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Societal Summary

Bilateral teleoperation systems allow to manipulate and sense a remote or difficult
to access environment. Imagine a system that allows a surgeon to command robotic
instruments inside your body with high precision, and moreover, that provides the
surgeon the feeling of how rigid the surrounding tissue is. This latter characteristic,
called force feedback, can help the surgeon not to exert excessive force on delicate
tissues, preventing damage. This means that the patients will have less trauma
and faster recovery times after surgery, which will also reduce the costs of the
healthcare system.

Robotic surgery is already a reality, however, state of the art systems do not pro-
vide high quality force feedback to the operator. This is because high quality force
feedback always includes a compromise in the stability of the system, and cur-
rent techniques do not provide a good balance. Control of bilateral teleoperation
systems is not a trivial task, on one hand because the operating environment can
vary largely and on the other hand because the system directly interacts with the
human being. Therefore, the force feedback to the operator needs to be designed
in a clever way.

In this PhD thesis I propose a methodology to design and safely implement high
quality force feedback in bilateral teleoperation systems. The method involves
modelling of the human operator and the use of specific environment models. This
research represents a step towards bringing force feedback capabilities in robotic
surgery systems, which will have a direct impact in the human healthcare system.
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Summary
A Model-based Robust Control Approach for Bilateral Teleoperation Systems

Bilateral teleoperation systems allow an operator to manipulate a remote environ-
ment by means of a master and a slave device while using force feedback to obtain
a feeling of tele-presence. The system is supposed to deliver high performance
in that the operator feels as if he/she is manipulating the environment directly,
in a stable fashion. However, there is an inherent trade-off between stability and
performance, and it is a challenging problem to design controllers that meet an
appropriate balance. Most of the current design tools are based on passivity the-
ory, which guarantees stability but does not provide means to achieve a systematic
stability/performance trade-off. Moreover, the dynamics of both environment and
operator are inherently time-varying, which aspect is often overlooked. Luckily,
in many applications such as minimally invasive surgery (MIS), needle insertion,
suturing, etc., the environment properties vary in a bounded set, e.g. the stiffness
of tissue inside a patient under surgery. Therefore, the work in this thesis exploits
the knowledge on the bounds of variation in both environment and operator for
the purpose of control design.

This thesis adopts a model-based robust control design approach. As a first
step, we model the teleoperation system, including an appropriate description of
its uncertain dynamics. We consider environments in which the stiffness is the
dominant phenomenon, e.g. in stiffness palpation tasks present in surgery. For the
human operator, we have constructed a parametric model based on identification
experiments, in which the operator stiffness appeared as the dominant varying
parameter. Both the environment stiffness and the operator stiffness are treated
as parametric uncertainties, which are considered to be bounded and time-varying
to account for realistic behaviour. Subsequently, controller synthesis is done via
robust control techniques based on Linear Matrix Inequalities (LMI). The opera-
tor/environment uncertainty is described via a specific class of Integral Quadratic
Constraints (IQCs), which allow to represent the parametric uncertainties as ar-
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bitrarily fast time-varying.

Based on the above approach, we propose and validate different controller de-
signs. In our first design a single controller for the considered range of stiffness
variation is designed, for which simulations and experiments are performed with a
one degree-of-freedom (1-DoF) academic bilateral teleoperation setup. The results
show that the closed loop system presents robust performance for the bounded set
of uncertainty for which it was designed, including sudden changes in the envi-
ronment stiffness. The result from experiments matches the theoretical stability
result, which validates the assumptions made during modelling and control syn-
thesis. Next, we consider an extended the range of stiffness variation to account
for hard contacts, e.g. in contact with bones present in surgery. In such case, one
controller might not be sufficient to achieve a desired performance. Therefore, in
a second design, to improve performance we propose a multi-controller structure,
in which we design multiple robust controllers for different regions of environment
stiffness, which controllers are scheduled on the basis of an estimate of the envi-
ronment stiffness. Moreover, all the controllers are designed to share a common
lyapunov function to guarantee smooth switching between them. This approach is
simulated and experimentally validated in the 1-DoF setup. The results show that
a multi-controller structure can provide an improved performance for the same set
of uncertainties, compared with a single controller structure. In a third design,
the requirement of a common lyapunov function in the multi-controller structure is
relaxed via dwell time conditions during the controller synthesis for the purpose of
obtaining an improved performance, which is validated in simulations of an 1-DoF
setup. In a fourth design, we relax completely the requirement of a common lya-
punov function in the multi-controller structure, designing multiple performance-
optimized controllers independently and switching between them using an adapted
version of the bumpless transfer technique. Simulations and experiments in the
1-DoF setup validate the designed multicontroller controller architecture. Finally,
the proposed model-based robust control methodology is implemented on a real-life
surgical robot named Sofie, which has non-ideal properties compared to academic
setups, for instance the slave device is non-backdrivable, it is heavy and has high
levels of friction, moreover, the master device has structural resonances and does
not have force sensor. The experimental results show that the proposed methods
can be also successfully applied to such type of teleoperators.
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Chapter 1

Introduction

IN this chapter we introduce bilateral teleoperation systems. An overview
of the current literature on control design for teleoperation systems is

given in order to point out the unsolved challenges. Finally, the proposed
methods and the contributions of this thesis are discussed.

1.1 Bilateral teleoperation

1.1.1 Teleoperation systems and force feedback

The word teleoperation means “operation at a distance”, thus, a teleoperation sys-
tem allows the human to interact with environments that for instance: are located
remotely, or environments are not of easy access, or that can be hazardous for the
human health. Examples of applications are illustrated in Fig. 1.1. For instance,
a mobile robot can be driven from a distance to explore disaster areas. In this
scenario the robot might be equipped with special sensors to detect movement
and heat to spot potential victims. Another application is a nuclear fusion reac-
tor in which the level of radioactivity is dangerous for the operators. Therefore
it is desirable to do the maintenance of the reactor using a robotic arm which is
placed inside the reactor. The operator will be in another room sending commands
through a mechanical device and inspecting the process via cameras. Force feed-
back can be provided to the operator, which can help him to move objects faster.
In other types of applications, such as in robotically assisted minimally invasive
surgery, a robotic arm or needle can be inserted in the human body through small
incisions to reach internal organs. The surgeon can be situated right next to the
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Figure 1.1: Different applications of teleoperation systems. From top-left to
bottom-right: Maintenance in the Joint European Torus (JET) nuclear fusion
reactor (picture by EFDA, visit www.efda.org); exploration of disaster areas using
the RoboCup Rescue robot Hector from Darmstadt at 2010 German Open (pic-
ture by Mike1024/Wikimedia Commons); robotic assisted surgery with the SOFIE
robot by van den Bedem et al. (2010)(picture by Bart van Overbeeke/Bart van
Overbeeke Fotografie); robotic assisted eye surgery (Courtesy of PRECEYES ©).

patient interacting with a master device to drive the movements of the surgical
instrument. It is desirable that, via the master device, the teleoperation system
provides to the operator the kinaesthetic feeling of a stiffness similar to that of
the environment, helping the surgeon to differentiate different types of tissues by
means of palpation.

The mentioned applications have one thing in common: the fact that the oper-
ator is sending commands that are executed by a robotic device, for instance to
perform a specific movement. However, only in some of the mentioned applica-
tions, force-feedback is provided from the environment to the operator. When such
force feedback is present, the system is said to be bilaterally teleoperated. The type
of force feedback provided to the operator can vary significantly from one applica-
tion to the other. For instance, in the reactor maintenance case, the environment
consists mainly of rigid objects which have to be moved to a desired position. One
can provide haptic information to the operator about when there is contact with
an object. This might already help him/her to improve the task performance.
On the other hand, in the robotic surgery application, it would be desirable for
the surgeon to distinguish the different types of tissues, such that he/she can feel
through the master device a similar stiffness as that of the environment.
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Figure 1.2: Early bilateral teleoperators: first mechanical master-slave manipula-
tors designed by John Payne (left) and Goertz (center), first electric master-slave
manipulator designed by Goertz and Thomposon (right). Images are taken from
Cyberneticzoo (2010)

Force-feedback can improve the task performance significantly, however, when
forces are reflected to the operator they cause a reaction on his/her movements.
These are passed again to the slave device, which again might result in a differ-
ent force reflected to the operator. Such loops may cause instability during task
execution, and it is more likely to happen if communication delays between the
master and the slave sides are present. Hence, determining what kind of feedback
is needed for a certain application or task is not a trivial problem, let alone its
safe implementation. In fact, during the last six decades, researchers have been
working in studying bilateral teleoperation systems. Specifically on the interac-
tions between the operator and the environment, and how to couple them in an
efficient way by means of a master-slave system.

