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 Abstract—Traditionally, SAR-based ship target detection is 
performed in the image domain, where SAR imaging processing 
has to be applied first. However, SAR imaging processing is 
complex and time-consuming, especially in the wide-swath 
working mode. Actually, for open sea scenes, most echoes are sea 
surface signals with no ship targets, and there is no need for 
imaging processing in those areas. Therefore, non-image domain 
ship target detection is studied in this paper, and a novel Incept-
text convolutional neural network (TextCNN) model is proposed 
for ship target detection in the SAR range-compressed domain 
(RCD). In the proposed method, the SAR echo data is converted 
into a one-dimensional range profile signal firstly by range 
compression and mean pooling, and then, the Incept-TextCNN 
model is proposed and applied, and information about existence of 
ship targets in relevant range cells will be its output. Finally, the 
effectiveness and efficiency of the proposed method is testified by 
simulation and real spaceborne SAR data, and the results 
demonstrate that the proposed model can filter out the invalid 
range-compressed data of the sea surface area, which can 
significantly reduce the amount of data for subsequent SAR 
imaging and ship classification. 
Index Terms—SAR range-compressed domain, Data Filtering, 
Text convolutional neural network (TextCNN), Ship Target. 

I. INTRODUCTION
HIP detection is an important application of  Synthetic 
Aperture Radar (SAR). As SAR works in the microwave 
band, compared with optical sensors, SAR can obtain 

high-quality remote sensing images under complex weather 
conditions, and realize all-day, all-weather, and high-resolution 
wide swath imaging tasks. As a result, SAR has become an 
important tool for ocean imaging and monitoring. 

Traditionally, widely used ship detection methods are based 
on the constant false alarm rate (CFAR) in SAR [1] . However, 
there are clear limitations for CFAR-based detectors: their 
detection ability is affected by surrounding buildings and ports 
in nearshore scenes; its characteristic pixel-by-pixel detection 
process leads to low processing efficiency. Recently, deep 
learning based techniques have been applied to SAR ship 
detection. Faster R-CNN model is combined with the CFAR 
detector in [2], while SAR image target detection based on SSD 
model is performed in [3]. In [4], a dense connection module is 
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introduced in YOLOv3 to detect small targets. In [5], the large-
size detection process is optimized, where the slices with 
potential targets are screened firstly, followed by further refined 
detection. Based on this, a new method is proposed in [6] to 
reduce the involved calculations through context information. 
These deep learning based algorithms significantly improve the 
detection speed and accuracy; however, those methods are 
performed in SAR image domain, which have two major 
drawbacks: (1) SAR image processing is time consuming, 
especially azimuth focusing; (2) for sea surface scenarios, most 
areas have no targets, and a lot of computing resources are 
wasted in these regions.  

To overcome these shortcomings, some target detection 
methods in the non-image domain have been presented in 
recently years and one representative example is the range-
compressed domain (RCD) as it does not require time-
consuming azimuth focusing. In [7], a ship detector is proposed 
based on Faster R-CNN working in the RCD; in [8], a two-step 
detection method is presented with the first step using complex 
signal kurtosis in the RCD to screen possible ship areas coarsely, 
and the second step applying CNN to further detect the potential 
ship areas; an oriented ship detection strategy is designed in [9], 
which calculates the constant false alarm rate detection 
threshold in the range-Doppler domain; a supportive ship 
tracking concept is introduced in [10] in the range-Doppler 
domain using an airborne-based radar sensor; in addition, a 
method for ship detection from raw SAR echo data is proposed 
in [11]. However, most of them are based on two-dimensional 
data for detection, where the model size tends to be large and 
dependent on CPU resources, and detection based on one-
dimensional data often doesn’t take advantage of deep learning 
that can extract deep features. 

In this paper, a novel Incept-TextCNN model is presented to 
detect ship targets. In the proposed method, the SAR echo 
signal is converted into the one-dimensional range profile 
firstly, and then the TextCNN model extracts  the depth features 
of the amplitude information in the data and screens the range 
gates containing ship targets. As a result, the area of interest can 
be located fast, and the large non-target areas can be filtering 
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out effectively, and the consumption of subsequent imaging and 
detection of non-target areas can be reduced.  

