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Abstract

Music is a powerful and complex medium that allows people to express their emo-
tions, while enhancing focus and creativity. It is a universal medium that can elicit
strong emotion in people, regardless of their gender, age or cultural background.
Music is all around us, whether it is in the sound of raindrops, birds chirping, or
a popular song played as we walk along an aisle in a supermarket. Music can also
significantly help us regain focus while doing a number of different tasks.

The relationship between music stimuli and humans has been of particular in-
terest due to music’s multifaceted effects on human brain and body. While music
can have an anticonvulsant effect on people’s bodily signals and act as a therapeutic
stimulus, it can also have proconvulsant effects such as triggering epileptic seizures.
It is also unclear what types of music can help to improve focus while doing other ac-
tivities. Although studies have recognised the effects of music in human physiology,
research has yet to systematically investigate the effects of different genres of music
on human emotion, and how they correlate with their subjective and physiological
responses.

The research set out in this thesis takes a human-centric computational approach
to understanding how human affective (emotional) reasoning is influenced by sen-
sory input, particularly music. Several user studies are designed in order to collect
human physiological data while they interact with different stimuli. Physiological
signals considered are: electrodermal activity (EDA), blood volume pulse (BVP),
skin temperature (ST), pupil dilation (PD), electroencephalography (EEG) and func-
tional near-infrared spectroscopy (fNIRS). Several computational approaches, includ-
ing traditional machine learning approaches with a combination of feature selection
methods are proposed which can effectively identify patterns from small to medium
scale physiological feature sets. A novel data visualisation approach called “Ginger-
bread Animation” is proposed, which allows physiological signals to be converted
into images that are compatible with transfer learning methods. A novel stacked
ensemble based deep learning model is also proposed to analyse large-scale physio-
logical datasets.

In the beginning of this research, two user studies were designed to collect phys-
iological signals from people interacting with visual stimuli. The computational
models showed high efficacy in detecting people’s emotional reactions. The results
provided motivation to design a third user study, where these visual stimuli were
combined with music stimuli. The results from the study showed decline in recog-
nition accuracy comparing to the previous study. These three studies also gave a

ix
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x

key insight that people’s physiological response provide a stronger indicator of their
emotional state, compared with their verbal statements.

Based on the outcomes of the first three user studies, three more user studies
were carried out to look into people’s physiological responses to music stimuli alone.
Three different music genres were investigated: classical, instrumental and pop mu-
sic. Results from the studies showed that human emotion has a strong correlation
with different types of music, and these can be computationally identified using their
physiological response.

Findings from this research could provide motivation to create advanced wear-
able technologies such as smartwatches or smart headphones that could provide
personalised music recommendation based on an individual’s physiological state.
The computational approaches can be used to distinguish music based on their pos-
itive or negative effect on human mental health. The work can enhance existing
music therapy techniques and lead to improvements in various medical and affective
computing research.
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Chapter 1

Introduction

This chapter introduces this research by describing music’s impact on human body
and emotions. It provides an introduction to the area of affective computing rele-
vant to the research. Then, the chapter focuses on the primary research questions
and objectives. Finally, the chapter provides the organisation of the thesis, briefly
summarising the focus areas of the remaining chapters.

1.1 Motivation

A famous line penned by Stevie Wonder in his song Sir Duke goes, "Music is a world
within itself, with a language we all understand". Music is an art form enjoyed and
understood by people all around the world. It is a popular form of entertainment
that plays a significant role in our day to day life. Music is also an integral part of a
country’s culture so it shapes the preferences and emotional responses of its people.
Listening to music or playing musical instruments can be an enjoyable experience for
anyone. Music also has the power to elicit different emotions in people, which can
be reflected in their conscious and unconscious responses.

The correlation between music and emotion is often mysterious and thought-
provoking. Let us consider the following scenario. Alice is an employee in a multi-
national company. She had a terrible day at work, she had a big argument with her
colleagues. So she left the office angry, put on her headphones and played the radio.
There is an unfamiliar song playing. Suddenly, she is feeling very calm and relaxed,
the music is even giving her chills. Then she recognised the artist and realised she
always disliked the artist and the song. Thus she is perplexed to see how this partic-
ular song is making her feel so calm. Now let us consider another scenario. Bob is a
university student. After a productive day of studying, he went to the supermarket to
buy some necessary items. After a while, he started to feel irritated. He also started
getting a headache, and he was unsure why he felt such way. He left the super-
market and after a few minutes he started feeling better. Only then he realised that,
it may have been the music playing in the supermarket which caused him discomfort.

Different types of reactions have been reported in regards to people’s reaction to

1
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music. Some of them include: frustration when a particular style of music is played
in a shop, sadness in response to a late-night movie soundtrack, nostalgia evoked by
a familiar song playing on the radio [Juslin and Sloboda, 2001]. There are benefits
from music including increased focus [Huang and Shih, 2011], reduction in stress
and anxiety levels [de Witte et al., 2020; Umbrello et al., 2019], and improvement in
memory and cognitive function [Innes et al., 2017]. Thus, music has a significant
impact on our daily life and activities. Due to such diverse effects and applications
of music, it is frequently used as stimuli in a wide range of applications.

Music has been used as an alternate form of medicine to reduce stress and anx-
iety among people for many years [Umbrello et al., 2019]. Music stimuli are used
in therapeutic interventions which have been shown to improve sleep quality [Feng
et al., 2018a]. It appears that it can affect the emotional and physiological state of a
person, though this is controversial. Experiments have demonstrated that music has
the ability to create specific patterns in the autonomic nervous system (ANS) that re-
flect a relaxing or arousing state [Krumhansl, 1997]. Some studies have demonstrated
that music creates specific patterns in heart rate and blood pressure [Kim and André,
2008]. A significant increase in skin conductance was observed in subjects listening
to emotionally intense music [Sudheesh and Joseph, 2000] and music evoking fear or
happiness [Khalfa et al., 2002]. Skin temperature can also be influenced by listening
to music that induces positive emotions [Hu et al., 2018]. Moreover, according to
brain anatomy researchers, music can affect brain functions in two ways. First, it can
act as a nonverbal medium that can move through the auditory cortex directly to
the limbic system, which is a crucial part of the emotional response system. Second,
it stimulates release of endorphins and allows these polypeptides to act on specific
brain receptors [McCraty et al., 1998].

Due to the power of stimulating different emotional reactions, music therapy has
been used to treat different mental disorders such as stress, anxiety, depression. It has
also been used to treat epilepsy which is a neurological condition affecting around 65
million people all over the world. This condition affects 1 in a 100 people of the world
[Thurman et al., 2011]. While 70 percent of patients with epilepsy can reduce their
frequency of seizures with currently available antiepileptic medications, the other 30
percent are diagnosed with medically refractory epilepsy which cannot be helped by
drugs [D’Alessandro et al., 2017]. People belonging to this category have a higher
risk of death, depression and anxiety [Taylor et al., 2011]. Music therapy has been
used to reduce the frequency of epileptic seizures among patients. However, little
research has been done to understand exactly how music changes the physiological
states of these patients to reduce the frequency of seizures, or how it causes changes
in mental state in general.

Human – Computer Interaction (HCI) is a popular research field that focuses
in large part on the ability of computing to understand human behaviour, and to
a lesser extent their emotions. Emotions are a crucial human aspect to understand
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because they have a huge effect on our intelligence and daily social interaction [Pe-
trantonakis and Hadjileontiadis, 2010]. It has led to the emergence of a field that
specifically deals with this phenomenon, called affective computing. Shouse [2005]
defines affect as the “non-conscious experience of intensity”. Affective computing
refers to analysing the physical and physiological reaction to different emotions. Ac-
cording to Picard [2000], affective computing has three types of applications. They
are: 1) systems to detect the emotions of a user, 2) systems to act as how human
would perceive a certain emotion and 3) systems that could “feel” an emotion. The
research reported in this thesis deals with the first application. Research in this area
of affective computing typically tries to identify human emotion states from their
interaction with different stimuli. The stimuli can be visual such as digital images,
text or videos. It can also be auditory such as music pieces, natural sounds or con-
versation.

Studies in the field of affective computing aim to build computing systems that
can accurately understand human emotions. Understanding emotional reactions to
music could be beneficial for giving personal music recommendations, which could
improve emotional well-being by avoiding inappropriate music. There are different
ways to capture data about people’s emotional reactions. The most common methods
are self-reports [Dindar et al., 2019] and facial expressions [Shan et al., 2017]. Some
other common measures are speech [Huang et al., 2019], pupillary response [Dhall
et al., 2020], hand and body gestures [Noroozi et al., 2018]. However, some of these
methods can be prone to high individual biases. For instance, people often refrain
from showing their true emotions in their facial expression.

Physiological signals are strong measures found in human beings that demon-
strate sensitivity to emotional changes. Emotion recognition using physiological sig-
nals has become a topic of interest for the last few years. This research has a range of
applications such as stress detection [Liao et al., 2018], anxiety measurement [Tarrant
et al., 2018], healthcare and so on. Identifying different physiological signal patterns
caused by different types of music can help in understanding which music should
be used in responding to or even treating different physical and mental disorders.
As physical expressions can often hide true emotions, capturing emotional responses
using physiological signals is beneficial in such cases as these signals are involuntary
and cannot be readily hidden, muted or faked. Studies have also shown that music
can induce universal psycho-physiological responses among different groups of peo-
ple [Egermann et al., 2015]. There are different physiological signals which reflect
human emotions. Some of them are: electroencephalography (EEG), galvanic skin
response (GSR, also known as skin conductance or electrodermal activity), blood
volume pulse (BVP), heart rate (HR), skin temperature (ST), pupil dilation (PD) and
functional near-infrared spectroscopy (fNIRS). With the advent of modern wearable
technologies, collecting physiological signals is becoming easier day by day.

Terms such as ’chills’, ’thrills’ and ’frissons’ are often used by psychology re-
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searchers to describe the psychophysiological moments of musical experience [Har-
rison and Loui, 2014]. A ’frisson’ is ’a sudden strong feeling of excitement’ and
’micro-frisson’ is a sudden small feeling, which is too small to detect consciously, but
is reflected by a person’s physiological signals [Rahman et al., 2019]. In particular,
chills and micro-frissons are closely related and they reflect the emotional intensity
induced by music [Huron and Margulis, 2010]. These sensations are said to be highly
reflected in different physiological measures [Guhn et al., 2007; Craig, 2005]. Thus,
physiological signals can be very useful in analysing the emotional effects of music.
This research takes a human-centric computational approach to understand these
effects.

1.2 Research Questions and Objectives

Due to the complex nature of different physiological signals and music’s ability to
provoke a variety of emotions among people, several research questions can be for-
mulated from this research problem. The main research questions relating to the
relationship between music-induced affect and physiological signals examined in
this research are:

• RQ1: Do different types of music generate different physiological response?

• RQ2: Do other stimuli (e.g. images, videos) have any impact on these physio-
logical responses?

• RQ3: Can other stimuli (e.g. images, videos) be combined with music to un-
derstand their combined effects on physiological responses?

• RQ4: Which physiological signals perform better in differentiating the physio-
logical responses to different stimuli?

• RQ5: Which computational methods are effective to analyse physiological re-
sponse to music and other stimuli?

Based on these research questions, different computational models can be devel-
oped that can classify different music and other stimuli based on participants’ phys-
iological signals while they are engaging with the stimuli. In order to answer RQ1,
RQ2 and RQ3, a number of different approaches are taken including computational,
qualitative, quantitative and visualisation approaches. A total of six user studies are
designed to collect a range of different physiological signals from participants when
they interact with music and other stimuli. In order to answer RQ4 and RQ5, the key
findings from the six user studies are compared. Various data pre-processing, feature
selection and classification methods are applied and compared for these purposes.

The different computational approaches that are taken throughout this research
work can be used in a range of applications. For example, the computational mod-
els can be further extended to develop biofeedback training models that may help
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§1.3 Thesis Outline 5

people change their emotional state while listening to a certain piece of music, e.g.
reduce stress and anxiety levels, or reduce the frequency of epileptic seizures. These
computational models can provide a significant contribution to the field of affective
computing as well as medical research.

1.3 Thesis Outline

The chapters forming this thesis aim to answer the research questions outlined in
section 1.1. Several experiments are conducted to understand the effects of music
and video stimuli in human physiological response. There are a total of eight chap-
ters and three appendices in this thesis. The names of the chapters are given below
with a brief overview of the contents.

Chapter 1: Introduction

This chapter provides the motivation behind the work conducted in this research.
It proposes the research questions and objectives that the studies conducted in this
research aim to address.

Chapter 2: Background and Related Work

The research reported in this thesis lies at the intersection of multiple disciplines.
It draws inspiration from emotion theory, physiology, music therapy, signal pro-
cessing, machine learning and human-computer interaction / affective computing.
This chapter provides the necessary background from these different disciplines that
builds the foundation of the studies conducted during this research. The chapter
primarily focuses on different ways to measure human emotion. It also highlights
relevant research in this area.

Chapter 3: Methods

This chapter focuses on the computational background required to understand
the different experimental designs and methods described in the latter chapters. It
discusses the available dataset related to this research work. It also describes the
stimuli used in different studies reported in the thesis. Then the chapter describes
step-by-step the different computational approaches taken in the studies reported in
chapters 4 to 7. This chapter also highlights some relevant research work related
to the computational methods and provides a foundation for the experiments con-
ducted and reported in the following chapters.

Chapter 4: Effects of Different Stimuli in Human Physiological Response

This chapter reports three short user studies that examine the use of video and
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music stimuli to evoke physiological response in humans. The first two studies only
look at the effects of visual stimuli in human physiological response. The results
of these two studies show that the visual stimuli are effective in invoking emotional
responses in participants, which can be reflected in their physiological responses.
The results of these studies are then used to design an experiment where partici-
pants look at visual stimuli with different music stimuli playing in the background.
The result of that study shows a decrease in the performance of the computational
models compared to the previous two studies. Therefore, in the following chapters,
studies are conducted to focus only on understanding the effects of different music
in human physiological response.

Chapter 5: Effects of Music in Physiological Response

This chapter focuses on a detailed user study to understand participants’ physi-
ological responses to different genres of music. A number of different physiological
signals are collected in this experiment. These are pre-processed and a number of
features are extracted. Different feature selection techniques are tried along with a
neural network model to identify the most effective combinations of features and fea-
ture selection methods. A novel visualisation approach named Gingerbread Animation
is also proposed which is then validated using a transfer learning based computa-
tional model. This chapter provides knowledge on the relationship of participants’
physiological and subjective response with different genres of music.

Chapter 6: Effects of Music in Brainwave Patterns

This chapter expands the study reported on chapter 5. The data was collected
at the same time as the previous experiment, focusing only on participants’ brain
activity responses collected via EEG signals. It also expands on the computational
methods, by comparing the neural network models with two other traditional ma-
chine learning models. The chapter also gives some insights into how specific brain-
waves get impacted by different music. A qualitative analysis on participants’ verbal
comments on the music is also reported. The chapter extends the knowledge derived
from the results of chapters 4 and 5.

Chapter 7: Effects of Music in Hemodynamic Response

The chapter focuses on another user study where participants’ hemodynamic
responses are collected via fNIRS signals. Some of the computational approaches
that showed satisfactory performance in the previous studies are used here. In ad-
dition, a one-dimensional neural network model is explored to draw a comparison
between using automatic feature extraction methods and a handcrafted feature ex-
traction method. A qualitative and visual analysis are also conducted on the different
aspects of the study. This chapter expands on the knowledge from previous chap-
ters. It shows the efficacy of automatic feature extraction over handcrafted features.
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§1.3 Thesis Outline 7

A further comparison is shown between brain activity responses (EEG) and hemo-
dynamic response (fNIRS) and which type of data is a stronger indicator of people’s
emotional response to music stimuli.

Chapter 8: Conclusion

The thesis concludes in this chapter by highlighting the contributions of this re-
search and addressing the research questions specified in section 1.1. Some limita-
tions and potential future application of the work is also discussed.

Appendix A: Experiment Procedure and General Guidelines

The appendix lists the step by step procedure taken in all of the user studies. The
procedures include setting up procedures of each devices and guidelines that are
given to the participants of the studies.

Appendix B: Experiment Related Documents

This appendix includes participation information sheet, consent form, question-
naires and SONA experiment sign up page for the user studies. Materials from one
user study is attached as the other user studies follow the same pattern.

Appendix C: Miscellaneous Materials

Finally, the last appendix includes some links to relevant material, including a
sample video of the Gingerbread Animation.
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Chapter 2

Background and Related Work

This chapter provides a review of the necessary background that is required to es-
tablish the foundation of this research work. It starts with a brief overview of the
emotion theory and model, followed by a detailed description of different measures
of emotion. Following that discussion, the chapter looks into previous research on
the effects of music stimuli in human emotion. Finally, the chapter is concluded
with a report on previous research that looks into the relationship between human
physiological signals and human emotion. This chapter builds the foundation for
the research to computationally understand the relation between music stimuli and
human physiological response.

2.1 Emotion Theory and Emotion Model

Emotions are fundamental to human life. Paul Ekman defined the basic emotion the-
ory by introducing six emotions that are known to be universally experienced across
all cultures [Ekman, 1992]. These six basic emotions are: anger, disgust, fear, happi-
ness, sadness and surprise. There are some distinct characteristics Ekman proposed
regarding basic emotions such as,

• they can be identified through distinctive universal signals like facial expression

• they are associated with distinctive thoughts, memories and images

• they can be found in non-human primates

• they will have rapid onset and short duration

• they are not controlled voluntarily

• they will have physiological correlation and distinct subjective response

An extended version of this basic emotion model is Plutchik’s emotion model
[Plutchik, 2001]. A wheel model was introduced which included a wide range of
emotions including eight basic emotions. These are: anger, anticipation, disgust,
fear, joy, sadness, surprise and trust. Figure 2.1 shows Plutchik’s model.

9
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10 Background and Related Work

Figure 2.1: Plutchik’s wheel of emotions

Researchers of affective computing often use two types of systems to model dif-
ferent emotions. The first one is using discrete labels, Ekman’s basic emotion model
and Plutchik’s model are examples of that. The other one is using multiple dimen-
sions or scales to categorise emotions. The main drawback of discrete labels is that
stimuli can contain blended emotions which cannot be fully expressed just with one
label [Kim and André, 2008]. Therefore a multidimensional space is more appropri-
ate to express these emotions. The common scales used for this are valence (intrinsic
goodness or badness) and arousal (alertness/response readiness). The first model
that described this concept is called the "Circumplex Model of Affect". It was cre-
ated by James Russell in 1980 [Russell, 1980]. The model is two-dimensional, having
arousal and valence situated perpendicular to each other. Figure 2.2 shows an exam-
ple of Russell’s model.

Figure 2.2 shows where each emotion is situated in the multidimensional space.
For instance, happy is considered a high arousal high valence emotion, and sad is a
low arousal low valence emotion. Fear is a high arousal low valence emotion, while
calm is a low arousal high valence emotion. The goal of the research reported in
this thesis is to identify and understand the relationship of different stimuli patterns
with some of the emotions shown in the emotion model. This research explores both
discrete and continuous emotion models.
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§2.2 Measures to Understand Emotion 11

Figure 2.2: Russel’s circumplex model of affect

Whether the emotions are described in discrete or continuous scale, they can be
reflected in people’s facial expressions, body language and physiological reaction.
Therefore, the study of emotions has been developed with the usage of different
types of stimuli that elicit emotions in humans. The elicitation is measured based on
the three types of physical and physiological reaction. While physical reactions such
as facial expression and body language can be seen easily, they also have the disad-
vantage of not necessarily being genuine. Physiological responses are involuntary
and therefore can give a more accurate indication of different emotions. In the fol-
lowing sections, different measures to understand emotional response are described
in greater detail.

2.2 Measures to Understand Emotion

The measurement of emotions has been researched in many different disciplines.
There is still debate on which type of measurement is more suitable to measure dif-
ferent emotions. The commonly used measures are also dependent on the discipline.
However, the biological, social and cognitive processes in emotions are intercon-
nected with each other. Therefore to understand the effects extensively, multiple
measurements can also be used. The measurements relevant to this research work
can broadly be divided in three categories. They are: subjective measures, physio-
logical measures and physical measures. They are described in the sections below.
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12 Background and Related Work

2.2.1 Subjective Measures

Understanding different emotions from subjective self-assessment measures is a very
common approach in affective computing, but it also poses a lot of challenges. Every
person has a different perception in assessing their emotions. Different people view
emotions differently, which leads to inconsistency in definition [Gooty et al., 2009].
Personality, age, gender, and life experiences all have severe impact on the subjective
self-assessment reports for emotion recognition [Hoffmann et al., 2010; Sauter et al.,
2010; Thompson and Voyer, 2014]. The most commonly used structured methods
to assess subjective feelings are surveys, diaries and interviews. While these data
are relatively easy to collect and a large amount of data can be gathered, subjec-
tive self-assessment data does not necessarily provide a very comprehensive dataset.
Therefore, it is hard to get a deeper understanding just from subjective measures.

There are a number of publicly published assessment scales that are used to
collect subjective reports [Ulstein et al., 2007; Harmon-Jones et al., 2016; Gross and
John, 2003; Petrides, 2009]. However, researchers can create their own questionnaire
based on their research goal to collect subjective data. For evaluation of the subjective
ratings the most common approaches used are 5-point and 7-point Likert scale. A
7-point scale is shown to be more reliable than a 5-point scale whereas having a scale
with more than 7 ratings is shown to be impractical [Alwin, 1997]. Even though
self-assessment of subjects has been used for many years in psychology and medical
research, the reliability of these measures are still in question due to the difficulty of
generalising the measures. Therefore, physiological and physical measures are also
used in the recent literature alongside subjective assessment reports.

2.2.2 Physical Measures

The physical measures discussed in this section are known to prominently show
signs related to different emotions. The top physical measures that show efficacy in
identifying emotions evoked by different stimuli are described below:

2.2.2.1 Facial Expression

Facial expressions are the most visible indicator of human emotional state, although
it is not always accurate. Sometimes people try to hide their true emotional state so
facial features do not always reflect their true emotion. To understand the emotion
associated with different facial expression, there is a guide available that defines dif-
ferent expression based on the muscles that produce them. This guide is called “Fa-
cial Action Coding Units” [Ekman and Friesen, 1976]. However, complex emotions
such as depression and surprise can be difficult to understand just with facial ex-
pression as these emotions are expressed using multiple action units [Wegrzyn et al.,
2017]. Regardless of these complexities, facial expressions have been used widely
in the field of affective computing and many computation techniques have achieved
good results in predicting basic emotions [Dino and Abdulrazzaq, 2019; Ahmed et al.,
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2019; Sun and Lv, 2019]. Combining facial expression along with physiological fea-
tures can also improve the accuracy of computational models [Zhang, 2020; Huang
et al., 2017b].

2.2.2.2 Gestures

Different body gestures are correlated to different emotions, some are easily recog-
nisable by other humans while some might not be very obvious. Dominance and
intimacy can be recognised from physical gestures such as head direction and head
tilt direction [Mignault and Chaudhuri, 2003; Andersen and Sull, 1985]. Physical ges-
tures such as head nods, smiles, eye contact are proven to result in better outcomes
in interviews [Edinger and Patterson, 1983]. Features from body gestures have been
used for many years in creating computational models for different emotion and cog-
nitive loads [Kessous et al., 2010; Mitra and Acharya, 2007; Ginns and Kydd, 2019].
Gesture data can be effective in detecting basic emotions such as sadness, joy, anger,
and fear [Kapur et al., 2005; Noroozi et al., 2018]. However, gesture data suffers
from similar issues to facial expression, because these can be done voluntarily, and
therefore may be manipulated.

2.2.2.3 Speech

Speech is a very important and useful physical measure in the field of Human-
Computer Interaction. It is the fastest mode of communication between people and
can be efficiently understood by machines. Thus, a great deal of previous research
in the field of emotion recognition has focused on speech signals. There are different
vocal characteristics that reflect emotional states as well. For instance, higher-pitched
vocal samples have been shown to reflect high arousal emotions such as joy, fear and
anger [Morningstar et al., 2017]. Similarly, low pitch voices can be linked to low
arousal emotion such as sadness [Juslin and Laukka, 2003].

Speech signals are often combined with physiological responses to improve ac-
curacy of the system [Greco et al., 2019]. Speech features have shown to identify
different characteristics between suicidal and non-suicidal adolescents [Scherer et al.,
2013]. A set of features from human speech can be analysed using computational
models to detect seven discrete emotional states [Schuller et al., 2004]. Speech fea-
tures are a popular measure in affective computing [Zhang et al., 2019; Latif et al.,
2020], although finding the appropriate set of features is challenging due to different
studies showing inconsistency in their feature sets used [El Ayadi et al., 2011].

2.2.3 Physiological Measures

A number of physiological signals have been used over the years to detect different
categories of emotions. Some works take only one physiological signal as inputs
while some use a combination of signals as inputs. The most common signals used
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as raw inputs are described below, along with the devices and software used for
them:

2.2.3.1 Electrodermal Activity

Electrodermal activity (EDA), also known as skin conductance (SC) or galvanic skin
response (GSR), is a useful physiological signal which is seen to be sensitive to emo-
tional changes [Kim and André, 2008]. The EDA response fluctuates slowly but
significantly, reflecting the current emotional state, and has been shown to have a
strong correlation with cognitive load [Shi et al., 2007; Lin et al., 2005]. The flow of
electricity along the skin increases during stressful tasks, while it decreases during
a relaxed state. Due to the reliability of data (less prone to noise) and easy analysis
methods, EDA has become one of the most used physiological signals to detect vari-
ous affective states. The signal can be measured by placing electrodes on the surface
of the skin. They are generally placed on the hands; some devices are placed on the
wrist while others require electrodes to be placed on the fingers. Some commonly
used devices for capturing EDA responses are Empatica E4 [E4], Biopac EDA100C
[BIOPAC], Affectiva Q Sensor [Affectiva], BodyBugg [Bodybugg] and BodyMedia
Sensewear [Bai et al., 2016]. The experiments conducted during this research uses
Empatica E4 device to collect EDA signals at the sampling rate of 4Hz. Figure 2.3
shows an image of Empatica E4 device.

Figure 2.3: Empatica E4 device [E4]

Skin conductance signals can be divided into two categories based on their fre-
quency. One is referred to as skin conductance response (SCR) which shows the
rapidly changing peaks in the signal. The other one is called skin conductance level
(SCL) which are the slowly changing levels of the signal. Generally for affective com-
puting, SCR signals are analysed.

As mentioned earlier, EDA signals have been extensively used in the field of
emotion recognition [Feng et al., 2018b; Shukla et al., 2019; Al Machot et al., 2018;
Yu and Sun, 2020; Cecchi et al., 2020]. In addition, research has been done specif-
ically in music emotion recognition, mostly using the DEAP dataset (explained in
section 3.1.3.1) [Al Machot et al., 2019; Bota et al., 2020; Ganapathy et al., 2021]. One
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well-known study that is often cited in research on analysing people’s EDA response
while listening to music was done by Kim and André [2008], achieving 70 percent
accuracy for subject-independent classification of arousal and valence. A small num-
ber of music pieces were considered, and they were chosen based on participants’
individual preference. However, the work did not consider same music pieces for all
of their participants. Therefore, the computational models could not generalise for
large scale data involving multiple participants.

2.2.3.2 Blood Volume Pulse

Blood volume pulse (BVP) refers to measurement of the volume of blood that is
flowing through the tissues of a particular part of the body. It is usually measured on
every pulse. The measurement is done on any part of the body where the pulse can
easily be accessed. The commonly used location for BVP data collection are the pads
of the fingers or the earlobes. BVP has been shown to have a correlation to emotional
state change. For instance, higher stress is said to be reflected by low BVP level and
vice versa [Reisman, 1997]. Therefore this signal is often used in biofeedback training
for reducing stress and anxiety. The sensors are also less complicated than for other
signals, thus BVP is a popular choice for biofeedback based therapy. BVP is generally
obtained by a photoplethysmography (PPG) sensor that detects the amount of light
reflected by an infra-red light on the skin. This gives the amount of blood present
in that certain area. Devices that record EDA such as Empatica E4, BIOPAC can also
be used to record BVP. NeXus BVP is another very popular sensor for collecting BVP
signals [NeXus BVP]. Figure 2.4 shows an image of NeXus BVP.

Figure 2.4: NeXus BVP [NeXus BVP]

The studies reported in this thesis also use Empatica E4 to collect BVP signals.
They are collected at the rate of 64Hz, which means 64 measurements per second.
Along with biofeedback therapy [Speckenbach and Gerber, 1999; Andrasik et al.,
2001; Oded, 2018], BVP signals have also shown effective performance in emotion
recognition [Handouzi et al., 2014; Nakisa et al., 2020]. Combining BVP signals with
EDA has also proven to create a more robust machine learning system [Khan and
Lawo, 2016].
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2.2.3.3 Heart Rate Variability

Heart rate variability (HRV) is a strongly detectable signal that provides information
about the cardiovascular system [Acharya et al., 2007]. These values can show sig-
nificant increase during emotional arousal. HRV has shown strong association with
emotion recognition, particularly social cognition [Quintana et al., 2012]. Combining
other physiological signals with HRV values increases the accuracy of recognising
emotion using various stimuli [Lee et al., 2006; Kulic and Croft, 2007]. Frameworks
have been built using HRV to detect mental stress as well [Bousefsaf et al., 2013]. HR
values can also be derived from raw BVP signals. It can be done by calculating the
inter-beat interval (IBI) values. Therefore some devices that capture BVP also capture
HR data. Both BVP and HRV are strong cardiovascular signals and thus have been
frequently used in emotion recognition. HRV data can also be measured using the
Empatica E4 device. Another well known device to collect this signal is NeuLog sen-
sor [NUL-208]. Figure 2.5 shows an image of NeuLog Heart Rate and Pulse logger
sensor.

Figure 2.5: NeuLog Heart Rate and Pulse logger sensor [NUL-208]

2.2.3.4 Skin Temperature

Skin temperature (ST) is another commonly used physiological measure. Although
it is a relatively sluggish indicator, it is still able to show correlation to different
emotional states. ST tends to increase during the relaxed state while it decreases
during increased stress or anxiety [McFarland, 1985]. ST is measured normally on
the surface on the skin, using the same sensor delivery platform as devices that
measure skin conductance. The Empatica E4 device is used to collect ST signals
studies in this research.

Figure 2.6 shows raw EDA, BVP, ST and HRV signals collected from a participant
using Empatica E4 device.
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Figure 2.6: Raw signals collected using Empatica E4 device [E4]

2.2.3.5 Electroencephalogram

Electroencephalogram (EEG) is the most common physiological signal used to un-
derstand brain activity associated with affective computing [Lin et al., 2010; Nie et al.,
2011; Yang et al., 2019b]. It is used to record brain wave patterns. It is very useful
in detecting mental conditions such as: epilepsy, sleep disorders, stroke, stress and
anxiety [Moore, 2000; Thibodeau et al., 2006; Hou et al., 2015]. The most important
data captured by EEG is the different brain waves which can be divided into multiple
frequency bands. Each of these bands have different functions in the brain. These
brain waves are:

• Delta (δ) waves – These waves are the slowest, having the lowest frequency
range of 0.5− 4 Hz. These waves are not seen in adult brains while they are
awake. These waves are generally associated with deep sleep, as well as dis-
function such as hypoxia and schizophrenia.

