

Ωq + i (H Φp −Hp Φ)− λ

8
Ω = 0,

and its complex conjugate.

It is worth mentioning that the arbitrary constant λ can be interpreted as the
spectral parameter of the reduced linear problem described above. Hence, it
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is the symmetry reduction process itself that naturally introduces the spectral
parameter in the reduced problem. And the spectral parameter happens to be
precisely the arbitrary constant λ arising from the symmetries of the primal
Lax pair. This scenario is repeated in the subsequent cases for each similarity
reduction when applied to (6.153).

– Reduced equations
The compatibility condition between (6.162a)-(6.162b) will provide the re-
duced equations (and its complex conjugate)

iFq − Fpp − 2FNp = 0,

iHq −Hpp − 2HNp = 0,(
Nq + FF † +HH†

)
p

= 0,

(6.163)

which are proved to be a nonlocal multi-component NLS system in 1 + 1
dimensions, expressed for the complex conjugate fields {F † , H†} with density
of probability Nq. This reduction corresponds to the Manakov system [8,286].

We may remark that the same reductions for the Lax pair, and consequently for the
equations, arise by performing the similarity reduction with K1(t) 6= 0, C1(y) 6= 0,
K2(t) = 0. In this case, the reductions for the independent variables, fields and
eigenfunctions are obtained by setting K2(t) = 0 in (6.159), (6.160) and (6.161),
respectively.

• Case II. K1(t) 6= 0, K2(t) 6= 0, C1(y) = 0

Integration of (6.157) provides the following results

– Reduced variables

p =
x

K1(t)
1
2

− I0(t), q = y. (6.164)

– Reduced fields

α1(x, y, t) =
F (p, q)

K1(t)
1
4

e

{
i
8

[
K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}
,

α2(x, y, t) =
H(p, q)

K1(t)
1
4

e

{
i
8

[
K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}
, (6.165)
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m(x, y, t) =
x3

24K1(t)
1
2

[
K1(t)

1
2

]
tt

+
x2

32K1(t)
1
2

[
K2(t)

K1(t)
1
2

]
t

− x

32
İ1(t) +

N(p, q) + I2(t)

K1(t)
1
2

.

– Reduced eigenfunctions

ψ(x, y, t) =
Φ(p, q)

K1(t)
1
4

e

{
− i

8

[
K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]
+λ

8

∫
dt

K1(t)

}
,

χ(x, y, t) = Σ(p, q) e

{
λ
8

∫
dt

K1(t)

}
,

ρ(x, y, t) = Ω(p, q) e

{
λ
8

∫
dt

K1(t)

}
.

(6.166)

– Reduced spectral problem

Φpp +

(
2Np −

i

8
λ

)
Φ = 0,

Σp + F Φ = 0, (6.167a)
Ωp +H Φ = 0,

Φq + F †Σ +H†Ω = 0,

λΣ− 8 i (F Φp − Fp Φ) = 0, (6.167b)
λΩ− 8 i (H Φp −Hp Φ) = 0,

and its complex conjugate. The previous system of PDEs can be expressed
equivalently to the following scalar Lax pair in 1 + 1 dimensions

Φpp +

(
2Np −

i

8
λ

)
Φ = 0,

λΦq − 8 i
[(
F † Fp +H†Hp

)
Φ +Nq Φp

]
= 0,

(6.168)

Φ†pp +

(
2Np +

i

8
λ†
)

Φ† = 0,

λ†Φ†q + 8 i
[(
FF †p +HH†p

)
Φ† +Nq Φ†p

]
= 0.

(6.169)

– Reduced equations

The compatibility condition between (6.168) and (6.169) yields the reduced
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equations
Fpp + 2FNp = 0,

Hpp + 2HNp = 0,(
Nq + FF † +HH†

)
p

= 0,

(6.170)

and its complex conjugate.

• Case III. K2(t) 6= 0, C1(y) 6= 0, K1(t) = 0

The following reductions arise from the integration of (6.157),

– Reduced variables

p =
x

K2(t)
−
∫

dy

C1(y)
, q =

∫
dt

K2(t)2
. (6.171)

– Reduced fields

α1(x, y, t) =
F (p, q)

K2(t)
1
2 C1(y)

1
2

e

{
i
4

[
K̇2(t)
K2(t)

x2+2 p−q
]}
,

α2(x, y, t) =
H(p, q)

K2(t)
1
2 C1(y)

1
2

e

{
i
4

[
K̇2(t)
K2(t)

x2+2 p−q
]}
,

m(x, y, t) =
x3

24

K̈2(t)

K2(t)
+
N(p, q)

K2(t)
.

(6.172)

– Reduced eigenfunctions

ψ(x, y, t) =
Φ(p, q)

K2(t)
1
2

e

{
− i

4

[
K̇2(t)
K2(t)

x2− q
]
+λ

2

∫ dy
C1(y)

}
,

χ(x, y, t) =
Σ(p, q)

C1(y)
1
2

e

{
λ
2

∫ dy
C1(y)

+ i p
2

}
,

ρ(x, y, t) =
Ω(p, q)

C1(y)
1
2

e

{
λ
2

∫ dy
C1(y)

+ i p
2

}
.

(6.173)

– Reduced spectral problem

Φp −
(
F †Σ +H†Ω

)
− λ

2
Φ = 0,

Σp + F Φ +
i

2
Σ = 0, (6.174a)

Ωp +H Φ +
i

2
Ω = 0,
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Φq +

(
iH†p +

i λ+ 1

2
H†
)

Ω +

(
i F †p +

i λ+ 1

2
F †
)

Σ

− i
(
FF † +HH† − 2Np −

λ2 + 1

4

)
Φ = 0,

Σq −
(
i λ+ 1

2
F − i Fp

)
Φ− i FF †Σ− i FH†Ω = 0, (6.174b)

Ωq −
(
i λ+ 1

2
H − iHp

)
Φ− iHF †Σ− iHH†Ω = 0,

and its complex conjugate.

– Reduced equations
The compatibility condition between (6.174a)-(6.174b) provides the following
system of PDEs

i Fq + (Fp + i F )p + 2FNp = 0,

iHq + (Hp + iH)p + 2HNp = 0,(
Np − FF † −HH†

)
p

= 0,

(6.175)

and its complex conjugate.
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Chapter 7

Conclusions

This final Chapter addresses the main general conclusions obtained from the accom-
plishment of this doctoral thesis. Subsequently, the Chapter closes with a Section of
open research topics and future prospects.