The first bilateral teleoperation systems appeared in the late 1940s and the early
1950s. They were used mainly for the remote handling of hazardous materials. Ex-
ample of these teleoperators are the systems designed by Payne (1949)(Patent filed
in 1948) and by Goertz (1953)(Patent filed in 1949), see Fig. 1.2. In these devices
the master and slave were mechanically coupled. Later, the first electrically con-
trolled teleoperator was presented in Goertz and Thompson (1954), see Fig. 1.2.
After that and until the late 1980s, there was an increased interest in telemanipula-
tion, which encompassed with the increasing computational power and popularity
of virtual reality. In that period researchers also started studying the effects of
delays in teleoperation systems, and developed the initial control strategies for bi-
lateral teleoperation based on supervisory control. It was then until the mid 1980s,
when control theory started to develop, that more systematic approaches towards
analysis and control design started to appear. Especially network theory came into
play in teleoperation (see, e.g., Raju et al. (1989)), opening the path to techniques
like passivity, scattering theory and wave variables, see, e.g., Niemeyer and Slotine
(1991); Anderson and Spong (1989). Those theories were in particular motivated
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to find solutions due to instability caused by delays in bilateral teleoperation sys-
tems. Since then, variations of those theories have been and are still applied in
analysis and control design. Also, in the last two decades, techniques based on
robust control and H∞ have been applied widely to the teleoperation problem.
Since then only few deep changes on the control methodologies have been pro-
posed but rather variations on them, with the exception of some techniques such
as model mediated control, in which a model of the environment is obtained online
and reflected to the operator (see, e.g., Mitra and Niemeyer (2008)), and shared
control, in which the force feedback design is centered around the task itself (see,
e.g., Abbink et al. (2012)). The reader is referred to the surveys in Hokayem and
Spong (2006); Passenberg et al. (2010) for a more detailed overview on the different
developments in the history of bilateral teleoperation.

After this brief overview of bilateral teleoperation systems, in the next section
we will focus on the most relevant developments on modelling and control design
concerning the research presented in this thesis.

1.1.2 A definition of stability for bilateral teleoperation systems

Before addressing the control design problem, we would like to discuss in more
depth what stability means for teleoperation systems. To illustrate the concept
of stability that is proposed here, consider a very simple teleoperation system: a
person cutting a piece from a cake with a knife, as illustrated in the right part of
Fig. 1.3. In this case, the knife is considered as the teleoperator, i.e. the instrument
or tool that serves as a link between the operator and the environment. Moreover,
the hand represents the operator and the cake represents the environment. The
human hand, the environment, the knife, the interaction between the hand and

Figure 1.3: A simple teleoperation system: a person that cuts a piece of cake.
The hand represents the operator, the knife the teleoperator, and the cake the
environment.
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the knife and the interaction between the knife and the cake constitute a bilateral
teleoperation system.

Firstly, consider the knife, i.e. the teleoperator, as shown in the left part of Fig. 1.3.
This system is fully defined in the sense that its motion dynamics can be repre-
sented by

ẋ = f(x, t), (1.1)

in which x represents the state of the motion dynamics of the knife, f(x, t) is a
possibly nonlinear function and t is the time variable. Intuitively, one can say that
a knife lying on a table (not shown in Fig. 1.3) is a “stable” system. More formally,
the motion dynamics of the knife define an asymptotically stable system in the
sense that small perturbations result in movements that will vanish over time and
a new equilibrium is reached. At this point we have to consider the interaction
between the knife and the table due to gravity as part of the teleoperator as
well. For instance, the friction between the table and the knife makes the knife
movements to reach equilibrium.

Next, consider the case when the knife is dropped and it buries into the cake. This
situation is shown in the center part of Fig. 1.3. There is a difference with the
previous case: the resulting system is not fully defined, i.e. it cannot be represented
with dynamics of the form in Eq. (1.1) . This because we do not know exactly
the consistency of the cake, i.e. its dynamics. However, one can use a system
with uncertainty ∆e to describe the set of dynamics of different cakes. Therefore,
the knife-cake system can be considered as an uncertain system, the dynamics of
which can be described by the following system

ẋ = g(x,∆e, t),

in which x now also includes the state of the motion dynamics of the cake and
g(x,∆e, t) is a possibly nonlinear function. Again, one can say intuitively that
the knife-cake system is “stable” in the sense that the knife will be at rest at a
certain location in the cake. In a more formal framework, the stability of the
knife-cake system has the following meaning: the knife can enter the cake (which
has uncertain dynamics) in different ways (that is, different initial conditions), and
the knife’s movement will end up in an equilibrium point depending on the cake’s
consistency, described by the uncertainty ∆e. If for all predefined consistency
levels ∆e ∈ ∆e the knife reaches an equilibrium point, we call the knife-cake
system robustly stable with respect to the uncertainty level ∆e.

Finally, consider the situation in which a person grabs the knife and cuts the cake
as shown in the right part of Fig. 1.3. Additional to the uncertainty ∆e of the
cake, the hand also exhibits uncertain dynamics. For instance, the operator can
grab the knife with a light or a tight grip. In both of these cases the hand will
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have different dynamics. Thus, the hand behavior while interacting with the knife
could be described with a system with dynamic uncertainty ∆h. Moreover, the
hand exerts an input u to the system. This input allows to command the knife’s
movements. Such type of system could be described by the following equation

ẋ = h(x, u,∆h,∆e, t), (1.2)

which is an “open” system because of the presence of the “free will” of the human
to exert a certain force with his/her hand. h(x, u,∆h,∆e, t) is a possibly nonlinear
function.Once again, one can assume that the hand-knife-cake system is “stable”
in the sense that we can perform the desired task of cutting a piece from the
cake in a safe way. More formally, there is a main difference with the other two
cases: during the execution of the task, there will not always be an equilibrium
point of the knife’s movements. Rather, we can say that the movements of the
knife remain bounded, provided that the input u exerted by the hand remains
also bounded, under the presence of the uncertainties ∆h and ∆e. Thus, it is said
that this system presents robust bounded input to bounded state stability. This
concept is also known as Input to State Stability (ISS) and it is illustrated in detail
in the work of Sontag (2008). Precisely, the ISS concept of robust stability will
be adopted for bilateral teleoperation systems in the rest of this thesis, and it is
hereafter simply referred to as the stability of the bilateral teleoperation system.

Up to this point, it is assumed that the system with uncertainty in Eq. (1.2)
covers exactly the uncertain dynamics of the true bilateral teleoperation system.
In practice, the mathematical function h(x, u,∆h,∆e, t) and the uncertainties ∆h

and ∆e are approximate models. Thus, hereafter we assume that Eq. (1.2) and its
components represent a model, which not necessarily covers exactly the uncertain
dynamics of the real system. Hence, the stability analysis of a bilateral teleoper-
ation system depends on the type of uncertainties ∆h ∈ ∆h and ∆e ∈ ∆e that
are used in the model. Moreover, those uncertainties can be defined to describe
specific dynamics present in a certain application of the bilateral teleoperation
system.

We also illustrate the concept of conservatism in the stability analysis of bilateral
teleoperation systems. Define two pairs of set of uncertainties of the operator and
the environment dynamics: (∆

′

h,∆
′

e) and (∆
′′

h,∆
′′

e ). Hence, if ∆
′′

h ⊂∆
′

h and/or

∆
′′

e ⊂ ∆
′

e, then achieving robust stability of the system in Eq. (1.2) could be
easier for the pair (∆

′′

h,∆
′′

e ) than for the pair (∆
′

h,∆
′

e). Therefore, the latter set
is said to introduce conservatism in the robust stability test, assuming that both
the considered sets cover at least the set of uncertainties present in the real system
for a specific application.