• Theta (θ) waves- Having the frequency of 4− 8 Hz, theta waves are produced
during sleep and drowsiness.

• Alpha (α) waves – Alpha waves have the frequency of 8− 12 Hz, and are found
in almost every part of the brain, but mostly in the occipital lobe. These waves
are highly associated with any relaxed state. Alpha waves are often boosted
during meditation or any other stress relieving activities.

• Beta (β) waves – Beta waves (12− 30 Hz) are the most frequently seen brain
waves that reflect the active state of the brain. They are mostly associated with
increased attention and alertness.

• Gamma (γ) waves – These are the fastest brain waves (> 30 Hz), which are
thought to increase cognitive function and boost memory and focus. These
waves can also be found in stroke and epileptic patients [Hughes, 2008a].
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EEG is typically recorded by placing some electrodes on the scalp. The number of
electrodes and what information they capture differs based on the device that is used
to capture the signals. The electrodes have distinguishable names, which reflects the
placement location on the head. The name consists of a letter and a number, the letter
represents the brain lobe while the number represents the position and hemisphere.

There are several devices that are used to record EEG data. The most popular de-
vice is the Emotiv EPOC+ headset, which is a 14-channel wireless headset that also
has 9-axis motion sensors [Emotiv]. It comes with a software (requires paid subscrip-
tion) that can be used to record raw EEG data. From the raw data, different brain
waves and related information can be extracted. There are more versions of Emotiv,
such as Emotiv insight, which has 5 channels and Emotiv EPOC flex, which is a more
flexible, head cap system based version of Emotiv EPOC. Muse is another portable
headband that is gaining popularity for therapy and attention training because of its
free and user-friendly software [Muse]. It also has a free software development kit
that can be used to extract raw EEG data. NeuroSky is a single channel, low cost
device that captures EEG information from the frontal lobe [NeuroSky].

For this research work, EEG data is collected using the Emotiv EPOC headset
device. Data can be collected from the pre-frontal, frontal, temporal and occipital
lobes of the brain. Raw data from the device is collected at a sampling rate of 128
Hz, while the band power data is collected at a sampling rate of 8 Hz. Figure 2.7
shows an image of Emotiv EPOC+. The electrode placement of the device follows
the International 10- 20 System of Electrode Placement [Pastelak-Price, 1983].

Figure 2.7: Emotiv EPOC+ device [Emotiv]

2.2.3.6 Functional Near-infrared Spectroscopy

Functional near-infrared spectroscopy, commonly known as fNIRS, is a wearable,
non-invasive means of measuring cerebral hemodynamic responses (blood flow vari-
ations) using near-infrared light. FNIRS is highly portable, safe, and less susceptible
to noise in comparison to EEG signals. FNIRS has higher spatial resolution but lower
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temporal resolution compared to EEG. Another advantage fNIRS has over EEG is
that fNIRS does not need any conductive gel to connect with different brain regions,
so it greatly reduces setup time and system complexity, and provides ecologically
valid measurements [Curtin and Ayaz, 2019]. Recently, it has shown promising per-
formance in measuring mental workload [Midha et al., 2021] and different emotions
[Tang et al., 2021]. Hence, despite being a relatively new measurement modality,
fNIRS has become a popular choice of physiological signal in brain-computer inter-
action studies.

FNIRS devices can collect responses from the pre-frontal cortex area. The pre-
frontal cortex area of the brain is involved in various functions such as decision mak-
ing, emotion processing and keeping focus [Ramnani and Owen, 2004; Manelis et al.,
2019]. Hemodynamic responses in the brain are measured by changes in two types of
blood oxygen conditions, namely oxygenated hemoglobin (HbO2) and deoxygenated
hemoglobin (HbR). An active state of the brain is generally reflected by an increase
in HbO2 and decrease in HbR as the blood supply overcompensates [Pinti et al.,
2018]. Therefore, the concentrations of HbO2 and HbR measured by the fNIRS used
in this experiment can provide insight into the subjects’ pre-frontal cortex emotion
processing functions.

There are many devices that are used to collect fNIRS signals. Some of them are:
OEG-16 [oeg16], Brite23 [brite23] and LIGHTNIRS [lightnirs]. In the study described
in chapter 7, the NIRSIT device by Obelab [nirsit] has been used. The device is shown
in Figure 2.8.

Figure 2.8: Obelab NIRSIT device

NIRSIT has a total of 24 laser diode sources and 32 detectors. The relative changes
in hemoglobin concentration are measured by using light attenuation of two different
wavelengths: 780 nm and 850 nm. There are 48 primary channels in this device of
which 16 are located on the right, 16 in the center and 16 on the left of the pre-frontal
cortex. In addition, the device also considers the horizontal, vertical and diagonal
connections between channels. Four different distances (15 mm, 21.2 mm, 30 mm
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and 33.5 mm) between channels are considered by the device. This results in a total
of 204 channels. FNIRS data using this device is collected at the sampling rate of
8.138 Hz. The channel locations are shown in Figure 2.9.

Figure 2.9: Nirsit device channel locations at 30 mm separation

2.2.3.7 Pupillary Response

Human eyes provide valuable information on their emotions and current mental
state. There are various features that can be derived from the eye such as pupil di-
lation, blinking rates, eye gaze point, fixation point and saccade and fixation times.
Among these, pupil dilation, which is the measurement of pupil size over time,
is considered a very effective feature in emotion recognition [Partala and Surakka,
2003]. Pupil diameter changes are said to reflect changes in brain state [Larsen and
Waters, 2018]. Various eye-tracking devices are used to collect different features from
human eye. Typically in lab based experiments these devices are placed aligning
with a computer screen so it can track where a person is looking at the screen.

Some popular devices and software used for eye tracking are The Eye Tribe [Eye-
Tribe], FaceLAB [FaceLAB], Pupil Labs [PupilLabs]. The Eye Tribe is used to collect
pupillary response in the study reported in chapter 5. Figure 2.10 shows an image of
The Eye Tribe.
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Figure 2.10: The Eye Tribe device

Eye movements are useful in predicting human reaction to any audio or visual
stimuli. Eye gaze has also been used to understand how people perceive manipu-
lation in digital images [Caldwell et al., 2015]. Pupil dilation has been used as an
indication of emotional arousal such as stress [Zhai and Barreto, 2006]. Changes
in pupil dilation have been seen while subjects listen to familiar music and vocals
[Weiss et al., 2016]. Therefore it can be a useful signal to identify the effects of differ-
ent music.

2.2.3.8 Other Signals

There are various other physiological signals that have been used for emotion recog-
nition related research problems. Some of them are blood pressure (BP), respiration
rate, accelerometer (ACC), electromyography (EMG) and electrocardiogram (ECG).
Increase in blood pressure can reflect emotional arousal such as fear [Kim et al., 2004]
and stress [Vrijkotte et al., 2000]. In addition to heart rate and blood pressure, positive
and negative arousal can be also reflected from an increased rate of respiration [Rigas
et al., 2007]. ECG and EMG, along with EEG have been used to detect cognitive load
and stress [Katsis et al., 2008; Healey and Picard, 2005]. Accelerometer signals can be
useful to detect movements associated with different emotions [Quiroz et al., 2017].
These other physiological signals are not considered for further exploration due to
their low effectiveness in identifying emotions elicited by music or video stimuli.

2.2.4 Research on Music and Physiological Signals

Research to understand the effects of different genres of music on human physiolog-
ical signals is a relatively new area. However, music has been extensively researched
to be used as stimuli for therapy. There has been some popular work with music in
the area of psychology and sleep research. Music stimuli has also been researched
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in the field of emotion recognition. Physiological signals have also been researched
a lot in the field of emotion recognition. In the sections below, some well-known
and recent works in these areas are discussed briefly. These works form the basis
for designing experiments reported in this thesis, that combine music stimuli and
physiological signals.

2.2.4.1 Music as Therapy

Music therapy has been a well-known method to reduce many mental health issues
and epileptic seizures. In a study conducted by Li and Xiong [2016], 90 students
were divided into three groups where one group received music therapy, one group
received music therapy along with biofeedback training and the third was the control
group. The results demonstrated that music therapy in combination with biofeed-
back training has a significantly greater effect in reducing anxiety among students.
In Yang et al. [2016], 22 psychiatric patients were divided into three groups based
on their level of anxiety (mild, moderate and severe). They listened to 20 minutes of
music for 10 days and their finger temperature and EEG were measured before and
after music intervention. The results showed a significant decrease in anxiety across
all three anxiety levels after the music intervention. Lee et al. [2016] performed a ran-
domised controlled trial (RCT) on 64 students to measure effects of music therapy
on stress. They found significant differences in blood pressure, diastolic blood pres-
sure, pulse, SDNN, normalised low frequency, normalised high frequency of signals,
and subjective stress after music therapy. One study on the effects of music in sleep
quality was performed by Huang et al. [2017a]. They did a randomised controlled
trial on 71 adults and divided them into control group, music group and music video
group. Results showed that the music group had significantly longer subjective total
sleep time than the control group and music video group. Coppola et al. [2015] used
a set of Mozart’s compositions for 2 hours per day for fifteen days on 11 patients
with drug-resistant epileptic encephalopathy. They found that 5 out of 11 patients
had a 50% reduction in their frequency of seizures. They also reported a significant
improvement in the patients sleep and daily behaviour.

While music can be highly influential in reducing seizure frequency in many pa-
tients, some reports have demonstrated that music can also trigger seizures. One
form of epilepsy called musicogenic epilepsy is prevalent in 1 out of 10,000,000 peo-
ple. It is classified as a rare form of epileptic disorder [Berg et al., 2010]. In this kind
of epilepsy, seizures can be provoked by listening to music, playing or even think-
ing of music [Sutherling et al., 1980; Ogunyemi and Breen, 1993]. According to a
review done by Pittau et al. [2008], between 1884 and 2007 there were 110 reports of
music-evoked seizures. One third of these cases showed epileptic seizures happened
only because of music, while the rest reported other factors as well. Different types
of music for instance classical, instrumental, or jazz, or specific instruments or even
composers are said to have an impact on these type of seizures. A case study [Brien
and Murray, 1984] reported a patient who has seizures while listening to music by
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certain singers having a voice with “throaty” and “metallic” quality.

Music seems to have both proconvulsant and anticonvulsant effects on epileptic
disorders. However, there is little research to understand these effects on a physio-
logical level. Current clinical studies have not been able to explain why more neutral
music (e.g. a specific sound) can invoke seizures in epileptic patients [Wieser et al.,
1997]. A review by Hughes [2008b] discusses the presence of gamma brain waves in
a majority of the seizures, particularly during ictal (seizure) activity in extratempo-
ral and regional onsets. On the other hand, it is commonly known that increasing
gamma waves in the brain can be beneficial as these waves are known to improve
focus, cognition and memory formation. This is why many music therapy sessions
use music or video stimuli to increase gamma waves in the brain to enhance cogni-
tive ability. These multiple applications of music are fascinating and it is certainly
worthwhile to explore how human physiological signals change pattern in response
to music stimuli.

2.2.4.2 Different Measures for Music Emotion Recognition

There are many different areas where emotion recognition has been studied using
music stimuli to elicit the basic emotions. The emotion labelling of these stimuli has
primarily relied on the human participants annotating them. Some of the known
examples of such work were done by Turnbull et al. [2008] and Trohidis et al. [2008].
The first work created a dataset of 500 songs with 18 different emotions annotated
by three non-expert listeners. In the second work, 593 songs were annotated to six
basic emotions by three expert listeners . It can be noticed that these methods can be
highly time consuming and only few human participants’ responses can be collected.
Therefore, the annotating may not be considered reliable. Another similar approach
involves social tagging, which was done by Miller et al. [2008]. They used the social
tags from the Last.fm website to get 960,000 free-text tags to annotate a large number
of songs . While this approach is beneficial in getting a larger set of data, it suffers
heavily due to not having a distinct structure of how the tags were given.

Automatic annotations have also been conducted based on different spectral, tem-
poral and rhythmic features of the music. Features such as high pitch, fast tempo and
bright timbre are associated with high arousal, while low pitch, slow tempo and soft
timbre are related to low arousal. Similarly, music played in major key or tonal music
are related to high valence. In contrast, music played in minor key or having atonal
quality corresponds to low valence [Yang and Chen, 2011b]. Features such as song
lyrics have also been correlated to emotion values [Yang et al., 2011]. Using musical
features are an effective method to capture the music’s emotional content. However,
they still do not reflect how humans perceive that music. Thus in this research, the
focus is on identifying musical emotional response based on human physiological
signals. The following section mentions some works in the literature that showed
success in using physiological signals for emotion recognition.
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2.2.4.3 Physiological Signals Based Emotion Recognition

A number of researchers have identified different categories of emotion using phys-
iological signals. A variety of audio and visual stimuli have been used to elicit dif-
ferent emotions. Most of the work involve the use of images, text or videos as the
stimuli for emotion recognition. Wu et al. [2010] collected skin response signals from
participants when they watched six videos inducing the six basic emotions: sur-
prise, fear, disgust, grief, happy and angry. A particle swarm optimization (PSO)
based algorithm reached 78.7%, 73.4%, 70.5%, 62.6%, 62.5% and 44.9% respectively
in classifying these emotions. In a research conducted by Valenza et al. [2011], three
types of physiological signals (ECG, EDA and RR) were collected when participants
watched image stimuli from the International Affective Picture System (IAPS). The
stimuli contain five levels of arousal, and neutral as reference. A quadratic discrimi-
nant classifier (QDC) based model using features from the three signals reached over
an average of 90.0% classification accuracy. Sharma and Gedeon [2013] used stress
inducing and non-stress inducing texts to collect various physiological and physi-
cal signals from subjects. The model achieved 98.0% accuracy. Picard et al. [2001]
collected many physiological signals such as heart rate (HR), temperature and skin
conductance (SC), and used personalised imagery to evoke emotions in one subject.
They achieved an accuracy of 81.0% for eight emotions.

Physiological signals have been used to design experiments to reduce epileptic
seizures as well. Nagai et al. [2004] conducted biofeedback training using a series of
animated pictures as stimuli to collect galvanic skin response (GSR) signals from 18
patients with drug-refractory epilepsy. Compared to the control group, the biofeed-
back group showed a correlation between their GSR responses and a reduction in
frequency of seizures. In a recent study done by D’Alessandro et al. [2017], Mozart
sonata for two pianos in D major, K448, was used on 12 patients with epileptic disor-
der for six months. They observed an average of 20.5% reduction in their frequency
of seizures.

Based on the literature it is evident that there are certain kinds of music that are
being used to reduce stress, anxiety and epileptic seizures. However, this intuitive
approach has not been empirically explored by experimentation to understand if dif-
ferent music genres have different effects, and what specific physiological signals are
beneficent to detect these effects. This research explores this phenomena in greater
detail.

2.3 Summary

This chapter presented a survey of different measurements to understand emotions.
Based on the previous work done in this area, it is evident that physiological signals
can provide the strongest and most accurate measurements, when the emotions are
elicited by different stimuli. It also provides evidence that music can be an effective
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medium to elicit emotions. The following chapter discusses different computational
approaches that can be used to understand the effects of music in physiological sig-
nals. Existing music datasets are introduced which have been used to collect phys-
iological responses. Along with music, some visual stimuli are also discussed, as
one of the goals of this research is to understand what other types of stimuli can be
combined with music to elicit emotions that can be computationally analysed.
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Chapter 3

Computational Methods to Analyse
Human Physiological Signals

This chapter elaborates on the various computational approaches needed to be taken
to analyse human physiological signals. It starts by discussing various audio and
visual stimuli that are used to invoke emotional reactions. Then the stimuli used in
various experiments throughout this thesis are listed. Subsequently, step-by-step de-
scriptions are provided to illustrate the different stages of physiological data analysis
and the commonly used methods used to complete these analyses. Relevant research
articles from the literature are highlighted where these methods were used to analyse
human physiological responses.

3.1 Stimuli

This section starts with brief descriptions of some existing datasets that uses music
stimuli. There are several limitations of these datasets which are described in the
next subsections. Based on these existing datasets and their limitations, a new set of
stimuli is introduced which is used for the experiments of this research. A number
of existing datasets involving video stimuli are also introduced. These datasets are
used in some of the preliminary experiments of this research.

3.1.1 Music Datasets Used in the Literature

• DEAP [Koelstra et al., 2011] - This dataset contains EEG and peripheral physio-
logical signals collected from 32 participants while they watched 40 one-minute
long music videos. Participants’ ratings were reported based on arousal, va-
lence, dominance and familiarity levels. Classification using a decision fusion
based approach was also applied. This dataset has been widely used in stud-
ies on physiological signal based emotion recognition [Ünal et al., 2020]. The
dataset is publicly available. A drawback of using this database is that it is not
possible to understand the effects of music alone.

27
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• PMEmo [Zhang et al., 2018a] - PMEmo is a dataset for music emotion recog-
nition from different popular music pieces. It contains emotion annotations of
794 songs and EDA signals collected from 457 subjects. The chorus was manu-
ally extracted from each music piece, which was listened to by the participants.
However, the paper does not address why this method was chosen for the sce-
nario. The stimuli are not suitable for a real world setting where people would
listen to a piece of music from the beginning, not just the chorus. Generally
someone would listen to a music piece from the beginning for some time in
order to develop an emotional response to the music. Along with DEAP, this
is the only dataset that contains participants’ physiological responses to music.
The dataset is currently not available publicly.

• Emotify [Aljanaki et al., 2016] - This dataset contains 400 musical excerpts from
four different genres annotated with induced emotion. The participants man-
ually annotated the excerpts to nine different emotion categories (amazement,
solemnity, tenderness, nostalgia, calmness, power, joyful activation, tension,
sadness). An advantage of this dataset is that the music excerpts are one minute
long, which gives a longer time for the participants’ emotion to be induced.
However, this dataset only contains verbal responses, which does not suit the
experiments for research involving physiological signals.

• emoMusic [Eerola and Vuoskoski, 2011] - The dataset contains 110 film music
excerpts which were labelled by 116 participants into five discrete emotions
(anger, fear, sadness, happiness and tenderness). The music excerpts were 45
seconds long. Analysis was conducted on the valence and arousal level of par-
ticipants’ responses. This dataset also does not contain any physical or phys-
iological responses. The dataset could partially be compared to DEAP as the
data has both music and video components. However, it is not suitable for the
purposes of this research as the dataset contains film music excerpts.

• MER60 [Yang and Chen, 2011a] - The dataset contains excerpts from 60 English
pop songs. A limitation of this dataset is similar to PMemo where chorus
excerpts were manually extracted from the song for use as stimuli, which does
not replicate real world settings of evoking emotional reactions. The dataset
was created for mood regression tasks and only valence and arousal annotation
was reported. Another characteristic of the database is that all of the annotators
were from a Chinese cultural background. It is unclear whether this created
differences in the annotations of the all English songs.

3.1.2 Limitations of the Available Datasets

There are several limitations of the existing music datasets which posed a challenge to
their use in the experiments. One of the primary limitations were the genre and du-
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ration of music used in the datasets. As reported in section 3.1.1, most of the datasets
contained excerpts that were manually extracted from the music pieces. These ex-
cerpts are sometimes too short (< 30 seconds) which may not be enough to evoke a
strong emotional response. In addition, many of these excerpts were extracted from
the middle of the song, e.g. the chorus. In a real world scenario, people usually listen
to a music from the very beginning, and often form an emotional reaction during the
intrduction of the song. The initial lyrics of the song is also an important part to
understand the emotion that is being portrayed. Thus, recording the reaction to the
beginning of a music is a crucial part of this investigation.

Furthermore, none of the datasets (except DEAP) are currently available publicly,
and thus were not able to be used for comparison purposes. DEAP has been ex-
tensively studied in the literature. It also contains both music and video stimuli in
the same component, which is not suitable for the research objective of this work.
Therefore, this dataset was not used.

Music therapy studies have predominantly seen the use of classical music stimuli
during therapy. However, using only one type of stimulus is not prudent and limits
the ecological validity of the results [Harrison and Loui, 2014]. It is necessary to use a
combination of different genres as this is how people listen to music in general. Thus,
alongside classical, music stimuli from instrumental and pop music genres were also
chosen for this research.

3.1.3 Stimuli Used in the Experiments

Based on the existing literature, datasets and their limitations, the music and video
stimuli were selected for the experiments described in chapters 4, 5, 6 and 7. They
are described in detail in the following sections.

3.1.3.1 Music

A total of 12 music pieces were used for the experiments which were divided into
three categories: classical, instrumental and pop. These music stimuli were chosen
based on some specific characteristics. After analysing a number of classical music
stimuli, Hughes suggested that music stimuli which have a long lasting periodic-
ity (phrases spanning several bars of music) have a positive influence on the brain
[Hughes and Fino, 2000]. Therefore, four classical music stimuli with this feature
were selected.

Binaural beats are a type of audio stimulus which can synchronise brainwaves to
enhance specific brainwave patterns [McCraty et al., 1998]. These beats have differ-
ent applications depending on which types of brainwaves are being enhanced. For
this research, two different types of binaural beats were chosen: a piece that increases
gamma waves in the brain to regain focus and awareness [Gamma, 2016], and a piece
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that increases alpha waves in the brain, primarily used for meditation and relaxation
[Alpha, 2017]. The other two instrumental piece chosen were used by Hurless et al.
to analyse the effects of these stimuli in producing alpha and beta waves on the brain.
Finally for the pop stimuli category, four music pieces were selected based on the No.
1 song of the Billboard Hot 100 year-end charts from years 2014-2017 [Billboard]. The
names of the 12 music stimuli and their corresponding genres are shown in Table 3.1.

Table 3.1: Music stimuli used in the experiment

Genre and Stimuli No. Music Stimulus Name
Classical 1 Mozart Sonata K.448 Coppola et al. [2015]
Classical 2 Mozart Sonata K.545 Lin et al. [2013]
Classical 3 F. Chopin’s ”Funeral March” from Sonata in B

flat minor Op. 35/2 Hughes and Fino [2000]
Classical 4 J.S Bach’s Suite for Orchestra No. 3 in D ”Air”

Hughes and Fino [2000].
Instrumental 1 Gamma Brain Energizer Gamma [2016]
Instrumental 2 Serotonin Release Music with Alpha Waves Al-

pha [2017]
Instrumental 3 "The Feeling of Jazz" by Duke Ellington Hur-

less et al.
Instrumental 4 "YYZ" by Rush Hurless et al.
Pop 1 "Happy" by Pharrell Williams
Pop 2 "Uptown Funk" by Mark Ronson featuring

Bruno Mars
Pop 3 "Love Yourself" by Justin Bieber
Pop 4 "Shape of You" by Ed Sheeran

3.1.3.2 Video

Video datasets used in this experiment were chosen to compliment the music emotion
recognition tasks of the experiments. These datasets were used in the experiments
described in chapter 4. The datasets are described below:

• Acted Facial Expression In The Wild (AFEW) [Dhall et al., 2011] - This dataset
contains clips from 957 videos that contain emotions in six basic emotions:
angry, happy, disgust, fear, sad, surprise and neutral. The sequence lengths of
the videos are 300 - 5400 ms.

• UvA-NEMO Smile Database [Dibeklioğlu et al., 2012] - This database contains
1240 videos from 400 subjects. The smiles are classified into two classes: gen-
uine and posed.
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• MAHNOB-HCI [Soleymani et al., 2011a] - In this dataset, physiological signals
from 27 participants were collected while they watched 20 emotional videos.
They reported their arousal and valence level for those videos.

• MMI [Pantic et al., 2005] - MMI is a web based database that has facial expres-
sion data from 61 participants acting different emotions and 25 participants
reacting to those emotional videos.

• Anger dataset [Chen et al., 2017b] - This dataset follows a similar approach
to the UvA-NEMO database, the difference being the use of video containing
anger instead of smiles. It contains a total of 20 videos that include sponta-
neous and acted anger.

3.2 Computational Methods

The computational approaches to understand the relationships between music and
human affective reasoning involve multiple steps. These steps include: data collec-
tion, pre-processing, feature extraction, feature selection and classification. Figure
3.1 shows a summary of the computational techniques used in the later chapters of
this thesis.

3.2.1 Experiment Design and Data Collection

In order to analyse human physiological signals, first the signals need to be collected
in a real life setting or lab-based experiments. Signals collected during a real life set-
ting are highly prone to noise and often a large number of data need to be discarded
because of that. Therefore a majority of the time, signals are collected using a lab
based experiment where the environment can be controlled by the researcher more
easily. Experiment designs are primarily divided into two types. The first one is
between group design, where one group participates in only one experiment condi-
tion. So the two groups that are being compared are exposed to different experiment
conditions. The second type is within group design, where both the conditions con-
sidered for comparison are carried out in the same experiment process. This means
that all of participants experience multiple experiment conditions. Depending on the
goal set up for the experiment, the appropriate design method is chosen. The studies
reported in this thesis follows the within group design.

While collecting data, it is important to measure the effects the researcher is in-
terested to observe and analyse. These are called dependent variables. In order to
understand the outcome of the dependent variables, researchers need to control a
number of other variables. These are known as independent variables.
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Figure 3.1: Summary of methods used in the computational analysis
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In this research, depending on the experiment, the independent variables will be
different audio and video stimuli, and the dependent variables will be the changes
in participants’ physiological responses.

After setting up the dependent and independent variables, a number of external
environment variables are considered. These need to be kept as consistent as pos-
sible for every experiment so that they do not influence the outcome of dependent
variables. Some examples of these environment variables are: location and time of
day of the experiment, room temperature, participant age range, gender.

3.2.2 Data Pre-processing

Physiological signals collected from subjects during the experiment are highly prone
to artefacts caused by subject movements, such as blinking during eye gaze tracking.
In addition, sometimes a few channels of the devices fail to receive a good connec-
tion and therefore add noise artefacts to the collected signals. Therefore, it is very
important to use some pre-processing techniques to remove these artefacts before
doing any further analysis. Several standard pre-processing methods currently ex-
ist for physiological data. Some of them are: normalisation, filtering and baseline
correction. These steps are necessary to perform in order to remove various artefacts
and make the data suitable for next steps such as, feature extraction, feature selection
and classification.

3.2.2.1 Filtering

To remove noise caused due to various environmental factors and device issues, it
is crucial to apply some filtering techniques on the signals. There are a couple of
filtering techniques used to remove artefacts from physiological signals. Standard
physiological signal filters used in this research are:

• Median Smoothing Filter – This is a kind of a smoothing technique which re-
places each data point with the median of its neighbouring data points. Median
filters are frequently used in signal processing as well as image processing.

• Butterworth Filter – This low pass filter is also called a maximally flat filter as
it has a flat frequency response in the passband. It uses a cut-off frequency and
all frequencies higher than that value are changed to zero. Butterworth filters
are often used to filter EEG and skin conductance response signals.

• Band-pass filter – Band-pass filter uses two cut-off frequencies and rejects any
frequency points that lie outside of these two frequencies. Some variations of
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this filtering techniques are high-pass and low-pass filters, where only one cut-
off frequency is used.

• Band-stop filter – A band-stop filter uses two cut-off frequencies and rejects any
frequency point that lies between these two frequencies.

3.2.2.2 Normalisation

The values from different physiological signals are subject-dependent, which means
they have different ranges of values. So it is necessary to use some normalisation
methods on these raw signals to bring all the values within one range. The com-
monly known techniques for physiological data normalisation are defined below.
These methods have been applied to this research’s experiment data and the method
that leads to better performance has been chosen.

• Min-max normalisation – The min-max normalisation technique converts the
collected data to bring them within a range, specified by a minimum and max-
imum value. The equation for min-max normalisation is,

v′ = ( v−min_v
max_v−min_v ) ∗ (new_max− new_min) + new_min

(3.1)

Where, v′ corresponds to min-max normalised data and v is the range of raw
data, max_v and min_v are the maximum and minimum value of v respectively.

For example, if new_min = 0 and new_max = 1, all the values will be nor-
malised to have a value within the range of 0 to 1. This technique is a popular
choice for pre-processing physiological signals as it removes the subject specific
variance in the response.

• Normalisation by Z-score – This technique converts all the attributes to a com-
mon scale with the average of zero and standard deviation of 1. This equation
for Z-score normalisation is the following:

e′ = ei−E
std(E)

(3.2)

Here, it is assumed that there are multiple rows of values where each row
contains multiple different variables. The above equation gives the normalised
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value of data ei which is located in the i column of row E. Note that std stands
for standard deviation.

• Decimal Scaling – This is a normalisation technique which moves the decimal
point of values in the dataset. The equation for this technique is,

v′ = vi

10j

(3.3)

Here vi represents every value in the dataset and j represents the number of
digits in the largest number.

3.2.2.3 Baseline Correction

As previously mentioned, physiological signals are quite sensitive to noise generated
by participants’ head and body movements. They are also affected by noise from
the external environment. These interference effects often result in shifts from the
baseline values and fast spikes in the signals. In such scenarios, an additional step of
baseline correction is necessary. This step is often needed for spectroscopy signals.
Some widely used baseline correction techniques are listed below. Similar to normal-
isation techniques, both approaches listed below have been applied to this research’s
experiment data and the method that leads to better baseline correction has been
chosen.

• Polynomial fitting - This method removes the noisy signal elements without
losing the information of small peaks that may hold important information.
In the literature, several algorithms have been proposed using this technique
[Lieber and Mahadevan-Jansen, 2003; Zhao et al., 2007; Lan et al., 2007; Zhang
et al., 2010].

• Wavelet transforms - This technique is based on decomposing a signal based
on mathematically defined functions (wavelets). This technique has gained
popularity in image processing as well as physiological data analysis [Bertinetto
and Vuorinen, 2014; Shao and Griffiths, 2007]

3.2.3 Feature Extraction

Physiological signals collected using multiple devices provide a large amount of data
for each participant. Not only is it difficult to analyse the entire set of recorded data, it
is also computationally very expensive. Therefore, a number of features are extracted
from the data after finishing the data normalisation and filtering. The extracted fea-
tures can illustrate different properties of the signals such as statistical trends and
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randomness properties. These manually extracted features (also known as hand-
crafted features) can broadly be divided into two categories, time domain features
and frequency domain features. Time domain features could further be divided into
linear and non-linear features.

There are a number of papers in the literature that talk about commonly used
features in affective computing [Picard et al., 2001; Valstar et al., 2016; Samara et al.,
2016; Acharya et al., 2019; Chowdhury et al., 2013; Katsis et al., 2008; Triwiyanto et al.,
2017]. Here are some of the features that can be calculated from the physiological
signals, shown in Table 3.2:

Table 3.2: List of features for physiological signal analysis

• Mean • Minimum
• Maximum • Standard Deviation
• Skewness • Kurtosis
• Interquartile Range • Variance
• Number of peaks for each periodic signals • Summation
• Absolute Summation • Mean amplitude rate
• Average Amplitude Change • Root Mean Square
• Average of the power of signals • Integrated Signals
• Ratio of the maximum and minimum • Log Detector
• Difference Absolute Standard Deviation Value • Mean rise duration
• Mean of the absolute values of the first differences • Simple Square Integral
• Mean of the absolute value of the second differences • Approximate Entropy
• Detrended Fluctuation Analysis • Fuzzy Entropy
• Shannon’s Entropy • Permutation Entropy
• Hjorth Parameters • Hurst Exponent
• Power spectral density analysis

Depending on the data, time and/or frequency domain features are extracted
from it. There are also various techniques that are used to convert from time to
frequency domain or vice versa. Some of the commonly used methods are Fourier
Transformation, Wavelet Transformation, and Principal Component Analysis. These
methods are briefly described below:

• Fourier Transformation (FT): FT is done by taking an N point time domain
signal and decomposing it into N frequency domain signals each containing a
single point.