1. Conclusions

The research conducted in this doctoral thesis has focused on the study and charac-
terization of the integrability properties of nonlinear systems, described by nonlinear
PDEs of interest arising from various scientific fields, mainly from Mathematical
Physics and other related disciplines. This issue has been addressed from four differ-
ent but complementary approaches, which constitutes the cornerstones of the present
dissertation:

1. Integrability analysis by means of techniques based on the Painlevé Property

2. The singular manifold method as a fruitful tool to derive Lax pairs

3. Binary Darboux transformations and τ -formalism as a procedure to obtain
iterative solutions, particularly soliton-like solutions

4. Lie symmetries and similarity reductions

As it has already illustrated, NLS equation plays a critical role in the primeval con-
ception of this doctoral thesis, since a significant proportion of the analyzed integrable
models constitute generalizations of diverse kinds for this celebrated nonlinear equa-
tion, with copious applications in distinct fields, among which it is worth mentioning
Material Sciences and Biology.

The main contributions of this thesis are therefore described in detail hereunder.
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Chapter 2

Chapter 2 presents a comprehensive review of some of the remarkable properties of
nonlinear integrable PDEs exploited throughout this thesis. Of capital importance
was the description of the so-called Painlevé Property, as well as the characterization
of the algorithmic tests based on it, which allow us to conjecture the possible inte-
grability of a given differential equation. No less significant is the singular manifold
method, which provides a systematic procedure to construct and identify several pri-
mary features for those integrable systems, such as auto-Bäcklund transformations,
the associated spectral problem or Darboux transformations. The conjunction of
all these elements yields a solid and ideal machinery to analyze nonlinear integrable
equation, especially when oriented towards the obtention of analytical solutions of
solitonic nature.

This procedure has been insightfully illustrated by means of its application to the
ubiquitous NLS equation in 1 + 1 dimensions.

Chapter 3

Chapter 3 is devoted to the applications of the methodology described in the previous
Chapter to differential equations in 1 + 1 dimensions. The Painlevé test, based on
the Painlevé Property and following the WTC algorithmic prescription, has proved
to be an extremely valuable criterion of integrability. This fact has been more than
confirmed by the subsequent application of the SMM, which has successfully re-
trieved the associated spectral problems for the considered nonlinear systems. Fur-
thermore, binary Darboux transformations are determined to constitute the perfect
enhancement for the aforementioned methodology. They allow us to derive in a
straightforward approach a plethora of soliton-like solutions of diverse nature.

• Firstly, we have proposed a nonlinear model in 1 + 1 dimensions describing the
electron spin dynamics in deformable helical molecules [26,125], which generalizes
the linear model introduced in [124, 198]. The deformability of the molecule en-
ables the formation of an entirely novel dynamics, by means of the addition of a
cubic nonlinearity of NLS-type. This extra contribution allows us to transform
the former linear model into a nonlinear system of PDEs that turns out to be a
generalization of the Manakov system, a vector extension of NLS equation with
two components.

The integrability of this model has been analyzed by means of the Painlevé test and
we have successfully employed the SMM to derive a novel three-component and
isospectral Lax pair for this system. Binary Darboux transformations have been
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applied to this model, straightforwardly yielding the definition of the τ -function
and an iterative algorithmic method to construct recursive analytic solutions. The
choice of exponential seed solutions and eigenfunctions for the spectral problem
has retrieved a wide class of soliton-like solutions in different regimes. For the
defocusing case, we have obtained dark solitons that generalize the corresponding
soliton solutions for the Manakov system. For the focusing case, generalizations of
the Akhmediev and Kuznetsov-Ma breathers have been explicitly derived. More-
over, this procedure has also resulted in the obtention of two families of rogue
waves for the focusing case, linked to a nontrivial polynomial expression for the
τ -function. The analysis of cnoidal waves in the hyperbolic limit has yielded stable
bright solitons in the focusing case. This latter result constitutes the generaliza-
tion of the Davydov soliton, a theoretical solution that is prescribed to appear in
the continuous limit within the adiabatic approximation describing the dynamics
of deformable organic molecules with helical conformation. The helicity of this
soliton is proved to be well-defined and preserved alongside its propagation across
the helical molecule. The obtention of this result might shed some light on the
relevance of the nonlinear interaction regarding the theoretical description of the
spin dynamics in helical molecules, as a means to explain the chiral-induce spin
selectivity phenomenon reported in experiments.

• On the other hand, we have introduced a modified (1 + 1)-NLS equation with
derivative-type nonlinearities. The proposed system depends on an arbitrary
real parameter γ, which includes as particular cases three celebrated equations of
DNLS-type, the Kaup-Newell system (γ = 0), the Chen-Lee-Liu equation (γ = 1)
and the Gerdjikov-Ivanov equation (γ = 2). These three nonlinear PDEs, to-
gether with the system proposed by the author, are equivalent via a U(1)-gauge
transformation. We have exploited this gauge invariance property to analyze the
integrability, construct the Lax pair and derive rational soliton solutions for these
equations. Besides, these results can be straightforwardly extended to any inte-
grable DNLS equation that can be related by a U(1)-gauge transformation to the
prior ones.

We have successfully reviewed the integrability of this generalized DNLS equation.
The Painlevé test was not properly applicable to this equation since the leading-
order of the series expansion was rational. Therefore, the introduction of up to two
changes of variable has been necessary in order to transform the generalized DNLS
equation into a suitable PDE liable to pass the Painlevé test. The first change
of variables yields a conservative differential equation for the probability density
α of the initial DNLS, with integer leading index but two branches of expansion.
The best method to overcome this inconvenience requires the introduction of a
Miura transformation that retrieves a nonlocal Boussinesq-like equation for both
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the new fields u and its complex conjugate u. It is worth stressing the crucial role
of the Miura transformation, which allows us to connect the aforementioned three
differential equations and finally transform the original DNLS into a suitable PDE
with an unique branch of expansion that possesses the Painlevé Property. We
then ratify the success of this technique to deal with integrable PDEs with several
branches of expansion in Painlevé integrability contexts.

