184 research outputs found

    Enhancing the rate-hardness of haptic interaction: Successive force augmentation approach

    Get PDF
    © 1982-2012 IEEE. There have been numerous approaches that have been proposed to enlarge the impedance range of haptic interaction while maintaining stability. However, enhancing the rate-hardness of haptic interaction while maintaining stability is still a challenging issue. The actual perceived rate-hardness has been much lower than what the users expect to feel. In this paper, we propose the successive force augmentation (SFA) approach, which increases the impedance range by adding a feed-forward force offset to the state-dependent feedback force rendered using a low stiffness value. This allows the proposed approach to display stiffness of up to 10 N/mm with Phantom Premium 1.5. It was possible to further enhance the rate-hardness by using the original value of virtual environment stiffness for feedback force calculation during the transient response followed by normal SFA. Experimental evaluation for multi-DoF virtual environment exhibited a much higher displayed stiffness and rate-hardness compared to conventional approaches. Two user studies revealed that the increase of rate-hardness due to SFA allowed the participants to have a faster reaction time to an unexpected collision with a virtual wall and accurately discriminate between four virtual walls of different stiffness

    Control of Cooperative Haptics-Enabled Teleoperation Systems with Application to Minimally Invasive Surgery

    Get PDF
    Robot-Assisted Minimally Invasive Surgical (RAMIS) systems frequently have a structure of cooperative teleoperator systems where multiple master-slave pairs are used to collaboratively execute a task. Although multiple studies indicate that haptic feedback improves the realism of tool-tissue interaction to the surgeon and leads to better performance for surgical procedures, current telesurgical systems typically do not provide force feedback, mainly because of the inherent stability issues. The research presented in this thesis is directed towards the development of control algorithms for force reflecting cooperative surgical teleoperator systems with improved stability and transparency characteristics. In the case of cooperative force reflecting teleoperation over networks, conventional passivity based approaches may have limited applicability due to potentially non-passive slave-slave interactions and irregular communication delays imposed by the network. In this thesis, an alternative small gain framework for the design of cooperative network-based force reflecting teleoperator systems is developed. Using the small gain framework, control algorithms for cooperative force-reflecting teleoperator systems are designed that guarantee stability in the presence of multiple network-induced communication constraints. Furthermore, the design conservatism typically associated with the small-gain approach is eliminated by using the Projection-Based Force Reflection (PBFR) algorithms. Stability results are established for networked cooperative teleoperator systems under different types of force reflection algorithms in the presence of irregular communication delays. The proposed control approach is consequently implemented on a dual-arm (two masters/two slaves) robotic MIS testbed. The testbed consists of two Haptic Wand devices as masters and two PA10-7C robots as the slave manipulators equipped with da Vinci laparoscopic surgical instruments. The performance of the proposed control approach is evaluated in three different cooperative surgical tasks, which are knot tightening, pegboard transfer, and object manipulation. The experimental results obtained indicate that the PBFR algorithms demonstrate statistically significant performance improvement in comparison with the conventional direct force reflection algorithms. One possible shortcoming of using PBFR algorithms is that implementation of these algorithms may lead to attenuation of the high-frequency component of the contact force which is important, in particular, for haptic perception of stiff surfaces. In this thesis, a solution to this problem is proposed which is based on the idea of separating the different frequency bands in the force reflection signal and consequently applying the projection-based principle to the low-frequency component, while reflecting the high-frequency component directly. The experimental results demonstrate that substantial improvement in transient fidelity of the force feedback is achieved using the proposed method without negative effects on the stability of the system

    Robustness analysis and controller synthesis for bilateral teleoperation systems via IQCs

    Get PDF

    A model-based robust control approach for bilateral teleoperation systems

    Get PDF

    Passive Control Architectures for Collaborative Virtual Haptic Interaction and Bilateral Teleoperation over Unreliable Packet-Switched Digital Network

    Get PDF
    This PhD dissertation consists of two major parts: collaborative haptic interaction (CHI) and bilateral teleoperation over the Internet. For the CHI, we propose a novel hybrid peer-to-peer (P2P) architecture including the shared virtual environment (SVE) simulation, coupling between the haptic device and VE, and P2P synchronization control among all VE copies. This framework guarantees the interaction stability for all users with general unreliable packet-switched communication network which is the most challenging problem for CHI control framework design. This is achieved by enforcing our novel \emph{passivity condition} which fully considers time-varying non-uniform communication delays, random packet loss/swapping/duplication for each communication channel. The topology optimization method based on graph algebraic connectivity is also developed to achieve optimal performance under the communication bandwidth limitation. For validation, we implement a four-user collaborative haptic system with simulated unreliable packet-switched network connections. Both the hybrid P2P architecture design and the performance improvement due to the topology optimization are verified. In the second part, two novel hybrid passive bilateral teleoperation control architectures are proposed to address the challenging stability and performance issues caused by the general Internet communication unreliability (e.g. varying time delay, packet loss, data duplication, etc.). The first method--Direct PD Coupling (DPDC)--is an extension of traditional PD control to the hybrid teleoperation system. With the assumption that the Internet communication unreliability is upper bounded, the passive gain setting condition is derived and guarantees the interaction stability for the teleoperation system which interacts with unknown/unmodeled passive human and environment. However, the performance of DPDC degrades drastically when communication unreliability is severe because its feasible gain region is limited by the device viscous damping. The second method--Virtual Proxy Based PD Coupling (VPDC)--is proposed to improve the performance while providing the same interaction stability. Experimental and quantitative comparisons between DPDC and VPDC are conducted, and both interaction stability and performance difference are validated