To illustrate this concept, imagine that we replace the common knife by an electric
knife. Most probably, one cannot say that the electric knife itself is “stable” when it
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is ‘on’ and it has no human control. For instance, throwing the electrical knife into
the cake will have very undesired results in the sense that the vibrations could make
the knife move uncontrollably inside the cake. In the previous intuitive stability
test, ∆

′

h can be considered to include the case of the electric knife inserted in the
cake without an operator’s control, in which case the stability test on the basis
of the uncertain model is likely to be conservative. This because the test covers
cases that are not present in the application, which is cutting a piece from the
cake. However, we can define another set of uncertainties ∆

′′

h to cover only the
case of the operator holding the electric knife while it is ‘on’. In such a case, we
can reasonably say that the system is stable.

Finally, one can see the electric knife has problematic dynamics not present in a
purely mechanical knife. Therefore, the human operator needs to provide control
and stabilization to now maintain the (robust) stability of this teleoperation sys-
tem. Under a proper human control action, one may improve the performance
of the system, which in this case means cutting the cake in a faster way and
with less required effort. Thus, in such case we say that robust stability has been
“traded-off” to achieve a better performance.

Now that the concept of stability of bilateral teleoperation systems is defined, we
are ready to move forward to consider the bilateral control design problem.

1.1.3 Bilateral control design

Consider a realistic application of teleoperation systems, for instance in robotically
assisted Minimally Invasive Surgery (MIS). A block diagram representation of such
an application with the different components of the bilateral teleoperation system
is depicted in Fig. 1.4.

The ultimate goal of the bilateral control design is to develop a control strategy or
algorithm that serves as a link between the operator/master and the slave/envi-
ronment side, generating the necessary actuation signals for the master and slave
devices, such that a desired task by the operator is accomplished satisfactorily un-
der certain performance criteria. At this point, we make the remark that it is not
clear which performance criterion for controller design translates directly into bet-
ter task performance for every application. The difficulty to quantify performance
is caused by the fact that different tasks can have very different task performance
criteria. This can be for instance, time completion, less possible stress for the
operator, etc., and thus a single controller design criterion might not be the most
efficient for all tasks. However, for control design purposes, the tendency has been
on defining standard criteria. Among the most popular criteria proposed in the
literature are:
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� transparency (see Lawrence (1993a)). It is based on the principle that perfect
transparency is obtained by a perfect match between forces and positions
between the operator and environment sides.

� z-width (see Colgate and Brown (1994)). It evaluates the range of impedances
that can be reflected to the operator. The impedances reflected to the op-
erator in two extreme cases are calculated: when no environment is present
and when the environment is infinitely rigid. The difference between those
impedances is the z-width.

� fidelity (see Cavusoglu et al. (2002)). It represents how changes in the en-
vironment are reflected to the human operator. Thus, fidelity focuses more
on how the operator perceives changes in the environment rather than the
environment impedance itself.

Transparency is the most intuitive in the sense that perfect force and position
tracking would give an operator a perfect kinaesthetic feeling as if he/she is in-
teracting directly with the environment. Reaching perfect transparency is a very
difficult task because there is an inherent trade-off between transparency and sta-
bility (see Lawrence (1993a)). Hence, when transparency is taken as performance
criterion, the control design becomes a challenging task. Nevertheless, it is desir-
able to achieve certain force and position tracking performance that will give the
operator at least a very similar perception of the real environment. For the rest
of this thesis, when we refer to the performance of the teleoperation system, we
refer to the performance with respect to force and position tracking between the
master/operator and slave/environment sides.

Before addressing in more detail the pros and cons of the control design pre-

Figure 1.4: Block diagram representation of a bilateral teleoperation system for
an application in Minimmaly Invasive Surgery. The master device shown is an
Omega 3 device by dimension (2010). The slave device shown is the surgery robot
SOFIE by van den Bedem et al. (2010)
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sented in the literature, notice that in our block diagram representation in Fig. 1.4
time delays are not included. Delays will always degrade the achievable perfor-
mance of a system. In fact, already without delays obtaining high performance
and stability for a bilateral teleoperation system is a challenging problem. In this
thesis the research focus is on providing solutions towards closing the gap between
performance and stability of bilateral teleoperation systems. Hence, time delays
are deliberately not covered. Nevertheless, the reader can refer to Polat (2011),
in which a similar framework as the one utilized in this thesis, is used to include
time delays in the control design.

1.1.4 Pros and cons of current bilateral control design methods

Passivity approaches

Passivity based methods are still widely used. A system is said to be passive if it
does not generate energy. In particular, passive systems are asymptotically sta-
ble. Moreover, if connected with other passive systems, the resulting system will
also not generate energy and thus will be passive as well. This modular property
of passive systems has been exploited to generate the stability of teleoperation
systems. Indeed, if the operator and the environment are modelled as passive
systems, the interconnection with a passive teleoperator will result in a passive
teleoperation system. At this point there are two aspects which we would like
to discuss. Firstly, in the sense of the stability concept adopted here, a system
can temporarily generate energy. In itself, this does not mean that the system
becomes unstable, provided that the states of the system remain bounded for
bounded inputs. Thus, passivity is a property that can be used as a method to
obtain stability of the system even if energy is supplied to the system. Secondly,
there is an ongoing discussion on the passivity assumption of the operator, and
recent works suggest that the operator cannot be modelled as a passive system
for all types of tasks (see, e.g., Polushin et al. (2012); Dyck et al. (2013); Polat
(2014)). The operator can show passive behaviour while performing specific tasks,
but shows non-passive behavior in performing others. For instance, the operator
can choose to inject energy to the master device in order to perform his/her desired
movements. Moreover, even if the operator would only show passive behaviour,
modelling him/her as a passive system may add excessive conservatism. The set
of dynamics covered by a passive system is much larger than the set of dynamics
that an operator can show. For instance, an operator can not show the stiffness
of a piece of metal, which can be considered as a passive system. Nevertheless,
passivity based methods can guarantee stability, but it does not take performance
explicitly into account. Therefore, it does not provide the obvious mean to achieve
a systematic stability/performance trade-off. However, passivity can still be com-
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bined with control design guidelines for performance. For instance, in Willaert
et al. (2014) the authors have proposed methodologies that do take both perfor-
mance and passivity requirements into account. They give guidelines to achieve
transparency and passivity, at least in steady state, however the technique is lim-
ited to master and slave devices with mass-damper-spring dynamics with identical
mechanical properties in both devices. They overcome this restriction by using
the controller to also add dynamics on one of the devices, which will limit its
application if one of the devices has high damping or high mass. Moreover, in
real-life applications master and slave devices can have very different mechanical
properties, which makes the technique limited in practice.

One important property of the operator and the environment, which is often
overlooked, is that they are inherently time-varying. However, some of the con-
trol design tools based on passivity are valid only for Linear Time Invariant (LTI)
passive systems, meaning that the operator and/or environment are additionally
assumed to be LTI. In fact, in many applications such as minimally invasive surgery
(MIS), needle insertion, suturing etc., the environment varies over time in a certain
bounded set, say in terms of varying stiffness properties. Moreover, many studies
on the human arm dynamics have already shown that the human arm dynam-
ics exhibits behaviour that can be covered by a model describing a bounded set
of dynamics, see, e.g., Tee et al. (2004); Speich et al. (2005); Fu and Cavusoglu
(2012). Therefore, the bilateral system interacts with a bounded environment and
a bounded operator dynamics and the information of those bounds have not yet
been fully exploited in the control design for teleoperation systems.

Researchers have proposed different methodologies to reduce the conservatism
in stability analysis and control design for bilateral teleoperation systems. Current
methods based on the passivity approach do not allow to incorporate uncertainty
bounds, other than passive ones, for environment and operator in order to assess
the teleoperated system stability. This leads to a conservative methodology for
bilateral control design. Indeed, previous works have presented absolute stability
tests for a bounded uncertain environment based on passivity consideration, see,
e.g., Willaert et al. (2009), Haddadi and Hashtrudi-Zaad (2010). In these tests
conservatism is introduced via the operator model, which is taken to be passive.
Additionally, the applicability of such stability criteria is limited since LTI envi-
ronment uncertainties are assumed, which do not match the time-varying nature
of the environment and operator dynamics.

