307 research outputs found

    Numerical computing of extremely large values of the Riemann-Siegel Z-function

    Get PDF
    A PhD Ă©rtekezĂ©s egy olyan hatĂ©kony algoritmust mutat be, amely a Riemann-Siegel Z-fĂŒggvĂ©ny kiugrĂł Ă©rtĂ©keinek meghatĂĄrozĂĄsĂĄra szolgĂĄl. A Riemann-fĂ©le zeta fĂŒggvĂ©ny nagyon fontos szerepet jĂĄtszik a matematika Ă©s a fizika kĂŒlönbözƑ terĂŒletein. A zeta fĂŒggvĂ©ny kritikus egyenesen elhelyezkedƑ nagy Ă©rtĂ©keinek meghatĂĄrozĂĄsa hozzĂĄsegĂ­thet minket a prĂ­mszĂĄmok eloszlĂĄsĂĄnak sokkal jobb megĂ©rtĂ©sĂ©hez. A doktori Ă©rtekezĂ©s elsƑ rĂ©szĂ©ben egy olyan algoritmust kĂ©szĂ­tettĂŒnk, amelynek segĂ­tsĂ©gĂ©vel gyorsan Ă©s hatĂ©konyan tudjuk a Riemann-Siegel-Z fĂŒggvĂ©nyben szereplƑ többvĂĄltozĂłs fĂŒggvĂ©nyt közelĂ­teni nagyon sok n egĂ©szre. MĂłdszerĂŒnk többdimenziĂłs szimultĂĄn Diofantikus egyenletek approximĂĄciĂłjĂĄn alapul, melynek megoldĂĄsĂĄra hatĂ©kony algoritmust mutattunk be (MAFRA algoritmus). Ezt az algoritmust felhasznĂĄlva kidolgoztunk egy Ășj algoritmust (RS-PEAK), amelynek segĂ­tsĂ©gĂ©vel gyorsan Ă©s hatĂ©konyan lehet meghatĂĄrozni a Riemann-fĂ©le zeta fĂŒggvĂ©ny kritikus egyenesen elhelyezkedƑ kiugrĂł Ă©rtĂ©keit. Az RS-PEAK algoritmus segĂ­tsĂ©gĂ©vel az MTA SZTAKI Desktop GRID hĂĄlĂłzatĂĄt felhasznĂĄlva sikerĂŒlt nagyon nagy Z(t) Ă©rtĂ©keket publikĂĄlni, köztĂŒk a ma ismert legnagyobbat is, ahol t=310678833629083965667540576593682.05-ra a Z(t) =16874.202 Ă©rtĂ©ket kapjuk. A disszertĂĄciĂł Ă­rĂĄsĂĄnak idƑpontjĂĄban ez a legnagyobb publikĂĄlt Z(t) Ă©rtĂ©k. A doktori Ă©rtekezĂ©sben több a Z(t) Ă©rtĂ©khez kapcsolĂłdĂł szĂĄmĂ­tĂĄsi rekordot publikĂĄltunk

    Formalized Class Group Computations and Integral Points on Mordell Elliptic Curves

    Full text link
    Diophantine equations are a popular and active area of research in number theory. In this paper we consider Mordell equations, which are of the form y2=x3+dy^2=x^3+d, where dd is a (given) nonzero integer number and all solutions in integers xx and yy have to be determined. One non-elementary approach for this problem is the resolution via descent and class groups. Along these lines we formalized in Lean 3 the resolution of Mordell equations for several instances of d<0d<0. In order to achieve this, we needed to formalize several other theories from number theory that are interesting on their own as well, such as ideal norms, quadratic fields and rings, and explicit computations of the class number. Moreover we introduced new computational tactics in order to carry out efficiently computations in quadratic rings and beyond.Comment: 14 pages. Submitted to CPP '23. Source code available at https://github.com/lean-forward/class-group-and-mordell-equatio

    Introduction to Lattices and Its Applications in Compute-and-Forward Strategy

    Get PDF
    The Compute-and-Forward (CF) strategy was proposed as a physical layer network coding (PNC) framework by Nazer and Gastpar in 2011. CF exploits interference to obtain higher rates between users in a network. This thesis focuses on studying the application of the lattice network coding (LNC) for CF strategy using maximum-likelihood (ML) decoding through four influential papers in the area.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN
    • 

    corecore