    Safe Haptics-enabled Patient-Robot Interaction for Robotic and Telerobotic Rehabilitation of Neuromuscular Disorders: Control Design and Analysis

    Get PDF
    Motivation: Current statistics show that the population of seniors and the incidence rate of age-related neuromuscular disorders are rapidly increasing worldwide. Improving medical care is likely to increase the survival rate but will result in even more patients in need of Assistive, Rehabilitation and Assessment (ARA) services for extended periods which will place a significant burden on the world\u27s healthcare systems. In many cases, the only alternative is limited and often delayed outpatient therapy. The situation will be worse for patients in remote areas. One potential solution is to develop technologies that provide efficient and safe means of in-hospital and in-home kinesthetic rehabilitation. In this regard, Haptics-enabled Interactive Robotic Neurorehabilitation (HIRN) systems have been developed. Existing Challenges: Although there are specific advantages with the use of HIRN technologies, there still exist several technical and control challenges, e.g., (a) absence of direct interactive physical interaction between therapists and patients; (b) questionable adaptability and flexibility considering the sensorimotor needs of patients; (c) limited accessibility in remote areas; and (d) guaranteeing patient-robot interaction safety while maximizing system transparency, especially when high control effort is needed for severely disabled patients, when the robot is to be used in a patient\u27s home or when the patient experiences involuntary movements. These challenges have provided the motivation for this research. Research Statement: In this project, a novel haptics-enabled telerobotic rehabilitation framework is designed, analyzed and implemented that can be used as a new paradigm for delivering motor therapy which gives therapists direct kinesthetic supervision over the robotic rehabilitation procedure. The system also allows for kinesthetic remote and ultimately in-home rehabilitation. To guarantee interaction safety while maximizing the performance of the system, a new framework for designing stabilizing controllers is developed initially based on small-gain theory and then completed using strong passivity theory. The proposed control framework takes into account knowledge about the variable biomechanical capabilities of the patient\u27s limb(s) in absorbing interaction forces and mechanical energy. The technique is generalized for use for classical rehabilitation robotic systems to realize patient-robot interaction safety while enhancing performance. In the next step, the proposed telerobotic system is studied as a modality of training for classical HIRN systems. The goal is to first model and then regenerate the prescribed kinesthetic supervision of an expert therapist. To broaden the population of patients who can use the technology and HIRN systems, a new control strategy is designed for patients experiencing involuntary movements. As the last step, the outcomes of the proposed theoretical and technological developments are translated to designing assistive mechatronic tools for patients with force and motion control deficits. This study shows that proper augmentation of haptic inputs can not only enhance the transparency and safety of robotic and telerobotic rehabilitation systems, but it can also assist patients with force and motion control deficiencies

    Stable, high-force, low-impedance robotic actuators for human-interactive machines

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 347-359).Robots that engage in significant physical interaction with humans, such as robotic physical therapy aids, must exhibit desired mechanical endpoint impedance while simultaneously producing large forces. In most practical robot configurations, this requires actuators with high force-to-weight ratios and low intrinsic impedance. This thesis explores several approaches to improve the tradeoff between actuator force capacity, weight, and ability to produce desired impedance. Existing actuators that render impedance accurately generally have poor force densities while those with high force densities often have high intrinsic impedance. Aggressive force feedback can reduce apparent endpoint impedance, but compromises coupled stability. The common standard for ensuring coupled stability, passivity, can limit performance severely. An alternative measure of coupled stability is proposed that uses limited knowledge of environment dynamics (e.g. a human limb) and applies robust stability tools to port functions. Because of structural differences between interaction control and servo control, classical single-input, single-output control tools cannot be directly applied for design. Instead, a search method is used to select controller parameters for an assumed structure.(cont.) Simulations and experiments show that this new approach can be used to design a force-feedback controller for a robot actuator that improves performance, reduces conservatism, and maintains coupled stability. Adding dynamics in series to change an actuator's physical behavior can also improve performance. The design tools developed for controller design are adapted to select parameters for physical series dynamics and the control system simultaneously. This design procedure is applied to both spring-damper and inertial series dynamics. Results show that both structures can be advantageous, and that the systematic design of hardware and control together can improve performance dramatically over prior work. A remote transmission design is proposed to reduce actuator weight directly. This design uses a stationary direct-drive electromagnetic actuator and a passive, flexible hydraulic transmission with low intrinsic impedance, thereby utilizing the impedance- rendering capabilities of direct-drive actuation and the force density of hydraulic actuation. The design, construction and characterization of a low-weight, low-friction prototype for a human arm therapy robot are discussed. Recommendations and tradeoffs are presented.by Stephen Paul Buerger.Ph.D

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller
    • …
    corecore