Passivity in time

Some studies handle the passivity requirement in time-domain, see, e.g., Han-
naford (2002), Ryu et al. (2004) and Franken et al. (2009). These works do take
into account the time-varying nature of the bilateral teleoperation system. In those
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studies, the main method consists of calculating the energy flow of the system to
detect when there is an energy build-up, and then apply the necessary forces to
ensure passivity. However, temporal generation of energy does not directly mean
instability of the system. According to the authors in Franken et al. (2009), there
is a separation in the control design for performance and stability. Nevertheless,
the underlying controller could show active behaviour in order to achieve perfor-
mance. Thus, the forces that would need to be applied to ensure passivity will
have an unknown effect on the performance. Moreover, in order to make a correct
computation of the energy balance of the system, accurate models of friction forces
are needed, which in many real-life applications can be very difficult to obtain.

Robust control approaches

Other researchers have followed a different methodology based on robust control.
For instance, Hu et al. (1995); Namerikawa et al. (2005), and Kim and Çavusoglu
(2007), have addressed the robust performance control design using a structured
singular value based approach. The environment/operator dynamics and uncer-
tainties are considered as LTI systems, which approach will still not capture the
time-variations in a real physical setup. In Vander Poorten (2007), a scaled H∞
norm method with constant scalings is utilized to handle the time-variations. How-
ever, the authors already state themselves that “the fact that the usage of con-
stant scaled H∞ guarantees robust interaction with any possible nonlinear and
time-varying system, might introduce a certain amount of conservatism”. Addi-
tionally, virtual shunt dynamics are considered in order to obtain some bound on
the maximum operator impedance. However, bounds on the environment are not
exploited, which can limit the achievable performance due to the large size of the
uncertainty set. Alternatively, in Khan et al. (2009); Hace et al. (2011), sliding
mode control is used to guarantee robustness, however, explicit information about
the bounded environment is not exploited and the performance is prone to typical
artifacts such as chattering behavior which degrades the operator’s feeling of the
environment.

Approaches with adaptation to environment stiffness

Next, considering more realistic situations, there might be cases in which stiff en-
vironments can be present. For instance, when performing an operation in MIS,
there might be contact with bones, or it can be a collision between instruments.
Thus, it is desirable to obtain high performance and stability in those cases as well.
There is no guarantee that a single LTI controller exists that ensures both perfor-
mance and stability for a large range of time-varying environment stiffness values.
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To cover a large range of environment stiffness values, one can add flexibility in the
control design, for instance by means of estimating the actual environment stiff-
ness and use such estimate to design a controller that adapts accordingly. This
idea is not new and some works, e.g. by Hashtrudi-Zaad and Salcudean (1996);
Love and Book (2004); Willaert et al. (2010); Cho et al. (2013), design controllers
that depend on the estimate of the environment stiffness. However, either they do
not guarantee robust performance, or the achieved range of operation is limited to
low values of environment stiffness. Moreover, all of these works rely on accurate,
unbiased, low noise and/or fast convergence of the estimated environment stiffness,
requirements which in practice are difficult to meet simultaneously. Therefore, it
is desirable that the limited performance of environment estimators is taken into
account during controller design. One approach that can be promising in pro-
viding adaptation to the environment and does not rely on accurate estimates of
the environment, is the use of switching control. For instance, multiple model
adaptive control has been used in teleoperation in Shahdi and Sirouspour (2005).
The main underlying idea is to use different controllers under different kind of
environment stiffness, i.e. one controller for soft environments and another for
stiff environments. The main issue in the implementation of the work presented
in Shahdi and Sirouspour (2005) is that at the moment of switching they obtain
non-smooth responses that can compromise the stability of the system. Moreover,
in the controller design, uncertainty in the operator is not taken into account.

Applicability in real-life systems

Next, considering more practical aspects, most of the control approaches for bi-
lateral teleoperation have been tested either only on academic setups, or in tele-
operators with low masses and/or low friction. In practice, the force feedback
implementation in teleoperators can be very challenging. The main reason is that
the master and slave devices must meet specifications on, for instance, dimen-
sions, degrees of freedom (DoFs), resistance and costs among others. This results
in a number of mechanical limitations, e.g. high friction levels, heavy devices,
structural resonances and lack of force sensors, limitations that in general are not
present in academic setups that are commonly used in the literature to test bilat-
eral controllers. Therefore, commercially available surgical systems do not have
force feedback, e.g. the Da Vinci system (Guthart and Salisbury Jr (2000)), for
which achieving force feedback is difficult due to the high masses involved (Shi-
machi et al. (2008)). It is typical that these type of systems have a slave device
with large mass, and a master device with low mass and without force sensors.
Only few methods have been implemented and tested in such type of devices due
to the challenges involved (see, e.g., Beelen et al. (2013)). Thus, a systematic and
practically feasible methodology is needed.
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This short literature survey covered the main control methodologies of interest
based on linear techniques, because the methods that will be presented here are
also based on linear techniques. However, we would like to mention that non-linear
techniques have similar issues as the linear techniques in what concerns mainly to
operator modelling. Most of the non-linear control techniques are based on pas-
sivity, thus assuming passive operators and environments. Moreover, they focus
mainly on the stability of the system, see, e.g., Nuño et al. (2011). Some authors
have extended control methodologies to include also non-passive behaviour, see,
e.g., Polushin et al. (2012). Thus, due to the large class of dynamics covered,
these techniques based on passivity deliver results that can add excessive con-
servatism. Therefore, most of the motivation for the need of new modelling and
control approaches also holds for the non-linear case.

As a final remark, we would like to mention that the survey hereby provided, is by
far not complete, and many other areas of bilateral teleoperation have been left
out in order to focus on the problem that is treated here. For instance, there are a
large volume of active research focused on delayed teleoperation, on teleoperation
via the network, on multi-user teleoperation, etc.

1.2 Problem statement and challenges

After we reviewed the main control methodologies proposed in the literature, one
can conclude that there is still a number of challenges that demand research atten-
tion. Therefore, an alternative approach towards bilateral control design is needed.
In particular, there is a need to develop an approach that:

� takes explicitly into account the time-varying nature of operator and envi-
ronment dynamics. A better characterization of those dynamics will help to
guarantee that experimental results match better with the theory, improving
our understanding of bilateral teleoperation systems,

� allows for including information on the bounds of model parameters of the
operator and environment. This will narrow the set of dynamics for which
the teleoperation system needs to have robust performance, thus less conser-
vative results could be obtained,

� provides means to address performance and stability systematically. This will
allow to specify a-priori the desired performance and stability properties of
the teleoperation system and then design a controller that aims to achieve
both simultaneously,

� is suitable for master and slave devices with structural resonances and dif-
ferent mechanical properties. Thus the technique can be applied in real-life
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applications in which the master and slave devices are designed under a num-
ber of specifications that results in limitations in their mechanical properties.

Moreover, in order to improve the performance in bilateral teleperation systems,
it is desirable to have a control structure that additionally:

� provides adaptation to the environment dynamics when properly dealt with.
This allows to increase the performance of the system,

� takes into account that environment estimators have limitations in accuracy
and/or estimation noise and/or convergence speed. There is an inherent
trade-off between high accuracy, low noise and fast convergence in envi-
ronment estimators. Thus, the controller should be designed to take this
trade-off into account.

1.3 Research approach

In order to provide a solution for the challenges previously mentioned, we adopt a
model-based robust control design approach. We will use a parametric model of the
teleoperation system that captures the bounded dynamics present during normal
operation. To this end, for the human operator, we derive a parametric model
based on identification experiments, thus characterizing a bounded set of dynamics
inspired by the mechanical properties of the operator’s arm. The environment can
be modelled according to the application of the bilateral teleoperation system. For
instance, we consider environments in which stiffness is the dominant phenomenon,
e.g. in stiffness palpation tasks present in surgery. In that case, the environment
stiffness is considered a parameter of the environment model. Subsequently, the
parameters of both the environment and the operator models can be treated as
parametric uncertainties. To account for realistic behaviour, those parametric
uncertainties are considered to be bounded and time-varying. On the other hand,
models for the master and slave devices can be identified using existing system
identification techniques. Hence, the models of the components of the bilateral
teleoperation system can then be incorporated into a model-based control design
framework as depicted in Fig. 1.5, in which the uncertainty parameters can be
isolated in a separate block ∆.

