472 research outputs found

    Using EEG-validated Music Emotion Recognition Techniques to Classify Multi-Genre Popular Music for Therapeutic Purposes

    Get PDF
    Music is observed to possess significant beneficial effects to human mental health, especially for patients undergoing therapy and older adults. Prior research focusing on machine recognition of the emotion music induces by classifying low-level music features has utilized subjective annotation to label data for classification. We validate this approach by using an electroencephalography-based approach to cross-check the predictions of music emotion made with the predictions from low-level music feature data as well as collected subjective annotation data. Collecting 8-channel EEG data from 10 participants listening to segments of 40 songs from 5 different genres, we obtain a subject-independent classification accuracy for EEG test data of 98.2298% using an ensemble classifier. We also classify low-level music features to cross-check music emotion predictions from music features with the predictions from EEG data, obtaining a classification accuracy of 94.9774% using an ensemble classifier. We establish links between specific genre preference and perceived valence, validating individualized approaches towards music therapy. We then use the classification predictions from the EEG data and combine it with the predictions from music feature data and subjective annotations, showing the similarity of the predictions made by these approaches, validating an integrated approach with music features and subjective annotation to classify music emotion. We use the music feature-based approach to classify 250 popular songs from 5 genres and create a musical playlist application to create playlists based on existing psychological theory to contribute emotional benefit to individuals, validating our playlist methodology as an effective method to induce positive emotional response

    Using EEG-validated Music Emotion Recognition Techniques to Classify Multi-Genre Popular Music for Therapeutic Purposes

    Get PDF
    Music is observed to possess significant beneficial effects to human mental health, especially for patients undergoing therapy and older adults. Prior research focusing on machine recognition of the emotion music induces by classifying low-level music features has utilized subjective annotation to label data for classification. We validate this approach by using an electroencephalography-based approach to cross-check the predictions of music emotion made with the predictions from low-level music feature data as well as collected subjective annotation data. Collecting 8-channel EEG data from 10 participants listening to segments of 40 songs from 5 different genres, we obtain a subject-independent classification accuracy for EEG test data of 98.2298% using an ensemble classifier. We also classify low-level music features to cross-check music emotion predictions from music features with the predictions from EEG data, obtaining a classification accuracy of 94.9774% using an ensemble classifier. We establish links between specific genre preference and perceived valence, validating individualized approaches towards music therapy. We then use the classification predictions from the EEG data and combine it with the predictions from music feature data and subjective annotations, showing the similarity of the predictions made by these approaches, validating an integrated approach with music features and subjective annotation to classify music emotion. We use the music feature-based approach to classify 250 popular songs from 5 genres and create a musical playlist application to create playlists based on existing psychological theory to contribute emotional benefit to individuals, validating our playlist methodology as an effective method to induce positive emotional response

    Emotion Embeddings \unicode{x2014} Learning Stable and Homogeneous Abstractions from Heterogeneous Affective Datasets

    Full text link
    Human emotion is expressed in many communication modalities and media formats and so their computational study is equally diversified into natural language processing, audio signal analysis, computer vision, etc. Similarly, the large variety of representation formats used in previous research to describe emotions (polarity scales, basic emotion categories, dimensional approaches, appraisal theory, etc.) have led to an ever proliferating diversity of datasets, predictive models, and software tools for emotion analysis. Because of these two distinct types of heterogeneity, at the expressional and representational level, there is a dire need to unify previous work on increasingly diverging data and label types. This article presents such a unifying computational model. We propose a training procedure that learns a shared latent representation for emotions, so-called emotion embeddings, independent of different natural languages, communication modalities, media or representation label formats, and even disparate model architectures. Experiments on a wide range of heterogeneous affective datasets indicate that this approach yields the desired interoperability for the sake of reusability, interpretability and flexibility, without penalizing prediction quality. Code and data are archived under https://doi.org/10.5281/zenodo.7405327 .Comment: 18 pages, 6 figure

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Brain Music : Sistema generativo para la creación de música simbólica a partir de respuestas neuronales afectivas