Regarding the subtleties of the Painlevé analysis, we should now highlight the fact
that the leading index at constant level for the nonlocal Boussinesq equation is zero.
Therefore, the Painlevé test has had to be modified in order to incorporate a finite
number of logarithmic terms in the series expansion so as to check the integrability
of such equation. Then, it is found that the appearance of the logarithmic term
does not contradict the assertion of the Painlevé conjecture, since it is precisely
the first derivatives of the field ux, ut the ones that are expressed in terms of the
Laurent series in a neighbourhood of the singular manifold φ = 0.

By means of the SMM, we have been able to find the spectral problem for these
three systems: the starting DNLS equation, the conservative PDE for the prob-
ability density α and the nonlocal Boussinesq equation for u. We have obtained
not just one, but two equivalent and isospectral Lax pairs for each of these equa-
tions of interest. The associated spectral problems are defined up to a coupling
constraint between the eigenfunctions and the fields involved. This condition is
inherent to the splitting process of the field α itself and the introduction of the
Miura transformation. Then, this situation will be reflected when determining the
associated spectral problems for the initial generalized DNLS equation. Moreover,
the obtained linear problems allow to recover the Lax pairs known in the literature
for the aforementioned particular DNLS systems.

Binary Darboux transformations have been implemented. Taking an ansatz with
exponential seed solution and eigenfunctions allows us to straightforwardly con-
struct a polynomial τ -function. This result inevitably leads to the obtention of
interacting solitons of rational type, where the corresponding one and two soliton
solution have been deeply investigated.

Chapter 4

Chapter 4 constitutes a continuation of the preceding Chapter, addressing the appli-
cations of the theoretical foundations exhibited in Chapter 2 for integrable models
in 2 + 1 dimensions. The analysis of solutions is focused on the characterization of
a new kind of localized structures proper of higher spatial dimensions: rationally
decaying solitons, known as lumps.
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• Primarily, we have analyzed an integrable multi-component NLS equation in 2 + 1
dimensions. This PDE can be either regarded as a generalization of the Manakov
system to 2 + 1 dimensions or as a vector generalization for the Fokas system with
two components.

Its integrability directly follows from the application of the Painlevé test. Fur-
thermore, the SMM has enabled us to derive a nontrivial three-component Lax
pair for this system. Lump soliton solutions can be directly constructed after the
consequent application of the binary Darboux transformations over the spectral
problem. In order to obtain rational solutions for the τ -function, it is desirable
to seek seed eigenfunctions expressed as a product of exponential functions and
a polynomial expression of arbitrary degree. The substitution of this ansatz into
the spectral problem yields recursive relation for those polynomials, allowing the
possibility to obtain an infinite number of eigenfunctions given in terms of integers
associated to the degree of the polynomials. Therefore, it is expected that the na-
ture of the arising lump solutions strongly depends on the value of such integers.
The soliton solutions in this case are found to depend on two integers, N,M ∈ N.

Furthermore, the second iteration retrieves a τ -function τ1,2 that can be written in
terms of an unique wavenumber, which means that the associated solution shall be
interpreted as a one-soliton solution. Nevertheless, the corresponding dynamics to
the one-soliton solution turns out to be particularly rich, since it displays the inter-
action of a nontrivial number of travelling nonlinear waves, of lump-type with equal
amplitude, which depends on the choice of the integers N,M . We have explored
the one-soliton solutions associated to all possible combinations of N,M = 0, 1.
These choices retrieve three cases of interest, leading to the interaction of one, two
and three lump-like waves with the same amplitude, respectively.

• Last but not least, the second nonlinear PDE analyzed in this Chapter is the
so-called Nizhnik-Novikov-Veselov equation, which constitutes a symmetric gener-
alization of the KdV equation to 2 + 1 dimensions.

Subsequent application of the Painlevé test retrieves that this nonlinear equation
may be considered as integrable. Besides, the SMM allows us to successfully
derive the associated spectral problem, where the eigenfunction turns out to be
the singular manifold itself. This is due to the fact the that singular manifold
equations can be fully integrated without the need of an intermediate linearization
ansatz.

Binary Darboux transformations can be implemented in order to obtain lump
soliton solutions. As in the previous case, the consideration of eigenfunctions of
the form polynomial expression times exponential functions retrieves an infinite
number of possible eigenfunctions that depends on the degree n of such polynomial.
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Once again, the nature of the arising soliton solutions is determined by the value
of this integer.

The second iteration provides soliton solutions in terms of a sole wavenumber
and its complex conjugate, giving rise to the aforementioned one-soliton solution.
The dynamics for the one-soliton solution with one (n = 1) and two (n = 2)
components of lump-type of equal amplitude has been profoundly analyzed, as it
was done for the previous system.

In this case, we have also studied the two-soliton solution, which requires to con-
sider up to the fourth iteration in the fields, with associated τ -function τ1,2,3,4.
The process is constructed such that the first and the third iteration introduce
two different wavenumbers k1 and k3, whilst the second and the fourth iteration
provide the respective complex conjugates, k2 = k†1 and k4 = k†3. We have studied
the simplest case, with n = 1, which has allowed us to characterize the dynamics
and interaction of two different and independent lumps, of distinct amplitude.

Chapter 5

Chapter 5 is devoted to the theoretical characterization from a geometric point of
view of the of theory of Lie symmetries for differential equations. An extensive
description of both the classical and nonclassical method to compute Lie symmetries
is straightforwardly provided. Besides, the process regarding the similarity reduction
method is thoroughly investigated. The last Section of this Chapter is aimed at the
particular application of this whole procedure, as an example, to the NLS equation
in 1 + 1 dimensions.

Chapter 6

Finally, Chapter 6 addresses the applications of Lie’s formalism of classical (and
nonclassical) symmetries to diverse integrable models in several dimensions. The
novel approach considered in this dissertation primarily targets the application of
Lie’s method to the spectral problems for these integrable systems. Therefore, it
is expected that the isospectral or nonisospectral nature of the spectral parameter
associated to those Lax pairs plays a crucial role on the symmetry analysis. This
fact has proved to bear special relevance for systems in 2 + 1 dimensions. Similarity
reductions for Lax pairs constitute another critical element of this formulation, since
they may yield new families of integrable differential equations in lower dimensions.