The remainder of this letter is organized as follows. 
Construction of the RCD data set is presented in Section II, and 
the Incept-TextCNN model is introduced in Section III for 
coarse detection of the ship target area. Experimental results are 
provided in Section IV, and conclusions are drawn in Section 
V. 

II. THE RCD SHIP TARGET DATA SET

To apply the deep learning based method, preparing the RCD 
ship target data set is an important step in the proposed method. 
The RCD data is the intermediate product of SAR imaging. In 
this paper, the ship target data set in RCD is constructed first, 
and corresponding one-dimensional range profile is also 
provided, which is obtained from range-compressed data and 
contains information about signal amplitude changes along the 
range direction.  

 (a) (b) 

(c) (d) 

(e) (f) 

Fig.1. The simulated ship target data: (a) data A in SAR image; 
(b) data B in SAR image; (c) RCD data of A; (d) RCD data of
B; (e) one-dimensional range profile of A; (f) one-dimensional
range profile of B.

A. Simulated Ship Target data in RCD
Spaceborne SAR simulation is used to obtain sufficient range-

compressed ship target data. As it is difficult to obtain the SAR 
echo data, the ship target in real SAR images is used to simulate 
the echo data which is then processed and transfomred into the 
range-compressed data. For the RCD data simulation, the target 
SAR image is used as an input, and the simulated echo data is 
obtained through parameter setting, SAR system simulation, 

random phase simulation and echo simulation. Then, range Fast 
Fourier Transform (FFT), range matched filtering and range 
inverse FFT (IFFT) are performed to obtain the range-
compressed data. Furthermore, a mean pooling operation is 
carried out along the azimuth-direction to obtain the 
corresponding one-dimensional range profile signal, which is 
the input of the subsequent training model. Based on the 
presented simulation method, the simulated RCD ship target 
data and its corresponding one-dimensional range profile are 
presented in Fig.1, where the horizontal direction represents the 
range. Here, the range resolution is about 1m. As shown, the 
fluctuation of signal amplitude can be clearly observed, and this 
characteristic will be useful in the subsequent ship target 
detection. 

B. Real Ship Target data in RCD
For real SAR data, only range FFT, range matched filtering

and range IFFT operations are needed. Using the Pujiang-2 
spaceborne SAR data, Fig. 2 presents the real data and 
corresponding one-dimensional range profile, including the 
good and bad sea conditions. Finally, based on the simulated 
and real ship target data, a one-dimensional range profile data 
set of ship target in RCD is generated, which contains 433 sets 
of training sample data, 110 sets of verification sample data, 
252 sets of test sample data, with a positive and negative sample 
ratio of 1:1 and a resolution of about 1-3m. The overall ratio of 
simulated and real data in training and verification samples is 
6:4. 

（a） (b) 

(c) (d) 
Fig.2. The real ship target data: (a) real data A in SAR image; 
(b) real data B in SAR image; (c) one-dimensional range profile
of A; (d) one-dimensional range profile of B.

III. SHIP TARGET DETECTION BASED ON INCEPT-TEXTCNN
To filter out the non-target area data, a novel Incept-

TextCNN model for ship target detection is proposed in this 
part. The general idea is shown in Fig. 3, where the one-
dimensional range profile data is obtained from SAR echo first, 
and then TextCNN outputs which range gates contain targets 
and which range gates do not according to the different 
characteristics of  amplitude in the background region and the 
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region containing the ship targets in the data, thus giving the 
range in the range direction that requires further imaging 
processing, avoiding the need to image the entire data in the 
image domain refinement detection.  

Fig. 3. The general idea for the proposed ship detection model 
based on the RCD data. 
A. Conventional TextCNN Model

In TextCNN, output feature sequence of one-dimensional
convolution has two dimensions: length and depth. The length 
depends on the size of convolution kernel, and the information 
of length dimension is similar to the information of each 
channel in image domain feature map. The depth is the number 
of channels, depends on the number of convolution kernels, and 
is similar to the number of channels in image domain feature 
map [12]. The relationship between the length of output feature 
sequence and the convolution kernel is shown in Fig. 4, and 
the calculation expression is given below: 

2 1i p k
s

ο + −
= +     (1) 

where, o is the length of the output feature sequence, i is the 
length of the input feature sequence, p is the length of all zero 
pixels extended around the feature matrix during convolution, 
k is the size of the convolution kernel, and s is the step size, i.e., 
the span of each movement of the convolution kernel. 