• Wavelet Transformation (WT): WT is similar to FT, and is used to convert time
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domain features to frequency domain by dividing the signal into frequency
components instead of time. The difference between FT and WT is that while
FT is good at giving a global frequency information, it does not provide details
on the time components associated with the frequency. WT overcomes this lim-
itation by providing the time-frequency localisation.

3.2.4 Feature Selection

The feature selection process is often used before classification in order to reduce
the dimension of the feature space. Sometimes the extracted feature set can contain
redundant or noisy features. Feature selection algorithms can identify those features
and remove them from the set. A reduced number of features can also result in
a shorter run time for the classification process, which means it helps create a ro-
bust system. Having irrelevant features can significantly decrease the performance
of classification models [Kohavi and John, 1997]. Pohjalainen et al. [2015] provided a
detailed explanation and comparison of many state-of-the-art feature selection meth-
ods. The feature selection process can be done in two ways. One is to rank each of
the features and select a fixed number of top ranked features to build the feature set;
the other way is to select different subsets of features and classify in order to find the
optimal set. Some feature selection methods used for physiological data are briefly
described below, all of them are explored in the experiments of this research:

3.2.4.1 Feature Ranking Methods

• Statistical Dependency (SD) - SD ranks all the features by measuring if the val-
ues of the features are dependent on their class labels or not.

• Minimal-redundancy-maximal-relevance (MRMR) [Peng et al., 2005] – Features
are ranked according to the mutual information between features and their
associated class labels.

3.2.4.2 Feature Subset Methods

• Genetic Algorithm (GA) [Man et al., 1996; Yang and Honavar, 1998] - A heuris-
tic optimization method that selects a subset of features having the best fitness
value.

• Sequential Forward Selection (SFS) [Whitney, 1971] - This is a greedy search
method that starts with an empty feature set and adds features according to
their contribution in maximizing the output.

Draft Copy – 30 September 2022



38 Computational Methods to Analyse Human Physiological Signals

• Sequential Floating Forward Selection (SFFS) [Pudil et al., 1994] - This is an
extension of SFS where after each forward step, the method executes backward
steps until the objective function increases.

• Random Subset Feature Selection (RSFS) [Räsänen and Pohjalainen, 2013] - This
method ranks every feature based on their relevance values and then chooses a
subset of features based on that ranking. The relevance values are updated at
each iteration until a (locally) optimal set of features is found.

3.2.5 Classification Methods

After extracting and selecting a good set of features from the collected data, the next
and final step is to classify them into different categories based on the goal of the
study. In this section, some of the state-of-the-art classification techniques commonly
used are discussed.

3.2.5.1 K-Nearest Neighbour

The nearest neighbour method selects a particular point’s label based on the labels of
its neighbouring labels. The most commonly used method is the K-nearest neighbour
(KNN) method where the value of k describes the number of neighbours taken into
account . An advantage of this method is that it is faster compared to many other
machine learning techniques, and it always converges. However, determining the
value of k is the most challenging aspect of using this classifier as it has a huge effect
on the classification accuracy. With the increasing capability of collecting large scale
physiological data, using KNN to create a robust classification model is becoming
more challenging. Despite this, KNN is widely used in many emotion recognition
papers that are based on physiological and physical signals [McDuff et al., 2012;
Palanisamy et al., 2013; Mehmood and Lee, 2015; Shukla and Chaurasiya, 2018; Xie
and Xue, 2021].

3.2.5.2 Decision Trees

Decision trees build classification models as a tree structure. Data is broken into
smaller subsets to form decision nodes and leaf nodes. Classification labels are repre-
sented by the leaf nodes. Decision tree models are quite intuitive and easy to explain.
Therefore, several publications have appeared in recent years which used decision
trees as their classification model for emotion recognition. Liu et al. [2018] proposed
a computational model for speech emotion recognition using decision trees. The
model achieved 89.6% accuracy. Salmam et al. [2016] achieved 89.2% accuracy us-
ing a decision tree based classifier for facial expression recognition. Bobade and Vani
[2020] used decision tree for mood classification using multimodal physiological data
which reached 68.2% in ternary classification and 87.6% in binary classification. One
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disadvantage of decision tree classification is that it can be more unstable compared
to other models.

3.2.5.3 Random Forest

Random forest is another supervised method which overcomes the limitations of de-
cision trees. It is created using an ensemble of decision trees. A “forest” of decision
trees is constructed using merging techniques such as bagging or bootstrap aggregat-
ing. For each data point, a result is produced by each decision tree and then a final
prediction is made by merging all results. Thus it overcomes the instability issue of
decision trees and creates a more accurate and stable model. Increasing the number
of trees in the model increases the precision of the final prediction. Random forest
is a very popular choice among researchers for physiological signal classification.
Chaudhuri et al. [2018] implemented the random forest classifier to achieve 92.9%
accuracy in identifying binary thermal states. It has also shown promising results in
voice recognition [Zvarevashe and Olugbara, 2018]. Islam et al. [2019] used random
forest for neurodegenerative disease classification using gait features. All of these
techniques rely on efficient feature extraction and feature selection which can also
increase computational time and complexity.

3.2.5.4 Support Vector Machines

The support vector machine is another popular supervised learning algorithm that
is used in both classification and regression models. It is appropriate for binary
classification problems. This method is also found to be appropriate for use with
a small dataset with a large dimensionality in the feature space [Sánchez-González
et al., 2018]. The algorithm plots all data in an n-dimensional space for n num-
ber of features and then classifies every data point by finding the hyper-plane that
differentiates two classes. Wang et al. [2011] used SVMs and frequency domain
features to achieve an average of 65.0% accuracy from an EEG-based emotion recog-
nition model. Sharma and Gedeon [2014] achieved 98.0% accuracy using SVM in
their computational model for stress recognition. Vecchio et al. [2020] used SVM to
classify Alzheimer’s disease from EEG biomarkers and achieved 95.0% accuracy for
binary classification. Despite its impressive performance, it poses some challenges in
multi-class classification problems. Furthermore, it also does not perform well with
large scale datasets, which makes it unsuitable for real time data monitoring.

3.2.5.5 Bayesian Classifier

This classifier applies Bayes’ theorem to calculate the prior probability of every class
and then classifies a new data point based on that prior probability. Large datasets
can be easily classified using a Bayesian classifier. Therefore usage of this classifier is
prevalent in fields such as big data, bioinformatics and is now gaining popularity in
affective computing as well. Liao et al. [2005] used a large dataset containing facial
expression, head and eye movements and other behavioural data and classified them
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using a dynamic Bayesian network for stress monitoring system. A similar study
using this classifier for stress recognition is done in Barreto et al. [2007]. Another
study uses a Bayesian classifier on EEG data to classify different emotions [Chung
and Yoon, 2012]. A major disadvantage of the Bayesian classifier is that it assumes
all of the features have equal contribution, which is often not the case, and especially
so with physiological response data.

3.2.5.6 Artificial Neural Network

Artificial neural networks (ANNs) are one of the primary classification techniques
used in the field of machine learning and affective computing. The method is in-
spired by the structure of the human brain, having multiple different mathematical
layers processing the data from one input layer to give useful information in the
output layer. Although the functions of ANNs are quite complicated and sometimes
hard to interpret, they are used frequently in affective computing. Wilson and Russell
[2003] used an ANN to classify real time mental workload using physiological mea-
sures achieving the maximum accuracy of 86.0%. Srinivasan et al. [2007] proposed
an ANN based automated epileptic EEG detection system. A study predicts reading
comprehension scores using ANNs from subjects’ eye movements [Copeland et al.,
2014]. It has been effective in recognising stress from physical gestures and speech
as well [Scherer et al., 2008]. Usage of ANNs are also said to be effective in pharma-
ceutical research [Agatonovic-Kustrin and Beresford, 2000].

Human brains have the capability of interpreting the context behind complex sce-
narios, which are difficult for computers to interpret. Since ANNs are created using
the concept of how human brain processes information, it has the ability to under-
stand patterns in complex data such as physiological signals. ANNs can perform
reasonably well using features from physiological data as well as raw physiological
data. Singh et al. [2013] used a set of features from participants’ photoplethysmog-
raphy and galvanic skin response data to classify stress during driving tasks. They
tested with seven different combinations of neural networks and achieved a maxi-
mum of 89.2% in precision. Pinto et al. [2020] used ECG data and neural networks
to classify different emotion states (neutral, fear, happy) and reached a maximum of
77.0% accuracy.

A disadvantage of this method is that it requires a large amount of data to train
a robust model. It may be able to achieve high accuracy with a small dataset, but in
such instances it does not tend to generalise well with larger datasets.

3.2.5.7 Convolutional Neural Networks

With the advent of modern hardware and large scale datasets, computers became
able to do heavy computation with minimum effort and time. This allowed the rise
of deep neural networks (DNN), which allow to create more complex network struc-
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tures than the ones mentioned in the previous section. DNNs have the capability to
automatically extract useful features from the data and make predictions based on
the extracted features. One of the most popular deep learning techniques is convolu-
tional neural networks (CNN). CNNs can recognise patterns from one-dimensional
(1D), two-dimensional (2D) or three-dimensional (3D) data. Therefore in the recent
years, this became popular in physiological signal analysis [Rim et al., 2020; Dar et al.,
2020] because these types of data can also be represented in 1D (time-series data), 2D
(image) or 3D (video) data. Some recent studies used deep learning methods which
automatically extracted features from the raw data, reducing overall computational
time. Yang et al. [2019a] conducted a study where they collected fNIRS signals while
patients with mild cognitive impairment completed three mental tasks. They applied
a CNN on the signals and reached a highest accuracy of 90.6%. Ho et al. [2019] also
investigated effects of mental workload signals by applying a combination of deep
belief network (DBN) and a CNN. The classification accuracy using DBN and CNN
reached 84.3% and 72.8% respectively. CNNs have also shown promising results in
classifying six basic emotions [Oh et al., 2020]. Sheykhivand et al. [2020] used a com-
bination of CNN and LSTM to predict emotions evoked by music using participants’
EEG signals. This gives a strong motivation to use this method for physiological
signal based music emotion recognition. However, detecting automatic biomarkers
for different emotions while listening to music still remains a challenge.

3.2.5.8 Recurrent Neural Network

Recurrent neural networks (RNNs) hold sequential information of data so they are
a very common choice for time-series data analysis. The way an RNN differs from
shallow neural networks or convolutional networks is it has a memory component.
This means that the network takes information from the previous input to influence
the current input. It is often used in analysis of data that are sequential in nature. Ex-
amples of such data are, text, music, movies, speech [Zhang et al., 2021]. Zhang et al.
[2018b] applied RNNs to classify emotions from EEG signals and facial expression to
achieve the maximum of 89.0% accuracy. It has also been used in healthcare appli-
cations such as sleep stage detection [Cheng et al., 2017]. Of all of the variations of
neural networks, RNNs are most widely investigated for music emotion recognition
[Liu et al., 2019; Zhao et al., 2018; Grekow, 2020; Rajesh and Nalini, 2020]. However,
most of these studies are based on detecting emotion from various characteristics of
the music such as pitch, key, and do not involve human experimental/physiological
data.

3.2.5.9 Long Short-term Memory

Long short-term memory networks (LSTMs) are a variant of recurrent neural net-
works created to learn long-term dependencies [Hochreiter and Schmidhuber, 1997].
The model is inspired by the concept of logic gates. It adds the mechanism of reset-
ting/forgetting some of the information, and only storing the necessary information.
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LSTMs have been used in the affective computing area. Similar to standard RNNs,
LSTMs have also gained popularity in physiological data analysis [Dar et al., 2020].
Choi and Kim [2018] used LSTMs for arousal and valence classification using the
DEAP dataset. They were able to reach 72.7% and 73.1% accuracy for arousal and
valence classification respectively. Ma et al. [2019] also used EEG data from the
DEAP dataset and their approach using an LSTM reached 92.87% accuracy classify-
ing arousal and 92.3% accuracy classifying valence. Alhagry et al. [2017] used LSTMs
to classify EEG signals, reaching up to 85.7% accuracy. Similar work was done by
Liu et al. [2017] where they used LSTMs to classify EEG signals from the Mahnob-
HCI database. Their classification model reached up to 73.1% classifying arousal and
74.5% for valence. A major disadvantage of this method is that due to the recurrent
nature of the networks, computation can be extremely slow. It is also sensitive to
random weight initialisation that causes the models to become unstable.

3.2.5.10 Transfer Learning

As explained in section 3.1, collection of human physiological data often requires
large scale experiments. Collecting good quality data from human subjects is an ex-
tremely time consuming and challenging task. Therefore, most of the experiments
reported are not able to generate a large amount of data to create a robust classifi-
cation model. Furthermore, all the deep learning models mentioned in this chapter
require a large number of training data which are often hard to gather for physiolog-
ical data. Transfer learning aims to overcome this challenge by using a pre-trained
dataset model to train a new model. The pre-trained model is trained to solve a
different task. The pre-trained model then transfers some knowledge to the new
model in order to accomplish the new task. In such cases, the final few layers of
the pre-trained model are fine-tuned to learn patterns based on the new dataset.
Using this approach, a more robust model can be created using a lower amount of
data [Torrey and Shavlik, 2010]. Some of the popularly used pre-trained model for
transfer learning are ImageNet [Deng et al., 2009], AlexNet [Krizhevsky et al., 2012],
SqueezeNet [Iandola et al., 2016], ResNet [He et al., 2016], VGG [Simonyan and Zis-
serman, 2014]. In recent years, transfer learning approaches have been utilised to
overcome the scarcity issue of physiological signals. For example, it has been used
for driver status detection using a number of physiological signals [Chen et al., 2019].
Transfer learning has also been investigated recently to forecast different health out-
comes from physiological responses [Chen et al., 2020]. Although it has been used
in physiological data analysis, it has not been investigated much as a method to
recognise emotion.

3.3 Statistical Analysis

Statistical analysis helps to identify the general trends and patterns observed in the
data collected during any experiment. This also helps to interpret the collected data
and justify the analysis results. Based on the normality of collected data type (e.g.
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parametric or non-parametric data) different statistical methods can be used. In the
field of affective computing, these are some of the frequently used statistical analysis
methods:

• T-test – T-test is the most widely used statistical analysis test which compares
the means of two different groups. This test can also be divided into two
categories. If the two groups that are being compared are unrelated, then the t-
test is called an independent samples t-test, whereas if the groups are the same
then it is called a paired t-test. The T-test is begun by setting up a hypothesis
that there is no significant difference in the means of the two groups. Based
on the result of t-test the hypothesis is either accepted or rejected. This test is
appropriate to compare two groups of parametric data.

• Analysis of Variance (ANOVA) – ANOVA tests are conducted to compare the
means of two or more groups. There are multiple types of ANOVA tests, and
depending on the correlation between the groups the appropriate test is chosen.
The one way ANOVA test is used when there is one independent variable. If
there are two or more independent variables then factorial ANOVA can be
used. This method is appropriate for a group of data that follow a normal
distribution.

• Chi- square Test – The Chi-square test is a popular non-parametric method
primarily used to analyse categorical data and identifying relationships among
them. Data is put on a contingency table based on the frequency of variables
to analyse their relationships.

• Wilcoxon signed rank test – This is another non-parametric test which has a
similar procedure to the paired t-test. Paired t-test is not appropriate for dataset
which do not follow normal distribution. In such cases, Wilcoxon signed rank
test is more appropriate.

• Kolmogorov–Smirnov test - This a non-parametric test to detect variance be-
tween samples.

3.4 Evaluation Measures

After completing the classification process, the predictive power of the classification
model needs to be evaluated. In order to do that, different evaluation measures can
be used. In order to understand the evaluation measures, the following four terms
need to be understood.

• True positive (TP) – A sample that belongs to a certain class and the classifica-
tion model also predicted it to be in that class.

• False positive (FP) - A sample that does not belong to a certain class but the
classification model predicted it to be in that class.
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• True Negative (TN) - A sample that does not belong to a certain class and the
classification model also predicted it to not be in that class.

• False Negative (FN) - A sample that does not belong to a certain class but the
classification model predicted it to be in that class.

The evaluation measures used in this research are listed below:

• Accuracy – This is the most popular evaluation measure which gives the frac-
tion of correct predictions made by the classification model. This measure is
useful for datasets with balanced classes, that is, with the same or similar num-
ber of members in each class. It is defined by the equation below:

accuracy = TP+TN
TP+FP+FN+TN

(3.4)

• Specificity – This is also referred to as the true negative rate of the model. The
equation for this measure is below:

speci f icity = TN
TN+FP

(3.5)

• Precision - Precision refers to the fraction of the predicted labels matched. It
is also known as the positive predictive value (PPV). The equation to calculate
precision is:

precision = TP
TP+FP

(3.6)

• Recall - Recall refers to the fraction of reference labels matched. It is also known
as sensitivity. The equation is:

recall = TP
TP+FN

(3.7)

• F-measure - Also known as F-Score or F1 Score, the F-measure is a commonly
used evaluation measure represented by the harmonic mean of precision and
recall. It is considered a stronger measure than precision and recall as it takes
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both these measures into account. It is a better evaluation measure than accu-
racy, especially for data with imbalanced classes. The equation is below:

f −measure = 2∗precision∗recall
precision+recall

(3.8)

• Geometric mean – It is also known as the measure of central tendency which
measures the separation between the classification performance of the majority
and minority classes. The equation of geometric mean is:

g−mean =
√

sensitivity ∗ speci f icity

(3.9)

• Area under curve (AUC) – This demonstrates a curve that displays how well
separated the probabilities from the positive classes are from the negative classes.

3.5 Summary

This chapter builds the foundation for Chapters 4 to 7 of this thesis. In this chap-
ter, the stimuli and computational methods that are frequently used in the area of
affective computing and physiological data analysis were introduced. Some of these
stimuli and methods are used to achieve the research objectives of this work. In the
following chapters, experiments that use some of the techniques mentioned in this
chapter are introduced and their results are discussed.
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Chapter 4

Effects of Different Stimuli in
Human Physiological Response

This chapter focuses on three different experiments which investigate the effects of
emotional videos on physiological responses. The first two experiments used two
different visual stimuli datasets and looked into the effects on human physiology
when they watch the stimuli. In the third experiment, these two datasets were com-
bined with music stimuli to understand the joint effect of these two types of stimuli
on human physiology. This chapter builds on the work presented at the 31st Aus-
tralian Conference on Human-Computer Interaction - OzCHI 2019 [Rahman et al.,
2019], 32nd Australian Conference on Human-Computer Interaction - OzCHI 2020
[Rahman et al., 2020b] and the 2021 CHI Conference on Human Factors in Com-
puting Systems - CHI 2021 [Rahman et al., 2021b]. In all of these works, I was the
primary contributor.

4.1 Experiment 1 - Physiological Responses to Emotion Videos

In this experiment, participants’ EDA activity was computationally analysed to recog-
nise seven emotional categories while watching a total of 80 emotion videos. This
experiment was conducted to understand the effects of different emotional videos
on participants’ physiology and whether patterns can be identified using different
features and computational methods.

4.1.1 Methods

4.1.1.1 Participants

Twenty participants (14 female and 6 male) took part voluntarily in this experiment.
The mean age was 23 years old with a standard deviation of 5.8. All the participants
were asked to sign a written consent form before their voluntary participation in the
study. This study was approved by the Human Research Ethics Committee of The
Australian National University (ANU).

47
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4.1.1.2 Dataset and Pre-processing

The Acted Facial Expressions In The Wild (AFEW) dataset [Dhall et al., 2011] has
been used for the purpose of this experiment. Each participant watched a total of
80 videos which were divided into seven categories. They are: Anger, Disgust, Fear,
Happy, Neutral, Sad and Surprise. All the videos were around 2-3 seconds in length.
Participants were asked some general demographic questions at the beginning of the
experiment. After watching each video, they were asked to rate the genuineness of
the video in a 5-point rating scale (’Completely fake’, ’Surface acted’, ’Don’t know’,
’Deep acted’, and ’Completely real’). They were also asked to rate their confidence
level on their answer using a 5-point scale (1 being not confident at all and 5 being
very confident). They were also asked if they had seen the video before or not.

EDA data was collected using Empatica E4 wristband with a sampling rate of 4
Hz. Pre-processing was done by normalising the data using min-max normalisation
and smoothing using median filter [Jerritta et al., 2011].

4.1.1.3 Features

A total of 16 features (linear and nonlinear) were extracted from the pre-processed
data. They are listed in Table 4.1:

Table 4.1: Features extracted from participants EDA Signals watching emotional
videos

Feature Type Feature Names

Linear features
Mean, root mean square, variance, integrated signals, simple
square integral, average amplitude change, log detector, differ-
ence absolute standard deviation value

Non-linear
features

Hjorth parameters (mobility), Hurst exponent, sample entropy,
approximate entropy, Shannon’s entropy, permutation entropy,
fuzzy entropy, detrended fluctuation analysis (DFA)

4.1.2 Results

4.1.2.1 Mean Analysis

From the set of extracted features, mean values of all participants were chosen in ev-
ery emotion category and some statistical tests on that data were performed. Mean
is the most commonly used statistical feature in machine learning models. Figure 4.1
shows the mean values for the seven emotion categories:

Figure 4.1 shows that participants feel higher and lower cognitive load while
watching surprise and happy videos compared to other emotional categories. To find
the differences between emotion pairs, a two-tailed permutation test was performed.
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Figure 4.1: Mean values of EDA for seven emotion categories (Range 0.3− 0.5 chosen
for better visualisation)

The test is applied here to identify the time points where EDA is different between
two emotions. Over the analysis, four emotion pairs (disgust-surprise, happy-sad,
happy-surprise, neutral-surprise) were found to significantly differ from one another
(p < 0.05). Every pair of emotions were also analysed using t-test and the results
showed statistical significance (p < 0.05) for six pairs of emotions. They are: happy-
sad, happy-surprise, disgust-surprise, fear-surprise, neutral-surprise and sad-surprise. Table
4.2 shows the significance value for all pairs of emotions. The numbers in colour
and bold are the pairs that show meaningful differences. The red colour shows a
significance of p < 0.05, while the blue colour shows high significance p < 0.01.

Table 4.2: T-test values for all pairs of emotions in identifying seven types of emo-
tional videos

Anger
Disgust 0.234
Fear 0.492 0.141
Happy 0.093 0.203 0.067
Neutral 0.126 0.407 0.105 0.287
Sad 0.336 0.157 0.214 0.007 0.157
Surprise 0.073 0.022 0.029 0.005 0.015 0.021

Anger Disgust Fear Happy Neutral Sad
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This relationship can be visualised using an emotion model, which is a two di-
mensional model based on valence and arousal level of emotions frequently used in
the area of affective computing [Russell, 1980]. Valence refers to intrinsic goodness
or badness while arousal corresponds to alertness/response readiness. The standard
abstract model is shown in Figure 4.2.

Figure 4.2: Arousal models of emotion: Standard abstract model

The arousal model for the seven emotions using the mean feature values de-
scribed in 4.1.2.1 is shown in Figures 4.3 and 4.4. These are called arousal modes,
because valence values were not considered as a measurement reference. The valence
levels are kept the same as in the original model.

From Figures 4.3 and 4.4, it can be seen that surprise has a very high arousal value
compared to all other emotions. Therefore, it is able to show significant difference
with all other emotions except another relatively high arousal emotion of anger, and
there it is close to being significant (p = 0.073). The feature is also able to differentiate
between a high valence high arousal emotion (happy) and a low valence low arousal
emotion (sad). Figure 4.3 also shows that that if we consider neutral as a reference line
then happy and sad are not located in the position proposed for the arousal models
widely in the literature. Happy is a high arousal high valence emotion and sad is a low
arousal low valence emotion according to the literature. But based on the data from
this study we can see happy shows low arousal and sad shows high arousal. This is
possible from the participants’ perspective perhaps because when they are watching
sad videos they feel sad, but maybe when watching happy videos (more common
than seeing sad videos) they accept them as being normal. Comparing neutral with
more emotions in all of the categories will help us to understand this phenomenon
in greater detail.

Draft Copy – 30 September 2022



§4.1 Experiment 1 - Physiological Responses to Emotion Videos 51

Figure 4.3: Arousal models of emotion: Data derived model (Neutral as reference)

Figure 4.4: Arousal models of emotion: Data derived model (Mean as reference)
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4.1.2.2 Classification Results

Classification accuracy of the system is reported as the percentage correctness of the
system predicting the video category. Also, the accuracy, f-measure, precision, recall,
specificity and geometric mean values are reported. The classification process was
done using MATLAB R2018a software with an Intel(R) Core(TM) i7-5200U processor
with 3.60 GHz, 16.00 GB of RAM and Microsoft Windows 10 Enterprise 64-bit operat-
ing system. The labels were given according to the seven video categories mentioned
in the experiment design. A leave-one-participant-out process was performed to dis-
tinguish among the seven emotion categories. A simple pattern recognition network
was employed, which consisted of one input layer, one hidden layer and one output
layer. The hidden layer was constructed using 30 hidden nodes. The model achieves
a total of 94.8% accuracy based on the average of 20 runs. Figure 4.5 shows the accu-
racies of all seven emotional categories.

Figure 4.5: Classification performance while participants recognised seven emotions
from video (Range 90− 100 displayed for better visualisation)

All other evaluation measures are shown in Table 4.3. The values are calculated
on the average result of all categories. Geometric mean and harmonic mean values
are highlighted as they provide more useful information than arithmetic mean when
comparing groups having different properties [Hand and Christen, 2018].

From Table 4.3 it is evident that the neural network model achieves high scores in
both F-measure and Geometric mean. So this model is effective for this EDA signal
based emotion recognition problem.
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Table 4.3: Evaluation measures for classifying seven emotional categories from videos

F-measure Precision Recall Specificity G-mean
0.842 0.753 0.958 0.947 0.952

4.1.3 Discussion

In this preliminary experiment, the effects in participants’ EDA activity were inves-
tigated while they watched a set of videos comprising of seven different emotional
categories. Signals were collected from participants in an experimental setting. Col-
lected signals were normalised, filtered, and then a set of 16 features were extracted.
Classification using a simple neural network showed a high accuracy of 94.8% in
identifying the seven different emotional video categories. The high accuracy gives
motivation to use this dataset in future experiments combined with music stimuli.

The initial analysis further showed some noticeable difference of the data driven
arousal model from participants’ perspective, when compared to the (abstract) stan-
dard models in the literature. The data-derived model with neutral as the baseline
is quite similar to the standard abstract model, with the only changes being happy
and sad changing sides as low/high arousal. Questions to be answered are how
the data upon which these results were obtained differs from the rationale behind
the standard models in the literature, and whether the participants were somehow
different from the expected population reaction. It is also important to point out
that EDA activity can vary according to the difference in stimuli types, participants’
age and gender [Gatti et al., 2018]. Arguably, it makes more sense to use the overall
average reaction to be the baseline between high and low arousal, which spreads the
emotional reactions over a wider range. However, this differs even more from the
standard abstract model.

This analysis is crucial to understanding the various issues of determining the
ground truth labels of a stimuli. For datasets where ground truth labels are not
available, one challenge is to determine the factors that will be used for the labels.
Using participants’ physiological feature averages could be one possible approach.
However, the results show that participants’ data driven results can differ from the
standard models. Therefore, using participants’ physiological features to automat-
ically label the stimuli may not be appropriate for every scenario. A comparison
of participants’ subjective and physiological response with the ground truth label is
necessary to answer this question. This is addressed in the follow-up experiment
classifying genuine and posed smiles using participants’ physiological responses.
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4.2 Experiment 2 - Physiological Responses Detecting Gen-
uine and Posed Smiles

This experiment demonstrates computational techniques to recognise the genuine
and posed smiles by sensing participants’ EDA activity while watching sets of images
and videos. This experiment builds on the findings of the previous experiment and
looks into effects of both image and video stimuli. The effects of showing stimuli in
pairs versus one at a time is also explored.

4.2.1 Methods

4.2.1.1 Participants

A total of 25 participants volunteered to participate in this study, being 13 male and
12 female. Their mean age was 21.3 with a standard deviation of 2.6. Participants’
EDA signal was recorded using the Empatica E4 watch-format device. The signals
were recorded at a sampling rate of 4Hz. The study was approved by the Human
Research Ethics Committee of the Australian National University (ANU). The par-
ticipants were asked to sign a written consent form before the experiment, followed
by them providing some demographic information. Then they were presented with
a series of stimuli and some questions related to the stimuli were asked. All experi-
ments were conducted in the same location in order to minimise any environmental
effects. Verbal responses from the participants were collected using an interactive
website.

4.2.1.2 Dataset and Pre-processing

The stimuli used in this study were selected from UvA-NEMO database [Dibeklioğlu
et al., 2012], which consists of stimuli showing genuine and posed smiles. There were
a total of four conditions in which participants viewed the stimuli. They are: single
image (SI), paired image (PI), single video (SV) and paired video (PV). In SI and SV
conditions, participants were presented with a single image or video of smiles and
then they were asked if they thought it was genuine or posed. In PI and PV condi-
tions, participants watched images and videos in pairs and they were asked which
one of them they thought was genuine. The stimuli that were presented in pairs
were from the same smiler. Figure 4.6 shows sample frames from the database in
both single and paired conditions.

For both SI and SV conditions 10 stimuli were used, out of which five were gen-
uine and five were posed. For the PI and PV conditions, 20 stimuli were used (10
genuine and 10 posed). Altogether there are 20 stimuli in the single condition and
40 in the paired condition. All participants watched all stimuli. They were order
balanced in order to remove sequence bias. The image stimuli were shown for five
seconds each while the video stimuli varied from two to seven seconds in length.
From the 25 participants’ data, four were discarded due to poor or missing EDA
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(a) Paired condition - Genuine (b) Paired condition - Posed

(c) Single condition (d) Single condition

Figure 4.6: Sample frames from UvA-NEMO database

recordings. This sometimes occurred due to the poor connection quality or low
charge of the device. Therefore, 21 participants’ data were used for further analysis.

Min-max normalisation was used to move the signals within the 0− 1 range. In
order to remove noise from the signals, the median smoothing filter was used [Jerritta
et al., 2011]. Then the signals were segmented according to the length of stimuli. For
example, the images used in the experiment were shown for five seconds. Thus, the
five seconds’ data corresponding to a particular image stimulus from the whole data
recorded for a single participant were extracted, which is referred to as a ’segment’.

4.2.1.3 Features

A number of time domain and frequency domain features were extracted from the
segmented EDA signals. The list of features is shown in Table 4.4.

Twenty five features were initially extracted from each segment of EDA signals.
The features were visualised and some features which could not give much insights
into the data were removed. For instance, the number of peaks were calculated for
each segment. However, due to the small size of each segment, many peaks were not
noticed for most segments. Thus, the feature was discarded. Similarly, some features
were discarded where the values were mostly zeroes or ones. Furthermore, some
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Table 4.4: Features from EDA signals watching genuine and posed smile stimuli

Feature
Type

Feature Names

Time
domain
features

Mean, minimum, maximum, standard deviation, variance, root
mean square, summation, absolute summation, simple square in-
tegral, mean of first and second difference of normalised signals,
Hjorth parameters (mobility), simple square integral, log detector

Frequency
domain
features

Mean, minimum, maximum of the first 16 points from Welch power
spectral density

redundant features were removed (e.g. summation and absolute summation as both
yielded positive value), and this resulted in a total of 16 features from each segment
which are listed in Table 4.4.