• Regarding integrable systems in 1+1 dimensions, we have analyzed the three non-
linear PDEs arising from the Painlevé analysis for the generalized DNLS equation

262



Chapter 7. Conclusions

performed in Chapter 3. We have successfully computed both classical and non-
classical Lie symmetries for these systems and their respective spectral problems.
The nonclassical method has not retrieved any further results than the classical
one, for each case under consideration. The main advantage of performing this pro-
cedure directly over the spectral problem is that it allows us to get simultaneously
the symmetries related to the independent variables, fields and those associated
to the eigenfunctions and the spectral parameter. Hence, Lie symmetries of the
associated linear problem provide us more valuable information than the single
analysis over the PDE. Finally, similarity reductions have been computed in each
case. We have obtained the following:

– Lie symmetries for DNLS equation are given in terms of three arbitrary con-
stants, a single arbitrary real function of t and two arbitrary complex functions
on λ, the spectral parameter. The commutation relations among the associ-
ated generators have been studied and the Lie algebra has been identified for
a particular choice of the arbitrary functions, giving rise to a subalgebra of the
Schrödinger algebra sch(1). Besides, three nontrivial similarity reductions arise
from the reduction process.

– Lie symmetries for the conservative PDE for the probability density α depends
on up to four arbitrary real constants and two arbitrary complex functions of λ.
We have also studied two nontrivial reductions for this equation.

– The symmetry group of the nonlocal Boussinesq equation for u is presented in
terms of six arbitrary real constants, a single arbitrary real function of t and two
arbitrary complex functions of λ. It is worth stressing the presence of a complete
new symmetry induced by the associated Miura transformation. Finally, three
additional reductions of interest emerge for this case.

• Nonlinear PDEs in 2 + 1 dimensions exhibit richer results regarding the symmetry
analysis than their counterparts in 1 + 1 dimensions. This phenomenon may be
due to both the addition of an extra spatial dimension and the versatile nature of
the spectral parameter for Lax pairs in higher dimensions.

– We have first determined the classical Lie symmetries of an integrable generaliza-
tion of the NLS equation in 2+1 dimensions with higher order terms. This inte-
grable system depends on two arbitrary parameters γ1, γ2, and contains as par-
ticular cases four integrable renowned PDEs: generalized NLS equation in 2 + 1
dimensions (γ1 6= 0, γ2 6= 0), Lakshmanan-Porsezian-Daniel equation in 2+1 di-
mensions (γ1 6= 0, γ2 = 0), Hirota equation in 2 + 1 dimensions (γ1 = 0, γ2 6= 0)
and a standard NLS equation in 2 + 1 dimensions (γ1 = 0, γ2 = 0). This
equation has proved to be integrable and possesses a nonisospectral Lax pair.
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Four different sets of symmetries can be obtained depending whether the pa-
rameters γ1, γ2 are zero or different from zero. These symmetries may depend
on up to six arbitrary constants and four arbitrary functions. The reductions
associated to each set of symmetries have been successfully identified, yielding
several similarity reductions of interest. This procedure provides not only the
reductions for the equations, but also the reduced spectral problems. Besides, it
is immediately shown how the nonisospectral condition is propagated under the
reductions. We have obtained three special cases where the associated reduced
spectral problem in 1 + 1 dimensions is yet nonisospectral. It is worthwhile to
remark that the reduced equations are proved to be integrable systems in 1 + 1,
being most of them quite complicated and non autonomous. Then, we may
conclude that symmetry techniques also constitute a valuable procedure when
identifying the integrability of nonlinear systems.

The commutation relations among the Lie symmetry generators have also been
studied, in order to characterize the resulting Lie algebra. It is found that the
presence of arbitrary functions in the symmetry generators prevents them from
forming a Lie algebra. Nevertheless, it can be proven that the commutator of
two symmetry generators is also a generator of a symmetry in an intriguing way,
by means of an appropriate choice of the arbitrary functions. This fact provides
an analogous notion of closure with the finite-dimensional case. Besides, it is
possible to obtain a finite-dimensional Lie algebra by adopting special values for
the arbitrary functions.

– We have also studied the multi-component NLS equation introduced in Chapter
4 from the symmetry point of view. As already illustrated, this integrable system
possesses a three-component Lax pair, with no explicit spectral parameter.

We have determined the classical Lie symmetries for this system and its spectral
problem. The resulting symmetries include nine arbitrary functions of the inde-
pendent variables and two arbitrary complex constants, which play the role of
the spectral parameter when the spectral problem is reduced to 1+1 dimensions.
The commutation relations among the generators associated to each symmetry
have been widely analyzed, obtaining a similar result to the one stated for the
previous example.

Three nontrivial reductions in 1+1 dimensions have been derived. The reduced
equations and the reduced spectral problem have been simultaneously obtained.
The reduced spectral problems in 1 + 1 do possess a spectral parameter, which
arises naturally in the process of constructing the reductions due to the symme-
try procedure itself.
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2. Future work

The research conducted in this thesis presents a unified methodology based on
Painlevé integrability, the SMM and Lie symmetries to approach nonlinear mod-
els described by integrable differential equations. Nevertheless, there are several
open research topics left that may be suggested as possible future work in this line
of investigation:

• The application of this unified scheme has proved to be highly convenient when
it comes to describing and obtaining solutions of interest for realistic nonlinear
models arising from disciplines as Mathematical Physics, Materials Sciences and
Biology. We firmly believe that the application of this type of analytical techniques
may help to understand the behaviour of such systems. Therefore, it is worth
exploring further research fields related to nonlinear phenomenology in the quest
of integrable models that could account for those scenarios.

• As has been amply illustrated, algorithmic tests based on Painlevé Property pro-
vide an accurate integrability criterion for nonlinear differential equations when
they are applicable. On the other hand, these methods present several limitations,
such as coordinate-dependence on the form of the PDE, the restriction to positive
integer dominant indices, the issue associated with multiple expansion branches,
etc. These kinds of problems are also reflected in the subsequent application of the
SMM. Throughout this work, various procedures have been exhibited to overcome
these inconveniences, but they are still far from being general or fully understood.
It would be interesting to delve into these ideas in more depth.

A promising line of research in this regard requires a detailed consideration of the
different existing transformations among families of integrable systems, such as
Bäcklund transformations, Miura transformations, hodograph or reciprocal trans-
formations. The author of this manuscript has carried out further research on
reciprocal transformations and the composition of Miura-reciprocal transforma-
tions [27, 30], not included in this dissertation. Reciprocal transformations have
proved to be a remarkably fruitful technique to identify the integrability of PDEs,
derive Lax pairs and may have an impact on the obtention of solutions of interest
for those systems. This subject still remains as an open research topic.