Closed loop system

In the representation of Fig. 1.5 we distinguish the following vector valued signals:

� q and p: define the signals through which model uncertainty is represented.
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Figure 1.5: Representation of a generalized plant model for an application in
Minimmaly Invasive Surgery

� y: contains the measured signals. For instance, position and force signals.

� w: defines all disturbances and noises that influence the system’s perfor-
mance. For instance, w contains sensor noise signals. We also include in
w the signals representing the active forces from the environment and the
operator that act on the system. These signals perturb the position and the
force tracking of the system.

� u: defines the actuation signals of the system such as the actuation signals
of the master and the slave devices.

� z: defines the performance signals, e.g. position and force tracking errors.

Uncertainty specification

We aim to achieve robust stability of the system against the operator and the
environment model uncertainties. We will use a specific class of Integral Quadratic
Constraints (IQCs) (see Megretski and Rantzer (1997)) to model uncertainties
∆ ∈ ∆. They allow to easily incorporate bounds and time-varying properties on
the uncertainty for control design. To this end, the class of dynamics ∆ of the
uncertainty block ∆ can be represented by the IQC:

∫ T0

0

(
∆(δ)q(t)
q(t)

)T
P

(
∆(δ)q(t)
q(t)

)
dt ≥ 0 (1.3)
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Specifically, let P = PT be a symmetric matrix of dimension [dim(p) + dim(q)]×
[dim(p) + dim(q)] and suppose that p(t) = ∆(δ)q(t) in Fig. 1.5 where ∆ is an
operator ∆ : L2 → ∆L2 that has the property that Eq. (1.3) holds for all q ∈
L2[0, T0], T0 ∈ R+.

The matrix P is a so called multiplier. Eq. (1.3) provides a generic way to represent
uncertainties. However, by itself it does not provide a means to find a specific class
of matrices P that describes specific properties of the uncertainty ∆. Therefore, in
order to use Eq. (1.3), P needs to be classified or specified. There exists already a
number of multipliers that describe certain classes of uncertainties. To give some
common examples, let us assume LTI uncertainties ∆. Then Eq. (1.3) is equivalent
to: ∫ ∞

0

(
∆(iω)
I

)∗
P

(
∆(iω)
I

)
dω ≥ 0 (1.4)

Next, consider for instance the following multiplier

P =

(
0 I
I 0

)
.

Then we have that

(
∆(iω)
I

)∗(
0 I
I 0

)(
∆(iω)
I

)
� 0 ∀ω ∈ R

∆(iω)∗ + ∆(iω) � 0 ∀ω ∈ R

which is equivalent to the positive realness of the uncertain system ∆, i.e. same
property as in passivity. In turn, this means that the uncertainty is modeled as a
passive LTI system. Consider also

P =

(
−I 0
0 I

)
.

With such a multiplier we have that (1.4) is equivalent to:

∆(iω)∗∆(iω) � I ∀ω ∈ R

which means bounded gain of the uncertain system, which can be used in combi-
nation with the small gain theorem in a robust control framework. The multiplier
P can describe mathematical properties of the uncertainties ∆. In our particular
case, we focus on a certain class of frequency independent multipliers that allow
to characterize arbitrarily fast time-varying parametric uncertainties. This type
of characterization accounts for sudden changes of the environment and of the
operator dynamics.
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To illustrate how to find a proper matrix P that describes parametric uncertainties,
consider the example in which we have a vector δ containing parametric uncertain-
ties such that they are contained in a certain set δ. To not introduce conservatism
in the uncertainty description via the IQC (1.3), ideally we need to find matrices P
such that (1.3) holds only for δ ∈ δ. In practice, this can not always be achieved,
thus approximations are used. For the case of bounded parametric uncertainties,
we use the following procedure:

Consider the case when each of the Np uncertain parameters δi is time-varying
and bounded in the sense that δi : R+ → [δi, δi], for i = 1, ..., Np. Then, the

class δ =
∏Np

i=1[δi, δi] is the uncertainty ‘cube’ in RNp which can actually be
written as the convex hull of M = 2Np corner points δ1, ..., δM ∈ RNp . That is,
δ = co{δ1, ..., δj , ..., δM}. For instance, if Np = 2 we will have that δ1 = col(δ1, δ2),
δ2 = col(δ1, δ̄2), δ3 = col(δ̄1, δ2) and δ4 = col(δ̄1, δ̄2). Next, we assume that the
uncertain parameters δi of the system can be included in the ∆ block of Fig. 1.5
such that ∆(δ) = diag(δ1, ..., δNp).

Now, if both q and T0 are arbitrary in Eq. (1.3), it is then equivalent to:

(
∆(δ)
I

)T
P

(
∆(δ)
I

)
� 0 ∀δ ∈ δ (1.5)

One way to find a set P of symmetric matrices P that describes δ and satisfies
(1.5) is the following: because of the convexity property of δ, it suffices to force
concavity in the left hand side of (1.5) and evaluate (1.5) on the corner points
δj , j = 1, . . . ,M that generate δ. Thus, we classify P by the matrices P such that

(
∆(δj)
I

)T
P

(
∆(δj)
I

)
� 0, j = 1, ...,M. (1.6)

and (
I
0

)T
P

(
I
0

)
� 0. (1.7)

These equations are the conditions that will allow to find a proper symmetric ma-
trix P that will describe the class of bounded parametric uncertainties considered
in this thesis. For other ways to describe bounded parametric uncertainties, see,
e.g., Megretski and Rantzer (1997); Scherer and Weiland (2000); Polat (2011).

Performance specification

The system’s representation in Fig. 1.5 allows to systematically incorporate per-
formance and (robust) stability in the control design. The performance of the
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system is quantified via a quadratic performance criterion from the disturbance
signals w to the performance signals z. Specifically, let Pp = PTp be a symmet-
ric matrix of dimension [dim(w) + dim(z)] × [dim(w) + dim(z)] and consider the
uncertain controlled system of Fig. 1.5. Suppose that z is uniquely defined by w
for all possible uncertainties ∆ ∈∆. Then we will say that the controlled system
achieves robust performance (or robust performance) if (1.8) holds for all w ∈ L2

and for all ∆ ∈∆.
∫ ∞

0

(
w(t)
z(t)

)T
Pp

(
w(t)
z(t)

)
dt < 0 ∀w 6= 0, (1.8)

Hence Pp describes a specific quadratic performance criterion. For instance, one
could state that passivity can be seen as a performance criterion for a certain
system. Then, for the case that w and z are vector signals with one element,
replacing

Pp =

(
0 −I
−I 0

)

in (1.8) results in ∫ ∞

0

w(t)T z(t)dt > 0 ∀w 6= 0. (1.9)

When w(t) and z(t) are defined such that they represent effort and flow variables
respectively, (1.9) is equivalent to require that the total energy flow of the system
trough the ports defined by w(t) and z(t) is positive, i.e. the same property as in
passivity (see Llewellyn (1952)).

Another example is the L2 gain of the mapping from disturbance signals to the
performance signals. Indeed, if we set

Pp =

(
−γ2I 0

0 I

)

then (1.8) becomes ||z||22 < γ2||w||22 for all w ∈ L2. This performance criterion is
equivalent to saying that

sup
w

||z||2
||w||2

< γ, (1.10)

which for an LTI system it is equivalent to a bounded H∞. In Eq. (1.10), γ can be
interpreted as a worst-case gain from the disturbances to the performance signals.
Therefore, instantaneous responses that can be felt by the operator have a direct
effect on the performance criterion. This makes the L2 gain a suitable performance
criterion for teleoperation systems and it will be used as the performance criterion
in this thesis.

One can see that other performance criteria can be also incorporated in the design
by defining properly the matrix Pp, see, e.g., Scherer and Weiland (2000). Such
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flexibility in defining performance is one of the advantages of the framework utilized
in this thesis.