4.2.2 Results

4.2.2.1 Classification Results

Selected features from the segmented EDA signals were then trained using three
different classification techniques. They are, decision trees (DT), K-nearest neighbor
(KNN) and bagged trees (BT). The methods are described in sections 3.2.5.2, 3.2.5.1
and 3.2.5.3 respectively. Cross validation was done using a leave-one-participant-out
method. Training and testing were done in both single and paired conditions. The
prediction accuracies were compared with both the labels provided by the database
and participants’ verbal response labels. In addition to accuracies, precision, recall,
specificity and f-measure were also calculated as evaluation measures. The complete
data analysis was done using MATLAB® R2020a software with AMD Ryzen 7 3700X
8-Core Processor with 3593 Mhz, 16.00 GB of RAM and Microsoft Windows 10 Home
64-bit operating system.

Classification accuracies obtained from participants EDA signal features using
KNN, DT and BT methods are reported in Table 4.5. The first three rows correspond
to the accuracies using the labels provided by the database (objective ground truth).
The following three rows are results obtained by comparing with participants’ verbal
response labels (subjective ’ground truth’).

Table 4.5 shows that the highest accuracy is achieved by DT in a paired condition
(93.6%). Initially the models were trained using the entire dataset and it was seen
that the accuracy is higher in the single condition (91.4%) in comparison to paired
condition (90.9%). However, it was postulated that this could be due to the imbal-
ance in the dataset. As described in section 4.2.1.2, a total of 20 stimuli in single
condition and 40 in the paired condition were used. Therefore, a subset of 20 stim-
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Table 4.5: Classification accuracy differentiating genuine and posed smiles using
EDA signals

Condition Label KNN DT BT
Single UvA-NEMO label 59.0% 91.4% 90.9%
Paired UvA-NEMO label 68.1% 90.9% 86.1%
Paired
(Subset)

UvA-NEMO label 71.9% 93.6% 88.6%

Single
Participant’s verbal re-
sponse

48.3% 56.2% 52.1%

Paired
Participant’s verbal re-
sponse

60.2% 58.6% 62.1%

Paired
(Subset)

Participant’s verbal re-
sponse

60.9% 59.8% 65.2%

uli (10 genuine and 10 posed) was randomly chosen from the paired condition to
train the classifiers. Results from Table 4.5 demonstrate that the accuracy is generally
higher than the single condition for all three classification methods. Thus, the results
indicate that the paired condition is better than the single condition for observers to
distinguish between genuine and posed smiles.

Classification results of the other evaluation measures were also higher in the
paired condition in comparison to the single condition. Precision, recall, specificity
and F-measure scores of the DT model in the paired condition were 93.8%, 93.3%,
93.8% and 93.6% respectively. The same evaluation measures in the single condition
were 92.2%, 90.5%, 92.4% and 91.3%. The high scores of our model in the evaluation
measures confirms the results and suggests that stimuli shown in pairs is a more
beneficial approach than showing as a single stimulus.

4.2.2.2 Timeline Analysis

In order to understand how well the participants’ EDA signals are distinguishing
between genuine and posed smiles, a timeline analysis was performed on the pre-
processed EDA signal averages in both single and paired conditions. The signals
were reshaped to have the initial value 0.5. This initial value was chosen in order
to clearly observe the increasing or decreasing trend of the EDA signals. The values
were selected from the first five seconds of each stimuli as this is the length of most
stimuli used in the experiment. The results are shown in Figure 4.7 and 4.8. Red
shaded area displays EDA signals when participants are watching genuine smiles
and blue shaded areas correspond to watching posed smiles.

It can be seen that participants’ EDA signals display some differences in range
from the first second of watching a single genuine and posed stimulus. The dif-
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Figure 4.7: Timeline analysis of EDA signals - single condition

Figure 4.8: Timeline analysis of EDA signals - paired condition
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ference becomes larger after 3.5 seconds, which suggests that participants’ response
becomes clearer after watching the stimuli for a few seconds. In the case of paired
stimuli, the EDA signals are quite similar for both genuine and posed smiles in the
first second, but starts diverging from each other quickly after that. After three sec-
onds, both signals show larger difference in their values. In both cases, participants’
EDA signals are able to distinguish between genuine and posed stimuli after three
seconds. This finding is useful in designing future studies in this area, where shorter
length stimuli should not be used. It is also found that EDA signals are higher
when they are presented posed stimuli, which shows that their subconscious reac-
tions to posed stimuli is stronger compared to genuine stimuli, as found in another
study considering pupillary responses [Hossain et al., 2016]. The significance level
of EDA signals in both single and paired conditions was further verified using a Kol-
mogorov–Smirnov (K-S) test. The results showed a statistically significant difference
( p < 0.05 ) between genuine and posed smile signals for both conditions.

4.2.2.3 Comparison with Participants’ Verbal Response

Although participants’ EDA response aligned very well with the objective ground
truth information, it did not align well when compared with their individual verbal
response. We can further see from Table 4.5 that the highest accuracy obtained using
participants’ own verbal responses was 65.2% with the BT method, which is above
chance only to a limited extent. In the single conditions, the accuracy was above
chance using the DT method (56.2%), and lower than chance (48.3%) with the KNN
method. This indicates that participants perform poorly in discriminating genuine
and posed smiles when they are watching only one stimulus at a time. However,
when shown in pairs, they perform slightly better. Overall, the analysis shows that
participants’ subconscious EDA signals are better in recognising genuine and posed
smiles when compared to their own verbal responses.

4.2.3 Discussion

This experiment presented a preliminary study to collect and analyse participants’
EDA signals while they watched stimuli containing genuine and posed smiles in
single and paired conditions. Experimental results showed that participants’ EDA
signals were 91.4% accurate in differentiating between genuine and posed smiles
when they watch a single stimulus, and 93.6% accurate when they watch stimuli in
pairs. This study also revealed that participants’ verbal responses perform poorly
compared to their physiological responses, as their correct response rate was only
56.2% and 59.8% accurate in single and paired conditions respectively. The effect
was also evident in that the verbal response labels were harder to classify by any of
the methods, with a maximum of 65.2% achieved. It is clear that the paired stimuli
helped all techniques: the computational methods on ground truth (UvA-NEMO)
labels was helped the least, followed by the verbal response, while the AI tools on
the verbal response labels were improved by 9.8% on average in paired condition.

Draft Copy – 30 September 2022



60 Effects of Different Stimuli in Human Physiological Response

This suggests that the improvement is due to humans finding comparisons easier
than absolute judgements.

The disparity between participants’ verbal and physiological response is quite in-
teresting, but the collected data is not enough to confirm the low reliability of verbal
responses. More data needs to be collected, especially detailed verbal responses from
participants in order to understand what difficulties they faced to identify the dif-
ferent smile types. Nevertheless, these preliminary findings provide evidence of the
usefulness of participants’ subconscious response in differentiating between genuine
and posed emotions. This extends the finding of the previous experiment and pro-
vides further motivation to use participants’ physiological response to automatically
label video stimuli, in the absence of ground truth labels.

In addition, this study revealed usage of paired stimuli to be more effective than
using single stimuli. This phenomena has not been explored before, even though
there have been studies that showed significant differences in emotional and physio-
logical response watching genuine and posed stimuli [Hossain et al., 2016; Aracena
et al., 2015]. This finding can be useful in grouping stimuli in future experiments
to invoke stronger physiological responses. In the next experiment, the video stim-
uli used in this experiment and previous experiment is combined with some music
stimuli to understand the combined effect of two different stimuli.

4.3 Experiment 3 - Effects of Music in Detecting Genuine and
Acted Emotions

In this experiment, the effects of six different music stimuli on people’s affective rea-
soning is explored using their verbal and brain activity responses. Based on the out-
comes of the previous two short studies, a broader third user study was designed. A
study was conducted where EEG signals from different brain regions were collected
when participants listened to these stimuli and identified different emotions from
video stimuli. These signals were then processed and analysed using statistical and
machine learning techniques to classify the video stimuli emotions. In addition, com-
ments on the different music stimuli were collected from the participants in order to
understand how the music influenced their performance on their given task.

4.3.1 Methods

Six different music stimuli were used from the list described in Table 3.1. These stim-
uli can broadly be divided into three categories. They are: binaural beats, classical
music and pop music. The reasons for choosing these six stimuli are briefly described
in detail below:
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• "Brain Energizer - Gamma Waves for Focus / Concentration / Memory - Bin-
aural Beats - Focus" - This stimulus is said to increase gamma wave activity
on the brain. According to the description of the video, this stimulus is highly
beneficial for studying and improving focus during work.

• "Serotonin Release Music with Alpha Waves - Binaural Beats Relaxing Music,
Happiness Frequency" - This binaural beat stimulus is a relaxing piece which
is said to boost alpha wave activity on the brain.

• "F. Chopin’s ’Funeral March’ from Sonata in B flat minor Op.35/2" - This is one
of Chopin’s most popular pieces and has a very sombre tone to it.

• "J.S Bach’s ’Air’ from Suite for Orchestra No. 3 in D" - This is an orchestral mu-
sic piece with a moderate intensity and can be considered a more relaxing piece.

• "Justin Bieber’s ’Love Yourself’ from the album Love Yourself" - This music
piece was chosen as the top song in the 2017 Billboard Hot 100 year-end chart.
It is classified as an acoustic pop song, having a moderate valence level (Spotify
valence score 0.515).

• "Ed Sheeran’s ’Shape of You’ from the album Divide" - This song was chosen as
it was the top song according to the Billboard Hot 100 year-end chart of 2018.
It is an upbeat and energetic song having a high valence level (Spotify valence
score 0.931).

Only the category of music was considered for the computational analysis. The
valence scores were not considered as this score was not known for some of the stim-
uli.

Video stimuli used in this experiment were taken from four different datasets.
All of these datasets contain videos of people displaying different types of emotions
in genuine or acted form. These are, AFEW, MAHNOB-HCI, MMI, and the Anger
dataset. The datasets are explained in detail in section 3.1.3.2. A total of 48 video
clips were used in this experiment, 24 of them labelled as genuine emotion, and 24
labelled as acted. The six types of basic emotions were represented in the videos.
These emotions were contained in a blended manner in the videos to reflect the
blended nature of real world emotions Kim and André [2008]. The video clip lengths
ranged from one second to four seconds. However, during analysis, all physiological
signal recordings were cropped to the same length for comparison. All the clips were
cropped to the same width, height and converted to grayscale. As one of the datasets
contained only grayscale videos, the other videos were also converted to eliminate
any effects of video colour.
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4.3.1.1 Participants

A total of 22 participants (nine female and thirteen male) participated in this study.
Their mean age was 20.8 with a standard deviation of 4.8. All participants were uni-
versity students and they were recruited through the University’s voluntary research
participation scheme website. They were given participation credit after completion
of the study.

4.3.1.2 Experiment Design

The experiment was approved by the Australian National University’s Human Re-
search Ethics Committee. After arriving at their scheduled time, the participants
were welcomed and given a participation information sheet and consent form. They
were briefed on the aim of the study and asked to read through the information sheet.
Following their agreement to participate in the experiment (through the signed con-
sent form), they were asked to sit in front of a monitor and asked to adjust the seat so
that they had a comfortable view and easy access to the keyboard and mouse. Then
the EEG device was fitted. All the participants completed the experiment in the same
experiment lab, and the room temperature, lighting were kept consistent for all of
them. A photo taken during the experiment in shown in Figure 4.9.

Figure 4.9: A photo of the experimental setting - participant is listening to different
music while watching genuine and acted emotion
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EEG data was collected using the Emotiv EPOC headset device. In order to set up
the device, the electrodes are first hydrated using a conductive gel and then fitted on
the participants’ head. After ensuring good connectivity between all the electrodes
and the scalp, participants’ baseline EEG values were collected. This was done by
asking participants to keep their eyes open for 15 seconds, then keep their eyes closed
for 15 seconds. Raw data from the device was collected at a sampling rate of 128 Hz,
while the band power data is collected at a sampling rate of 8 Hz. The data was
recorded using the Emotiv Pro Software.

In the final step before starting the experiment, participants were asked to wear
a pair of Bose QuietComfort® 20 Acoustic Noise Cancelling™ headphones to ensure
participants were not affected by any outside noise. Participants’ verbal responses
and comments were collected through an interactive website. At the start of the ex-
periment, participants were asked some pre-experiment demographic questions such
as their age, gender and music preferences. They were also asked if they had experi-
ence in playing musical instruments.

After completing the pre-experiment questionnaire, the experiment began. All
the participants listened to the six music pieces. Each music piece was played for
two minutes. The music pieces were order balanced to reduce bias which may oc-
cur due to the presentation order. While each music piece was playing, participants
watched short video clips showing people displaying different emotions. The videos
were order balanced as well. Then they were asked the following question, "How
does the expression presented in the video look to you?". This was a closed question
where the two options below were given:

• Genuine Emotion means the dominating emotion this person experienced is
genuine

• Acted Emotion means this person acted the emotion

These two options were given based on the experience from experiment 4.2,
where participants had a lot of difficulty understanding the concept of deep and
surface acting (and therefore using these labels while rating). Therefore, these op-
tions were removed to reduce further complication. They were further asked whether
they had seen this video clip before. Most of the participants said that they had not
watched the clip before. Their verbal and physiological responses can be considered
to be free from prior bias on the videos. After each music stimulus finished playing,
participants were asked an open ended question to provide comments on the music.
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4.3.2 Results

4.3.2.1 Findings on Music Stimuli

A qualitative analysis was performed on the comments participants provided on
the music stimuli by using a grounded theory approach [Glaser and Strauss, 2017].
NVivo 12 software was used to complete this analysis. Memos on NVivo were used
for coding participants comments into higher level themes. The comments were
divided based on how participants described what they felt while listening to the
music. These codes were then divided into three categories: positive, neutral and
negative. During the coding process, frequently appearing words that were con-
sidered negative were: "dislike", "depressing", "irritating", "disturbing". Some of the
comments highlighted as positive were: "like", "calm", "relax", "soothing". The neutral
comments mostly described some features about the music, or whether they heard
the song or not, and the comments did not reflect participants’ emotions. Some of
the common words used for neutral comments were: "slow", "fast", "know" and "fa-
miliar". Table 4.6 shows the percentage of participants providing different types of
comments on the stimuli.

Table 4.6: Type of comments provided by participants on each music stimuli

Stimuli Negative Neutral Positive
Binaural Beats 1 (Brain Energizer) 45.5% 22.7% 31.8%

Binaural Beats 2 (Serotonin Release) 18.2% 18.2% 63.6%
Classical 1 (Funeral March) 36.3% 22.7% 41.0%

Classical 2 (Air) 18.2% 0% 81.8%
Pop 1 (Love Yourself) 9.1% 13.6% 77.3%
Pop 2 (Shape of You) 13.6% 18.2% 68.2%

All 22 participants provided comments on the six stimuli. A total of 132 com-
ments were analysed to extract some general themes that were prevalent. The anal-
ysis of participants’ verbal and physiological response (described in section 4.3.2.2)
aligns with the themes presented in the points below. Participants are mentioned as
P1, P2... P22.

• Binaural beats inducing gamma waves cause discomfort and distraction - The
stimulus Binaural Beats 1 (Brain Energizer) was designed to improve the level of
concentration and focus of the brain. Thus the expectation was that it will help
participants with the video emotion classification task. However, surprisingly,
this stimulus received quite a few negative comments (45.5%) and was said to
cause discomfort among participants. One participant (P19) mentioned that
they "...disliked the continuous tone underlying, became quite irritating". Another
participant (P17) added, "...Background droning noise was off-putting. Sounded
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sci-fi like". This was unexpected and also resulted in a lower classification re-
sult, which is described in detail in section 4.3.2.2. Binaural Beats 2 (Serotonin
Release Music with Alpha Waves) on the other hand, received the expected re-
action from the participants. It was meant to increase alpha waves on the brain
and promote relaxation, it often made the participants too calm to focus on the
given task. According to participant P14, "...it was a slow piece and made me feel
sleepy and hindered with concentration". Another participant (P17) mentioned, "I
liked this piece, it was very calming. Sounded like mindfulness/meditation music".

• Classical music having a sombre tone helps increase focus and answer ques-
tions - The stimulus Classical 1 (Funeral March) is played in a minor key and
has very slow recurring patterns and accents. Therefore, the stimulus in general
should invoke sad emotions. This was aligned with the participants’ comments
on this stimulus. However, although some participants reported that the music
stimuli made them feel sad and depressed, they also thought it had a calming
effect and therefore helped them focus in identifying the emotions from the
video stimuli. For instance, P20 commented about this stimuli by saying, "...this
piece is a bit sad, but it helps while answering questions". P2 said, "...feels heavy to
listen but like". This resulted in this stimuli receiving more positive comments
than negative (36.3% negative comments, 41.0% positive comments), which was
mildly surprising. This theme was also observed in the better classification re-
sults of participants’ verbal and physiological responses using Classical 1 stim-
ulus which is described in section 4.3.2.2. In comparison, Classical 2 (Air) mostly
received positive comments and was said to have a very relaxing effect. One
participant (P7) mentioned, "...the quiet piece playing in the background makes it
nice and easy to hear". Another one (P17) said, "I loved this piece. The music was
smooth and rich. The violin was beautiful and very inspiring". Although this piece
was generally liked by the participants (81.8%) and induced a relaxing effect, it
did not contribute as much to the video emotion classification task compared
to the previous stimulus, and had a similar effect as Binaural Beats 2 on the
classification accuracy.

• Pop songs received positive feedback due to familiarity, but that can also be
distracting - Both music stimuli in the pop category received mostly positive
comments (Stimulus 1 and 2 received 77.3% and 68.2% positive comments re-
spectively). In addition, both stimuli were familiar to the participants (21 out
of 22 participants were familiar with at least one of the songs). This may have
added certain bias from the stimuli or the artists, which may have affected their
task performance. Commenting about Pop Stimulus 1 (Love Yourself by Justin
Bieber), one participant (P11) mentioned this piece as, "...familiar and predictable",
while another (P17) said, "I liked this piece because it was soothing and I listen to
it frequently, it has a calming vibe". Pop 2 (Shape of You by Ed Sheeran) gener-
ally received favourable comments such as "I like this song, probably one of my
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favourites. It makes me somewhat dance to the beat" (P1). Another participant (P14)
said, "...upbeat tune and heard a lot so made me feel comfortable". However, the fa-
miliarity and biases may have caused some mixed outcomes in the classification
tasks and therefore these aspects need to be analysed in greater detail.

4.3.2.2 Verbal and Physiological Data Analysis

The results from participants’ verbal and EEG responses showed a strong correlation
with the comments they gave on the music stimuli. Video labels provided by the
original datasets were used as the ground truth and were compared with partici-
pants’ verbal and physiological responses. For the analysis reported in this chapter,
out of the 14 channels of Emotiv EPOC, data from two channels were chosen, namely
F7 and F3. Both of these channels are located on the frontal lobe. They have been
connected to emotion processing [The Human Brain and Seizures; Salzman and Fusi,
2010] and decision making [Collins and Koechlin, 2012]. These channels have also
been shown to contain the most useful features for classifying different types of mu-
sic using participants’ EEG signals [Rahman et al., 2020]. Emotiv captures data on
five frequency bands. They are: theta, alpha, low beta, high beta and gamma. For
this study, alpha and gamma band power data were chosen as features.

Unlike the previous two experiments, raw data was used for computational anal-
ysis instead of feature data. The data were first normalised using min-max nor-
malisation. Then they were segmented according to the length of videos. Finally,
baseline correction using polynomial fitting was applied in order to remove environ-
mental noise from the signals. These segments were then used to classify genuine
and acted emotion labels using a one dimensional convolutional neural network (1D
CNN) network. The CNN has the advantage of automatic feature extraction, which
eliminates the process of handcrafted feature extraction and reduces computational
complexity. Due to the size of data being very small, a simple architecture was cre-
ated with two convolution layers, two maxpool layers, one dropout layer and two
dense layers. A 5-fold cross validation approach was used by randomly splitting 80
percent data for training and 20 percent data for testing. For evaluation measures,
the classification accuracy and F1-score is reported.

For this analysis, all genuine emotion videos and all acted emotion videos were
combined together to feed into the classifier model, instead of classifying the videos
individually. This was done because some of the videos were too short in length
(less than one second) which resulted in very small numbers of samples. This was
not enough for the classification model. Thus, they were only classified into genuine
or acted emotions, making the analysis a binary classification problem. The results of
participants’ verbal and EEG response classifications are shown in Figure 4.10 below:

From Figure 4.10 it can be seen that the highest accuracy using participants’ ver-
bal and EEG response were 62.5% and 68.6% respectively and both were achieved
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Figure 4.10: Classification results using participants verbal and physiological re-
sponse in detecting genuine and acted emotions while listening to different music

when participants listened to the Classical 1 stimulus. The F1-score using Classical 1
stimulus is 0.69, which is also the highest out of all conditions. This suggests that
music stimuli that can invoke a sad emotion also help in centering focus on identify-
ing genuine and acted emotion from videos. The next best performance was achieved
using Pop 2 stimulus, achieving 64.1% accuracy and 0.64 F1-score using participants’
EEG response. This stimulus was also liked by participants due to its familiarity
and liking for the artist. It is also worth noting that this stimuli has a high valence
score (mentioned in section 4.3.1). In contrast, Binaural Beats 1 achieved low accuracy
of 52.8% and 0.53 F1-score in detecting genuine and acted emotions. This result is
contrary to what has been widely suggested about gamma music helping with fo-
cus. Binaural beats 2 which induces alpha waves in the brain showed the expected
outcome as participants performed poorly when listening to this piece (51.9% and
50.9% accuracy using verbal and EEG response respectively). Other stimuli which
also promoted high levels of relaxation such as Classical music 2 also achieved low ac-
curacy (53.8% and 51.8% accuracy using verbal and EEG response respectively). This
is expected as these stimuli were meant to promote relaxation and therefore mostly
used for mediation and sleep studies [Vijayalakshmi et al., 2010].

A further observation from the results is that, in three out of the six cases, par-
ticipants’ EEG response performed better than their verbal response in classifying
between genuine and acted emotion. Although physiological responses did not per-
form better in all cases, this aligns with previous studies which showed participants’
physiological response performs better than their self-reports in recognising emo-
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tions from videos [Soleymani et al., 2011b]. This also aligns with the findings from
experiment 4.2 reported in this chapter. It should be noted that two out of the three
stimuli where participants EEG response resulted in lower accuracy were Classical 2
and Binaural Beats 2. Both of them had a relaxing effect on the participants, which
hindered their task performance. The other stimulus was Binaural Beats 1, which
caused discomfort in many participants, resulting in poor task performance. The
results suggest that three stimuli, Classical 1, Pop 1 and Pop 2, helped participants
keep their focus during their task, and this was reflected better through their EEG
response. A one-way ANOVA test was also conducted among all the cross-validation
results across the six stimuli. The result shows high statistical significance (p < 0.01).
A paired sample t-test was further performed for all pairs of stimuli results. The
pairs that were not statistically significant were Classical 2 with Binaural 1/Binaural
2/Pop 1 and Binaural 1 - Binaural 2 (highlighted in Figure 4.10). The other pairs were
significant. This provides the motivation to explore this study in greater detail to
understand and identify the effects of different music stimuli in participants’ physi-
ological response in detecting different type of emotions.

4.3.3 Discussion

In this experiment, a study was conducted to identify what types of music stimuli are
beneficial to help improve concentration while identifying genuine and acted emo-
tions from short video clips. Participants’ EEG and verbal response were collected
and analysed. A grounded theory approach was applied on participants’ comments
in order to understand their emotional reaction to the music stimuli. Then par-
ticipants’ performance in the experiment task of identifying emotions from videos
were analysed and compared using their verbal and EEG responses. An additional
analysis was done to compare the outcomes of the grounded theory approach on
participants’ verbal comments and their performance in the experiment tasks. The
results show that classical music possessing a sombre tone increases concentration
on the brain and helps participants identify different emotions from video clips. Fa-
miliar and popular music with high valence also helps improve participants’ focus.
The study also reveals a crucial outcome related to binuaral beats which are believed
to improve focus on the brain. The experimental results showed that certain binaural
beats can also cause discomfort to participants, which results in disrupting focus in
participants and thus achieving lower accuracy in detecting emotion veracity. This
study further shows that participants’ EEG response perform better than their verbal
response in identifying emotion from videos, when incorporated with a music stim-
uli that increases their focus on the task.

The study revealed several limitations of the stimuli and computational methods
that were considered so far. Due to the limited number of participants, the dataset
was quite small and therefore the collected signals were not sufficient to train a suit-
ably deep network. Another limitation was the length of the video stimuli, which
were too short to evoke a strong reaction from participants, especially combined with

Draft Copy – 30 September 2022



§4.4 Summary 69

music stimuli. Both of these caused lower accuracy compared to the previous two
experiments. Participants also reported this when we asked if they had any general
comments on the experiment. P1 said, "...especially the videos were extremely short, it
made it more difficult to focus and evaluate the emotions as to whether they’re genuine or
acted". This aligns with the findings reported in section 4.2.2.2, where we saw that
it takes a few seconds for participants’ physiological response to show differences
while watching genuine and acted stimuli. As some of the video stimuli used in
this experiment were shorter than that, participants could not show a strong reaction
differentiating the underlying emotion in the short stimulus videos. Thus, we can
conclude that the chosen video stimuli were not appropriate to combine with music
stimuli. It is also important to consider whether the underlying emotion of the video
aligns with the emotion of the music stimuli. If they were widely different from
each other, it may confuse the participant, which may reflect in their physiological
response. This was reported by some of the participants’ in their verbal response.
For instance, P15 mentioned, "...when the tension of music and video did not match each
other it made me confused". For similar experiments in the future, the emotion and
length of the chosen video stimuli need to be considered carefully.

Nevertheless, the results are promising and show the usefulness of different types
of music stimuli in facilitating emotion recognition tasks. The use of binaural beats,
specifically gamma inducing beats deviated from the expected outcome. This de-
mands a further investigation into similar types of music stimuli and the use of
physiological signals to identify which music stimuli are truly beneficial to improve
concentration on various kinds of tasks, rather than just assumed to be.

4.4 Summary

In this chapter, three different experimental results were reported which investigated
participants’ physiological reactions to image, video and music stimuli. A number
of different computational models were also explored, ranging from traditional ma-
chine learning methods to a shallow and deep neural network. The results showed
promising results using image and video stimuli. However, combining them with
music stimuli did not result in impressive outcomes using computational methods.
This is more likely due to the music stimuli and given task not aligning properly
which confused the participants. In the following chapters, experimental analysis
are conducted using only music stimuli to see whether patterns can be identified
in participants’ physiological responses when they listen to different types of mu-
sic. The results of the three experiments discussed in this chapter further showed
that deep learning techniques performed relatively worse with the (small) amount of
data that were collected. For experiments where the number of collected samples are
smaller, different feature extraction and feature selection techniques are explored in
greater detail and are combined with traditional machine learning methods.
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Chapter 5

Effects of Music in Physiological
Response

This chapter explores the effects on human physiological signals while listening to
three different genres of music. The focus of this chapter is to investigate the effects
of music stimuli alone, and collecting a broader range of physiological signals (EDA,
BVP, ST, PD, EEG), to gather more samples and create robust models. In this chapter,
effects on participants’ EDA, BVP, ST and PD signals are discussed. Effects on EEG
responses are discussed in chapter 6. More demographic and qualitative information
were collected to do further analysis on the data. This chapter builds on the results
published in the 2019 International Joint Conference on Neural Networks – IJCNN
2019 [Rahman et al., 2019] and Journal of Artificial Intelligence and Soft Computing
Research - JAISCR [Rahman et al., 2021a]. In both publications, I was the primary
contributor to the work.

5.1 Experiment Design

All participants were recruited through the ANU Research School of Psychology’s
“Psychology Research Participation Scheme” website SONA. After arrival at the lab,
they were briefed about the experiment procedure and handed a participation infor-
mation sheet with detailed instructions. These documents are attached in appendix
B. After they understood the procedure and agreed to participate in the experiment
by signing a written consent form, they were asked to sit comfortably in a chair in
front of a 17.1 inch monitor. Next, participants were fitted with a wrist borne Em-
patica E4 device which collects EDA, BVP and ST data. Participants were asked to
wear the device on their non-dominant hand. After turning the device on, the first 40
seconds of data were considered as the baseline value before the experiment record-
ing began. Both EDA and ST data were collected at a sampling rate of 4 Hz, while
BVP data was collected at 64 Hz. Next, the Eye Tribe device was placed in front of
the participants to capture their eye movements and pupil diameter. Sometimes the
device needed to be moved around to identify the optimal position as it varied based
on participant’s height and distance from monitor. Then, calibration was done using
the device’s software development kit. Participants were asked to follow a series of

71
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dots that appeared on the screen. After the calibration, PD data was collected at a
sampling rate of 60 Hz. Figure 5.1 shows a photo of the calibration process.

Figure 5.1: User interface of The Eye Tribe for calibration process

Due to the device being sensitive to external movements, all participants were
asked to limit any unnecessary movement during the experiment in order to avoid
adding artefacts to the signals. They were also asked to wear noise cancelling head-
phones (Bose QuietComfort® 20 Acoustic Noise Cancelling™) which helped remove
any effects from outside noise during the experiment. The entire experiment was
conducted through an interactive website prepared for this purpose. The website
was created using Python’s Django web framework.

The stimuli used in this experiment are all the twelve music pieces outlined in Ta-
ble 3.1. Participants answered some basic demographic questions at the beginning of
the experiment. These questions included their name, age, gender, ethnicity, musical
preferences and whether they had migraine or severe headache problems. Then the
participants listened to each piece of music and gave a series of ratings to the music
based on six different emotion scales. The scales were decided based on the work
done by Walker [1977]. These scales are i) sad→ happy, ii) disturbing→ com f orting,
iii) depressing → exciting, iv) unpleasant → pleasant, v) irritating → soothing, and
vi) tensing → relaxing. The first four ratings were to find participants’ general im-
pression about the music itself, and the other two asked about the participants’ feel-
ings while listening to that piece of music. The subjective ratings were based on a
7-point Likert scale, chosen as this is considered the most appropriate number for
Likert [Alwin, 1997]. At the end of the ratings, participants provided some general
comments about the music piece they just listened to.
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All the music stimuli were played for the length of the piece itself. Each par-
ticipant listened to two out of the three genres of music. As each genre contained
four pieces of music stimulus, each participant listened to a total of eight pieces of
music. The decision to use eight pieces of music instead of all twelve is due to some
observations from a pilot study conducted prior to this experiment. Three partici-
pants did a pilot study where they listened to all 12 pieces of music. This caused the
overall experiment participation time to be close to 120 minutes. The long duration
of sitting in one position wearing multiple devices caused fatigue and headache to
the participants. Therefore, it was decided to shorten the experiment by reducing
four music stimuli (one genre) presented from the dataset for each participant.

The music stimuli were order balanced based on genre using the Latin square
method, and within the genre, the music stimuli were played in a fixed order. When
participants listened to each pieces of music, they were also given a short article to
read from the New Scientist magazine [NewScientist]. This was done so that par-
ticipants did not get bored or distract themselves thinking about other things and
remained concentrated on the experiment. However, there were no tasks involved
regarding the content of the text.