• The SMM, as applied and understood throughout this thesis, may be slightly
improved in relation to the derivation of the singular manifold equations. The
SMM typically requires that every coefficient arising from the truncation ansatz of
the Painlevé expansions should be equated to zero. Nonetheless, it is possible to
weaken this condition and find solutions for φ that do not necessarily vanish each
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coefficient but the set of all of them. This fact could increase the applicability of
the SMM to a broader class of nonlinear integrable systems.

Moreover, this procedure leads to a more general solution for the singular manifold,
which is subsequently reflected in the corresponding spectral problem and the
associated solutions. In particular, this technique might allow the introduction of
additional arbitrary functions in the Lax pair, which could eventually play the role
of the spectral parameter in case the former linear problem does not possess any.

• In connection with the latter idea, the role of the spectral parameter in Lax pairs,
both in 1 + 1 and higher dimensions, is a matter of keen interest that would be
worth studying. Specifically, the question regarding the introduction of a “true
spectral parameter”, i.e. nonremovable after a gauge transformation, constitutes
an open problem in this research area. Both the SMM and the symmetry analysis
by means of group techniques could shed some light in this regard.

• Another future research plan could involve the extension of our Lie symmetry
approach, both classical and nonclassical, to other kinds of generalized scenarios,
such as contact symmetries, Lie-Bäckund symmetries, etc. The treatment of spec-
tral problems under this new perspective could retrieve valuable information of the
integrable systems under consideration, as well as the analysis of their associated
similarity reductions.
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Appendix A

Complementary calculations for Chapter 5

1. General prolongation formula

The general prolongation formula, formulated in equation (5.54), is given by

ηjσ(x, u, · · · , uσ) = Dσ

(
ηj(x, u)−

n∑
i=1

ξi(x, u)
∂uj

∂xi

)
+

n∑
i=1

ξi(x, u)
∂ujσ
∂xi

. (A.1)

This result is well-known in the literature of Lie symmetries [52,323,378] and it can
be demonstrated by induction.

Proof. Firstly, let us start with the case of p = 1, the prolongation up to first order
derivatives. The first prolongation of the vector field X(1) is given by

X(1) =

n∑
i=1

ξi(x, u)
∂

∂xi
+

m∑
j=1

ηj(x, u)
∂

∂uj
+

n∑
i=1

m∑
j=1

(ηj)xi(x, u(1))
∂

∂ujxi
, (A.2)

and the associated one-parameter Lie group of transformations reads
x̃i = xi + εξi(x, u) +O(ε2),

ũj = uj + εηj(x, u) +O(ε2),

ũjx̃i = ujxi + ε(ηj)xi(x, u(1)) +O(ε2),

(A.3)

where ujxi = ∂uj

∂xi
and (ηj)xi is corresponding infinitesimal associated to ujxi , for all

i = 1, . . . , n, j = 1, . . . ,m. For p = 1, the total derivative operator with respect xi
has the form

Dxi =
∂

∂xi
+

m∑
j=1

∂uj

∂xi

∂

∂uj
+

m∑
j=1

n∑
l=1

∂2uj

∂xi∂xl

∂

∂ujxl
. (A.4)
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Then, it is straightforward to see that

dx̃i =

n∑
l=1

(Dxl x̃i)dxl =

n∑
l=1

(Dxl xi + εDxl ξi)dxl =

n∑
l=1

(δil + εDxl ξi)dxl,

dũj =

n∑
k=1

(Dxk ũ
j)dxk =

n∑
k=1

(Dxk u
j + εDxk η

j)dxk =

n∑
k=1

(
∂uj

∂xk
+ εDxk η

j

)
dxk,

(A.5)
where δij stands for the usual Kronecker delta. Thus, we have

ũjx̃i =
∂ũj

∂x̃i
=

n∑
k=1

(
ujxk + εDxk η

j
)

+O(ε2)

n∑
l=1

(δil + εDxl ξi) +O(ε2)

δkl. (A.6)

Computing the inverse of the formal power series up to first order in ε, we get

ũjx̃i =
n∑
k=1

(
ujxk + εDxk η

j +O(ε2)
) (
δik − εDxi ξk +O(ε2)

)
= uxi + ε

(
Dxi η

j −
n∑
k=1

∂uj

∂xk
Dxi ξk

)
+O(ε2).

(A.7)

Comparing this result with (A.3), we can conclude that

(ηj)xi(x, u(1)) = Dxi η
j −

n∑
k=1

∂uj

∂xk
Dxi ξk, i = 1, . . . , n, j = 1, . . . ,m. (A.8)

Reordering terms and using the definition of (A.4), we find that

(ηj)xi = Dxi η
j −

n∑
k=1

(
∂uj

∂xk
Dxi ξk + ξk

∂2uj

∂xi∂xk

)
+

n∑
k=1

ξk
∂2uj

∂xi∂xk

= Dxi

(
ηj −

n∑
k=1

ξk
∂uj

∂xk

)
+

n∑
k=1

ξk
∂2uj

∂xi∂xk
,

(A.9)

which corresponds to the expression provided in (A.1) for p = 1.

In order to prove the general case by induction, we assume that the general prolon-
gation formula (A.1) is valid for the extension up to pth order derivatives, such that
the prolonged vector field X(p) is given by (5.50) and the associated Lie group of
transformations is (5.55). Given a coordinate uj , j = 1, . . . ,m, there exist (n+p−1)!

p!(n−1)!
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derivatives or order p, and from them, it is possible to construct n derivatives of
order p + 1 as (ujσ)xl = ∂ujσ

∂xl
, l = 1, . . . , n, |σ| = p. In this sense, we can define the

extension of (5.55) up to (p+ 1)-th order derivatives as1

(ũjσ)x̃l = (ujσ)xl + ε(ηjσ)xl(x, u(p+1)), (A.10)

for all l = 1, . . . , n, |σ| = p and (ũjσ)x̃l = ∂ũjσ
∂x̃l

= ∂p+1uj

∂x̃
i1
1 ··· ∂x̃

il+1

l ··· ∂x̃inn
.