Robust stability and robust performance

The robust stability of the system is achieved if we obtain Input to State Stability
(ISS) of the bilateral teleoperation system, as previously mentioned. The ISS
concept is based on the principle that for any initial condition x0 of the state
vector x, and any bounded input u, there should exist some functions β ∈ KL and
α ∈ K∞ such that

|x(t)| ∈ β(|x0|, t) + α(||u||∞) (1.11)

for all solutions x(t) of the system and for all t > 0. The classes KL and K∞
are basically unbounded strictly increasing functions, the reader is referred to the
work of Sontag (2008) for details. ISS is closely related to the concept of stability
of dissipative dynamical systems. Here we present a brief conceptual description
on how such theory can be used to incorporate robust performance and stability.
Let X be the state space of the state vector x of the system in Fig. 1.5. Let W and
Z be the disturbance vector space and the performance vector space respectively.
Let s : W × Z → R be a mapping (referred as the supply function) acting on
all pairs (w, z) of the system. Then, the system with supply function s is said to
be robustly dissipative against time-varying uncertainties ∆ ∈ ∆ if there exists a
function V : X ×∆→ R such that

V (x(t1),∆(t1)) ≤ V (x(t0),∆(t0)) +

∫ t1

t0

s(w(t), z(t))dt (1.12)

for all t0 ≤ t1 and all signals (x,w, z,∆) that satisfy the system’s dynamics and
all ∆ ∈ ∆. We call the function V a robust storage function. It expresses the
amount of internal energy in the system when it finds itself in the state x ∈ X
and with uncertainty ∆ ∈ ∆. As a remark, the storage function V in (1.12) is
not required to be non-negative. However, for control design purposes, later we
will restrict ourselves to quadratic storage functions which are also non-negative
in order to guarantee the system’s stability.

The concept in Eq. (1.12) can be interpreted as the requirement that a system
dissipates “energy” at a faster rate than the rate s(w, z) at which this “energy” is
being supplied to it. In practice the “energy” quantity does not need to be literally
the energy of the system. For instance, in the performance specification section,
different performance criteria were illustrated, which are directly related to the
supply function s(w, z). The quadratic performance specified by Pp describes the
supply function s. Thus, Pp will determine the corresponding type of “power”
that is used.



20 Chapter 1 Introduction

It is beyond the scope of this thesis to enter into the details of the derivation of the
corresponding theory to get from the dissipation concept to tractable equations
useful for control design. We will give a brief example on how this could be
achieved. We restrict ourselves to Lyapunov functions of the form

V (x,∆) = xTXx,

i.e. V independent of ∆, and Lyapunov functions of the form

V (x,∆) = xTX (∆)x

with X = X T and X (∆) = X (∆)T being positive definite matrices. Consider we
have a system of the form:

ẋ = A(∆)x+B(∆)w

z = Cx+Dw.

Then for t1 → t0 (1.12) is equivalent to :

∂V

∂x
ẋ ≤ s (1.13)

Considering also the supply function of the form s(w, z) = −[wz ]
T
Pp[

w
z ]. Then

(1.13) is equivalent to each of the following inequalities

2xTX (∆)(A(∆)x+B(∆)w) ≤ −
(
w
z

)T
Pp

(
w
z

)

(
x

A(∆)x+B(∆)w

)T (
0 X (∆)
X (∆) 0

)(
x

A(∆)x+B(∆)w

)
≤

−
(

w
Cx+Dw

)T
Pp

(
w

Cx+Dw

)

(
x
w

)T (
I 0

A(∆) B(∆)

)T (
0 X (∆)
X (∆) 0

)(
I 0

A(∆) B(∆)

)(
x
w

)
≤

−
(
x
w

)T (
0 I
C D

)T
Pp

(
0 I
C D

)(
x
w

)

which for arbitrary x ∈ X and w ∈W is equivalent to:

(
I 0

A(∆) B(∆)

)T (
0 X (∆)
X (∆) 0

)(
I 0

A(∆) B(∆)

)

+

(
0 I
C D

)T
Pp

(
0 I
C D

)
� 0 (1.14)
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which is already a matrix inequality. Moreover, for specific cases of the dependency
on the uncertainty ∆, the inequality (1.14) can be expressed as a linear matrix
inequality (LMI). In fact, for the trivial case that there is no dependency on the
uncertainty ∆, (1.14) is already linear with respect to X . Hence, in that case it
is said that (1.14) is an LMI. Therefore, it is possible to incorporate the perfor-
mance and uncertainty specifications (which were already introduce as tractable
mathematical conditions) in a series of linear matrix inequalities.

In fact, in the next chapters of this thesis, we will use the results from robust
control theory based on Linear Matrix Inequalities (LMIs)(see Scherer and Wei-
land (2000)). These techniques are introduced and applied to the control design
problem.

Switching Control

Finally, to include adaptation to the environment properties, we propose the use
of a multi-controller structure, in which we divide the environment dynamics in
subregions, such that one controller covers each subregion. In this way, we do not
rely on accurate estimates of the environment but only on a correct estimation of
the subregion to which the environment currently belongs to.

Then for each subregion, we will design a LTI controller which presents robust
performance. The main challenge in such a multi-controller structure is to achieve
robust stability of the overall system including the switching between its different
LTI controllers. We propose the use of three different switching techniques:

� based on the existence of a common Lyapunov function: It is known from the
switching systems theory (see Liberzon (2003)) that if different closed loop
systems have a common Lyapunov function, then arbitrary fast switching
among those closed loop systems will result in a stable system. This idea
is intuitive in the sense that the system will respect always the dissipation
inequality in (1.12).

� based on average dwell time switching : In this concept, switching among
different closed loop systems is restricted to a minimum average dwell time
τ (see Hespanha and Morse (1999)). This allows to use different Lyapunov
functions for different closed loop systems, provided that the discrepancy of
the different lyapunov functions is conditioned to a relation depending on
the average dwell time τ . In view of Eq. (1.12), in this case the times t0 and
t1 are restricted with respect to τ and the overall Lyapunov function is then
allowed to increase temporarily.
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� based on bumpless transfer : This concept was proposed by Zaccarian and
Teel (2005) in order to activate a controller in a safe way. The main idea is
to reduce the transient behavior at the moment that a certain controller is put
‘on-line’ with a plant. This is achieved by virtually putting the controller ‘on-
line’ before it is actually activated. To this end, the controller is simulated in
a virtual loop and perturbed using signals measured from the real system. In
this thesis we will adapt the bumpless transfer concept to perform switching
among different robust controllers.

1.4 Contributions

Using the research approach previously described, in this thesis we present methods
and results that lead to contributions in the following areas:

Contribution 1. A systematic modelling and control design approach for bilat-
eral teleoperation systems.
The proposed approach uses an experimentally identified parametric model for the
operator and a pre-defined parametric model of the environment. The combination
of both models lead to a Linear Fractional Representation of the bilateral teleop-
eration system. Then the parameters of the system are described explicitly as
time-varying to account for realistic behaviour. Moreover, we describe how to use
robust control synthesis techniques to design controllers with robust performance
under time-varying dynamics in the operator and environment of the teleoperated
system. We provide guidelines on how to implement successfully such type of
controllers. This type of approach leads to a consistent theory, simulations and
experiment results.

Contribution 2. A gain-scheduling multi-controller structure with switching
based on Lyapunov Function Conditions.
This controller structure allows for different LTI controllers. Each controller is
designed for a different range of environment stiffness, which leads to an improved
overall performance of the teleoperated system. This structure is particularly use-
ful when the environment stiffness varies within a wide range including soft and
stiff environments. The main challenge is how to design the controllers to achieve
a smooth switching among them.
Contribution 2.a. A gain-scheduling multi-controller structure with switching
based on the existence of a common Lyapunov Function.
The proposed method ensures smooth switching among controllers and improves
the performance of the teleoperated system in comparison when a single LTI con-
troller is used. The controller structure is also tested experimentally.
Contribution 2.b. A gain-scheduling multi-controller structure with switching
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based on dwell time conditions.
The proposed method presents stable switching among controllers under the as-
sumption that the operator drives the system such that fast switching among
controllers is avoided. Simulation showed that the overall performance can be
improved with respect to the structure in contribution 2.a.

Contribution 3. A gain-scheduling multi-controller structure with switching
based on Bumpless Transfer of Robust Controllers.
The proposed structure allows for designing controllers independently for different
regions of environment stiffness. Stable switching is achieved by means of bump-
less transfer. The structure is experimentally validated under regular operating
conditions.

Contribution 4. A controller design and implementation approach for a non-
ideal teleoperator.
We show how the model-based robust control techniques can be applied to teleop-
erators with non ideal properties, e.g. high difference in dynamics of master and
slave device, no force sensor or with structural resonances in the master device.

1.5 Outline of the thesis

This thesis is the compilation of several research works. The chapters are based
on journal or conference articles, which are either published or currently under
review. Because of this, there is partial overlap between the chapters.