In order to analyse the emotional ratings provided by the participants, the ratings
were visualised based on their valence-arousal level in a two-dimensional emotion
model. The original model was proposed by Russell which contained a wider list of
emotions (shown in Figure 2.2). Based on that model, an updated model was created
with the six emotion scales used in this study. This is a more effective approach
than modeling the emotions with discrete labels because real world stimuli induce
blended emotions, and they can be expressed better in a multidimensional space
[Kim and André, 2008]. Figure 5.2 shows the emotion model of this experiment.

A photo of the experimental setup is shown in Figure 5.3. The experiment ran for
approximately 60 - 90 minutes, which includes device setup time.

5.2 Participants

Demographics of the participants of this study are shown in Table 5.1.
Thirteen male and eleven female students (24 in total) participated voluntarily

in this experiment. The mean age was 21 years old with a standard deviation of
4.6. Among the participants 19 were undergraduates while five were postgraduate
students. Some of the students had experience in playing different instruments, but
none of them were professional musicians or music students. Participants were also
asked about their music preference. Their responses varied widely from classical,
pop, instrumental, rock, hiphop, metal and folk. The study was approved by the
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Figure 5.2: Two dimensional emotion model by valence and arousal

Figure 5.3: Experimental setting - participants physiological signals being collected
while they listen to music
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Table 5.1: Participant demographic of the experiment of collecting physiological sig-
nals during music listening

Subject Age Gender Ethnicity Education Music Genre
Preference

1 23 Female Asian Postgraduate Classical
2 29 Male Asian Undergraduate Classical
3 22 Male Asian Undergraduate Rap
4 19 Male Caucasian Undergraduate Classical
5 18 Female Caucasian Undergraduate Modern Hip

Hop
6 19 Female Caucasian Undergraduate No Specific

Type
7 20 Male Caucasian Undergraduate Pop
8 18 Male Caucasian Undergraduate Indie Rock
9 18 Female Asian Undergraduate Pop
10 18 Female Caucasian Undergraduate Hip Hop
11 18 Female Caucasian Undergraduate Metal
12 26 Male Asian Postgraduate Light Music
13 18 Male Caucasian Undergraduate Classical
14 22 Male Caucasian Undergraduate Rock/Musicals
15 19 Female Caucasian Undergraduate House, Elec-

tronic, Pop
16 18 Female Caucasian Undergraduate Pop
17 19 Male Asian Undergraduate Pop, Folk
18 18 Female Asian Undergraduate Pop
19 21 Male Caucasian Undergraduate Chill Hip Hop
20 22 Male Asian Postgraduate Contemporary

Pop
21 25 Male Asian Undergraduate Indie Rock
22 37 Female Asian Postgraduate Rock
23 24 Female Caucasian/Other Undergraduate Light Music
24 25 Male Asian Postgraduate Instrumental
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Australian National University’s Human Research Ethics Committee.

5.3 Data Analysis

Data analysis for this experiment was conducted in two phases. In the first phase,
only EDA signals were considered with a small subset of features to build the clas-
sifier models. After the efficiency of the models were tested, a larger set of features
along with EDA, BVP, ST and PD data were analysed in phase two. In the subsequent
analysis, these phases will be mentioned to differentiate the two analyses.

5.3.1 Pre-processing

Physiological signals collected during the experiment were first normalised to re-
move subject dependency from the signals. Min-max normalisation was used to
normalise the signals between range 0 to 1. The EDA, BVP, ST and PD signals from
each participant were normalised individually. After normalising the data, filtering
was done to remove artefacts caused by subject movements and additional environ-
mental noise. The median smoothing technique was used for this purpose. Choosing
a high value as the parameter for filtering might cause the loss of valuable data, on
the other hand a low value will result in the data remaining too noisy. Based on pre-
vious literature, a 10 point median filter was chosen in order to avoid the loss of too
much data [Stone, 1995]. These pre-processing steps were the same in both phases of
analysis.

For PD data, an additional pre-processing step was performed because several
data points were empty due to blinking by the participants. In this case, linear
interpolation was applied to generate those data points. Finally all the signals were
segmented to the length of each music stimulus prior to further analysis.

5.3.2 Feature Extraction and Selection

A number of features were extracted from both time and frequency domains using
all of the physiological signals collected. The complete list is set out in 3.2.3. Table
5.2 lists the features used in the two phases of this data analysis. In phase one, a
smaller subset of features was extracted only from EDA data, while phase two used
all features extracted from all signals.

The features were extracted from both normalised and filtered signals. After-
wards, some redundant features and features with skewed values were removed. In
total, 14 features were extracted from EDA signals in phase one, while 34 features
were extracted from each signal in phase two.

For feature selection, all six methods described in 3.2.4 were used in both the pre-
liminary and detailed analysis phases. The methods are statistical dependency (SD),
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Table 5.2: Features extracted from participants physiological signals while listening
to three genres of music

Feature
Type

Phase Feature Names

Frequency
domain
features

Both
Mean, minimum, maximum of the first 16 points from
Welch power spectral density

Time
domain
features

Both
Mean, minimum, maximum, standard deviation, in-
terquartile range, variance, kurtosis, number of peaks,
mean of first and second difference of the signals

Time
domain
features

Two

Root mean square, average amplitude change, log detector,
difference absolute standard deviation value, detrended
fluctuation analysis (DFA), Hjorth parameters (mobility
only), Hurst exponent, sample entropy, approximate en-
tropy, Shannon’s entropy, permutation entropy, fuzzy en-
tropy

minimal-redundancy-maximal relevance (MRMR), genetic algorithm (GA), sequen-
tial forward selection (SFS), sequential floating forward selection (SFFS) and random
subset feature selection (RSFS).

5.3.3 Visualisation of the Physiological Signals - Gingerbread Animation

Data visualisation provides an effective method of identifying patterns in complex
data, such as physiological signals. Thus, many researchers in the area of com-
puter vision have utilised different visualisation techniques to build classifier models.
The effects of analysing physiological signals using different visualisation techniques
were explored using the data collected in this experiment. As a preliminary explo-
ration, the physiological signals were visualised in a 2D graph. Each participant’s
data were segmented according to the music stimuli length. EDA, BVP and ST val-
ues were represented in red, blue and green colours respectively. PD data values
were not used in this preliminary experiment. Figure 5.4 shows a sample graph im-
age used in this analysis.

When using physiological signals, in particular many physiological signals over
a longer period, it is difficult to visualise the data. Therefore in the next stage, an
approach was devised called Gingerbread Animation which uses a stylised 2D repre-
sentation of a human body and visually represents the time series of physiological
signals propagating on that 2D surface, which can be presented as a video.

In the Gingerbread Animation, BVP, PD, EDA and ST signals were used, which
can be represented by red, green, blue and grey colours respectively. The locations
of data representation also reflect the locations where these signals are generated
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Figure 5.4: Physiological signals representation as a graph (Blue = BVP, Red = EDA,
Green = ST)

where possible. The PD, BVP, EDA and ST signals are displayed in right eye, heart,
left wrist and right foot area respectively. These colours can combine and create
mixed colours on the surface. Thus, a sequence of images are produced (forming a
video) representing each experimental trial, and retaining a representation of each
signal – the colours mix, but the RGB values are not lost. This representation leads
to an additional benefit; it can make use of the highly advanced computer vision
techniques available for images to classify and predict based on the new video data.

Figure 5.5 shows some representative images, the first one being a few seconds
into a music stimulus, second one during the middle and third one during the end
of the stimulus. Each datum is represented as a ring with a fixed maximum width
in the animation. The latest data appears in the middle of the circle, for each type of
signal, up to 40 time steps of data are showing at the same time. These 40 concentric
rings constitute an entire circle. The older the data, the closer to the outside edge the
circle it moves to, which simulates the effect of data rippling out.

Physiological data is mapped to the RGB model in the animation, in which (0, 0, 0)
is black and (255, 255, 255) is white. To make the visualisation more in line with hu-
man intuition, the background is set as white, so as to highlight stronger signals that
appear darker due to lower RGB values. As the data spreads, the intensity continues
to decay until it drops to 0, which is represented by 255 in the RGB model. For ex-
ample, when a BVP datum is 0.8, it is represented as (51.2, 0, 0) in the RGB model in
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(a) Start of stimulus (b) Middle of stimulus (c) End of stimulus

Figure 5.5: Physiological signals representation in an animation (Red = BVP, Blue =
EDA, Green = PD, Grey = ST

the middle of the circle when it first appears and then after spreading out, it begins
to decay slowly and ends up as (255, 0, 0) which is seen as a bright red color in the
animation.

In areas where multiple types of signal overlap, the overlapped RGB value is
added by the RGB values of each signal. For example, a BVP datum of 0.8 (i.e.
(51.2, 0, 0) in RGB) meets a wrist datum of 0.5 (i.e. (0, 0, 128) in RGB), and the resulting
output is (51.2, 0, 128) in RGB. The figure also shows that in some parts of the image
the amplitudes of the original signals can still be easily seen as the colours have not
yet begun to mix. It is observed that the BVP signals vary rhythmically, while the ST
varies in a much smoother manner, while the EDA is not rhythmic in this fashion.
Finally, the figure further shows some regions where the colour has begun to mix,
and produce visually pleasing complex patterns related to the data. Both of these
visualisation techniques were analysed along with the feature data mentioned in the
previous section.

5.3.4 Classifiers

5.3.4.1 Preliminary analysis using EDA data

In the phase one analysis using only EDA signals, a neural network was created for
predictive modelling. All the music stimuli were labelled as one of the following
three categories: classical, instrumental and modern pop. A leave-one-participant-
out process was performed using a three class classifier to distinguish among the
three music categories. The leave-one-participant-out process was done 20 times for
all methods and the average results are shown. Classification was done using MAT-
LAB R2017a software with an Intel(R) Core(TM) i7-5200U processor with 3.60 GHz,
16.00 GB of RAM and Microsoft Windows 10 Enterprise 64-bit operating system. For
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the classification process, a pattern recognition network was constructed with one
input layer, one hidden layer and one output layer. The hidden layer consisted of 30
nodes. Figure 5.6 shows a diagram of the neural network model.

Figure 5.6: Neural network architecture

Choosing the optimum number of hidden nodes is the most crucial task in build-
ing the neural network. Too many neurons in the hidden layer may result in overfit-
ting, while too few neurons may cause underfitting. During the phase one study, the
small subset of EDA features was analysed to determine certain parameters. In that
analysis, a neural network using hidden node numbers from 5 - 50 were analysed
and their classification accuracy were compared. The result is shown in Fig. 5.7

We can observe that from the hidden node number of 30 the network produces
a reasonably stable result in terms of accuracy. Therefore, the hidden node number
of 30 was chosen as the optimum number for all the shallow neural network anal-
yses. Other parameters of the network were: Levenberg—Marquardt [Levenberg,
1944; Marquardt, 1963] methods as network training function and mean squared
normalised error as performance function. Multiple neural network models were
created based on the features selected by the six feature selection methods. For the
two feature selection methods SD and MRMR, the top twelve features were chosen
as input for the classification model.

Draft Copy – 30 September 2022



§5.3 Data Analysis 81

5 10 15 20 25 30 35 40 45

Hidden Layer Node Number

84

86

88

90

92

94

96

98

A
c

c
u

ra
c

y
 (

%
)

Classification Accuracy Using Node Number

Accuracy

Figure 5.7: Classification accuracy using different hidden node number

5.3.4.2 Analysis Using EDA, BVP, ST and PD Data

Classification using EDA, BVP, ST and PD features was conducted with three tech-
niques. They are: Neural Network (NN), K-Nearest Neighbor (KNN) and Support
Vector Machine (SVM). The methods are described in sections 3.2.5.6, 3.2.5.1 and
3.2.5.4 respectively. Using these methods, classification was performed in five dif-
ferent conditions. EDA, BVP, ST and PD features were used individually for clas-
sification, and also feature-level fusion was done using all four signals. The entire
process was done using all the features and also features selected by the six feature
selection methods. For the two feature ranking methods SD and MRMR, the top 12
features were chosen to use in the classification process. A leave-one-participant-out
process was performed as the validation approach. Classification was performed us-
ing MATLAB R2018a software with an Intel(R) Core(TM) i7-5200U processor with
3.60 GHz, 16.00 GB of RAM and Microsoft Windows 10 Enterprise 64-bit operating
system. Similar to the preliminary analysis, classification was done based on both
genre and participants’ subjective response.

Classification using neural network was done using the same parameters used in
the previous section. The classification process was done 20 times and the average
of those results were selected. For KNN, the size of K was determined using exper-
imentation. The size of K was tried ranging from 3 to 30 to choose the best results.
K= 5 or 7 resulted in best outputs for all cases. For distance metric, Minkowski dis-
tance was chosen. The multiclass SVM chosen for this study used tree learner and
one-versus-all coding design.

To classify the graphs constructed from physiological signals, a pre-trained con-
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volutional neural network (CNN) resnet18 was used and the final layer was modified
in order to train (fine-tune) the model using the graph images. Resnet introduced
skip connections which help resolve the vanishing gradient issue [He et al., 2016].
Figure 5.8 shows the resnet18 architecture.

To classify the images obtained from the Gingerbread Animation, a CNN was
constructed using stochastic gradient descent with momentum (SGDM) with an ini-
tial learning rate of 0.005, mini batch size of 32. A variation of the classic Lenet-5
architecture [LeCun et al., 1998] containing three convolutional layers, two max pool-
ing layers, a fully-connected layer and a softmax classifier was used. Figure 5.9 shows
the CNN architecture.

5.4 Results and Discussion

In this section the results from the preliminary analysis in phase one are reported,
followed by the complete analysis from phase two.

5.4.1 Results using EDA signals

Figure 5.10 shows the classification results for three music genres using the EDA
feature data extracted during phase one analysis.

From Figure 5.10 it can be observed that classification using a neural network
along with GA feature selection method can give a high accuracy of 96.8% for three
different music genres. This implies that EDA can be a good measure in classifying
music categories. A neural network with GA gives best results in terms of all six
evaluation measures. Table 5.3 gives a comparison of GA results with SD/MRMR
(which performed moderately) and SFFS (which performed the worst). It can be seen
that the difference between GA and SFFS method is quite significant (around 15.0%
and 13.0% for precision and F measure respectively).

Table 5.3: Classification based on music genres using EDA signals

GA SD/MRMR SFFS
Accuracy 0.968 0.961 0.875
Precision 0.929 0.918 0.775
Recall 0.979 0.97 0.885
Specificity 0.962 0.957 0.869
F Measure 0.953 0.943 0.825
Geometric
Mean

0.971 0.963 0.877

As mentioned earlier, all 24 participants of this study provided subjective ratings
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Figure 5.8: Resnet18 architecture
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Figure 5.9: CNN architecture for Gingerbread Animation
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Figure 5.10: Classification based on music genres using EDA signals
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about the music stimuli on a 7-point likert scale. These rating were then converted
to three ranges, and the music stimuli were labelled based on that. Thus the labels
for the 6 questions were: i) sad → neutral → happy, ii) disturbing → neutral →
com f orting, iii) depressing → neutral → exciting, iv) unpleasant → neutral →
pleasant, v) irritating → neutral → soothing, and vi) relaxing → neutral → tensing.
These labels were used to perform the classification using the three class classifier
similar to the genre classification problem.

Subjective ratings provided by the participants were analysed using the analysis
of variance (ANOVA) test. The significance level of each music category was com-
puted based on the six questions about emotional response to the music stimuli.
The results show statistical significance (p < 0.05) for two emotions (sad → happy,
depressing→ exciting), but it did not show significant differences for other emotions.
Based on the significance results, the classification results are reported below based
on the one emotion that showed significance (depressing → neutral → exciting) and
one that did not (disturbing→ neutral → com f orting).
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Figure 5.11: Classification results based on subjective rating (depressing→ neutral →
exciting) using EDA signals

Figure 5.11 shows the evaluation results of the subjective rating based on the
emotion depressing → neutral → exciting. Similar to the genre based classification,
all evaluation measures are calculated from an average of 20 runs. It can be observed
that GA again performs better than all other feature selection methods. A compar-
ison between the evaluation measure value of GA and two other methods is given
in Table 5.4. Similar to genre based classification, it can be seen that GA performs
well. Compared to the worst performing method SFS, the improvement is around
35% difference in accuracy. Similar outcomes are observed for classification based on
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two other emotions (sad → neutral → happy, and irritating → neutral → soothing).
In these three cases GA performs better than all other feature selection methods. The
average accuracy based on these two emotions are 93.8% and 95.1% respectively.

Table 5.4: Classification results based on subjective rating (depressing → neutral →
exciting) using EDA signals

GA SD/MRMR SFS
Accuracy 0.945 0.922 0.607
Precision 0.933 0.906 0.612
Recall 0.975 0.967 0.888
Specificity 0.902 0.859 0.214
F Measure 0.954 0.935 0.725
Geometric
Mean

0.938 0.911 0.434

However, different patterns are observed for the other three emotion based clas-
sifications (disturbing → neutral → com f orting, unpleasant → neutral → pleasant
and relaxing → neutral → tensing). Figure 5.12 shows the results of six evaluation
measures based on the emotion disturbing→ neutral → com f orting.
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Figure 5.12: Classification results based on subjective rating (disturbing→ neutral →
com f orting) using EDA signals

As seen in Figure 5.12,the SD/MRMR feature selection method gives the best re-
sults in all measures. Compared with the worst performing method (both SFS and
SFFS in this case as they have selected the same set of features), the difference is high
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in terms of specificity (around 13.0%). The values are given in Table 5.5.

.

Table 5.5: Classification results based on subjective rating (disturbing → neutral →
com f orting) using EDA signals

GA SD/MRMR SFS/SFFS
Accuracy 0.968 0.983 0.946
Precision 0.967 0.983 0.957
Recall 0.998 0.998 0.979
Specificity 0.819 0.913 0.781
F Measure 0.982 0.99 0.968
Geometric
Mean

0.874 0.954 0.874

As for the other two emotions (unpleasant→ neutral → pleasant and relaxing→
neutral → tensing), the best results for all evaluation measures are also found by
using SD/MRMR feature selection method with the average accuracy of 98.0% and
96.4% respectively. Although the values of GA and SD/MRMR are quite similar,
t-test analysis shows a significant difference in terms of accuracy for depressing →
neutral → exciting (p < 0.01 ), but not for the case of disturbing → neutral →
com f orting. Values of other evaluation measures also show the same pattern for
both cases.

From the emotion model in Figure 5.2, we can observe that for the three emo-
tions that have a positive slope (depressing → neutral → exciting, sad → neutral →
happy and irritating → neutral → soothing) GA feature selection methods work the
best. But for the emotions that have a slope of 0 or a negative value (disturbing →
neutral → com f orting, relaxing → neutral → tensing and unpleasant → neutral →
pleasant) SD/MRMR method works the best. Further experimentation and analy-
sis are required to understand this phenomenon. Based on the current results it is
evident that there is a correlation between human emotions and their physiologi-
cal signals which can be differentiated by different feature selection methods during
classification.

5.4.2 Results Using EDA, BVP, ST and PD Signals

Based on the preliminary results in phase one using EDA signals, an extended clas-
sification was done using all four signals (EDA, BVP, ST, PD). Certain patterns are
observed from the classification results which are described below.

5.4.2.1 Neural Network Performs Best Among All Classifiers

The results of all five classification approaches show that in every case NN per-
formed significantly better than KNN and SVM. Figure 5.13 shows the accuracy
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results based on the participants’ subjective rating in respect of the emotion scale
tensing→ relaxing, using all features.

Figure 5.13: Classification result based on subjective rating (tensing → relaxing)
using EDA, BVP, ST and PD signals

From Figure 5.13 it is evident that NN performs best in terms of accuracy in
all 5 combinations of features. Neural network gives the accuracy of 97.7%, 98.3%,
98.3%, 98.7% and 98.5% accuracy using EDA, BVP, ST, PD and EDA+BVP+ST+PD
features respectively. In comparison, KNN gives 70.3%, 73.9%, 69.8%, 74.5%, 77.6%
and SVM gives 56.8%, 58,9%, 64.1%, 58.9%, 62.5% accuracy. This pattern prevails in
classification using features from the feature selection methods as well. This study
solidifies the results from the phase one analysis in showing that a simple NN can
be a strong system in classifying physiological signals.

5.4.2.2 Feature Selection Produces Best Results for Music Genre Classification

Classification accuracy results of different feature selection methods using neural
network for music genre classification were compared and the results are shown in
Figure 5.14.

It is observed that for the EDA, BVP, ST, PD and EDA+BVP+ST+PD feature com-
binations, the RSFS, MRMR and SD methods result in the best NN accuracy. Both
KNN and SVM also produce their best results using feature selection methods. The
results show similar patterns across all evaluation measures. Table 5.6 shows the
results of all six evaluation measures for NN classification of music genres. The table
does not include results using GA and SFFS as feature selection methods because
they do not achieve the highest values in any of the evaluation measures.
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Table 5.6: Classification results based on music genre using EDA, BVP, ST and PD
signals

All SD MRMR RSFS SFS
Accuracy 0.981 0.975 0.971 0.984 0.908
Precision 0.982 0.976 0.979 0.983 0.875
Recall 0.959 0.947 0.934 0.969 0.847

EDA Specificity 0.991 0.988 0.989 0.992 0.939
F-
Measure

0.971 0.961 0.956 0.976 0.860

G-mean 0.975 0.967 0.961 0.980 0.892
All SD MRMR RSFS SFS

Accuracy 0.975 0.992 0.993 0.983 0.989
Precision 0.957 0.992 0.994 0.974 0.984
Recall 0.969 0.983 0.984 0.977 0.983

BVP Specificity 0.978 0.996 0.997 0.987 0.992
F-
Measure

0.963 0.988 0.989 0.975 0.984

G-mean 0.973 0.989 0.991 0.982 0.988
All SD MRMR RSFS SFS

Accuracy 0.982 0.989 0.986 0.975 0.944
Precision 0.959 0.983 0.979 0.962 0.925
Recall 0.989 0.985 0.979 0.963 0.906

ST Specificity 0.979 0.991 0.989 0.981 0.963
F-
Measure

0.974 0.984 0.979 0.963 0.915

G-mean 0.984 0.988 0.984 0.972 0.934
All SD MRMR RSFS SFS

Accuracy 0.983 0.981 0.984 0.979 0.941
Precision 0.984 0.979 0.985 0.981 0.924
Recall 0.968 0.963 0.966 0.959 0.898

PD Specificity 0.992 0.989 0.993 0.991 0.963
F-
Measure

0.975 0.971 0.975 0.969 0.91

G-mean 0.979 0.976 0.979 0.974 0.929
All SD MRMR RSFS SFS

Accuracy 0.97 0.978 0.977 0.972 0.958
Precision 0.952 0.951 0.948 0.957 0.937

EDA+ Recall 0.96 0.984 0.986 0.96 0.936
BVP+ Specificity 0.975 0.975 0.973 0.979 0.969
ST+ F-

Measure
0.956 0.967 0.966 0.959 0.936

PD G-mean 0.968 0.979 0.979 0.969 0.952
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Figure 5.14: Neural Network classification result based on music genre using EDA,
BVP, ST and PD signals

Table 5.6 shows that the high score for all evaluation measures is reached by a
feature selection method. A few exceptions can be observed, such as the condition
using ST features where the highest recall score is achieved by using all features.
Furthermore, using PD features, the highest recall and specificity is achieved using
the full set of features. However, we can see that in those combinations the high-
est F-measure is reached by the SD and MRMR methods respectively, aligning with
the other measure values. F-measure is the harmonic mean of precision and recall,
which takes both false positive and false negative values into account. Recall does
not consider false positive values, therefore the F-measure is a stronger measure for
evaluating a model, compared to just precision or recall. This result suggests that
using a smaller subset of the features not only reduces the computational time, but
also increases accuracy of NN models in classifying different music genres.

This result also improves the phase one study which used a smaller subset of
features. That analysis reached the highest accuracy of 96.8% for music genre clas-
sification. In the extended analysis, the accuracy using EDA features increased to
98.4%, and overall the highest accuracy reached 99.3%, using BVP features. The im-
proved set of features identified through this analysis has resulted in the improved
accuracy of the classification models.

5.4.2.3 Statistical Analysis on All Evaluation Measures

Results of the six evaluation measures for NN classification across all five conditions
were analysed using analysis of variance (ANOVA) test. A one-way ANOVA test
showed high statistical significance (p < 0.01) for all of the evaluation measures.
The accuracy results for all pairs of feature selection methods were compared for
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statistical significance. The results are shown in Table 5.7.

Table 5.7: Significance values for all pairs of feature selection methods

All
SD 0.00003
MRMR 0.00009 0.386
GA 0.0002 0.029 0.085
RSFS 0.006 0.139 0.119 0.782
SFS 0.000002 0.00002 0.000009 0.000006 0.00004
SFFS 0.000009 0.00008 0.00006 0.00003 0.0003 0.335

All SD MRMR GA RSFS SFS

In Table 5.7, the numbers in colour and bold are the pairs that show meaningful
differences. Red colour shows a significance of p < 0.05, while blue colour shows
significance p < 0.01 and teal colour shows significance at threshold p < 0.001. A
further observation is that both SFS and SFFS reached high significance values in
comparison with other selection methods. This is reflected in the number and type
of features chosen by these methods as well. It can be clearly seen from the table that
different combinations of features in the model result in significant differences in
model accuracy. Therefore, in the next section, some of the features that were shown
to be useful for the classification models are discussed.

5.4.2.4 Top Features Selected by Feature Selection Methods

The number of times each feature was chosen by the six feature selection methods
was counted for all classification models. Based on that, the top 12 features are
reported from all the features that were extracted in Table 5.8. Unless specifically
mentioned, most of the features were extracted from the filtered signals.

Table 5.8: Top 12 features (from EDA, BVP, ST and PD signals) selected by all methods

Feature Names Feature Type
Number of peaks (both normalised and fil-
tered), variance, sum, absolute sum, simple
square integral

Linear features from
time domain

Mean, minimum, maximum of the first 16 data
points from Welch power spectrum density
analysis

Linear features from
frequency domain

Sample and approximate entropy, Hjorth pa-
rameters (mobility)

Non-linear features
from time domain

The list gives us some interesting insights into which types of features are best to
represent the four physiological signals’ changes. The number of peaks for both nor-
malised and filtered values were selected the most times by all methods. These peaks
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are thus the most valuable feature that reflects the SCR occurrences (rapidly chang-
ing states). SCR occurrences are considered to be most useful in reflecting autonomic
arousal [Bos et al., 2013]. Although the normalised and filtered signal features are
quite similar, they clearly do not add redundancy to the system. With some signals,
useful peaks might be removed due to the filtering process. In those cases, peaks
in the normalised signals proved to be more useful. We also notice that the three
features extracted from the Welch power spectrum density analysis appeared in the
top features list. This shows that the frequency domain features can be very useful
to identify patterns in these signals.

Some of the other interesting features are entropies and mobility. All of these
features represent the level of complexity of the signals. Features like entropies can
effectively capture short range correlations and thus, they are effective in identifying
transient emotional state changes [Jerritta et al., 2013].

5.4.2.5 Best Feature Selection Methods

NN accuracy results for all feature selection methods were further analysed and
the methods were ranked based on how many times that method achieved highest
accuracy. The list below shows the rank of the feature selection methods and their
frequency of achieving the highest accuracy.

• GA - 11

• MRMR - 7

• RSFS - 5

• SD - 4

• SFS - 1

• SFFS - 0

It should be noted that GA was not able to achieve the highest accuracy for music
genre classification in any combination. But it was able to achieve the highest ac-
curacy in most combinations for the six emotion based classifications. For the cases
where GA was not able to reach the highest accuracy, it was still able to achieve close
to the highest. In the preliminary analysis with only EDA signals, it was shown that
for the three emotions that have a negative slope (depressing → neutral → exciting,
sad → neutral → happy and irritating → neutral → soothing) in the emotion model
(shown in Figure 5.2), GA feature selection methods performed the best. For the emo-
tions that have a slope of 0 or a positive value (disturbing → neutral → com f orting,
relaxing → neutral → tensing and unpleasant → neutral → pleasant) SD/MRMR
methods work the best. However, further analysis using more physiological signals
and a wider set of features showed that GA is able to select a robust set of features
for all six emotion based classifications. Therefore, using the GA feature selection
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method is most suitable for classification of music based on different emotion rat-
ings.

5.4.2.6 Effectiveness of Visualisation

Two different subjective ratings of emotions (sad→ neutral → happy and tensing→
neutral → relaxing) were used to demonstrate classification using the graph and
animation images. A leave-n-participants-out cross validation approach was used
to validate the accuracy of the network. A total of 16 participants’ data were ran-
domly chosen for training and eight participants’ data for testing. The graph im-
ages trained using a pre-trained CNN achieved 61.9% accuracy for the emotions
sad → neutral → happy and 73.4% accuracy for tensing → neutral → relaxing. In
comparison, the animation images reached 68.1% and 74.8% for the same emotion
pairs. It should be noted that the comparisons are not exact; the graph visualisations
show 250 sec of data with 3 physiological signals, while the Gingerbread Animation
in the comparison presents much less information, being only 10 sec of data (40 time
steps at 4 Hz) in each frame for four physiological signals. The better results with
less data suggest that the Gingerbread Animation can be both a visually attractive
and effective approach to identify emotions from human physiology using state-of-
the-art machine learning methods. This merits further investigation in the future.

Another observation is that humans may interpret their feelings in response to
some music stimuli differently to what their underlying physiological signals indi-
cate. To initially label the emotions according to subjective rating, a majority voting
approach was used to label each music stimuli. Afterwards each music stimulus was
labelled based on each participant’s individual subjective response. This resulted in
the accuracy dropping from 62.0% to 50.0% for sad → neutral → happy and from
73.4% to 47.4% for tensing → neutral → relaxing. Therefore, we can see that some
participants are different (compared to the overall population of this experiment) in
rating their emotions listening to the music stimuli. However, on average the partic-
ipants’ responses correlate with their physiological response. Thus, considering the
overall view of the population, each person’s emotional reaction to the music stimuli
was as expected. However, their own conscious view was often not supported by
their physiological responses.

There is scope for improvement in both the Gingerbread Animation and the com-
putational models using that data. In particular, it should be emphasised that results
using the simple neural network are based on substantial work in pre-processing.
However, using a pre-trained CNN, the notable results were achieved using just the
raw data. The visualisation approach also makes the data compatible with both tra-
ditional machine learning and deep learning models, where the models primarily
take image data as input.
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5.5 Summary

In this chapter, results were reported based on the effects of different music stimuli in
four different physiological signals. Signals were pre-processed and different num-
bers of features were extracted for experimentation. Six different feature selection
methods were employed to identify useful features. Analysis using three different
classification methods (NN, KNN and SVM) were performed and evaluated using
six different measures. All the results were compared using features from a specific
signal and also the combination of all signals. Neural networks achieved the highest
accuracy across all different conditions with the highest accuracy of 99.2% and 98.5%
in classifying music based on genre type and human emotions respectively. Further-
more, the GA feature selection method has shown to be best for classifying music
based on subjective emotion ratings by participants. A novel animation technique
was introduced to both visualise physiological signals and to make them accessible
to computer vision classifiers. Preliminary results using a CNN achieved up to 74.8%
accuracy in identifying different music based on the subjective rating of participants’
emotion.