Fig. 4. Description of the one-dimensional convolution 
operation. 

The structure of the conventional text convolutional neural 
network (TextCNN) model for the RCD is shown in Fig. 5. 
After the one-dimensional RCD data is fed into the model, the 
feature is extracted by five convolutional blocks successively. 
The length of the feature sequence gradually decreases and the 
dimension gradually increases. Each convolutional block 
adopts the form of one-dimensional convolution plus batch 
normalization plus activation function,  and carries out feature 

extraction, normalization, and nonlinear assignment processing 
to improve the characterization ability of the model. After the 
fifth convolutional block outputs the feature sequence, the 
sequence is transformed into a one-dimensional sequence 
through the "flattening" operation. After that, the sequence 
dimension is reduced through three fully connected layers, 
normalized and activated through the batch normalization (BN) 
layer and ReLU activation function, and finally, the confidence 
of each item is obtained through the Softmax function. 

Fig. 5.  Structure of the conventional TextCNN model. 

B. Proposed Incept-TextCNN Model
Based on the structure of the conventional TextCNN model,

by analogy with GoogLeNet's Inception [13] module in the 
image domain, the concatenation operation of different 
convolutional feature sequences is introduced and in this way, 
TextCNN based on the Inception module (Incept-TextCNN) for 
RCD is constructed. 

The Inception structure is shown in Fig. 6, where Fig. 6(a) is 
the original version. The feature extraction from the input 
feature map is carried out through different convolution kernels. 
The convolution kernel of multiple sizes is used respectively to 
carry out convolution operations on the same input feature map 
so that the feature map of different scales can be obtained. After 
that, all feature maps are spliced to obtain the output feature 
map containing information of different scales. Fig. 6(b) shows 
an improved version of inception. On the basis of the original 
structure, 1×1 convolution is used to reduce the number of 
channels in the feature map, thus reducing the accumulation of 
parameters. 

As shown in Fig. 7, the Incept-TextCNN model is based on 
the structure of TextCNN. When the one-dimensional RCD 
signal is fed into the model, first of all, a one-dimensional 
convolution operation is performed by three convolution 
kernels of different sizes in block1, block2, and block3, and the 
three output feature sequences are kept the same length by 
adding 0s and adjusting the step size. Then, in order to avoid a 
too large model size caused by too many feature sequence 
channels after concatenation, referring to the operation of the 
Inception module in GoogLeNet, the convolution kernel of size 
1 is used to reduce the depth of feature sequence. Finally, output 
sequences representing three different scale features are 
concatenated along the depth dimension. The output of the first 
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Inception module is obtained and sent to block4. The feature 
sequence output by block4 is then sent to the next Inception 
module, and features are further extracted by three different 
convolution kernels. Then convolution, flattening, full 
connection layer processing, and activation function processing 
are carried out successively. Finally, the confidence of each 
item is obtained through the Softmax function. 

(a) 

(b) 
Fig. 6. Inception module diagram: (a) original version; (b) 
improved version. 

Fig. 7. Structure of the proposed Incept-TextCNN model . 

IV. EXPERIMENTAL RESULTS

In this section, the experimental results are presented and 
discussed using the RCD data set described in Section II. 
TextCNN and Incept-TextCNN are tested and the detection 
performance of the two models are compared. Moreover, the 
Incept-TextCNN model is used to test two real large scene 
images, and it is demonstrated that the proposed model can 
detect potential targets present in the range gate effectively. 

A. Specific experimental setup
The models are trained on the constructed simulated and real

RCD data set. The training parameters of the coarse detection 
model based on TextCNN and Incept-TextCNN are set as 
follows: the initial learning rate is set to 0.0001, the batch size 
to 16, and the number of training rounds is 200. The AdaMax 
optimizer is used for training, in which β1 is set to 0.9 and β2 to 
0.999. 