Proceeding by complete analogy with (A.5)-(A.7), we have

(ũjσ)x̃l =
∂ũjσ
∂x̃l

=

n∑
k=1

(
∂ujσ
∂xl

+ εDxk η
j
σ

)
+O(ε2)

n∑
r=1

(δlr + εDxr ξl) +O(ε2)

δkr

=
∂ujσ
∂xl

+ ε

(
Dxl η

j
σ −

n∑
k=1

∂ujσ
∂xk

Dxl ξk

)
+O(ε2).

(A.11)

Hence, it is immediate that

(ηjσ)xl = Dxl η
j
σ −

n∑
k=1

∂ujσ
∂xk

Dxl ξk, l = 1, . . . , n, j = 1, . . . ,m, (A.12)

which provides the well-known recursion relation for the extended infinitesimal.

Finally, inserting the expression for ηjσ given by the prolongation formula (A.1) in
the relation above we get

(ηjσ)xl = Dxl

[
Dσ

(
ηj −

n∑
k=1

ξk
∂uj

∂xk

)
+

n∑
k=1

ξk
∂ujσ
∂xk

]
−

n∑
k=1

∂ujσ
∂xk

Dxl ξk

= (Dxl ·D
σ)

(
ηj −

n∑
k=1

ξk
∂uj

∂xk

)
+

n∑
k=1

(
∂ujσ
∂xk

Dxl ξk + ξk
∂2ujσ
∂xl∂xk

)
−

n∑
k=1

∂ujσ
∂xk

Dxl ξk

= (Dxl ·D
σ)

(
ηj −

n∑
k=1

ξk
∂uj

∂xk

)
+

n∑
k=1

ξk
∂2ujσ
∂xl∂xk

,

(A.13)
which identically coincides with the expression given in (A.1) for the multi-index
σ̂ = (i1, . . . , il + 1, . . . , in) associated to the specific derivative (ujσ)xl ≡ ujσ̂, when

1From the geometric point of view, this fact means that the (p+ 1)-th jet space M(p+1) may be
regarded as a subspace of the first jet space (M(p))(1).
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σ = (i1, . . . , il, . . . , in) such that |σ| = p, |σ̂| = p+ 1 and for all l = 1, . . . , n.

2. Proof of equation (5.67)

Let us start from the definition of the invariant surface conditions given in (5.64)

∆j = ηj −
n∑
i=1

ξi
∂uj

∂xi
, j = 1, . . . ,m. (A.14)

According to (A.2), the first prolongation for a vector field of the formX =
n∑
k=1

ξk
∂
∂xk

+

m∑
l=1

ηl ∂
∂ul

reads

X(1) =

n∑
i=k

ξk
∂

∂xi
+

m∑
l=1

ηl
∂

∂ul
+

n∑
k=1

m∑
l=1

(ηl)xk
∂

∂ulxk
, (A.15)

where the general prolongation formula (A.1) establishes that

(ηl)xk = Dxk

ηl − n∑
p=1

ξp
∂ul

∂xp

+
n∑
p=1

ξp
∂2ul

∂xk∂xp
, (A.16)

being Dxk = ∂
∂xk

+
m∑
q=1

∂uq

∂xk
∂
∂uq +

m∑
q=1

n∑
p=1

∂2uq

∂xk∂xp
∂

∂uqxp
the total derivative operator.

Then, for every j = 1, . . . ,m, we can compute

X(1)
[
∆j
]

=
n∑
k=1

ξk
∂∆j

∂xk
+

m∑
l=1

ηl
∂∆j

∂ul
+

n∑
k=1

m∑
l=1

(
ηj
)
xk

∂∆j

∂ulxk
. (A.17)

Equation (A.16) may be written as

(ηl)xk = Dxk

(
∆l
)

+

n∑
p=1

ξp
∂2ul

∂xk∂xp

=
∂∆l

∂xk
+

m∑
q=1

∂∆l

∂uq
∂uq

∂xk
+

n∑
p=1

m∑
q=1

∂2uq

∂xk∂xp

∂∆l

∂uqxp
+

n∑
p=1

ξp
∂2ul

∂xk∂xp
.

(A.18)

From its definition (A.14), we get that ∂∆l

∂uqxp
= −ξiδlqδip, with δij being the usual
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Kronecker delta, so that (A.18) takes the form

(ηl)xk =
∂∆l

∂xk
+

m∑
q=1

∂∆l

∂uq
∂uq

∂xk
, (A.19)

and finally (A.17) provides

X(1)
[
∆j
]

=
n∑
k=1

ξk
∂∆j

∂xk
+

m∑
l=1

ηl
∂∆j

∂ul
−
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ξk
(
ηj
)
xk

=
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ξk
∂∆j

∂xk
+
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l=1

ηl
∂∆j

∂ul
−

n∑
k=1

ξk

(
∂∆j

∂xk
+

m∑
l=1

∂∆j

∂ul
∂ul

∂xk

)

=
m∑
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(
ηl −

n∑
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∂ul

∂xk

)
∂∆j

∂ul
=

m∑
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∆l ∂∆j

∂ul
,

(A.20)

which is precisely (5.67).
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Appendix B

Commutation relations from the Lie symmetry
analysis of PDEs in 2 + 1 dimensions

This Appendix addresses the commutation relations of the infinitesimal generators
associated to the classical Lie symmetries for the differential equations in 2 + 1
dimensions studied in the present doctoral thesis (c.f. Section 2 of Chapter 6). The
results are displayed in tables. Each {i, j}-element of the table (i.e. the entry in row
i and column j) represents the operation [Vi, Vj ], with Vi, Vj two generators of the
symmetry group.

Since the systems of PDEs are defined in 2+1 dimensions, the associated Lie symme-
tries are expected to be expressed in terms of arbitrary functions of the independent
variables. By experience, this fact implies that the infinitesimal generators will de-
pend on arbitrary functions, leading to infinite-dimensional subalgebras. According
to [378], the infinitesimal generators that depend on arbitrary functions do not form
a Lie algebra. Nonetheless, it can be proved that the commutator of two symmetry
generators is also a generator of a symmetry in an intriguing way. In general, the
operation of commutation between two infinitesimal generators of this kind yields a
result that also depends on a combination of the arbitrary functions involved. Then,
it is possible to express this commutator as a combination of the generators of the
symmetry group by means of an appropriate choice of the arbitrary functions, as it
will be illustrated in this Appendix. The presence of arbitrary functions in the sym-
metry generators therefore provides a nontrivial commutation relations among these
generators, with peculiar properties. For example, the commutator of a symmetry
generator with itself does not necessarily vanish. For this reason, these commutation
relations should be carefully studied.