There are certain limitations to the work introduced in this chapter. The number
of samples is not very large for higher power deep learning models. More samples
need to be collected in order to use more state-of-the-art deep learning methods. The
visualisation methods used in this chapter leverages some deep learning techniques.
However, these need to be trained longer in order to create more robust models. This
was not possible due to the current processing power of the system (the processing
power issue is improved in chapter 7). In the next chapter, some of these methods
will be used to analyse participants’ brainwave signals.
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Chapter 6

Effects of Music on Brainwave
Patterns

This chapter explores the impact of three different types of music stimuli on human
brain activity using EEG. Several signals from different brain regions were investi-
gated to identify which features provide useful information regarding music type
and emotion processing. Three different classifiers were used to recognise the three
music genres based on the selected brain activity features. The subjective responses
provided by the participants related to the music were also classified using a similar
approach. The chapter is based on the results published in 2020 International Joint
Conference on Neural Networks – IJCNN 2020 [Rahman et al., 2020a], where I was
the primary contributor.

6.1 Experiment Design

The data collected in this analysis was from the same experiment discussed in sec-
tion 5.1. After participants received all the initial information on the experiment and
were fitted with the other wearable devices such as Empatica E4, they were fitted
with the Emotiv EPOC headset. The Emotiv EPOC headset is a 14-channel wireless
headset that also has 9-axis motion sensors. Emotiv also provides software that can
be used to record raw EEG data, from which different brain waves and related in-
formation can be extracted. Figure 6.1 shows the channels’ names and locations of
Emotiv EPOC electrodes.

The headset electrodes were properly hydrated to achieve good connectivity prior
to the calibration process. After participants put on the headset, the calibration pro-
cess began. Participants were asked to keep their eyes open for 15 seconds and keep
their eyes closed for another 15 seconds to record the baseline data. After that the
calibration was completed. Then the data collection process began at the sampling
rate of 128 Hz. Band power data was collected at 8 Hz.

Participants in this experiment were the same as the experiment described in
chapter 5. The detailed participant demographic is given in Table 5.1.

95

Draft Copy – 30 September 2022



96 Effects of Music on Brainwave Patterns

Figure 6.1: Emotiv headset channel location and names [Balasubramanian et al., 2018]

6.2 Data Analysis

6.2.1 Pre-processing

Raw EEG signals collected from participants are very sensitive to subject movements.
In addition, sometimes a few channels could not obtain a good connection and added
noise artefacts to the collected signals. To make the findings plausible for real world
application, the use of head immobilisation or chin rests were not used. Therefore,
multiple filtering methods were applied to the raw signals. A median smoothing
filtering was used to smooth out the noisy signals. Then the EEG data was band-
pass-filtered between 3 to 60 Hz. This was done primarily to separate the band
frequency ranges of interest, which are: Alpha [8− 13 Hz], Beta [14− 30 Hz] and
Gamma [31− 50 Hz] bands. Then the data was segmented into the lengths of the
music pieces for feature extraction.

6.2.2 Feature Extraction and Selection

EEG signals were collected using all 14 channels at the sampling rate of 128 Hz.
A total of 26 linear and non-linear statistical features were extracted from the pre-
processed data. The features were extracted from the three chosen band frequency
ranges. Table 6.1 shows the 26 linear and non-linear features extracted from every
participant’s music segments. The process was done in the same manner for all 14
channels. The channel names and locations are also noted in Table 6.1. Channel
names follow the convention of the International 10− 20 locations system [Pastelak-
Price, 1983].

All six feature selection methods described in section 3.2.4 were used on the list
of extracted features to find the optimum set of features. The methods are, statistical

Draft Copy – 30 September 2022



§6.2 Data Analysis 97

Table 6.1: Emotiv channel names, locations and extracted feature list from EEG sig-
nals

Channels Location Names
Pre-Frontal Lobe AF3, AF4
Frontal Lobe F3, F4, F7, F8, FC5, FC6
Temporal Lobe T7, T8, P7, P8
Occipital Lobe O1, O2

Features Type Names

Linear

Mean, maximum, minimum, standard devia-
tion, interquartile range, sum, variance, skew-
ness, kurtosis, root mean square, average of
the power of signals, peaks in periodic sig-
nals, integrated signals, simple square integral,
means of the absolute values of the first and
second differences, log detector, average ampli-
tude change, difference absolute standard de-
viation value

Non-Linear

Detrended fluctuation analysis (DFA), approx-
imate entropy, fuzzy entropy, Shannon’s en-
tropy, permutation entropy, Hjorth parameters
(mobility only), Hurst exponent

dependency (SD), minimal-redundancy-maximal relevance (MRMR), genetic algo-
rithm (GA), sequential forward selection (SFS), sequential floating forward selection
(SFFS) and random subset feature selection (RSFS).

6.2.3 Classifiers

Three different classification methods were used to classify the EEG signals. They
are: neural network (NN), k-nearest neighbor (KNN) and support vector machine
(SVM). The methods are described in sections 3.2.5.6, 3.2.5.1 and 3.2.5.4 respectively.
For the two feature ranking methods SD and MRMR, the top 150 features were cho-
sen for use in the classification process. This number was chosen because the feature
subset selection methods generally resulted in around 100-180 features. The number
150 was chosen as an optimum level to lead to good classification performance and
not be too computationally heavy. A leave-one-observer-out process was performed
as the validation approach.

For the neural network, a pattern recognition network was constructed with one
input layer, one hidden layer and one output layer. The hidden layer consisted of
30 nodes, based on the analysis done in section 5.3.4.1. Other parameters of the
network were: Levenberg-Marquardt method [Levenberg, 1944; Marquardt, 1963]
as network training function and mean squared normalised error as performance
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function. The classification process was done 20 times and the average of those
results were selected. For KNN, experimentation was conducted using K sizes 3 to
30 to choose the best results. K = 9 resulted in best outputs for most cases. Minkowski
was used as the distance metric. The multi-class SVM chosen for this study uses tree
learner and one-versus-all coding design. The evaluation measures used in this study
were classification accuracy, precision, recall, specificity and f-measure. All of these
are described in section 3.4.

6.3 Results and Discussion

The classification was performed using MATLAB® R2018a software with an Intel®
CoreTM i7-5200U processor with 3.60 GHz, 16.00 GB of RAM and Microsoft Windows
10 Enterprise 64-bit operating system. The sections below highlight the key findings
of this study.

6.3.1 Statistical Analysis

The statistical analysis was conducted using analysis of variance (ANOVA). The clas-
sification accuracy using NN for all feature selection combinations was analysed. The
results show high statistical significance (p < 0.01) across all the selection methods.
However, there was no statistical significance observed for classifications using KNN
and SVM. Thus, different feature selection methods have significant impacts only
on the NN models of this study. In the later sections the optimal feature selection
methods will be discussed further.

6.3.2 Best Features

The frequency of every feature chosen by each feature selection method was counted
for all seven classification processes. Table 6.2 shows the list of top 25 features in
decreasing order of frequency.

The table gives two types of useful information. Firstly, we can identify which ex-
tracted features are providing useful information as derived by a number of feature
selection models. Secondly, it tells us which channels (signals from parts of brain
regions) are useful in the classification process. From the top 25 features, 10 come
from the channels F3 and F7, both located in the frontal lobe of the brain. Most of
the other features were also from the channels located in the frontal and pre-frontal
region of the brain (except four of them which were features from the temporal lobe).
This shows that the frontal lobe can reveal important information related to music
processing in the brain. The frontal and pre-frontal lobes are considered to be the
emotional control centres of the brain [Salzman and Fusi, 2010]. Frontal lobes are
also involved in decision making [Collins and Koechlin, 2012]. These observations
align with the literature where high activity in the frontal lobe has been seen during
various activities. Khushaba et al. [2012] reported high delta and theta activity in F3
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Table 6.2: Top 25 EEG features selected by feature selection methods

Channel Feature Name
F3 Standard Deviation
FC5 Permutation Entropy
P8 Permutation Entropy
F3 Maximum
F8 Permutation Entropy
F7 Shannon’s Entropy
AF3 Skewness
AF3 Shannon’s Entropy
P7 Permutation Entropy
F4 Permutation Entropy
FC5 Skewness
T7 Skewness
F3 Mean of the First Difference
F7 Approximate Entropy
T7 Permutation Entropy
F7 Hurst Exponent
AF3 Maximum
F7 Skewness
F7 Kurtosis
FC6 Root Mean Square
P8 Approximate Entropy
FC6 Permutation Entropy
AF4 Permutation Entropy
F3 Hurst Exponent
F3 Mean

and F4 region during decision making. This finding can also be beneficial for future
research in making wearable devices to capture EEG. An observations while con-
ducting the experiment was that participants often felt uncomfortable wearing the 14
channel headset for a period longer than an hour. This often hampered their concen-
tration in listening to the music and answering questions. A comfortable wearable
device which captures data only from the frontal region of the brain, requiring less
points of pressure on the head, may be beneficial for longer experiments in such
cases.

Another observation from this feature list is the usefulness of the entropy features.
From this list it can be seen that permutation entropy of eight different channels ap-
peared in the top features list. Furthermore, entropies cover 12 out of the top 25
features. Entropies in general reflect the randomness and complexity properties of
physiological signals. Permutation entropy analyses various permutation patterns
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of these signals to identify the complexity level [Bandt and Pompe, 2002]. These
features highlight useful properties from non-stationary signals like EEG. Entropies
have also been shown to be effective features for building models for epileptic seizure
detection [Chen et al., 2015]. Using these features and relevant channel data can sig-
nificantly reduce the computational cost of the systems without compromising its
predictive power.

Finally, the list of best features from this study is quite different from the best
features using EDA, BVP, ST and PD data (described in Table 5.8). This shows the
importance of the feature selection step when the features are extracted.

6.3.3 Classification Results

Classification using NN, KNN and SVM was done based on the three music genre
and participants’ subjective ratings on emotions. The labelling approach follow the
same approach as the study reported in chapter 5. Participants’ subjective ratings
were recorded on six emotion scales described in section 5.1.

In general, for all cases, NN performed significantly better than KNN and SVM.
Figure 6.2 shows the classification accuracy of all three models using all six feature
selection methods based on the ratings on emotion tensing→ neutral→ relaxing.

Figure 6.2: Classification results using EEG features based on subjective rating (tens-
ing→ neutral→ relaxing), range 40-100 chosen for better visualisation

Figure 6.2 shows that NN can reach the highest accuracy of 98.6% based on the
average of 20 runs, whereas KNN and SVM reached 73.8% and 58.9% respectively.
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Similar patterns are observed in other emotion scales as well across all evaluation
measures. Figure 6.3 shows the six evaluation measures for classification based on
the music genres using NN. It can be observed that NN achieves a high accuracy of
97.5% and 96.3% in F-measure. For KNN and SVM, even though the models achieve
reasonable results in terms of accuracy, it often gets a low score (< 40.0%) for F-
measure. Therefore, NN should be considered a more effective model compared to
KNN and SVM, as it achieves high scores for all evaluation measures.

Figure 6.3: Classification results based on three music genres using EEG features,
range 75-100 chosen for better visualisation

A further investigation was done to identify which feature selection methods are
most suitable to use for the classification models. Figure 6.4 shows the NN accuracy
results of three emotion scales using the SD, GA, RSFS and SFFS. Similar patterns
are observed for other emotion scales as well.

It can be seen in Figure 6.4 that the feature selection methods achieve very close
results in terms of accuracy. But when compared with other measures, the results
show that GA and RSFS achieve the highest results in all evaluation measures for
most cases. Table 6.3 shows the results of all evaluation measures for the same com-
binations shown in Figure 6.4.

The results are statistically significant (p < 0.001). It should also be mentioned
that both these methods are feature subset selection algorithms, and they produced
better results than feature ranking algorithms. Although the feature ranking algo-
rithms get the highest accuracy in some cases, they do not consistently achieve high
scores in other measures such as F1. One of the challenges of feature ranking meth-
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Figure 6.4: Classification accuracy using EEG signals based on participants’ subjec-
tive response based on three emotion scales, range 84-100 chosen for better visuali-

sation

Table 6.3: Evaluation measures of participants’ subjective response using EEG signals
based on three emotion scales

SD GA RSFS SFFS
Accuracy 0.972 0.978 0.976 0.928
Precision 0.879 0.899 0.905 0.758

Depressing →
Exciting Recall 0.968 0.981 0.964 0.865

Specificity 0.973 0.977 0.979 0.941
F-Measure 0.958 0.938 0.933 0.849

SD GA RSFS SFFS
Accuracy 0.979 0.987 0.981 0.952
Precision 0.911 0.954 0.924 0.824

Sad→ Happy Recall 0.968 0.967 0.965 0.909
Specificity 0.981 0.991 0.984 0.961
F-Measure 0.939 0.96 0.944 0.863

SD GA RSFS SFFS
Accuracy 0.951 0.969 0.971 0.963
Precision 0.875 0.918 0.926 0.907

Irritating →
Soothing Recall 0.915 0.965 0.961 0.948

Specificity 0.963 0.971 0.974 0.967
F-Measure 0.941 0.941 0.943 0.927
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ods is choosing the optimum number of features. Feature subset methods are more
beneficial in such cases.

6.3.4 Verbal Response Analysis

To identify whether participants’ brain wave activity aligned with their verbal com-
ments on the music pieces, a qualitative analysis was performed using a grounded
theory approach [Glaser and Strauss, 2017] on the open-ended responses provided
for each music stimulus. The responses were coded into higher level themes based
on participant descriptions of the emotions they felt while listening to a particular
stimulus. These codes were then divided into three categories: positive, negative,
and neutral. Even though the questions were specifically related to the music stim-
uli, some comments were not relevant to the music pieces and only reflected the
text reading experience. Thus, those words were discarded from further analysis.
However, there were some comments that discussed both the texts and music pieces
together, those were kept for further analysis. Figure 6.5 shows the word cloud cre-
ated using the verbal comments provided by the participants.

Figure 6.5: Word cloud on verbal comments provided by the participants on the
twelve music stimuli

During the coding process, frequently appearing words that were considered
negative were: "dislike", "sad", "depressing" and "irritating". Some of the comments
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highlighted as positive were: "like", "relaxing/relaxed", "soothing" and "calming". The
neutral comments mostly described some features about the music, or whether they
had previously heard the song or not. These comments did not reflect participants’
emotions, therefore they were considered neutral comments. Some of the common
words used for neutral comments were: "familiar", "loud", "slow", "fast" and "upbeat".
The analysis was completed using NVivo 12 software. Table 6.4 demonstrates the
percentage of participants providing different categories of comments on each stim-
ulus.

Table 6.4: Comments provided by participants on the twelve music stimuli

Stimuli Negative
Comments

Neutral
Comments

Positive
Comments

Classical 1 6.3% 37.5% 56.2%
Classical 2 18.7% 50.0% 31.3%
Classical 3 12.4% 43.8% 43.8%
Classical 4 12.4% 18.8% 68.8%
Instrumental 1 25.0% 50.0% 25.0%
Instrumental 2 6.3% 18.7% 75.0%
Instrumental 3 18.8% 18.7% 62.5%
Instrumental 4 18.8% 68.7% 12.5%
Pop 1 0% 68.7% 31.3%
Pop 2 12.5% 56.2% 31.3%
Pop 3 0% 62.5% 37.5%
Pop 4 18.7% 50.0% 31.3%

The results from 6.4 and verbal comments from participants give some useful in-
sights. However, overall it did not demonstrate any distinguishable patterns. Below
some findings are reported along with some participant comments. Participants will
be referred as P1, P2, P3,. . . , P24.

Table 6.4 shows that eight out of the twelve music pieces received a majority of
neutral comments. This means that the comments did not reflect their liking or emo-
tional response to the music. One reason behind it could be the way the question was
asked was not clear. Another reason could be the lack of clarity on the experiment
design. Although the primary focus of this study was to look for effects of different
music, this was not communicated to the participants. Participants were asked to lis-
ten to the music and read the text. But they were not told about the primary goal of
this experiment. This was done intentionally so that participants do not avoid read-
ing the text. However, many participants mistook the purpose of the experiment and
assumed they will be asked questions about the text. Therefore, they aimed to mem-
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orise parts of the texts, and music listening in general restrained them from doing so.

A number of the comments from participants reflected that the music did not
allow them to give enough attention to reading the text. This was especially true for
the pop music pieces used in this study. All four music pieces received a majority
of neutral comments, which primarily focused on the reading distraction. P9’s com-
ments about Pop 1 was: “It was a little bit harder to read when the music was so catchy.
Because it’s such a popular song I knew all the words and was thinking them along with it”.
P15 described Pop 4 saying, “The underlying beat made me read at a faster rate, but again
the lyrics make it somewhat difficult to concentrate on the text as well”. Comparing the
findings with the ones in section 4.3.2.1, we see that the pop song genre had mixed
outcomes for the task of identifying emotions in videos (some participants reported
that familiarity of the music helped them relax and focus on the task of watching
videos). However, these music pieces certainly distracted participants from reading
texts. The verbal comments, in general, did not reflect participants’ emotional re-
action to the music. This can be understood better through the subjective ratings
participants provided on the music pieces, which were used for the classifier models.
The distraction effect of music also needs to be investigated further using partici-
pants’ EGG response.

Some participants also assumed the music and texts were aligned to evoke the
same emotional response, which was not the purpose. Although the music were
chosen to evoke specific emotional response, the accompanying texts appeared at
random. For instance, P14 commented on Classical 3 saying, “It did fit with the tone of
the text fairly well, and is an enjoyable piece to listen to when you’re in a sombre mood. Not
so much for when you’re in a good mood though”. Although the response was a bit un-
expected based on the question, it aligned with the findings of another experiment
reported in section 4.3.2.1 when music with sombre tone helped doing the task of
identifying video emotions.

Another finding which was similar to section 4.3.2.1 was the effects of gamma
wave inducing binaural beats. The music piece was used in this study as well (named
Instrumental 1) and received a majority of neutral comments. Although the purpose
of this music piece was to induce gamma waves in the brain and help with focus,
it caused distraction to participants. P8 commented on saying, “I don’t like the mu-
sic piece since it has some weird sound in it. Those sounds interrupted my attention while
reading”. The piece also received negative comments such as “. . . don’t like it as it is
very sad piece and make me feel unpleasant” (P1). Based on the results of two studies
it is evident that careful consideration needs to be taken in choosing gamma wave
inducing music to help with focus and attention.

Although this section provided insights on the effects some music had on text
reading, it did not provide much information on participants’ emotional response to
music. The experiment design needs to be modified in the future to provide more
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clarity on the questions.

6.3.5 Observation of Gamma Levels

As explained in chapter 2, gamma wave activity in the brain is crucial in various
activities such as focus, attention, and epileptic seizures. The frequency band data
collected by the EmotivPro software were further analysed for this purpose. The
gamma level of every participant was observed when they listened to different music
pieces. The songs were labelled based on the gamma levels seen in participants’ brain
activity while they were listening to a particular music piece. Then the pieces were
divided into high, mid and low gamma levels. This division was made by averaging
the gamma level score for every participant listening to every piece of music. This
procedure was repeated for all 14 channels’ gamma level information. A majority
voting was performed among all channel’s data to finally label the music piece. The
results were the following:

• Low Gamma – Instrumental 1, instrumental 3, pop 1, pop 3, pop 4 (mostly pop)

• Mid Gamma – Classical 1, classical 2, classical 3, classical 4 (all classical)

• High Gamma – Instrumental 2, instrumental 4, pop 2 (mostly instrumental)

This division was very closely aligned to the different genres, with some inter-
esting differences. It confirms some assumptions regarding the brain wave activity
associated with the music pieces. For instance, instrumental 1 and 2 (both are bin-
aural beats) were picked from YouTube and they were said to be inducing gamma
waves and alpha waves in the brain respectively. The gamma level observation con-
firms this, as music instrumental 2 appears in the low gamma category (the piece
was meant to be used for relaxation so low gamma level would be expected). Instru-
mental 1 appears in the high gamma category which also matches the description of
the music. Both the binaural beats were able to induce the expected brain waves. An-
other observation was that all four of the classical music pieces appeared in the mid
gamma level category. These music pieces are frequently used in music therapy as
classical music pieces are said to be beneficial to reduce stress, anxiety and improve
sleep patterns [Crawford et al., 2013; Thoma et al., 2013; Huang et al., 2017a]. How-
ever, they might not be very relaxing for all people. Pieces like binaural beats that
induce more alpha waves can be of higher benefit in these cases. On the other hand,
binaural beats that increase gamma levels can contribute to epileptiform activity. A
detailed review on musicogenic epilepsy by Maguire mentioned that it has been hard
to understand why neutral music like a specific sound triggers seizures, reported by
some clinical studies [Maguire, 2015; Wieser et al., 1997]. The findings of this study
may contribute to understanding this effect in the future by identifying music stimuli
that demonstrates gamma wave activity associated with epileptic seizures.

A notable observation relates to the pop music pieces chosen for this study. Out
of the four pop music, only one appeared in the high gamma category and the other
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three appeared in the low gamma category. The assumption was that all of them
would be in the mid or high gamma range as these music pieces contain a lot of
lyrics and instrument usage and thus would require more concentration (usage of
beta and gamma waves) while listening. One possibility might be the fact that these
music pieces were all very popular in recent times, and most of the participants had
listened to these pieces before (all four pieces in the pop category were known to
the majority of the participants, as reported in the questionnaire). The fact that these
pieces were already in their memory might have caused them to not concentrate as
much while listening to the pieces. It has been reported before that there is cor-
relation between high gamma activity and memory in the temporal locations of the
brain [Gamma and Memory]. This was tested by observing the gamma activity in the
temporal locations (channel P7, P8, T7 and T8). The results align with the literature
(e.g. all four pop songs induce high gamma activity in P7 and mid gamma activity
in P8). However, channels in the other locations do not follow the same patterns.
It should also be noted that both temporal and frontal lobes have been shown to
be regions where most epileptic seizures occur, especially in children [Epilepsy and
Seizures; Childhood Epilepsy: The Brain]. Thus any music that reflects or induces
these patterns in the brain of epileptic patients should be avoided. Further analysis
using features from these regions can reveal the potential of identifying brain regions
and music pieces that contribute to musicogenic epilepsy.

To observe if the division of the music pieces based on participants’ brain wave
level can be reflected computationally, classification using NN using all 26 features
from every channel was performed. The labels were given according to the gamma
levels of the music pieces. The model achieved the highest accuracy of 91.4% using
the features from channel F3. This also aligns with the observation in Table 6.2 where
some of the features extracted from channel F3 data were chosen a high number of
times by all feature selection methods. These results were also compared based on all
six evaluation measures from all channels using ANOVA test and the results show
very high statistical significance (p < 0.001). Therefore, it can be concluded that
signals obtained from specific channels could provide more valuable contribution to
the computational models, compared to other channels. Using signals from more
useful channels can greatly reduce the data collection and computational cost, and
further increase efficacy of predictive models.

6.4 Summary

This chapter reported on a study that collected participants’ brain activity via EEG
signals while they listened to three different categories of music. Signals were col-
lected using a 14-channel wearable headset, the Emotiv EPOC. Raw signals were first
pre-processed by filtering them and dividing them into frequency bands alpha, beta
and gamma. Then a number of linear and non-linear features were extracted from
the frequency bands of all channels. A total of six feature selection methods were ap-
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plied to select a feature set which were then used in NN, KNN and SVM classifiers.
Analysis of the data showed that an NN model reached a high accuracy of 97.5%
in classifying the music pieces based on genre and 98.6% in classifying the pieces
based on the subjective rating of emotions given by the participants. The analysis
also revealed that most of the useful features selected were from the pre-frontal and
frontal regions of the brain. Thus in the following chapter, a study is reported where
physiological signals are collected from the frontal region of the brain. An analysis is
conducted using more advanced computational methods, and the limitations of the
other experiments will be considered to improve the experiment design.

Draft Copy – 30 September 2022



Chapter 7

Effects of Music on Cerebral
Hemodynamic Response

This chapter presents the outcomes of a study of the effects of three different mu-
sic genres on people’s cerebral hemodynamic responses. Participants’ fNIRS signals
were recorded while they listened to three different genres of music. Three com-
monly used machine learning and deep learning methods were applied to classify
the physiological responses into the three genres. Classification was also performed
based on the subjective responses of the participants. The contribution of this study
is to analyse the effects of different types of traditional and popular music in partic-
ipants’ hemodynamic responses in the pre-frontal cortex using computational tech-
niques. A comparison was also done with the brain wave responses analysed in
the previous chapter. The chapter builds on the work submitted to the International
Journal of Human – Computer Studies, where I was the primary contributor.

7.1 Experiment Design

The study was approved by the Human Research Ethics Committee of the Australian
National University (ANU). After arriving at the scheduled time, participants were
given an information sheet that included the description and requirements for the ex-
periment. The document also highlighted potential risks, and how the data would be
stored and used. Participants were given a consent form which they were required to
sign before proceeding further in the experiment. The documents were similar to the
documents shown in appendix B. Figure 7.1 shows a photo of the experimental setup.

In the first step of the experiment, participants sat in a chair in front of a 15.6
inch laptop where they were fitted with an Obelab NIRSIT device. The device was
placed on the forehead of the participants. Participants were asked to move any hair
from the forehead area in order to ensure good recordings. The calibration process
began by first checking in the associated tablet application that all the points of the
device connected properly and the application was able to visualise the blood flow
in the participant’s pre-frontal cortex. Then, participants were asked to move their
head slightly in order to measure the baseline. The baseline signals were recorded

109
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Figure 7.1: Experimental setting - participants fNIRS signals being collected while
they listen to music

for about 50 seconds.

Participants answered some pre-experiment demographic questions on the laptop
prior to the start of data collection. They also wore a pair of Bose QuietComfort® 20
Acoustic Noise Cancelling™ earphones to avoid any outside noise that might occur
during the experiment. All the participants listened to all 12 pieces of music men-
tioned in Table 3.1. The genres were order balanced using the Latin square method
to remove any ordering bias.

As fNIRS is a slow modality physiological signal [Peck et al., 2013], each mu-
sic piece was played for two minutes in order to ensure opportunity for changes in
participants’ hemodynamic response during each song. Based on the previous ex-
periments, it was noticed that two minutes of each music stimulus is enough for the
participants to show a response to it; longer than that may cause boredom and dis-
traction. After participants finished listening to one music piece, they were asked to
give ratings to the music based on their general impression and their feelings while
listening, using the same six emotion scales mentioned in the previous experiments.
The entire experiment was conducted through an interactive website created using
a Python Django web framework prepared for this purpose. The experiment took
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approximately one hour including device setup and participation.

7.2 Participants

A total of 27 participants (17 female and 10 male) were recruited for voluntary par-
ticipation in this experiment. Similar to the previous experiments, participants were
recruited through the ANU SONA website. Their mean age was 19.4 with a standard
deviation of 1.5 (range: 18–24 years). Most of the participants were undergraduate
students at the Australian National University (ANU). A minority of them were post-
graduate, diploma or high school students. Demographics of the participants of this
study are shown in Table 7.1.

Table 7.1: Participant demographic of the experiment exploring the effects of hemo-
dynamic response

Participant No. Age Gender Ethnicity Education
1 18 Male Asian Undergraduate
2 19 Female Caucasian Undergraduate
3 18 Female Other Other
4 20 Male Asian Undergraduate
5 20 Female Asian Undergraduate
6 21 Female Asian Undergraduate
7 18 Female Asian Undergraduate
8 19 Female Asian Other
9 21 Male Asian Undergraduate
10 18 Male Asian Undergraduate
11 18 Female Asian Undergraduate
12 20 Female Asian Undergraduate
13 19 Female Caucasian Undergraduate
14 18 Female Caucasian Undergraduate
15 24 Female Asian Postgraduate
16 22 Male Asian Postgraduate
17 18 Female Asian Undergraduate
18 20 Female Asian Other
19 21 Male Asian Other
20 19 Female Asian Undergraduate
21 19 Male Asian Undergraduate
22 21 Female Caucasian Other
23 18 Male Asian Undergraduate
24 20 Female Asian Undergraduate
25 18 Female Asian Other
26 19 Male Caucasian Undergraduate
27 19 Male Caucasian Other
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7.3 Data Analysis

7.3.1 Pre-processing

FNIRS data using a NIRSIT device was collected at the sampling rate of 8.138 Hz.
A number of pre-processing steps were done on the raw signals collected from the
device. In selecting the device configuration for subsequent analysis, 750 nm wave-
length and 30mm separation between channels were chosen as this is standard for
many fNIRS-BCI studies [Shin et al., 2017]. From the 204 channels of the device,
the 48 primary channels were used for further analysis. The raw signals were first
low-pass filtered at 0.1 Hz and high-pass filtered at 0.005 Hz. Then some noisy chan-
nels were rejected based on their signal to noise ratio (SNR). Afterwards, the signals
were filtered using the Modified Beer-Lambert law [Delpy et al., 1988]. This method
converts the near-infrared signals to HbO2, HbR and HbT (total hemoglobin) data
and normalises the signals. This resulted in all values to be normalised within the
range of −1 to 1. Only HbO2 and HbR values for each channel were used for further
analysis. All pre-processing steps were done using the Matlab NIRSIT Analysis Tool.
Finally, the signals were segmented into two minute lengths to identify the effects of
each music piece.

7.3.2 Feature Extraction

A number of features were extracted from the pre-processed HbO2 and HBR signals
to be used in the machine learning methods applied. The features used in this study
are listed in Table 7.2.

Table 7.2: Features extracted from fNIRS signals

Feature Type Feature Names
Time Domain
(Linear)

Mean, maximum, minimum, standard deviation, interquartile
range, variance, summation, skewness, kurtosis, number of
peaks, root mean square, absolute summation, difference abso-
lute standard deviation value, simple square integral, average
amplitude change, means of the absolute values of the first and
second differences

Time Domain
(Non-Linear)

Hjorth parameters (mobility), Hurst exponent

Frequency
Domain

Mean, minimum and maximum of the first 16 points from
Welch’s power spectrum

7.3.3 Classifiers

Features extracted from the signals were further analysed using two commonly used
classification methods, k-nearest neighbor (KNN) and random forest (RF). The meth-
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ods are described in sections 3.2.5.1 and 3.2.5.3 respectively. Different values of pa-
rameters were experimented with and suitable parameters which led to optimum
results were picked. For the KNN method, k = 5 and the Chebyshev distance metric
was chosen. For the RF method, the number of trees chosen was 1000 with maximum
depth of 20. A leave-one-participant-out approach was used to evaluate the models.

Biomedical signals such as fNIRS can be represented in two formats, one-dimensional
(1D) and two-dimensional (2D) data. In this study, a 1D convolutional neural net-
work (CNN) was created which is used for classifying time-series data.

7.3.3.1 Stacked Ensemble Models

The one-dimensional CNN (1D CNN) network used the pre-processed time-series
data obtained after completing the steps in section 7.3.1. As this model takes in
the time-series fNIRS signals as the input (without any handcrafted features), it in-
troduces some additional challenges. Every participant’s neural structure is differ-
ent, which results in high variance in their physiological signals. Even after pre-
processing, there remain differences in individuals’ responses. Therefore, the clas-
sifiers need to be trained on a per individual basis to identify useful features from
each participant.

During the pre-processing stage, it was found that each participant had different
numbers of channels that recorded good quality data. After removing some channels
based on low signal to noise ratio, each participant was left with different numbers of
channel data. Thus, the sample size of each participant was different. This produced
an additional challenge for the dataset. If all the participants’ data are used together
to train the model, some participants who had lower amounts of data would expe-
rience low training accuracy and this would have a significant impact on the final
prediction.