B. Comparison between TextCNN and Incept-TextCNN models
Simulated and real data sets are used to train TextCNN and

Incept-TextCNN models respectively, where the input data size 
of each group is 1×512. The training efficiency results of the 
verification set are shown in Fig. 8, where blue represents the 
TextCNN model and red represents the Incept-TextCNN model. 
Both models can realize ship target detection after a period of 
iterative training. The detection rate by the Incept-TextCNN 
model on the verification set improves faster, and its accuracy 
stabilizes above 90% after only a few rounds of training; while 
the convergence speed of the TextCNN model is slower, it 
reaches the steady state after about 60 rounds of training. In the 
verification set, the accuracy of the Incept-TextCNN model can 
reach 97%, while the accuracy of the TextCNN model is 
relatively poor, and the average detection rate of the former 
after stabilization is 2.4% higher than that of the latter, where 
the accuracy is calculated by the ratio of correctly judged 
samples to the total samples. Tests on the sliced test data set 
resulted in an accuracy of 93.2%, a recall [3] of 88.4%, and a 
F1-score [3] of 90.7% based on TextCNN, and an accuracy of 
94.5%, a recall of 90.7%, and a F1-score of 92.6% based on 
Incept-TextCNN. It can be seen that the detection accuracy, 
recall and F1-score of Incept-TextCNN model are all  higher 
than TextCNN.  

In summary, Incept-TextCNN outperforms TextCNN in 
detecting, and its model size is 16.58M, although it is larger 
compared to TextCNN's 1.10M, but because it is a method that 
use one-dimensional convolution for one-dimensional data 
processing, it is lighter than the model of two-dimensional 
convolution for two-dimensional data processing used in image 
and non-image domains commonly, and has an advantage in 
model size and detection efficiency.  

C. Real data coarse detection based on Incept-TextCNN model
The validity of the Incept-TextCNN model is further verified

by using real large image SAR data. For the input of large image, 
the whole one-dimensional range profile signal is obtained first, 
and then the long one-dimensional data is divided into many 
groups of 1×512 data by the method of overlapping sliding 
window, which is input in sequence for model detection, and 
finally the groups of data with potential targets are determined, 
that is, the range gates containing potential targets are the 
corresponding output. Fig. 9 shows the coarse detection results 
of SAR images of the Taiwan Strait taken by the Pujiang-2 
satellite, with the stride of 200 range gates when sliding the 
window on data A and 20 range gates on data B. 
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As can be seen from Fig. 9, the Incept-TextCNN model has 
successfully detected the positions in range direction of five 
ship targets in image A and two in image B , and 73.09% non-
target sea area in image A and 70.34% non-target sea area in 
image B are excluded, demonstrating the effectiveness of using 
one dimensional convolutional network for deep feature 
extraction on the one dimensional RCD data which only 
contains amplitude features but lacks ship outline and size 
features. Note that the vertical length of the red box in Fig. 
9(a)(b) is consistent and covers all points in the azimuth- 
direction, meaning that the exact position of target in the 
azimuth-direction cannot be given. 

Fig. 8. Accuracy curves of the TextCNN model and the Incept-
TextCNN  model. 

(a) (b) 

(c) (d) 
Fig. 9. Coarse detection results using real data: (a) detection 
results using real data A displayed in RCD; (b) detection results 
using real data B displayed in RCD; (c) detection results using 
real data A displayed on one-dimensional range profile signal; 
(d) detection results using real data B displayed on one-
dimensional range profile signal.

V. CONCLUSION

In this paper, a novel Incept-TextCNN model has been 
proposed for ship target detection in SAR RCD. It employs one-
dimensional convolution to extract the features of one-
dimensional RCD data, and then uses activation functions, full 
connection layers, and other structures to classify the target 
features. And the Inception structure in GoogLeNet is 

introduced to fuse the feature information of different scales 
together, which can improve the detection accuracy. 

A key feature of the proposed method is to output the range 
gates containing potential ship targets (including strong clutters, 
artificial platforms, or islands areas) to achieve coarse detection 
of ship targets with high detection rate and high false alarm rate. 
After the detection by the proposed method, only the selected 
areas should be imaged and input into the subsequent image 
domain fine detection model. Thus, the advantages of time 
saving of the overall framework are mainly reflected in: (1) the 
coarse detection is for one-dimension, which is faster than the 
detection speed of two-dimension; (2) there is no need to image 
all the echo data, but only the part containing targets; (3) since 
a large number of non-target areas are not imaged, especially 
for open sea, there is no need to carry out image domain fine 
detection on non-target areas. Therefore, the proposed model 
will be very useful in improving the processing efficiency of 
ship target detection. In the future, we will study nearshore ship 
targets and the scene with more clutter, improve the existing 
model to make it suitable for more complex scenes, and explore 
the performance of using other models such as NPL for 
detection. 
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