    Get PDF
    gráficas, tablasEsta tesis de maestría presenta una metodología de aprendizaje profundo multimodal innovadora que fusiona un modelo de clasificación de emociones con un generador musical, con el propósito de crear música a partir de señales de electroencefalografía, profundizando así en la interconexión entre emociones y música. Los resultados alcanzan tres objetivos específicos: Primero, ya que el rendimiento de los sistemas interfaz cerebro-computadora varía considerablemente entre diferentes sujetos, se introduce un enfoque basado en la transferencia de conocimiento entre sujetos para mejorar el rendimiento de individuos con dificultades en sistemas de interfaz cerebro-computadora basados en el paradigma de imaginación motora. Este enfoque combina datos de EEG etiquetados con datos estructurados, como cuestionarios psicológicos, mediante un método de "Kernel Matching CKA". Utilizamos una red neuronal profunda (Deep&Wide) para la clasificación de la imaginación motora. Los resultados destacan su potencial para mejorar las habilidades motoras en interfaces cerebro-computadora. Segundo, proponemos una técnica innovadora llamada "Labeled Correlation Alignment"(LCA) para sonificar respuestas neurales a estímulos representados en datos no estructurados, como música afectiva. Esto genera características musicales basadas en la actividad cerebral inducida por las emociones. LCA aborda la variabilidad entre sujetos y dentro de sujetos mediante el análisis de correlación, lo que permite la creación de envolventes acústicos y la distinción entre diferente información sonora. Esto convierte a LCA en una herramienta prometedora para interpretar la actividad neuronal y su reacción a estímulos auditivos. Finalmente, en otro capítulo, desarrollamos una metodología de aprendizaje profundo de extremo a extremo para generar contenido musical MIDI (datos simbólicos) a partir de señales de actividad cerebral inducidas por música con etiquetas afectivas. Esta metodología abarca el preprocesamiento de datos, el entrenamiento de modelos de extracción de características y un proceso de emparejamiento de características mediante Deep Centered Kernel Alignment, lo que permite la generación de música a partir de señales EEG. En conjunto, estos logros representan avances significativos en la comprensión de la relación entre emociones y música, así como en la aplicación de la inteligencia artificial en la generación musical a partir de señales cerebrales. Ofrecen nuevas perspectivas y herramientas para la creación musical y la investigación en neurociencia emocional. Para llevar a cabo nuestros experimentos, utilizamos bases de datos públicas como GigaScience, Affective Music Listening y Deap Dataset (Texto tomado de la fuente)This master’s thesis presents an innovative multimodal deep learning methodology that combines an emotion classification model with a music generator, aimed at creating music from electroencephalography (EEG) signals, thus delving into the interplay between emotions and music. The results achieve three specific objectives: First, since the performance of brain-computer interface systems varies significantly among different subjects, an approach based on knowledge transfer among subjects is introduced to enhance the performance of individuals facing challenges in motor imagery-based brain-computer interface systems. This approach combines labeled EEG data with structured information, such as psychological questionnaires, through a "Kernel Matching CKA"method. We employ a deep neural network (Deep&Wide) for motor imagery classification. The results underscore its potential to enhance motor skills in brain-computer interfaces. Second, we propose an innovative technique called "Labeled Correlation Alignment"(LCA) to sonify neural responses to stimuli represented in unstructured data, such as affective music. This generates musical features based on emotion-induced brain activity. LCA addresses variability among subjects and within subjects through correlation analysis, enabling the creation of acoustic envelopes and the distinction of different sound information. This makes LCA a promising tool for interpreting neural activity and its response to auditory stimuli. Finally, in another chapter, we develop an end-to-end deep learning methodology for generating MIDI music content (symbolic data) from EEG signals induced by affectively labeled music. This methodology encompasses data preprocessing, feature extraction model training, and a feature matching process using Deep Centered Kernel Alignment, enabling music generation from EEG signals. Together, these achievements represent significant advances in understanding the relationship between emotions and music, as well as in the application of artificial intelligence in musical generation from brain signals. They offer new perspectives and tools for musical creation and research in emotional neuroscience. To conduct our experiments, we utilized public databases such as GigaScience, Affective Music Listening and Deap DatasetMaestríaMagíster en Ingeniería - Automatización IndustrialInvestigación en Aprendizaje Profundo y señales BiológicasEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizale

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    Use of EEG-Based Machine Learning to Predict Music-Related Brain Activity

    Get PDF
    Music has many awe-inspiring characteristics. Some may refer to it as a “universal language” with the ability to transcend the barriers of speech, while others may describe its ability to evoke intense emotional experiences for the listener. Regardless of the description, it is a commonly held view that music can have many profound effects. Studies of music’s effects have found these beliefs to be more than pure conjecture, finding that music interacts with and changes our brains in physical and emotional ways. Music can even have clinical applications, such as music therapy. This type of therapy has been shown to be beneficial in many areas, ranging from stroke rehabilitation to mental health treatment. The mechanisms behind music’s therapeutic benefit has to do with neuroplastic effects; Being able to harness this benefit in a therapeutic setting could make treatments for mental disorders and brain injuries even more effective. This thesis aimed to discover whether musical thoughts could be interpreted using machine learning, potentially opening the door to the use of thought-based musical training for therapeutic benefit. For this study, EEG data was collected while people were thinking of 5 melodies, then machine learning models were trained on labeled datasets. The models were then tasked with categorizing unlabeled sets of EEG data - in other words, predicting which melody a subject was thinking of while the data was being recorded. The accuracy of the predictions ranged from 45% to 80%, which means that the programs were 2-4 times more accurate than random guessing. This shows that these programs could potentially be used to examine the effects of musical thinking on neuroplasticity. While this topic is still exploratory and requires more research, these results could lead to a promising future of development of music-based brain-computer interfaces

    Melody Informatics: Computational Approaches to Understanding the Relationships Between Human Affective Reasoning and Music

    Get PDF
    Music is a powerful and complex medium that allows people to express their emotions, while enhancing focus and creativity. It is a universal medium that can elicit strong emotion in people, regardless of their gender, age or cultural background. Music is all around us, whether it is in the sound of raindrops, birds chirping, or a popular song played as we walk along an aisle in a supermarket. Music can also significantly help us regain focus while doing a number of different tasks. The relationship between music stimuli and humans has been of particular interest due to music's multifaceted effects on human brain and body. While music can have an anticonvulsant effect on people's bodily signals and act as a therapeutic stimulus, it can also have proconvulsant effects such as triggering epileptic seizures. It is also unclear what types of music can help to improve focus while doing other activities. Although studies have recognised the effects of music in human physiology, research has yet to systematically investigate the effects of different genres of music on human emotion, and how they correlate with their subjective and physiological responses. The research set out in this thesis takes a human-centric computational approach to understanding how human affective (emotional) reasoning is influenced by sensory input, particularly music. Several user studies are designed in order to collect human physiological data while they interact with different stimuli. Physiological signals considered are: electrodermal activity (EDA), blood volume pulse (BVP), skin temperature (ST), pupil dilation (PD), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Several computational approaches, including traditional machine learning approaches with a combination of feature selection methods are proposed which can effectively identify patterns from small to medium scale physiological feature sets. A novel data visualisation approach called "Gingerbread Animation" is proposed, which allows physiological signals to be converted into images that are compatible with transfer learning methods. A novel stacked ensemble based deep learning model is also proposed to analyse large-scale physiological datasets. In the beginning of this research, two user studies were designed to collect physiological signals from people interacting with visual stimuli. The computational models showed high efficacy in detecting people's emotional reactions. The results provided motivation to design a third user study, where these visual stimuli were combined with music stimuli. The results from the study showed decline in recognition accuracy comparing to the previous study. These three studies also gave a key insight that people's physiological response provide a stronger indicator of their emotional state, compared with their verbal statements. Based on the outcomes of the first three user studies, three more user studies were carried out to look into people's physiological responses to music stimuli alone. Three different music genres were investigated: classical, instrumental and pop music. Results from the studies showed that human emotion has a strong correlation with different types of music, and these can be computationally identified using their physiological response. Findings from this research could provide motivation to create advanced wearable technologies such as smartwatches or smart headphones that could provide personalised music recommendation based on an individual's physiological state. The computational approaches can be used to distinguish music based on their positive or negative effect on human mental health. The work can enhance existing music therapy techniques and lead to improvements in various medical and affective computing research
    corecore