In order to overcome these challenges and combine each participants’ output into
the final output, an ensemble approach based model was created. Ensemble methods
are used where a new model learns the best approach to combine predictions from
multiple sub-models to determine the final prediction result. This provides better
generalisation and often results in better accuracy compared to using a single model.
Ensemble models have been used in traditional machine learning techniques for quite
some time. Recently, deep ensemble models have gained popularity as they combine
the advantages of deep learning models and ensemble models. There are different
techniques of creating ensemble models. Some of the techniques include bagging,
boosting, and stacking. Stacked ensemble based deep learning methods have been
used in studies where time-series sequences were used [Palangi et al., 2014]. It has
most commonly been used in speech recognition [Deng and Platt, 2014; Deng et al.,
2012; Tur et al., 2012] and speech emotion recognition [Zvarevashe and Olugbara,
2020]. Stacked approaches have also been used in music emotion recognition [Malik
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et al., 2017]. Furthermore, stacked ensemble approaches recently achieved impressive
results classifying physiological signals from the DEAP dataset, which contains EEG
and EMG data [Bagherzadeh et al., 2018]. Therefore, in this study, a novel stacked
ensemble model was created using participants’ fNIRS signals.

There are multiple ways to create stacked ensemble models. Different models in
the ensemble can be created using different techniques (e.g. KNN, SVM, NN), which
is called model based fusion. Another way is to combine the weights of multiple
neural networks having the same structure, called decision based fusion. The latter
approach was adopted for this study.

In the stacked ensemble based approach, each sub-model provides a contribu-
tion to obtain the final prediction output. The model consists of two stages. In the
first stage, a model is trained on each participant’s data to create each sub-model.
In the second stage, a meta-learner model is created based on the outputs from the
sub-models in the first stage. The meta-learner model is then validated on a new
participant’s data to make a final prediction. In this scenario, a subject independent
k-fold cross validation approach to validate the model. This approach is also used in
similar analysis using EEG data [Jiang et al., 2021].

The 1D CNN model in the first stage was created as follows. It has two convo-
lutional layers, one max pooling layer, one fully-connected dense layer, two dropout
layers and a softmax classifier. In both convolutional and dense layers, a rectified
linear unit (ReLU) was used as an activation function. The dropout layers were used
after the convolutional layers and the dense layer to perform better regularization.
Mean squared error was used as the loss function. For the optimisation algorithm, a
stochastic gradient descent (SGD) with a momentum of 0.9 and a decaying learning
rate was used, with an initial learning rate of 0.01, and a mini batch size of 64. The
maximum epoch number was set to 200. The schematic diagram of the 1D CNN
model is shown in Figure 7.2.

Figure 7.2: 1D CNN architecture for fNIRS signals classification

In the meta-learning stage, the output of the sub-models were fed into a shallow
neural network with one dense layer and one softmax classifier. The schematic dia-
gram of the overall ensemble model is shown in Figure 7.3.
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Figure 7.3: Stacked ensemble model architecture for fNIRS signals classification

For all of the classification tasks, four evaluation measures are reported. They are:
classification accuracy, precision, recall and f-measure. Classification was done using
the TensorFlow framework with the Python Keras library. The system specifications
were an AMD Ryzen 7 3700X 8-core processor with 3.59 GHz, NVIDIA GeForce GTX
1660 SUPER GPU, 16.00 GB of RAM and Microsoft Windows 10 Enterprise 64-bit
operating system.

7.4 Results and Discussion

During data pre-processing, it was found that three participants’ fNIRS data were in-
complete. Therefore, those participants’ data were discarded, and classification was
performed using data from the remaining 24 participants. For all the subsequent
computational analysis, two types of classification are reported using traditional ma-
chine learning and deep learning techniques. The first is classification by music
genre, where the three genres provided the three classification labels. The other is
classification based on the subjective rating of participants’ emotions, where the six
different emotion ratings given by the participants were used as labels. The ratings
were the same as described in the studies reported in chapter 5 and 6. All of these
were converted into three class problems. As a reminder, the 7-point Likert scale re-
sponses for all emotion scales were converted into three categories (positive, negative
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and neutral). A majority voting method was applied to determine the final label for
each music stimulus. However, for three emotion scales (disturbing → com f orting,
depressing→ exciting, irritating→ soothing), only two out of the three categories re-
ceived votes by the participants. The votes were either in the positive or neutral cate-
gory. Thus, those three emotion scales were converted into binary classification tasks,
while the other three (sad → neutral → happy, unpleasant → neutral → pleasant,
tensing→ neutral → relaxing) remained ternary classification tasks. It is also impor-
tant to note that while the genre based classification had the same number of samples
in each class, the subjective rating based classification had uneven numbers of sam-
ples in each class, leading to an imbalanced dataset. The other evaluation measures
(precision, recall and f1-score) are useful in such cases as they account for the weight
of each class.

In the following subsections, the key findings derived from qualitative, quan-
titative, visual and computational analysis conducted on participants’ fNIRS and
subjective response data are reported.

7.4.1 Classification Results

Table 7.3 reports the four evaluation measures using participants’ fNIRS signals in
three different combination (HbO2, HbR and both).

Table 7.3 shows the four evaluation measures for all seven (one genre based and
six subjective rating based) classification problems using KNN, RF and 1D CNN
model. It shows that the highest evaluation measures in all seven classification
problems were achieved by the 1D CNN model. The classification accuracies of
the 1D CNN model in classifying three genres using HbO2, HbR and a combina-
tion of both signals are 69.6%, 61.4% and 73.4% respectively. The other evaluation
measures also achieved highest scores using a combination of both signals (0.762
precision, 0.734 recall and 0.731 f1-score). Classification using participants’ subjec-
tive responses in a three class category achieved up to 77.4% accuracy in classifying
sad → neutral → happy emotion. For the binary classification, the accuracy reached
80.5% in classifying irritating→ soothing emotion. Compared to the 1D CNN model,
the traditional machine learning techniques achieved 59.4% accuracy in ternary clas-
sification and 74.9% accuracy in binary classification. Both were achieved using all of
the extracted features and the RF method. A one-way ANOVA test on the accuracy
results of the three methods showed high statistical significance ( p < 0.001).

It is important to note that in all seven cases the highest accuracy was achieved
by using both HbO2 and HbR signals together, followed by only HbO2 signals and
only HbR signals. Therefore, it can be suggested that using the combination of both
hemoglobin concentration values is more beneficial in building a robust computa-
tional model. If it is not possible to collect both types of data, collecting only HbO2
data would be more useful than collecting HbR data. The outcome is similar to some
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Table 7.3: Evaluation measure results of KNN, RF and 1D CNN using fNIRS signals

KNN RF 1D CNN

Label Signal Accuracy Precision Recall F1-
Score

Accuracy Precision Recall F1-
Score

Accuracy Precision Recall F1-
Score

Classical → HbO2 0.342 0.34 0.342 0.334 0.327 0.326 0.327 0.321 0.696 0.724 0.696 0.689

Instrumental HbR 0.339 0.336 0.339 0.33 0.341 0.342 0.34 0.336 0.614 0.649 0.614 0.602

→ Pop HbO2+HbR 0.371 0.378 0.371 0.369 0.376 0.374 0.376 0.368 0.734 0.762 0.734 0.731

sad→ HbO2 0.495 0.455 0.495 0.467 0.553 0.449 0.553 0.461 0.74 0.758 0.74 0.707

neutral → HbR 0.49 0.452 0.491 0.466 0.56 0.46 0.56 0.466 0.67 0.66 0.67 0.614

happy HbO2+HbR 0.541 0.512 0.541 0.521 0.594 0.538 0.593 0.519 0.774 0.786 0.774 0.749

unpleasant→ HbO2 0.437 0.424 0.437 0.427 0.464 0.422 0.464 0.428 0.694 0.716 0.694 0.668

neutral → HbR 0.451 0.433 0.451 0.438 0.486 0.451 0.486 0.446 0.587 0.589 0.587 0.523

pleasant HbO2+HbR 0.489 0.476 0.489 0.479 0.517 0.478 0.517 0.481 0.734 0.748 0.734 0.717

tensing→ HbO2 0.452 0.439 0.452 0.442 0.476 0.444 0.476 0.446 0.697 0.719 0.697 0.682

neutral → HbR 0.442 0.425 0.442 0.429 0.472 0.437 0.472 0.435 0.619 0.638 0.619 0.597

relaxing HbO2+HbR 0.479 0.463 0.479 0.466 0.491 0.451 0.491 0.457 0.719 0.741 0.719 0.708

disturbing→ HbO2 0.517 0.512 0.516 0.513 0.541 0.505 0.54 0.493 0.708 0.734 0.708 0.674

neutral → HbR 0.518 0.509 0.518 0.512 0.549 0.513 0.549 0.499 0.626 0.644 0.626 0.546

com f orting HbO2+HbR 0.539 0.533 0.538 0.533 0.544 0.511 0.544 0.496 0.718 0.743 0.718 0.684

depressing→ HbO2 0.596 0.559 0.595 0.57 0.649 0.555 0.649 0.557 0.749 0.747 0.749 0.697

neutral → HbR 0.595 0.556 0.595 0.568 0.651 0.544 0.651 0.55 0.692 0.674 0.692 0.605

exciting HbO2+HbR 0.648 0.633 0.658 0.637 0.684 0.668 0.683 0.618 0.77 0.772 0.77 0.731

irritating→ HbO2 0.706 0.638 0.706 0.659 0.744 0.631 0.742 0.653 0.794 0.791 0.794 0.734

neutral → HbR 0.7 0.629 0.7 0.652 0.74 0.627 0.74 0.651 0.769 0.726 0.769 0.69

soothing HbO2+HbR 0.748 0.727 0.747 0.73 0.769 0.749 0.768 0.702 0.805 0.799 0.805 0.753
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papers in the literature where oxyhemoglobin features were shown to be more use-
ful than deoxyhemoglobin and total hemoglobin features [Bauernfeind et al., 2014;
Pathan et al., 2019]. The improved performance of the 1D CNN model over KNN
and RF models highlights the benefit of using deep learning techniques over tradi-
tional machine learning techniques in physiological signal analysis. In traditional
machine learning methods, identifying the useful features to extract is a difficult and
time consuming step. Useful features also vary for different physiological signals.
An additional step of feature selection may also be required to identify the useful
set of features. Automatic feature extraction in 1D CNN removes the requirement of
these steps and thus significantly reduces the time and complexity of the process.

A limitation of the stacked ensemble 1D CNN method is that it assumes every
participant’s model provides a useful contribution to the final model. However, dur-
ing training it was noticed that some participants’ models constantly achieved lower
training accuracy compared to others. One of the reasons is likely to be the lower
number of samples in some participants’ data. Upon further investigation, it was
found that some participants’ had lower training accuracy, despite having higher
number of samples. For instance, participant 21 and participant 24 had the same
number of samples (2172 samples). However, training accuracy results of these two
participants show that, the model of participant 24 is able to reach above 90.0% accu-
racy, whereas participant 21 can only reach training accuracy in the range of 60.0%.
This requires further investigation to understand why certain participants’ models
reach low training accuracy although they had large number of samples. It could be
that these participants’ responses are different due to having different musical expe-
rience or preferences.

In order to understand the effects of different participants’ models in the final
ensemble results, participants’ models were grouped into three categories based on
their training performance. The groups are: group 1 (high), group 2 (mid) and group
3 (low). These different groups of models were used separately to build the final
stacked ensemble models. The results are shown in Figure 7.4.

Figure 7.4 shows the classification accuracy of three groups using all three com-
bination of signals. It is clear that there is difference in the results of these three
groups, group 1 accuracy being the highest. Group 1 models reached 60.1%, 54.2%
and 63.1% accuracy using HbO2, HbR and combination of both signals respectively.
In comparison, group 3 models reach only 55.7%, 50.7% and 56.2%. As the results of
the stacked 1D CNN models which are mentioned in Table 7.3 includes all of these
participants’ models, it is assumed that some participants from group 2 and 3 would
contribute to lowering the testing performance of the final stacked model. Therefore,
it is necessary to discard lower quality data and collect a larger dataset to contribute
to the final model.
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Figure 7.4: Classification results using fNIRS signals by grouping participants into
three categories (range 40− 80 chosen for better visualisation)

7.4.2 Visual Analysis

A visual analysis was conducted using the HbO2 signals to understand how well the
signals can differentiate the three music genres. A timeline analysis was performed
on 100 seconds of signals recorded in two different stages of the experiment. The
first stage signals were taken from point 900 to 1000 starting from the beginning of
one genre, which is about 100 seconds after the start of presentation of music from
that genre. The second stage was from point 2500 to 2600, which is about 300 sec-
onds into listening to one genre. The analysis was performed on the average of all
participants pre-processed HbO2 signals from three different channels. Channel no.
16, 32 and 46 were selected from the left, mid and right side of the pre-frontal cortex
respectively. These channels were chosen based on their overall good quality of data.
The signals were reshaped to the initial value 0.5. This value was chosen so that the
increasing or decreasing trend of fNIRS response could be seen in a clear manner.
The result of the timeline analysis is shown in Figure 7.5 and Figure 7.6. The red
shaded area shows participants’ fNIRS responses to classical music, while the blue
and green shaded area shows responses to instrumental and pop music respectively.

From Figure 7.5, it can be seen that participants’ oxyhemoglobin response did
not show much difference while they were listening to the three genres of music.
These signals were captured while participants were listening to the first stimulus of
each genre. However, participants’ responses were more distinguishable in Figure
7.6, with stronger response seen during classical and instrumental music listening in
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(a) Channel 16 : 900 - 1000 points

(b) Channel 32 : 900 - 1000 points

(c) Channel 46 : 900 - 1000 points

Figure 7.5: Timeline analysis of participants HbO2 response to three music genres:
points 900 - 1000
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(a) Channel 16 : 2500 - 2600 points

(b) Channel 32 : 2500 - 2600 points

(c) Channel 32 : 2500 - 2600 points

Figure 7.6: Timeline analysis of participants HbO2 response to three music genres:
points 2500 - 2600
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the mid and right pre-frontal cortex. These signals represent the responses elicited
during the third stimulus of each genre.

In summary, the figures show that the fNIRS signals provide a slow response
in differentiating three genres. However, the responses become more prominent
after the first few minutes, and show a more distinct range for the different genres,
especially in the mid and right pre-frontal cortex. The mid region of the pre-frontal
cortex is known for decision making and maintaining emotional information within
working memory [Euston et al., 2012; Smith et al., 2018]. The right pre-frontal cortex
is associated with self-evaluation of the face and episodic memory [Morita et al.,
2008; Henson et al., 1999].

7.4.3 Music Offset Analysis

The 1D CNN model was further trained without the data from the first music track
of every genre. This resulted in an increase in the classification accuracy to 75.7%
using both HbO2 and HbR signals, 73.1% accuracy using only HbO2 signals, and
63.9% accuracy using only HbR signals. This could be due to the fact that fNIRS is
a slow modality signal, so the effects of listening to a specific genre require time to
be reflected in the signals recorded. Since the effect is seen in a delayed manner, it
can be assumed that the effect of listening to one genre may be reflected after the
playback was finished for one genre. Therefore, a further exploration was done by
training the model with varied offset lengths of the final stimuli in every genre. The
classification result in differentiating three genres is shown in Figure 7.7.
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Figure 7.7: Classification accuracy with fNIRS signals using different offset length
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Figure 7.7 shows that the classification performance decreases from the initial
value of 73.4% (two minutes segment without any offset for any stimuli and not dis-
carding first stimuli) to 72.8% using the offset length of 20 seconds. After that point,
the accuracy starts increasing again and reaches 74.6% with the offset length of 40
seconds. Looking at the experiment participation of each subject, it was identified
that this is the time period when they were completing the post experiment question-
naire. In particular, they were answering the open-ended question of providing any
comments about the music they listened to. It could be that this question triggered
the participants’ memory of listening to the music and feeling the same emotion they
felt while listening to it. Thus, this effect can be seen in their hemodynamic response.
The same trend can be seen using only HbO2 or HbR signals. A one-way ANOVA
test among the classification accuracy values showed high statistical significance (
p < 0.001 ).

This result tells us that there is a lingering effect on brain patterns while reliving
the experience of listening to music from each genre. Similar findings were reported
by Chen et al. [2017a] where they noticed similar neural activity when participants
watched and described the events of a TV show episode. The results also align with
the results in the previous section where it is shown that the responses to different
music genres became more prominent on different brain regions after the first few
minutes of listening to the stimuli.

7.4.4 Verbal Response Analysis

Some expected and unexpected responses were observed for some of the stimuli,
which were reflected in both participants’ verbal and physiological signals. For in-
stance, the stimulus Instrumental 1 is a binaural beat designed to enhance gamma
waves on the brain, thus increasing focus and concentration on tasks. However, the
majority of the votes by participants leaned towards "sad", "unpleasant" and "tensed"
rating for the three respective categories, and received neutral votes in the rest. This
is contrary to expectations, as the assumption is that this stimulus would have a pos-
itive impact on participants’ emotion. In addition, all of the classical music mostly
received neutral votes from the participants. Depending on the stimuli, three out of
the four stimuli were expected to evoke a positive response, and a negative response
by the fourth one. The stimulus Classical 3 is a piece played in a minor key and a
very sombre tone. This piece has been used in funerals. However, participants mostly
voted towards neutral or positive emotions for this piece. Although this aligns with
some studies that mention sad music inducing pleasant emotions [Kawakami et al.,
2013], the findings were still surprising and interesting.

To understand this effect in a greater detail, a qualitative analysis was performed
using a grounded theory approach [Glaser and Strauss, 2017] on participants’ com-
ments provided for each music stimulus. The comments were coded into higher level
themes based on participant descriptions of the emotions they felt while listening to
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a particular stimulus. These codes were then divided into three categories: negative,
neutral and positive. Figure 7.8 shows the word cloud created using the verbal com-
ments provided by the participants.

Figure 7.8: Word cloud on verbal comments provided by the participants

During the coding process, frequently appearing words that were considered neg-
ative were: "dislike", "sad", "depressing" and "irritating". Some of the comments high-
lighted as positive were: "like", "relaxing/relaxed", "soothing" and "calming". The neu-
tral comments mostly described some features about the music, or whether they had
previously heard the song or not, where the comments did not reflect participants’
emotions. Some of the common words used for neutral comments were: "famil-
iar", "loud", "slow", "fast" and "upbeat". The analysis was completed using NVivo 12
software. Table 7.4 demonstrates the percentage of participants providing different
categories of comments on each stimulus.

Table 7.4 provides interesting insights on the stimuli, which also reveal useful re-
lationships of the music with participants’ brain activity. The classical pieces mostly
received positive comments from the participants. Classical 3 stimulus also received
more positive comments than negative, although it received more negative comments
compared to the other stimuli. On the one hand this stimulus received comments
saying the piece is "relaxing" and "calming", but it also received comments such as
"dark" and "depressing". This could explain the neutral ratings on the six emotion
scales given by the majority of participants as the piece invoked negative emotions
such as sadness and positive emotions such as relaxation at the same time. In com-
parison, Instrumental 1 received a majority of negative votes and comments such as
"disturbing" and "irritating". This raises a question on the effectiveness of using a
gamma wave inducing binaural beats stimulus for improving focus when this causes
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Table 7.4: Type of comments provided by participants on each music stimuli

Stimuli Negative
Comments

Neutral
Comments

Positive
Comments

Classical 1 7.4% 22.2% 70.4%
Classical 2 14.8% 22.3% 62.9%
Classical 3 33.3% 22.3% 44.4%
Classical 4 11.1% 18.5% 70.4%
Instrumental 1 70.4% 11.1% 18.5%
Instrumental 2 29.6% 11.1% 59.3%
Instrumental 3 18.5% 3.7% 77.8%
Instrumental 4 33.3% 29.6% 37.1%
Pop 1 7.4% 37% 55.6%
Pop 2 3.7% 40.7% 55.6%
Pop 3 11.1% 29.6% 59.3%
Pop 4 0% 44.4% 55.6%

discomfort in participants, which is likely to cause distraction and reduced focus.
Similar outcomes were seen on a different set of participants (described in chapter
4). The pop music pieces received a mix of neutral and positive comments. However,
both of these types of comments were influenced by the fact that these music tracks
were more familiar (all of the participants were familiar with at least one stimulus
in this category). This suggests that music stimuli invoking sad emotions or famil-
iar music invoking positive emotion may both perform better in improving focus
rather than binaural beats. This also aligns with the outcome described in chapter 4,
where results showed that listening to this music helped improved focus in the task
of detecting emotions from videos.

7.4.5 Activation Map Analysis

While some of the stimuli received a different emotion label than expected, the verbal
response correlated with participants’ hemodynamic responses. In order to analyse
this, the image frames generated from the activation map videos by the Matlab NIR-
SIT Analysis Tool were visually analysed. The activation map shows the changes of
HBO2 and HbR in the pre-frontal cortex over time. The colorful areas show which
areas in the pre-frontal cortex were activated at a given time, and the color intensity
represents the value. The images were extracted at 25 frames/second and segmented
according to the song length. Figure 7.9 shows a sample frame from the activation
map videos.

The activation maps demonstrated a higher HbO2 response listening to stimuli
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Figure 7.9: Frame from activation map video showing changes in HBO2

that were labelled sad compared to happy ones. Figure 7.10 and 7.11 shows sample
frames of two participants listening to Instrumental 1 (received mostly negative rat-
ings) and Pop 4 (received mostly positive ratings).

(a) P3 listening to Instrumental 1 (b) P3 listening to Pop 4

Figure 7.10: Frame 417 of P3 listening to Instrumental 1 and Pop 4

Figures 7.10 (a) and 7.11 (a) show that for both participants, there is a higher level
of HbO2 activation in the mid pre-frontal area while listening to the piece Instrumen-
tal 1. This stimulus was voted by the majority of the participants as being in either
neutral or negative categories such as "tensing" and "unpleasant". Figures 7.10 (b)
and 7.11 (b) show lower HbO2 activation listening to Pop 4, which was voted in the
positive categories such as "exciting" and "soothing" by the participants. The trend is
observed for other participants as well. This is similar to the work by Moghimi et al.
[2012] where they found larger peaks in HbO2 responses in negative emotion induc-
ing music pieces. The findings of this study suggests that participants’ hemodynamic
responses are correlated with their emotional reaction. Therefore, these signals can
reliably be used to build computational models to provide music recommendations
based on human emotional states.
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(a) P17 listening to Instrumental 1 (b) P17 listening to Pop 4

Figure 7.11: Frame 417 of P17 listening to Instrumental 1 and Pop 4

7.5 Comparison Between Two Types of Brain Data

Chapters 6 and 7 both explored the effects of music in people’s brain activity. While
chapter 6 explored and analysed raw EEG and alpha, beta, gamma brain wave re-
sponse, chapter 7 explored people’s hemodynamic response by analysing their HbO2
and HbR data from fNIRS signals. The computational techniques used with these
two types of data were also different. Both types of signals went through a number of
pre-processing steps to remove noisy data. EEG data was analysed by extracting fea-
tures from the brain wave data. This required an additional step of feature selection
to identify the useful feature set. For fNIRS signals, the features extraction step was
considered for two classification models and in addition, the pre-processed HbO2
and HbR signals were directly used for classification using a deep learning model,
skipping the steps of feature extraction and selection. In terms of classification mod-
els, EEG signals were classified using KNN, SVM and NN, and fNIRS signals were
classified using KNN, RF and 1D CNN model.

The results show that using selected EEG features, a shallow NN model reached
a highest level of 98.6% accuracy, whereas the highest accuracy using pre-processed
fNIRS signals in a stacked ensemble 1D CNN model reached a maximum of 80.5%
accuracy. The accuracy results might suggest that EEG signals perform better in clas-
sifying musical emotion response. However, this assumption is not necessarily cor-
rect. The sample size of data used for both these models vary widely (approximately
8,000 samples for EEG features and 24,000 samples for fNIRS signals). Therefore,
although the accuracy of fNIRS models were lower compared to EEG models, they
were analysed using more robust models, which means the results are expected to
be more reliable. The shallow neural network may perform worse with a larger set of
datasets, which makes the model difficult to apply in many real world applications.
An additional advantage of the 1D CNN models is the removal of feature extrac-
tion and selection steps. This requires significant computational time and deeper
understanding of the data to decide what features to extract. The 1D CNN model
automatically extracts useful features from the data and removes the manual labor
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of extracting features. Finally, it was reported in Table 6.2 that the most useful fea-
tures for music emotion processing using EEG data were found in the frontal and
pre-frontal region of the brain. The data collected using fNIRS signals covers that
region and expands on it, therefore creating a larger corpus of data for emotional
response to music listening.

It should be noted that for both these data considered only the temporal infor-
mation, not the spatial information. As mentioned earlier in section 2.2.3.6, fNIRS
data has higher spatial resolution, but lower temporal resolution than EEG. This has
also contributed to the lower performance of fNIRS models. Combining spatial infor-
mation of the data can lead to a more robust outcome for the computation models.
The research solidifies the design recommendation of using fNIRS data over EEG
for research involving emotion processing and decision making. For research that
involves investigating biomarkers for musicogenic epilepsy, fNIRS signals have not
been considered in the literature as yet. Future work can involve more extensive
usage of fNIRS signals in this area. If fNIRS signals are not possible to collect, using
brain wave data from EEG signals is recommended.

7.6 Summary

This chapter described an experiment that collected participants’ brain activity re-
sponse via fNIRS signals while they listened to three different genres of music. Sig-
nals were first pre-processed using different techniques to convert the raw signals
into oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) responses. Three well
known machine learning and deep learning methods (KNN, RF and 1D CNN) were
applied to classify the signals. Results from the analysis show that the deep learning
models achieved higher accuracy in classifying different music based on their genres
and participants’ subjective rating of emotions. A 1D CNN model achieved 73.4%
accuracy in classifying three music genres and 80.5% accuracy in classifying subjec-
tive rating of emotions based on the fNIRS data.

This study also identified the usefulness of combining HbO2 and HbR signals to
construct effective fusion based models. The study revealed that human brains pro-
cess different genres of music differently and that can be seen in their fNIRS signals.
It also revealed the strength of fNIRS signals’ alignment with participants’ emotional
states. The results from all parts of section 7.4 indicate that participants’ hemody-
namic responses are a strong indicator of their emotional responses to music. As
fNIRS is a highly portable and non-invasive wearable technology, multiple prospects
from this study can be identified which could benefit future affective computing
research.
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Chapter 8

Conclusion

This chapter concludes the thesis by highlighting the key contributions of the re-
search. The aim of this chapter is to revisit the research questions outlined in section
1.2 of the introduction and summarise the findings of this research work in response
to those questions. There are several current and future applications that can be iden-
tified from this research work. These are discussed in brief. Finally, some limitations
and challenges of the experiment design and computational methods are discussed
along with recommendations for future work to overcome these challenges.

8.1 Summary of Contributions

This research explored the effects of different types of music stimuli using a number
of physiological signals collected from human participants through different experi-
ments. Six different user studies were conducted and analysed for this purpose. The
research work conducted can broadly be divided into three stages, with key contri-
butions found in each stage.

In the first stage, some well-known databases of visual stimuli were used to evoke
emotional reactions from human participants. Two preliminary studies were con-
ducted to build robust computational models for analysing physiological signals. In
addition, these works were aligned with the state-of-the-art research conducted in
the area of affective computing. Thus these studies were designed to inform the
third user study in this phase, which was to combine these studies and use music
stimuli as a secondary stimuli for the experiment. Key contributions of this phase of
the research are:

• Efficient computational models to identify different emotions from human par-
ticipants when they watch emotional images and videos.

• Comparative analysis to show benefits of using multiple stimuli instead of sin-
gle stimuli in human-centred experiments.

• Qualitative and quantitative analysis to understand the effects of different types
of music when doing a task of identifying emotions from visual stimuli.

129
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Based on the results of the studies in stage one, two more studies were designed
in stage two which looked into the effects of only music stimuli in human physio-
logical response. Five different types of physiological signals were recorded when
participants listened to twelve different music stimuli, divided into three categories.
A wide range of computational techniques were experimented with in this stage of
the research. Key contributions of this stage are:

• Robust feature set extracted from physiological signals to use as input for clas-
sification models and comparative analysis of different feature selection tech-
niques.

• Neural network based efficient classification models to differentiate music based
on genres and participants’ subjective responses using their physiological re-
sponse.

• A novel visualisation technique using physiological signals which could lever-
age state-of-the-art deep learning based approaches with limited physiological
data.

In the final stage of this research, a larger set of data was collected from partic-
ipants when they listened to different music stimuli. The aim of this stage was to
build deep neural networks using a larger dataset which would leverage the benefits
of automatic feature extraction to reduce computation complexity in building robust
classifiers. The contributions of this stage of the research are:

• Novel deep learning based model using model-based fusion to understand the
effects of music in human brain activity.

• Qualitative, quantitative and visual analysis investigating the effects of music
in cerebral hemodynamic responses.

• Offset analysis to provide design recommendations for human-centred experi-
ments involving fNIRS signals.

• Comparative analysis of EEG and fNIRS signals and design recommendations
for experiments involving these signals.

8.1.1 Answering the Research Questions

As outlined in section 1.2, this thesis set out to explore five research questions, which
will be revisited in the sections below:
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8.1.1.1 RQ1: Do Different Types of Music Generate Different Physiological Re-
sponse?

In this research, studies were conducted to computationally explore the effects of
three different music genres on human affective reasoning through a range of dif-
ferent bodily signals. Results from the computational analysis indicate that peoples’
bodily signals are strong indicators which differentiate what genre of music they are
listening to.

Chapter 5 dealt with a range of physiological signals such as EDA, BVP, ST and
PD, while chapters 6 and 7 discussed analysis using EEG and fNIRS signals respec-
tively. Chapter 5 showed that using an optimal set of features, a shallow neural
network achieved the highest accuracy of 99.2% in classifying classical, instrumental
and pop music genres. Computational analysis on the alpha, beta and gamma brain
wave data from EEG signals reported in chapter 6 showed that a neural network
model reached a high accuracy of 97.5% in classifying the music pieces based on
three genres. Finally chapter 7 showed that oxyhemoglobin (HbO2) and deoxyhe-
moglobin (HbR) responses derived from fNIRS signals are also a good physiological
indicator in differentiating music genres. A one-dimensional CNN model achieved
73.4% accuracy in classifying three music genres. All of the studies reveal that peo-
ple process different genres of music differently and that can be seen in their bodily
reactions as measured by their physiological signals.

In addition to differentiating music genres, this research also identified a strong
correlation between people’s subjective and physiological responses to music. The
results from different analyses conducted in this work showed that physiological
responses provide high accuracy in binary and ternary classification of emotion.
Chapter 5 showed that a high accuracy of 98.3% was achieved in classifying the
disturbing → com f orting emotion pair using only EDA signals. EEG signals also
showed impressive results in identifying sad→ happy emotions, with an accuracy of
98.7%. FNIRS signals can identify the same three emotions at 80.5% accuracy rate, as
reported in chapter 7.

The studies reported in this thesis using music stimuli provide a key contribution
to the area of affective computing, which have previously been dominated by the
use of visual stimuli such as images and videos. These results provide a strong
motivation for using physiological responses to measure various emotional responses
evoked by musical stimuli. It can have a wide range of applications in medical
and affective computing. Some potential application area for these studies will be
highlighted in section 8.1.2.
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8.1.1.2 RQ2: Do Other Stimuli (e.g. images, videos) Have Any Impact on These
Physiological Responses?

