7 research outputs found

    Insect-Inspired Mechanical Resilience for Multicopters

    Get PDF
    The ease of use and versatility of drones has contributed to their deployment in several fields, from entertainment to search and rescue. However, drones remain vulnerable to collisions due to pilot mistakes or various system failures. This paper presents a bioinspired strategy for the design of quadcopters resilient to collisions. Abstracting the biomechanical strategy of collision resilient insects’ wings, the quadcopter has a dual-stiffness frame that rigidly withstands aerodynamic loads within the flight envelope, but can soften and fold during a collision to avoid damage. The dual-stiffness frame works in synergy with specific energy absorbing materials that protect the sensitive components of the drone hosted in the central case. The proposed approach is compared to other state-of- the art collision-tolerance strategies and is validated in a 50g quadcopter that can withstand high speed collisions

    Analysis of the effects on the pitching, rolling and yawing rate of a v-tail configured quadcopter

    Get PDF
    Many different projects have been focused on multirotor aircraft, especially on quadcopters, but there are only a few papers relating to the dynamic effects on quadcopters with tilted motors. In this paper, a quadcopter has been modelled to allow flight simulation under differing motor tilt angle configurations. The simulation has also been validated by building a quadcopter of known physical attributes and with on-board instrumentation and telemetry to log its attitude and motor control inputs (PWM signals). The conversion from a PWM signal to the rpm was achieved by determining the relationship between the PWM signal and the thrust generated. Both of these parameters being recorded on a test bench. Thrust is calculated for each motor individually, since the angled motors generate different advance ratios and hence different thrust coefficients. The main focus of this research was on the effect of the different coefficients and the thrust components acting in the x-y plane of the quadcopter body frame

    When Being Soft Makes You Tough: A Collision Resilient Quadcopter Inspired by Arthropod Exoskeletons

    Full text link
    Flying robots are usually rather delicate, and require protective enclosures when facing the risk of collision. High complexity and reduced payload are recurrent problems with collision-tolerant flying robots. Inspired by arthropods' exoskeletons, we design a simple, easily manufactured, semi-rigid structure with flexible joints that can withstand high-velocity impacts. With an exoskeleton, the protective shell becomes part of the main robot structure, thereby minimizing its loss in payload capacity. Our design is simple to build and customize using cheap components and consumer-grade 3D printers. Our results show we can build a sub-250g, autonomous quadcopter with visual navigation that can survive multiple collisions at speeds up to 7m/s that is also suitable for automated battery swapping, and with enough computing power to run deep neural network models. This structure makes for an ideal platform for high-risk activities (such as flying in a cluttered environment or reinforcement learning training) without damage to the hardware or the environment

    Insect threats and conservation through the lens of global experts

    Get PDF
    While several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.Peer reviewe
    corecore