In the present Appendix we will use the following notation. A vector field with a
latin subindex as Xi represents a Lie symmetry associated to an arbitrary constant
αi, i ∈ N. Conversely, an operator of the form X [j]

{κj}, j ∈ N, is associated to the
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B.1. Generalized NLS equation in 2 + 1 dimensions with higher-order terms

symmetry of an arbitrary function κj . The dependence on the independent variables
of the functions κj (which can be x, y, t or λ) will be omitted in the tables for a
greater usability for the reader, but it will be explicitly specified in advance for each
case of study.

The matter regarding the classification of the resulting Lie algebras falls beyond the
scope of this thesis and it is left open for a future work.

1. Generalized NLS equation in 2 + 1 dimensions with
higher-order terms

This Section can be understood as a continuation of the symmetry analysis conducted
in Subsection 2.1 of Chapter 6 for the nonlinear PDE (6.82) and its associated spec-
tral problem (6.83). Equation (6.82) depends on two parameters γ1, γ2 that provide
the following integrable renowned PDEs as particular cases:

1. Generalized NLS equation in 2 + 1 dimensions (γ1 6= 0, γ2 6= 0)

2. Lakshmanan-Porsezian-Daniel equation in 2 + 1 dimensions (γ1 6= 0, γ2 = 0)

3. Hirota equation in 2 + 1 dimensions (γ1 = 0, γ2 6= 0)

4. Standard NLS equation in 2 + 1 dimensions (γ1 = 0, γ2 = 0)

The symmetry analysis of these four systems gives rise to four different sets of Lie
symmetries, which have been studied independently.

Generally, we may resume the following common notation for every case:

• Ki(t), K̃j(t), i, j = 1, 2 denote arbitrary real functions of the variable t, and
Y

[i]
{Ki}, Y

[j]

{K̃j}
are their infinitesimal generators, respectively.

• δ(x, t), δ̃(x, t) are arbitrary real functions of {x, t} and their associated in-
finitesimal generators are represented as Z{δ}, Z{δ̃}.

• ζ(y, t, λ), ζ̃(y, t, λ) are arbitrary complex functions of {y, t, λ} satisfying the
differential equations

∂ζ

∂t
− 2λ

∂ζ

∂y
= 0,

∂ζ̃

∂t
− 2λ

∂ζ̃

∂y
= 0,

whilst Γ{ζ}, Γ{ζ̃} stand for their associated symmetry generators.

276



Appendix B. Commutation relations
1.
1.

G
en

er
al
iz
ed

N
L
S
eq
u
at
io
n
in

2
+
1
d
im

en
si
on

s
(γ

1
6=

0,
γ

2
6=

0)

Li
e
sy
m
m
et
ri
es

fo
r
th
is

ca
se

ar
e
lis
te
d
in

(6
.8
9)

an
d
th
e
as
so
ci
at
ed

si
x
in
fin

it
es
im

al
ge
ne

ra
to
rs

ar
e

X
1

=
∂
y
,
X

2
=
∂
t,

Y
[1

]
{K

1
}

=
K

1
∂
x

+
iy 2
K̇

1
(2
u
∂
u
−

2
w
∂
w

+
ψ
∂
ψ
−
χ
∂
χ
)

+
y

2 4
K̈

1
∂
m
,

Y
[2

]
{K

2
}

=
iK

2
(2
u
∂
u
−

2w
∂
w

+
ψ
∂
ψ
−
χ
∂
χ
)

+
K̇

2
y
∂
m
,

Z
{δ
}

=
δ∂
m
,

Γ
{ζ
}

=
ζ

(ψ
∂
ψ

+
χ
∂
χ
)
,

w
ho

se
co
m
m
ut
at
io
n
re
la
ti
on

s
re
ad X

1
X

2
Y

[1
]

{K
1
}

Y
[2

]
{K

2
}

Z
{δ
}

Γ
{ζ
}

X
1

0
0

1 2
Y

[2
]

{∂
t
K

1
}

Z
{∂
t
K

2
}

0
Γ
{∂
y
ζ
}

X
2

0
0

Y
[1

]
{∂
t
K

1
}

Y
[2

]
{∂
t
K

2
}

Z
{∂
t
δ
}

Γ
{∂
t
ζ
}

Y
[1

]

{K̃
1
}
−

1 2
Y

[2
]

{∂
t
K̃

1
}
−
Y

[1
]

{∂
t
K̃

1
}

0
0

Z
{K̃

1
∂
x
δ
}

0

Y
[2

]

{K̃
2
}
−
Z
{∂
t
K̃

2
}
−
Y

[2
]

{∂
t
K̃

2
}

0
0

0
0

Z
{δ̃
}

0
−
Z
{∂
t
δ̃
}
−
Z
{K

1
∂
x
δ̃
}

0
0

0

Γ
{ζ̃
}

−
Γ
{∂
y
ζ̃
}

−
Γ
{∂
t
ζ̃
}

0
0

0
0

T
ab

le
B
.1
:
C
as
e
γ

1
6=

0,
γ

2
6=

0

277



B.1. Generalized NLS equation in 2 + 1 dimensions with higher-order terms
1.
2.

L
ak

sh
m
an

an
-P
or
se
zi
an

-D
an

ie
l
eq
u
at
io
n
in

2
+
1
d
im

en
si
on

s
(γ

1
6=

0,
γ

2
=

0)

Li
e
sy
m
m
et
ri
es

fo
r
th
is

ca
se

ar
e
di
sp
la
ye
d
in

(6
.1
10

)
an

d
th
e
as
so
ci
at
ed

se
ve
n
in
fin

it
es
im

al
ge
ne

ra
to
rs

ar
e

X
1

=
∂
y
,
X

2
=
∂
t,
X

3
=

3y
∂
y

+
4
t∂
t
−
u
∂
u
−
w
∂
w
−
m
∂
m
−
λ
∂
λ
,

Y
[1

]
{K

1
}

=
K

1
∂
x

+
iy 2
K̇

1
(2
u
∂
u
−

2
w
∂
w

+
ψ
∂
ψ
−
χ
∂
χ
)

+
y

2 4
K̈

1
∂
m
,

Y
[2

]
{K

2
}

=
iK

2
(2
u
∂
u
−

2
w
∂
w

+
ψ
∂
ψ
−
χ
∂
χ
)

+
K̇

2
y
∂
m
,

Z
{δ
}

=
δ∂
m
,

Γ
{ζ
}

=
ζ

(ψ
∂
ψ

+
χ
∂
χ
)
.

