220 research outputs found

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Ship Detection Feature Analysis in Optical Satellite Imagery through Machine Learning Applications

    Get PDF
    Ship detection remains an important challenge within the government and the commercial industry. Current research has focused on deep learning and has found high success with large labeled datasets. However, deep learning becomes insufficient for limited datasets as well as when explainability is required. There exist scenarios in which explainability and human-in-the-loop processing are needed, such as in naval applications. In these scenarios, handcrafted features and traditional classification algorithms can be useful. This research aims at analyzing multiple textures and statistical features on a small optical satellite imagery dataset. The feature analysis consists of Haar-like features, Haralick features, Hu moments, Histogram of Oriented Gradients, grayscale intensity histograms, and Local Binary Patterns. Feature performance is measured using 8 different classification algorithms, including K-Nearest Neighbors, Logistic Regression, Gradient Boosting, Extreme Gradient Boosting, Support Vector Machine, Random Decision Forest, Extremely Randomized Trees, and Bagging. The features are analyzed individually and in different combinations. Individual feature analysis results found Haralick features achieved a precision of 92.2% and were computationally efficient. The best combination of features was Haralick features paired with Histogram of Oriented Gradients and grayscale intensity histograms. This combination achieved a precision score of 96.18% and an F1 score of 94.23%

    Closely arranged inshore ship detection using a bi-directional attention feature pyramid network

    Get PDF
    The detection of inshore ships in Synthetic Aperture Radar (SAR) images is seriously disturbed by shore buildings, especially for closely arranged inshore ships whose appearance is similar when compared with detection of deep-sea ships. There are many interference factors such as speckle noise, cross sidelobes, and defocusing in SAR images. These factors can seriously interfere with feature extraction, and the traditional Fully Convolutional One-Stage (FCOS) network often cannot effectively distinguish small-scale ships from backgrounds. Additionally, for closely arranged inshore ships, missed detections and inaccurate positioning often occur. In this paper, a method of inshore ship detection based on Bi-directional Attention Feature Pyramid Network (BAFPN) is proposed. In order to improve the detection ability of small-scale ships, the BAFPN is based on the FCOS network, which connects a Convolutional Block Attention Module (CBAM) to each feature map of the pyramid and can extract rich semantic features. Then, the idea from Path-Aggregation Network (PANet) is adopted to splice a bottom-up pyramid structure behind the original pyramid structure, further highlighting the features of different scales and improving the ability of the network to accurately locate ships under complex backgrounds, thereby avoiding missed detections in closely arranged inshore ship detection. Finally, a weighted feature fusion method is proposed, which makes the feature information extracted from the feature map have different focuses and can improve the accuracy of ship detection. Experiments on SAR image ship datasets show that the mAP for the SSDD and HRSID reached 0.902 and 0.839 respectively. The proposed method can effectively improve the ship positioning accuracy while maintaining a fast detection speed, and achieves better results for ship detection under complex background

    Anchor-free Convolutional Network with Dense Attention Feature Aggregation for Ship Detection in SAR Images

    Get PDF
    In recent years, with the improvement of synthetic aperture radar (SAR) imaging resolution, it is urgent to develop methods with higher accuracy and faster speed for ship detection in high-resolution SAR images. Among all kinds of methods, deep-learning-based algorithms bring promising performance due to end-to-end detection and automated feature extraction. However, several challenges still exist: (1) standard deep learning detectors based on anchors have certain unsolved problems, such as tuning of anchor-related parameters, scale-variation and high computational costs. (2) SAR data is huge but the labeled data is relatively small, which may lead to overfitting in training. (3) To improve detection speed, deep learning detectors generally detect targets based on low-resolution features, which may cause missed detections for small targets. In order to address the above problems, an anchor-free convolutional network with dense attention feature aggregation is proposed in this paper. Firstly, we use a lightweight feature extractor to extract multiscale ship features. The inverted residual blocks with depth-wise separable convolution reduce the network parameters and improve the detection speed. Secondly, a novel feature aggregation scheme called dense attention feature aggregation (DAFA) is proposed to obtain a high-resolution feature map with multiscale information. By combining the multiscale features through dense connections and iterative fusions, DAFA improves the generalization performance of the network. In addition, an attention block, namely spatial and channel squeeze and excitation (SCSE) block is embedded in the upsampling process of DAFA to enhance the salient features of the target and suppress the background clutters. Third, an anchor-free detector, which is a center-point-based ship predictor (CSP), is adopted in this paper. CSP regresses the ship centers and ship sizes simultaneously on the high-resolution feature map to implement anchor-free and nonmaximum suppression (NMS)-free ship detection. The experiments on the AirSARShip-1.0 dataset demonstrate the effectiveness of our method. The results show that the proposed method outperforms several mainstream detection algorithms in both accuracy and speed

    An Incept-TextCNN Model for Ship Target Detection in SAR Range-Compressed Domain

    Get PDF

    Ship Identification on Satellite Image Using Convolutional Neural Network and Random Forest

    Get PDF
    Ship identification on satellite imagery can be used for fisheries management, monitoring of smuggling activities, ship traffic services, and naval warfare. However, high-resolution satellite imagery also makes the segmentation of the ship difficult in the background, so that to handle it requires reliable features so that it can be identified adequately between large vessels, small vessels and not ships. The Convolutional Neural Network (CNN) method, which has the advantage of being able to extract features automatically and produce reliable features that facilitate ship identification. This study combines CNN ZFNet architecture with the Random Forest method. The training was conducted with the aim of knowing the accuracy of the ZFNet layers to produce the best features, which are characterized by high accuracy, combined with the Random Forest method. Testing the combination of this method is done with two parameters, namely batch size and a number of trees. The test results identify large vessels with an accuracy of 87.5% and small vessels with an accuracy of not up to 50%

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms
    corecore