Two short studies were reported in this thesis which investigated the effects of visual
stimuli on human physiological responses. The results showed that computational
models can effectively differentiate people’s emotional reaction to these visual stim-
uli based on their physiological response.

Prior to looking into the effects of different types of music stimuli, research was
also conducted to investigate effects of different emotional video and image stimuli.
These were done as preliminary studies to explore the usability of these stimuli in
combination with music stimuli to evoke emotional response. Two studies were con-
ducted, both looking into people’s EDA activity. While the first experiment looked
into EDA response as participants only watched emotional videos, the second ex-
periment focused on the effects while participants watched both video and image
stimuli. Computational analysis of the data collected from these experiments showed
that participants’ EDA responses can be distinguished very clearly when they watch
different types of image and video stimuli. In the first experiment, classification us-
ing a simple neural network resulted in a high accuracy of 94.8% in identifying the
seven different emotional video categories. The experiment also revealed the efficacy
of physiological data driven emotional modelling over standard emotion models. In
the second experiment, participants’ EDA responses were analysed using traditional
machine learning methods. A standard decision tree based model using an optimal
feature set was able to achieve up to 93.6% accuracy in classifying different types of
smiles, shown in video and image format. Both experiments extended the previous
studies in the area where computational models using physiological signals showed
excellent performance in identifying basic emotions from visual stimuli.

Contrary to the relationship between participants’ subjective and physiological
responses to music stimuli, the studies involving image and video stimuli demon-
strated a different type of relationship. It was observed that participants’ intuitive
response to identifying smiles from visual stimuli is not as aligned with their physio-
logical response. Results from the study revealed that participants’ verbal responses
perform poorly compared to their physiological responses, as their correct response
rate was only 59.8% accurate in comparison to their physiological response, which
was 93.6% accurate. The result provides even further motivation to use physiological
signals as the primary indicator of different emotional reactions in people.

8.1.1.3 RQ3: Can Other Stimuli (e.g. images, videos) be Combined with Music to
Understand Their Combined Effects on Physiological Responses?

The third study in chapter 4 reported on an experiment that examined the combined
effects of visual and audio stimuli. The outcomes of the study showed a decline in
the classification performance of the computation models. The results suggest that
when using music stimuli as secondary stimuli in combination with visual stimuli,
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more experiments are needed to identify the appropriate music stimuli that assists
in the primary tasks given to the participants.

In the study reported in section 4.3, six music stimuli were played to the par-
ticipants while they performed the task of identifying emotions from videos, which
was an extension of the second study reported in section 4.2. The results from this
study showed a decline in the computation models’ predictive power, with the high-
est accuracy of 68.6% using their EEG signals. The study also leveraged the use of
automatic feature extraction of a deep convolutional network. The study showed that
careful consideration needs to be taken in choosing the music stimuli, when they are
being used to increase focus on another task. This study provided a key insight that
commonly used music known to increase focus during educational activities resulted
in declining outcome for the task of identifying emotions from videos. Therefore, this
research work revealed that different music stimuli need to be explored based on the
type of tasks.

This study however, consolidated the previous outcome where participants’ phys-
iological response performed better than their verbal response in identifying emo-
tions from videos. In comparison to the 68.6% accuracy using EEG signals, partici-
pants’ verbal response was correct only 62.5% times. Therefore, it can be concluded
that physiological signals can provide a confident estimate of people’s state when
they interact with different types of stimuli.

8.1.1.4 RQ4: Which Physiological Signals Perform Better in Differentiating the
Physiological Responses to Different Stimuli?

All six studies reported in this thesis looked into effects of music and visual stimuli
on a number of different physiological signals. Based on the results of these studies,
there is not one kind of physiological signal that has been found most appropriate in
differentiating responses to varied stimuli.

A range of physiological signals was considered as input for the computational
models designed for this research work. The physiological signals that were consid-
ered are: electrodermal activity (EDA), blood volume pulse (BVP), skin temperature
(ST), pupil dilation (PD), electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS). Due to the portability and easy access of data (i.e. does not re-
quire additional subscription for the analysis software), EDA data have been collected
in three out of the six user studies. In addition, efficacy of EDA data in recognising
human emotions have been reported widely in the literature. Depending on the sce-
nario, EDA, EEG and fNIRS signals all have the capability to capture participants’
response to different types of stimuli. Results from this research work indicate that
EDA responses show excellent performance in distinguishing responses to different
visual stimuli such as images and videos containing different emotions. In addition,
brain signals such as EEG and fNIRS signals have also showed impressive perfor-
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mance in distinguishing effects of different music stimuli. Brain signals, fNIRS in
particular, also provide additional insights into human decision making process, as
reported in sections 7.4.2, 7.4.3 and 7.4.5. These signals can also be collected using
easily portable devices so collecting these type of data are highly recommended to
understand effects of music stimuli.

The duration of the stimuli used to provoke reaction also plays an important role
in analysis of these signals. EDA and EEG are fast modality signals, which means
distinguishable patterns can be identified within 1-2 seconds of interacting with the
stimuli. This is the reason EDA data performed well with the video stimuli, as the
majority of the stimuli were 1-3 seconds long. However, slow modality signals like
fNIRS can be useful for experiments where the effects of the stimuli needs to be ob-
served for a longer period. The music stimuli used in different experiments ranged
from 2-4 minutes. To observe the response to the music stimuli over the period of
entire music duration, fNIRS signals may be more beneficial.

However, whenever possible, the primary recommendation is to collect multiple
physiological signals as fusion based models have shown better results than one
signal based models. This is discussed in detail in response to the next research
question.

8.1.1.5 RQ5: Which Computational Methods are Effective to Analyse Physiologi-
cal Response to Music and Other Stimuli?

Various computational methods created and analysed in this research work indicate
that neural networks using a robust set of physiological features and fusion based
machine learning methods perform the best in analysing human physiological re-
sponses to music and other stimuli.

There are several computational models that were built and tested to understand
the effects of music and other stimuli. These methods range from traditional machine
learning approaches such as k-nearest neighbours (KNN), support vector machines
(SVM), decision trees (DT), random forest (RF), to artificial neural network based
approaches such as shallow neural networks (NN) and one-dimensional convolution
neural networks (1D CNN). Based on all the studies, it is evident that neural network
based approaches outperform traditional machine learning methods in analysing
different physiological signals. With shallow neural networks, an optimal set of fea-
tures is necessary to be extracted and selected in order to create a robust model.
This requires deep understanding of the data type and characteristics. On the other
hand, 1D CNN performs automatic feature extraction from the data which could be
a great way to reduce computational complexity. However, one limitation with this
approach is that it requires a large amount of data, which is often difficult to collect
from a large number of human participants. In the absence of large amounts of data,
a transfer learning based approach can also prove beneficial in analysing the physio-
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logical signals. As shown in chapter 5, physiological signals can be visualised using
the novel approach proposed in this thesis called Gingerbread Animation, which
achieved an accuracy of 74.8% using a deep learning model with a small amount
of data. This approach will allow researchers to leverage state-of-the-art computer
vision approaches in analysing multiple physiological signals collected during affec-
tive experiments with high effectiveness.

It is also important to note that in the studies where multiple physiological signal
were collected and analysed, a fusion of multiple signals performed much better in
comparison to only one signal. The high accuracy in classifying three music genres
reported in chapter 5 was achieved with a feature fusion based model using features
from four types of physiological response, namely EDA, BVP, ST and PD signals.
This result highlights the usefulness of fusion based approach in building classifica-
tion models that require feature engineering of the data. Chapter 7 also demonstrated
that combining both HbO2 and HbR signals outperform the models that only used
either HbO2 or HbR data from the fNIRS signals. Furthermore, results also showed
that a model-level based fusion in the 1D CNN model outperformed the other clas-
sification models. Therefore, it can be concluded that, fusion based computational
approaches perform the best in analysing physiological response to music and visual
stimuli.

8.1.2 Applications of the Work

There are several application areas where this research work would be useful. Some
of these areas are music emotion recognition, music therapy, biofeedback training,
wearable technology, epileptic seizure detection / reduction / avoidance. In the
subsections below, some applications of this work are suggested.

8.1.2.1 Personalised Music Recommendations

Personalised music recommendation is currently one of the most popular research
areas in the field of machine learning. This research has gained considerable interest
among music platforms and service providers. Currently, the research in this field
is dominated by recommender systems using music features such as pitch, tempo,
lyrics, voice and social media tags [Su et al., 2013; Chang et al., 2018]. However, these
features fail to identify a user’s current physiological and emotional state, which
are crucial for personalised music recommendation. The stacked ensemble based
method proposed in section 7.3.3.1 could be used to create personalised models for
every person, which will reflect their current emotional state. Based on that, appro-
priate music can be recommended.

8.1.2.2 Music Therapy and Biofeedback Training

Section 2.2.4.1 elaborated on many recent works where music stimuli have been used
for therapy. Applications of these works include sleep quality improvement, stress
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and anxiety reduction, managing depression, Parkinson’s and Alzheimer’s disease.
One limitation of existing work is that only a handful of music stimuli are used in
therapy. While those music pieces can show positive effects, they are often not the
music pieces that are preferred by the participants. Music preferences depend on
a variety of characteristics such as a person’s age, gender, cultural background and
emotional state. There can be many other music stimuli that can evoke the same or
similar reactions in a person’s response as the regularly used stimuli. Looking at the
physiological response may be a more accurate way in determining which stimuli to
use. This research work can be of use for this purpose.

One of the approaches where this research can be applied is in categorising re-
laxing music pieces for music therapy based on participants physiological responses.
As previously mentioned, music pieces that induce more alpha waves or less gamma
waves on the brain are more appropriate for music therapy. Results from the com-
putational models using EEG signals showed that (as reported in section 6.3.5), the
models can appropriately categorise music based on the gamma wave level. These
models can also be expanded to categorise music based on alpha and beta wave lev-
els. This is a more efficient way of choosing appropriate music for therapy, rather
than just choosing from a limited set of classical or instrumental pieces.

The work can further be used in biofeedback training. In biofeedback training,
users get real time updates on their physiological state so that they can control it
to reduce stress and anxiety. The computational models created for this research
can be used to provide users with real time updates on their emotional state while
listening to a particular piece of music or watching a video. Users can then use this
information to make informed decisions regarding their interaction with the stimuli.

8.1.2.3 Portable Device Creation

With the advent of modern wearable technology, collecting physiological signals
from different parts of the body have become easier and cheaper. However, wear-
able devices that collect brain data are not as portable and comfortable as the devices
that collect signals from skin or heart. In all the experiments conducted for this re-
search that needed to collect brain data, participants reported discomfort due to the
device after 45-60 minutes of the studies. This finding makes it difficult for these de-
vices to be used for longer experiments, e.g. in-the-wild experiments. Therefore, it is
important to create devices that are comfortable to wear long term. The experiments
reported in chapters 6 and 7 showed that there are specific areas of the brain which
are more active in processing emotional music and visual stimuli. Creating devices
that collect data from only these regions can be more cost effective and comfort-
able for users. Two recommendations are given regarding future brain-worn devices
based on this research work.

• Creation of wearable devices that collect EEG signals from only the pre-frontal
and frontal region of the brain which can then be worn more comfortably for
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longer duration experiments.

• Creation of wearable devices that collect fNIRS signals from only the medial
pre-frontal cortex region of the forehead which can be used for longer duration
experiments and continuous measurements.

Most of the current wearable devices that collect brain data are made for medical
and research purposes. The above outlined approaches will make brain sensing
devices more portable and easily accessible to users to use in daily life.

8.1.2.4 Musicogenic Epilepsy Detection and Reduction

The literature review presented in chapter 2 indicated that musicogenic epilepsy re-
duction still remains a mysterious area of research. Based on the musical features
alone, it is unclear what type of music in particular are responsible for triggering
seizures in epileptic patients. One crucial information regarding this is that the
gamma waves in the brain have an important relationship with musicogenic epilepsy,
which can be seen in their EEG response [Tayah et al., 2006]. This research work can
be used to categorise music that can potentially trigger seizures and thus should
be avoided by musicogenic epilepsy patients. Categorising music via genre alone is
insufficient to distinguish the best pieces for music therapy; the brain wave activity
induced by a specific piece of music may potentially trigger seizures. The computa-
tional models can indicate when someone is experiencing high gamma activity due
to a music stimuli, and it can provide potential warning when gamma wave reaches
a certain threshold.

8.2 Key Limitations of the Work

There are several challenges regarding the experiment design and data analysis con-
ducted in this research. Some of them are described below:

8.2.1 Experiment Design Issues

Several issues regarding the experimental design of the studies were identified through-
out the duration of this research. These need to be carefully considered for future
experiments.

• Rest periods between stimuli were not considered carefully in the experiment
design. The experiments showed that different physiological signals used in
this study take different amounts of time to come back to the baseline. How-
ever, the time period between stimuli were kept consistent regardless of the
type of physiological signal collected. This needs to be changed in future stud-
ies to consider appropriate rest times depending on what signals are being
collected.
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• Issues regarding device connectivity were not considered in depth. For EEG
signals, generalised methods were applied in the pre-processing stage. How-
ever, it was not taken into account whether different participants had different
connectivity levels for the channels (Emotiv EPOC reports four levels of connec-
tivity). The device is sensitive to movement and might show poor connections
in some channels during the experiment. These need to be analysed further.
The issue has been improved on the next experiment where fNIRS signals were
collected. A number of channel data were removed based on the SNR values.
However, this resulted in a lot of data being discarded. A more efficient ap-
proach could be to apply different weights to channel values based on their
connectivity levels. Using this approach, the channels with better connectivity
will have a higher influence in the model, without the relatively poor quality
data being discarded.

• In regards to the choice of pop music stimuli, there were no clear annotations
that mapped the songs to a certain emotion. So in order to come to a resolution
about what pop music should be chosen, popularity was used as the determin-
ing factor. As it is not based on emotion, this could have potentially biased the
choice of stimuli.

8.2.2 Sample Size

Due to the difficulty of finding participants and collecting data, the number of sam-
ples was not very large for the majority of the experiments. The participant number
of each experiment ranged from 20-27. According to a physiological data analysis
study conducted by Hossain et al. [2018], the minimal suitable number of participants
required to train a machine learning model is nine. In comparison, the participant
numbers of the studies of this research can be considered reasonable. However, this
number is also dependent on the sample size of the signals collected. In chapter 7,
the stacked ensemble based deep learning approach could be applied on data col-
lected from only 27 participants because the sampling rate and number of channels
were much larger than the data collected in previous studies. Due to the limited
number of collected samples, the more robust deep learning based approach could
not be tested during all studies. So it can be argued that the number of participants
is not enough to generalise the physiological activity of humans at scale. A larger
number of participants need to be observed to see if patterns emerging from the
current studies remain consistent in large scale studies.

8.2.3 Population Bias

It should be acknowledged that the demography of the participants may have in-
troduced some biases in the studies. The participants of all of the six studies were
students from ANU. The majority of the students were recruited from computer sci-
ence and psychology. Therefore, their age range, study and music interests may have
been similar. It has been reported that physiological activity can vary according to
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the difference in stimuli types, participants’ age and gender. Therefore, the models
need to be validated using data from different age and occupation groups to confi-
dently show the models are capable of generalising to wider populations.

8.3 Future Work

This research work opens the door to a wide range of future research directions.
These can not only enrich the area of medical and affective computing, but also
expand the area of virtual reality, edge computing and so on. There are also areas
where computational approaches can be expanded and improved. Below are some
suggestions for future research directions, broadly categorised to four points:

8.3.1 Experiments Conducted In-the-wild

The experiments designed for this research were conducted in controlled laboratory
environments. This allowed the data collection process to be smoother due to limited
movements. Future work should include similar experiments conducted in-the-wild.
This means that participants will wear devices and interact with different stimuli
during their normal daily activities, when different types of physiological signals
will be collected. Further pre-processing techniques will need to be investigated
which will look into movement signals due to walking or other activities.

8.3.2 Computational Approaches to Detect Emotional Response to Music
in Real Time

The computational models built for this research were all offline classification meth-
ods. In the future, these models can be extended to provide feedback to the users
in real time, such as indicating a high alpha, high gamma activity or high level of
arousal. The real time feedback can help users make informed decisions on whether
to continue engaging with the stimuli. The computational times of these models will
also be explored to identify the the best models to be used for real time feedback.

8.3.3 Optimisation Methods to Find Appropriate Hyperparameters

Selecting the optimal hyperparameters of machine learning models is a challenging
task. In this research, all the hyperparameters were chosen either based on experi-
mentation or previous literature. Future work in this area could be to apply various
optimisation methods such as grid search, random search, evolutionary optimisation
and early-stopping based optimisation to select the optimal hyperparameters for the
classifiers.

An additional limitation of the stacked ensemble 1D CNN method proposed in
section 7.3.3.1 is that it assumes every participant’s model provides a useful con-
tribution to the final model. However, there were some participants whose models
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resulted in poor training accuracy due to many noisy channels or low number of
samples. Future work should include grid search and majority voting based meth-
ods to identify the best set of models for decision fusion.

8.3.4 Virtual Reality Applications

The computational models that uses EEG and fNIRS signals can further be trans-
lated into many virtual reality based applications. There are a few wearable vir-
tual reality headsets recently created to capture brain wave signals such as Looxid
Link[LooxidLink] and Next Mind [NextMind]. The current research work can be
extended to analyse brain signals in virtual reality settings. Some of the potential
works are:

• Exploring the effects of different background music in virtual reality games
based on participants’ brain activity response.

• Investigating the efficacy of virtual reality based remote/hybrid communica-
tion methods based on brain signals.

• Biofeedback therapy using VR based immersive visualisation.

8.3.5 Edge Computing Applications

Edge computing systems have recently showed tremendous success in collecting and
processing a large volume of signals very fast and in real time [Sittón-Candanedo
et al., 2019; Chen and Ran, 2019]. The current research work can further be expanded
to build edge computing models that can conduct real-time and ubiquitous process-
ing of large scale physiological data. This will have many applications in medical
and e-health research.

Draft Copy – 30 September 2022



Appendix A

Experiment Procedure and General
Guidelines

This appendix lists some general guidelines and procedures that were followed dur-
ing all six studies. It includes step-by-step procedures taken in each study. It also
includes general guidelines regarding the usage of each equipment that were used
to collect data.

1. When the participant arrives, they are greeted and the participation information
sheet and consent form are handed to them. Then they are briefly explained
what the experiment is about. A reminder is given that they have to answer all
the questions before moving on to the next steps. Participants are also asked if
they have any questions or concerns regarding the experiment.

2. The eye tribe server is started. The UI is launched and in the settings the sam-
pling rate is changed to 60 Hz. Then the server is restarted. The participants
are then asked to sit in a position where they are comfortable typing. Then the
position of the eye tribe is changed accordingly to do the calibration.

3. The participants are then asked to wear the E4 on their non-dominant hand.
The E4 is then started, it takes about 40 seconds to setup.

4. (Only for collecting EEG) The Emotiv headset is started and the positions of
the sensors are moved to get better connectivity. Ideally all the sensor should
to be green, but the aim is to get good connectivity on all the sensors without
spending too much time (if some stay orange that’s okay). After the sensors are
all connected, data recording is started (tick the ‘include baseline’ checkbox)
and calibration process is done.

5. (Only for collecting fNIRS) The fNIRS headset is started and put on the partic-
ipant’s head (making sure they do not have any hair on their forehead). There
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are 3 dots on the device, the middle one should be in line with the participant’s
nose. Then the software is started, and then ‘Monitoring’ is chosen. Then par-
ticipants are handed the tablet (where the software is installed) and asked to
follow the instructions for the calibration process.

6. The eye tribe UI is launched again to start recording the data. The participants
are asked to try to not move too much during the experiment and not bring
their hands in front of their face as it will disrupt the eye gaze collection pro-
cess.

7. The website is started. Participants are asked to put the earphones on and start
the noise cancelling button.

8. The E4 is tagged once right before the experiment to indicate the start. Then it
is tagged every time a participant starts listening to a new music stimulus.

9. After the experiment is finished all recordings are stopped and data is saved
according to specific naming conventions. E4 saves each data according to the
start time of the experiment, and they are saved directly to the empatica account
associated with the device. For the other devices, the following convention is
used to save the data:

DateMonthYear_SubjectNoForThatDay(e.g.130519_1)

10. Finally, devices are removed from the participants and they are given a debrief
on the experiment.
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Appendix B

Experiment Related Documents

This appendix includes participation information sheet, consent form, questionnaires
and SONA experiment sign up page for the study reported in study 3 of chapter 4.
The documents for other studies reported in chapter 5, chapter 6 and chapter 7 follow
similar pattern. Therefore, they are not included in this thesis.
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1 

 

Participant Information Sheet 

Project Title: Music and Emotion 

 

Experiment: 

In this experiment, you will watch a selection of video while listening to some music pieces from 

different genres. Your task is to answer some questions about those videos and music pieces. During the 

experiment, you will wear a headset and a wrist worn device with an aim to collect your 

electroencephalogram (EEG), functional imaging of brain activities, Heart Rate Variability (HRV), 

Blood Volume Pulse (BVP) and Galvanic Skin Response (GSR). Your eye gaze and pupil dilation will 

be tracked by an eye tracking device placed in front of you. 

 

Devices 

In this experiment, your physiological signals will be captured by three devices: 

1. Emotiv EPOC+ device, which is a black round headset collecting raw EEG data. 

2. Obelab Nirsit device, which is a white round headset collecting functional images of brain 

activites 

3. Empatica E4 device, which is a black roundish watch with a button on it, aiming to collect HRV, 

BVP and GSR; 

4. TheEyeTribe eye-tracking device, which is a black bar tracking eye gaze point and pupil dilation. 

 

Tasks 

In this experiment, you will watch a series of videos while listening to music from the computer screen 

and answer questions involving those videos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

and music pieces. After completion of tasks, all sensors will be removed. Only during the observation 

and identification of the experiment, the equipment will be recording your biometrics. 

 

At the start of the experiment, you will: 

i) Fill demographic information. 

ii) Read instructions and press the Next button. 

iii) Watch the videos while listening to some music and answer the questions. Press Next to 

continue. 

iv) Repeat step v) until all the texts have been displayed. 

v) Fill in the post-experiment questionnaires and press Submit. 

vi) Read the Thank you page and wait patiently for the experimenter to collect the form, and 

give you any further instructions. 

 

Use of Data and Feedback 

The data collected will be used to draw conclusions about certain interaction techniques and the nature 

of the tasks. Any data collected, either raw or processed, may be used research and publications. The 

data will be made unidentifiable so that no participant will be able to be identified from any data 

collected. 

 

Voluntary Participation & Withdrawal 
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This usability experiment is completely voluntary. You may end the test session or ask for a break at any 

time. You may request that any or all data collected from you be destroyed. You have the right to 

completely withdraw from the experiment at any point with no explanation to the researcher. In this 

case, your data and personal information will be destroyed in accordance with the ANU Code of 

Research Conduct. You can ask that your name be deleted from our contact list for future testing at any 

time. 

 

What does participation in the research request of you? 

The main purpose of the user study is to collect data to enable useful information to be gained on the 

interface, the interaction techniques, and tasks. We will give you a pre- and post-task questionnaire that 

may contain some questions of an identifying nature. You do not need to complete these or any of the 

other questions if you have any objections to them. The task carried during the session will involve 

recording of EEG, HRV, BVP, GSR, brain imaging, eye gaze and pupil dilation data. 

 

Location and Duration 

The study will take place in N239, Level 2, Computer Science and Information Technology (CSIT) 

Building 108 on the ANU Campus. The time needed to complete this user study will be about 90-120 

minutes in one standalone session. This time will include an introduction to the tasks, setup, and 

completion of the tasks mentioned above. 

 

Incentives 

No incentives are provided. Participants signing up via the SONA system gain course credits. 

 

Risks 

As the study is conducted in a carefully designed lab environment, all care will be taken to make 

participants as comfortable as possible, given the nature of the interaction tasks. Some physical 

discomfort such as wrist and muscle strain may occur with some people including, in rare cases, 

motion sickness. Participants are free to request that your participation in the user study cease at any 

stage without explanation. 

 

Confidentiality 

The data from the experiment will be made unidentifiable so that no participant will be able to be 

identified from any data collected. All results published will be in regards to the overall findings from 

the cohort of participants and not on an individual basis. Until that time, if you give your permission, 

your contact details will be retained for follow-up testing. The data may be used in follow-up research 

by researchers not listed on this form. All researchers that will gain access to the data collected in this 

research will be listed under the same human ethics protocol as the current researcher. 

 

Data Storage 

The data from the research will be stored securely at the CSIT Building, ANU. The data from the 

experiment will be made unidentifiable to retain privacy of each participant.  The lookup for the 

unidentifiable data will be kept in a separate secure location so that participants information can be 

found in the case of their wanting access to their data or destruction of their data.  
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In accordance with the ANU Code of Research Conduct all data collected for the research will be stored 

for at minimum 5 years from the data of publication. After this period the data will be archived for 

follow-up research. The data will be kept in secure storage at the Research School of Computer Science, 

ANU. 

 

Queries and Concerns: 

If you have any further requests for information or queries regarding the study please contact on the 

contact information given below,  

 

Jessica Sharmin Rahman 

Office: N320, CSIT Building, ANU 

Email: jessica.rahman@anu.edu.au 

 

Prof Tom Gedeon 

Office:  N332 / N331, CSIT Building, ANU 

Email: tom@cs.anu.edu.au 

Phone: +61 2 6125 1052 

 

Ethics Committee Clearance: 

The ethical aspects of this research have been approved by the ANU Human Research Ethics 

Committee.  If you have any concerns or complaints about how this research has been conducted, please 

contact: 

 

Ethics Manager 

The ANU Human Research Ethics Committee 

The Australian National University 

Telephone: +61 2 6125 3427 

Email: Human.Ethics.Officer@anu.edu.au 
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Consent Form 

 

1. I consent to take part in the research study. I have read the information 
sheet for this research project and understand its contents. The information 
provided explains the nature and purpose of the research project, so far as it 
affects me, to my satisfaction. My consent is freely given.  

2. I understand that if I agree to participate in the research project I will be 
required to perform some text reading and music listening tasks and that I 
may be asked to answer some questions regarding before and after to 
determine my experience of the environments. The process will require 
approximately one and a half to two hours of my time.  

3. I understand that the user study is for the purpose of research. It may or may 
not be of direct benefit to me.  

4. I understand that information gained during the research project may be 
published in this and subsequent research, and that my personal details will 
remain confidential. My name will not be used in relation to any of the 
information I have provided, unless I explicitly consent in writing to be 
identified.  

5. I understand that personal information, such as my name, will be kept 
confidential so far as the law allows. This form and any other identifying 
materials will be safeguarded.  

6. I understand that I may withdraw from the research project at any stage 
without providing any reason and that this will not have any adverse 
consequences for me. If I withdraw, the information I provide will not be 
used by the project.  

7. I understand that my participation, withdrawal or non-participation will not 
directly affect assessment in any course, including at the Australian National 
University, and my participation is completely voluntary. 

8. I understand that it is sometimes essential for the validity of research results 
not to reveal the true purpose of the research to participants. If this occurs, I 
understand that I will be debriefed as soon as is practicable after my 
participation and, at that time, given the opportunity to withdraw from the 
research and have records of my participation erased.  

Please list any Special Considerations (e.g. any medical conditions) you have 
which you would like to bring to the attention of the user study supervisor 

_______________________________________________________________________________
_______________________________________________________________________________
_______________________________________________________________________________ 

 

Name of Participant: ____________________________________________________ 

Signature: ____________________________________________________________ 

Date: ________________________________________________________________ 
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https://anupsych.sona-systems.com/exp_info.aspx?experiment_id=650 1/3

Research School of Psychology Psychology Research Participation Scheme

Rahman Jessica (Researcher)

 Study Menu 

Study Information

Study Name
Music and Emotion 3

Study Type

Study Status Visible to participants : Approved

Active study : Appears on list of available studies

Duration 60 minutes
Credits 1 Credits
Abstract In this experiment, you will watch a selection of videos while listening to some music pieces

from different genres. Your task is to answer some questions about those videos and music
pieces while wearing several physiological-signal-capturing devices.

Description In this experiment, you will watch a selection of videos while listening to some music pieces
from different genres. Your task is to answer some questions about those videos and music
pieces. During the experiment, you will wear a headset and a wrist worn device with an aim to
collect your electroencephalogram (EEG), functional imaging of brain activities, Heart Rate
Variability (HRV), Blood Volume Pulse (BVP) and Galvanic Skin Response (GSR). Your eye gaze
and pupil dilation will be tracked by an eye tracking device placed in front of you.

Eligibility Age: 18-40. Participants must have normal or corrected-to-normal vision and must be


Standard (lab) study  
This is a standard lab study. To participate, sign up, and go to the specified location at the
chosen time.
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https://anupsych.sona-systems.com/exp_info.aspx?experiment_id=650 2/3

g y
Requirements

g p
comfortable listening to music wearing earphones

Preparation It is advised to avoid using hair styling products (wax, gel, etc.) prior to the experiment as you
will be wearing several headsets.









Restrictions

Sign-Up Restrictions Must NOT have signed up or completed ANY of these studies:

Music and Emotion 

Music and Emotion 2 

Additional Study Information

Participant Sign-Up
Deadline

24 hours before the study is to occur

Participant Cancellation
Deadline

24 hours before the study is to occur

HREC Approval Code 2018/489 (expires 13 March 2024)
Direct Study Link

This is a direct URL for participants to access the study. You may use this in an
email or study advertisement.

Date Created 29 May 2019

Researcher Information

Researcher Rahman Jessica

https://anupsych.sona-systems.com/default.aspx?p_return_experiment_id

Study Menu

 View/Administer Time Slots

 Timeslot Usage Summary

 Download Participant List

 Contact Participants

 View Bulk Mail Summary
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B.4 Experiment Steps and Questionnaire

The experiment website was designed using Python’s Django web framework. After
all the devices were properly connected and calibrated, participants ran the experi-
ment website using Chrome web browser. Below are the sequence of pages and their
contents summarised:

B.4.1 Introduction and Instruction Page

This page gives participants instructions on what they need to do in the experiment.

Figure B.1: Experiment introduction page

B.4.2 Pre-experiment Questionnaire Page

This page is used to collect some basic demographic questions. Below is a list of the
questions.
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Figure B.2: Pre-experiment questionnaire page
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B.4.3 Playing and Experiment Questionnaire Page

The music stimulus is played in background, eight videos are displayed during each
music duration. Participants are required to answer three questions for each videos
and six questions for each pieces of music. Below are some screenshots of the website
page that shows these steps:

Figure B.3: Experiment video playing page

Figure B.4: Experiment video questionnaire page

Draft Copy – 30 September 2022



§B.4 Experiment Steps and Questionnaire 153

Figure B.5: Experiment music questionnaire page

B.4.4 Post experiment questionnaire page

This is the final page of the experiment that asks a post-experiment question.

Figure B.6: Post-experiment questionnaire page
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Appendix C

Miscellaneous Materials

C.1 External Links for Experimental Materials

The experiment materials for the first and second study reported in chapter 4 can
be found in the appendix chapter of the following document: Zakir Hossain ANU
Thesis 2019.

C.2 Sample Video Link for Gingerbread Animation

A sample of Gingerbread Animation video can be found in the following link: Gin-
gerbread_Animation_Demo
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