Chapter 2
This chapter addresses Contribution 1. It is based on the paper:

� López Mart́ınez, C. A., Polat, İ., Molengraft, R. v. d., and Steinbuch, M.
(2014e). Robust high performance bilateral teleoperation under bounded
time-varying dynamics. IEEE Transactions on Control Systems Technology.
Accepted for journal publication

In this chapter, we propose a methodology in which we develop a parametric model
of the teleoperation system. Subsequently, we exploit robust control techniques to
design controllers that aim to achieve a predefined performance, and are robust
to bounded but arbitrarily fast-time-varying parametric uncertainties. Analysis,
simulation and experimental results shows the effectiveness of the method to trade-
off perfect transparency and stability.

Chapter 3
This chapter addresses Contribution 2.a. It is based on the paper:

� López Mart́ınez, C. A., Molengraft, R. v. d., and Steinbuch, M. (2014c).
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Switching robust control for bilateral teleoperation. Under review for journal
publication

In this chapter we propose the synthesis of a switching robust controller that allows
to design multiple robust controllers suitable for different ranges of environment
stiffness, so that an overall better performance among a wide range of environ-
ment stiffness is achieved. The controllers are scheduled using an estimate of the
environment stiffness. We present synthesis, simulation and experimental results
of the proposed approach, thus showing the effectiveness of the method to improve
the robust performance of the teleoperated system.

Chapter 4
This chapter addresses Contribution 2.b. It is based on the paper:

� López Mart́ınez, C. A., Molengraft, R. v. d., and Steinbuch, M. (2014d).
Switching robust control synthesis for teleoperation via dwell time condi-
tions. In 9th International Conference, EuroHaptics 2014, Versailles, France.
Springer. To appear online

In this chapter, we propose a method to further reduce conservatism in the achiev-
able performance of switching robust control synthesis for teleoperation systems.
In this approach multiple Lyapunov functions with a special structure are in-
troduced, linked by conditions of minimum average dwell time switching among
controllers. We show the advantage of the proposed method by means of control
synthesis and simulation for an 1-DoF teleoperation system.

Chapter 5
This chapter addresses Contributions 3. It is based on the paper:

� López Mart́ınez, C. A., Molengraft, R. v. d., and Steinbuch, M. (2014a).
High performance teleoperation by bumpless transfer of robust controllers.
In IEEE Haptics Symposium 2014, pages 209–214, Houston, TX, U.S.A

In this chapter we propose a controller scheme with multiple robust controllers in
which every controller is performance-optimized separately. The switching among
them is based on bumpless transfer and they are scheduled using an environment
stiffness estimator. Limited accuracy and noise of such estimator is also taken
into account during control design. We show the applicability of the approach by
experiments on a 1-DOF teleoperated system.

Chapter 6
This chapter addresses Contribution 4. It is based on the paper:

� López Mart́ınez, C. A., Molengraft, R. v. d., and Steinbuch, M. (2014b).
Model based robust control for bilateral teleoperation: Applied to a non-
ideal teleoperator. In preparation for journal publication

Design specifications in real-life applications of bilateral teleoperation, e.g. mini-
mally invasive surgery, can impose a series of limitations on the master and slave
devices, e.g. lack of force sensors among others, resulting in non-ideal teleoper-
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ators, making the design and implementation of a bilateral controller very chal-
lenging. In this chapter, we show how to implement model-based robust control
techniques in a surgical setup designed for robotic assisted surgery. The experi-
mental results demonstrate that using a model based robust control methodology,
high performance is achieved despite the limitations of the system.

Chapter 7
In this chapter we draw the conclusions obtained from this thesis and recommen-
dations for future works are given.
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Chapter 2

Robust Bilateral Control under
Time-Varying Dynamics

IN THIS chapter, we propose a methodology in which we develop a para-
metric model of the teleoperation system. Subsequently, we exploit ro-

bust control techniques based on Linear Matrix Inequalities to design con-
trollers that aim to achieve a predefined performance, and are robust to
bounded but arbitrarily fast-time-varying parametric uncertainties. We
present analysis, simulation and experimental results of the designed con-
troller, thus showing that the assumptions made during modeling are ap-
propriate and the effectiveness of the method to trade-off perfect trans-
parency and stability.

2.1 Introduction

Bilateral teleoperation systems allow an operator to manipulate a remote environ-
ment by means of a master and a slave device with which a feeling of tele-presence
using force feedback is obtained. The system is supposed to present high per-
formance, e.g. the operator feels as if he/she is manipulating the environment
directly, in a stable fashion. However, there is an inherent trade-off between (ro-
bust) stability and performance, see, e.g., Hannaford (1989); Lawrence (1993b),

This chapter is based on the following manuscript: López Mart́ınez, C. A., Polat, İ., Molen-
graft, R. v. d., and Steinbuch, M. (2014e). Robust high performance bilateral teleoperation under
bounded time-varying dynamics. IEEE Transactions on Control Systems Technology. Accepted
for journal publication
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and it is a challenging problem to design controllers that meet an appropriate bal-
ance, see, e.g. Hokayem and Spong (2006), Passenberg et al. (2010). Most of the
current design tools are based on passivity theory (Niemeyer and Slotine (1991)),
which guarantees stability but does not provide a means to achieve systematic
robust stability/performance trade-off. Moreover, the dynamics of the environ-
ment and the operator are inherently time-varying, which is a property that is
often overlooked, see Chapter 1 Section 1.1.4. Also, in many applications such
as minimally invasive surgery (MIS), needle insertion, suturing etc., the environ-
ment varies in a certain range, say in terms of stiffness properties, e.g., 83 N/m for
fat, up to 2483 N/m and so on (Gerovich et al. (2004)). Therefore, the bilateral
system interacts with a bounded environment and bounded operator dynamics
and the information of those bounds have not yet been fully exploited in the con-
trol design for teleoperation systems. In principle, this can lead to improve the
system’s performance. Current methods based on the passivity approach require
that the uncertain dynamics are passive for at least one of both the environment
or the operator in order to assess the teleoperated system stability. Therefore, an
alternative approach towards bilateral control design is needed, which allows us
to incorporate bounds on the uncertainty of environment and operator dynamics.
This will allow to reduce the conservatism for guaranteeing stability while meeting
the performance requirements, and at the same time, to take the time-varying
nature of teleoperation systems into account.

Researchers have proposed different methodologies to reduce the conservatism in
stability analysis and control design for bilateral teleoperation systems. Previous
works have presented absolute stability tests for a bounded environment, see, e.g.,
Willaert et al. (2009), Haddadi and Hashtrudi-Zaad (2010). Such tests are non-
conservative in terms of stability characterization based on Llewellyn’s absolute
stability criteria (Llewellyn (1952)), however the modeling still introduces con-
servatism due to the passivity assumption. Additionally, the applicability of the
stability criteria in Willaert et al. (2009) and Haddadi and Hashtrudi-Zaad (2010)
is limited since we have to assume that the uncertainties of the environment are
Linear Time Invariant (LTI), which does not match the time-varying nature of
the environment and operator dynamics. Some studies handle the passivity re-
quirement in the time-domain, see, e.g., Hannaford (2002), Ryu et al. (2004) and
Franken et al. (2009). In these studies, the authors ensure the stability of the bilat-
eral system by forcing the involved model(s) of the teleoperation system to be pas-
sive by explicitly monitoring the external behavior. The underlying controller that
is design for performance may show non-passive behavior. Thus, the forces that
are necessary to ensure passivity will have an unknown effect on the performance.
Other works such as those by Hu et al. (1995); Namerikawa et al. (2005), and Kim
and Çavusoglu (2007), have addressed the robust performance control design us-
ing a structured singular value (SSV) based approach. The environment/operator
dynamics and uncertainties are considered as LTI systems. This approach cannot
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capture the time-variations in the physical setup. In Vander Poorten (2007), a
scaled H∞ method with constant scalings is utilized to handle the time-variations.
However, the authors point out that “the fact that the usage of constant scaled
H∞ guarantees robust interaction with any possible nonlinear and time-varying
system, might introduce a certain amount of conservatism”. Additionally, virtual
shunt dynamics are considered in order to obtain some bound on the maximum
operator impedance. But again, bounds on uncertainty of the environment are not
exploited, which can limit the achievable performance due to the large size of the
uncertainty set. Alternatively, in Khan et al. (2009); Hace et al. (2011), sliding
mode control is used to guarantee robustness, however, explicit information about
the bounded environment is not exploited and the performance is prone to typical
artifacts such as chattering behavior. This degrades the operator’s feeling of the
environment.