If
w
e
in
tr
od

uc
e
th
e
di
ffe

re
nt
ia
l
op

er
at
or
s

D̂
1

=
4
t∂
t
−

Id
,

D̂
2

=
Id

+
x
∂
x

+
4t
∂
t,

D̂
3

=
3
y
∂
y

+
4t
∂
t
−
λ
∂
λ
,
w
he

re
Id

st
an

ds
fo
r
th
e
id
en
ti
ty
,t
he

co
m
m
ut
at
io
n
re
la
ti
on

s
re
su
lt
in

X
1

X
2

X
3

Y
[1

]
{K

1
}

Y
[2

]
{K

2
}

Z
{δ
}

Γ
{ζ
}

X
1

0
0

3X
1

1 2
Y

[2
]

{∂
t
K

1
}

Z
{∂
t
K

2
}

0
Γ
{∂
y
ζ
}

X
2

0
0

4X
2

Y
[1

]
{∂
t
K

1
}

Y
[2

]
{∂
t
K

2
}

Z
{∂
t
δ
}

Γ
{∂
t
ζ
}

X
3

−
3
X

1
−

4
X

2
0

Y
[1

]

{D̂
1
K

1
}

Y
[2

]
{4
t∂
t
K

2
}

Z
{D̂

2
δ
}

Γ
{D̂

3
ζ
}

Y
[1

]

{K̃
1
}
−

1 2
Y

[2
]

{∂
t
K̃

1
}
−
Y

[1
]

{∂
t
K̃

1
}
−
Y

[1
]

{D̂
1
K̃

1
}

0
0

Z
{K̃

1
∂
x
δ
}

0

Y
[2

]

{K̃
2
}
−
Z
{∂
t
K̃

2
}
−
Y

[2
]

{∂
t
K̃

2
}
−
Y

[2
]

{4
t∂
t
K̃

2
}

0
0

0
0

Z
{δ̃
}

0
−
Z
{∂
t
δ̃
}

−
Z
{D̂

2
δ̃
}

−
Z
{K

1
∂
x
δ̃
}

0
0

0

Γ
{ζ̃
}

−
Γ
{∂
y
ζ̃
}

−
Γ
{∂
t
ζ̃
}

−
Γ
{D̂

3
ζ̃
}

0
0

0
0

T
ab

le
B
.2
:
C
as
e
γ

1
6=

0,
γ

2
=

0

278



Appendix B. Commutation relations
1.
3.

H
ir
ot
a
eq
u
at
io
n
in

2
+
1
d
im

en
si
on

s
(γ

1
=

0,
γ

2
6=

0)

Li
e
sy
m
m
et
ri
es

fo
r
th
is

ca
se

ar
e
gi
ve
n
in

(6
.1
18
)
an

d
th
e
as
so
ci
at
ed

se
ve
n
in
fin

it
es
im

al
ge
ne
ra
to
rs

ar
e

X
1

=
∂
y
,
X

2
=
∂
t,
X

3
=

2y
∂
y

+
3
t∂
t
−
u
∂
u
−
w
∂
w
−
m
∂
m
−
λ
∂
λ
,

Y
[1

]
{K

1
}

=
K

1
∂
x

+
iy 2
K̇

1
(2
u
∂
u
−

2
w
∂
w

+
ψ
∂
ψ
−
χ
∂
χ
)

+
y

2 4
K̈

1
∂
m
,

Y
[2

]
{K

2
}

=
iK

2
(2
u
∂
u
−

2
w
∂
w

+
ψ
∂
ψ
−
χ
∂
χ
)

+
K̇

2
y
∂
m
,

Z
{δ
}

=
δ∂
m
,

Γ
{ζ
}

=
ζ

(ψ
∂
ψ

+
χ
∂
χ
)
.

If
w
e
in
tr
od

uc
e
th
e
di
ffe

re
nt
ia
l
op

er
at
or
s

Ď
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{Ď

2
δ̃
}

−
Z
{K

1
∂
x
δ̃
}

0
0

0

Γ
{ζ̃
}

−
Γ
{∂
y
ζ̃
}

−
Γ
{∂
t
ζ̃
}

−
Γ
{Ď
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B.1. Generalized NLS equation in 2 + 1 dimensions with higher-order terms
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Appendix B. Commutation relations

2. Multi-component NLS equation in 2 + 1 dimensions

This Section is devoted to the analysis of the commutation relations concerning the
Lie symmetries derived in Subsection 2.2 of Chapter 6. The system under considera-
tion in this case is the spectral problem of the multi-component NLS equation in 2+1
dimensions (6.152), described in (6.153). Lie symmetries for this system, displayed
in (6.156), depend on a set of nine arbitrary functions of the different independent
variables and a solely arbitrary constant and its complex conjugate. The following
convention in terms of notation will be assumed:

• Ki(t), Hj(t), i, j = 1, . . . , 3 represent arbitrary real functions of the variable t,
and we shall denote X [j]

{Ki}, X
[j]
{Hj} as their associated infinitesimal generators.

• Ck(y), Jl(y), k, l = 1 . . . , 5 are consider arbitrary functions of the spatial coor-
dinate y, with generators Y [l]

{Ck}, Y
[l]
{Jl} respectively.

• δ(y, t), γ(y, t) are arbitrary real functions of {y, t} and their associated in-
finitesimal generators are Z{δ}, Z{γ}.

• Finally, we have defined Λ{λ}, Λ{λ†} as the infinitesimal generators related to
the arbitrary complex conjugate constants λ, λ†.

With this notation, we have the following eleven symmetry generators:

X
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{K1} =

1

6
x3

...
K1∂m + ix2K̈1
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Z{δ} = δ∂m, Λ{λ} = ψ∂ψ + χ∂χ + ρ∂ρ, Λ{λ†} = ψ†∂†ψ + χ†∂χ† + ρ†∂ρ† ,

where we have used the convention ˙≡ d
dt ,
′ ≡ d

dy . Then, the commutations relations
among these operators may be performed, resulting in the following:
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B.2. Multi-component NLS equation in 2 + 1 dimensions
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