We use a model-based robust control approach to controller design. We utilize
mass-damper-spring models for the master and slave devices. For most applica-
tions in bilateral teleoperation, such models are appropriate for describing the
environment. For the human operator, we have constructed a parametric model
based on identification experiments. Having a parametric structure for operator
and environment models, we can, then, extract the uncertain parameters to obtain
a Linear Fractional Representation (LFR) of the teleoperation system. This rep-
resentation allows to treat the uncertain parameters independently with separate
bounds with ease (cf. Vander Poorten (2007)). Moreover, stability and perfor-
mance specifications are addressed simultaneously via Linear Matrix Inequalities
(LMIs). We describe the operator/environment uncertainty via a specific class of
Integral Quadratic Constraints (IQCs) as in Megretski and Rantzer (1997). Such
IQCs allow to represent several types of uncertainty, including time-varying para-
metric uncertainty, arbitrary fast or bounded rate uncertainty among others. They
have been previously used for stability analysis of teleoperation systems in Polat
and Scherer (2012). Thus, in view of future works, IQCs offer great flexibility in
uncertainty descriptions.

In this chapter, the synthesis of controllers that guarantee both performance and
stability for a bounded range of time-varying environment and operator dynamics
is presented. To illustrate the design method, we consider environments in which
the stiffness is the dominant phenomenon, e.g. in stiffness palpation tasks present
in surgery. Therefore, we assume an environment in which the stiffness is modeled
to be bounded and time-varying at an arbitrarily fast rate. The latter aspect
models the possibility of sudden changes in the environment stiffness, whereas the
mass and damping coefficients are fixed. For the operator dynamics, we use a
model that is based on a low-frequency approximation in which the stiffness is
again considered to be time-varying.
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∆(δ)

Gnom
p q

in out

Figure 2.1: Linear Fractional Representation of a System.

In Section 2.2.1 the LFR model of the system is obtained and the general control
design framework is presented. The LMI conditions for control design are pre-
sented in Section 2.2.2. The experimental setup is described in Appendix A. The
synthesis, simulations and experimental results are shown in Sections 2.3.1, 2.3.2
and 2.3.3 respectively followed by the discussion of the results. Finally, in Section
2.4, the conclusions are given.

2.2 Model based robust control

2.2.1 LFR model of a teleoperation system

Deriving the Linear Fractional Representation of a system amounts to isolating
the uncertain parameters such that an interconnection structure as depicted in
Fig. 2.1 is obtained. Let δi = [δi, δi] ∈ R+, i = 1, . . . , np be families of bounded
parametric uncertainties with possibly different lower and upper bounds. Let
δi(t) ∈ δi, i = 1, . . . , np be parametric uncertainties and define the vector δ as the

Operator

1

mms2 + bms+ km

fm

fh

xm

(a)

Environment

1

mss2 + bss+ ks

fs

fe

xs

−

(b)

Figure 2.2: Diagram of (a) operator/master device and (b) environment/slave
device.
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vector of all np parametric uncertainties, that is, δ = col(δ1, . . . , δnp
) ∈ Rnp . ∆(δ)

is the block diagonal mapping that acts on δ, i.e. ∆(δ) = diag(δ1, . . . , δnp
). q and p

are the signals interfacing with the uncertainty block in the sense that p = ∆(δ)q.
In particular, at any time instant t this means that p(t) = ∆(δ(t))q(t) is an ordinary
matrix multiplication. To derive the LFR model of the teleoperation system, the
uncertainty parameters δ are defined and then isolated and collected into the
uncertainty block ∆(δ). To this end, we first define the models of the different
components of a teleoperation system. We focus on the particular mass-damper-
spring models for master and slave devices, which interact with the operator and
environment respectively as depicted in Fig. 2.2, where mm > 0, bm ≥ 0, km ≥
0 are the fixed parameters of the master device representing its mass, damping
and stiffness coefficients respectively; similarly, ms > 0, bs ≥ 0, ks ≥ 0 are the
fixed parameters of the slave device representing its mass, damping and stiffness
coefficients respectively; fm, fs are the actuation forces to the master and slave
devices respectively; fh, fe represent the total force exerted by the operator and
environment respectively; and xm, xs are the positions of the master and slave
devices respectively. By definition they also represent the positions of the operator
and environment respectively.

Environment model

We consider environments with mass-damper-spring dynamics:

fe = f∗e + (meẍs + beẋs + kexs), (2.1)

which models a significant class of applications of interest. Here, me ≥ 0, be ≥ 0
and ke ≥ 0 are the mass, damping and stiffness coefficients of the environment
respectively, and f∗e is the active force from the environment, if present. We focus
on the environment stiffness ke as the main cause of the dynamic variation, hence
me and be are assumed fixed and ke is assumed to be bounded and in addition
time-varying. That is 0 ≤ ke ≤ ke(t) ≤ k̄e for constants ke and k̄e. This choice
is suitable for applications in which the effect of ke on fe is dominant, e.g. in
stiffness discrimination tasks like those in surgery. For other environment types,
Eq. (2.1), the uncertainty structure and parameters can be redefined. One should
keep in mind that because of the intrinsic robust stability/performance trade-
off, it is expected that the greater the uncertainty set, the lower the achievable
performance. Finally, the coupled environment/slave-device system in Fig. 2.2b
can be represented as in Fig. 2.3, where the uncertainty block in this model is
given, then, by ∆e = ke.
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Figure 2.3: Block diagram representation of the environment/slave device pair.

Operator model

Next, in order to construct a realistic model for the operator, we identified exper-
imentally the arm-hand dynamics of an operator while the operator manipulated
the master-device of our experimental setup described in Appendix A, which has
built-in force and position sensors. The operator dynamics are inherently time-
varying and to obtain a time-varying model can be a difficult task. Instead, we
simply identify several LTI models and then we combine them into a time-varying
model. This works under the assumption that the operator can behave as an LTI
system if he/she tries to remain static. We presented seven virtual springs to the
operator with stiffness values kVe ∈ [0, 5000] N/m such that fm = −kVe xm + f IDm ,
in which f IDm will be used as a disturbance signal for system identification. In
particular, we used a system’s sampling rate of 2000 Hz and a frequency range of
[1, 30] Hz for the multi-sine. The block diagram used for the experiment is shown
in Fig. 2.4. Initially we set f IDm = 0 N and then the operator was asked to move
the master device in order to feel the virtual spring. Subsequently, the operator
was asked to stop in a position of his/her choice where he/she could still feel the
virtual spring. The idea is that the operator exerts a force level such that he/she
could feel that he/she has a correct haptic perception of the virtual environment.
This is clearly subjective to the operator. Nevertheless, the aim of the experiment
is that the operator changes intuitively his/her exerted force and grip for different
virtual springs. Afterwards, a multi-sine signal was applied to the master device
via f IDm while the operator tried to keep his/her hand-arm remain static. Forces
fh(t) and positions xm(t) were measured and then the corresponding Fourier trans-
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form Fmeas
h (jω) = F(fh(t))(jω) and Xmeas

m (jω) = F(xm(t))(jω) were computed.
Next, we obtained the frequency response measurements of the static operator’s
arm-hand dynamics as

Zmeas
h (jω) =

Fmeas
h (jω)

Xmeas
m (jω)

for each virtual spring. All the resulting Frequency Response Measurements
(FRFs) are depicted in Fig. 2.5. Based on the shape of those frequency domain
measurements, for the static arm-hand dynamics Zh(s) we selected the model
structure given in (2.2), where mh, bh, kh, are the mass, damping and stiffness of
the human arm-hand, ωzh, zph and ωph are the parameters of the filter Qh(s) in
Eq. (2.3) which characterizes the operator dynamics above 10 Hz.

Zh(s) =
Fh(s)

Xm(s)
= (mhs

2 + bhs+ kh)Qh(s), (2.2)

where

Qh(s) =

s

ωzh
+ 1

s2

ω2
ph

+ 2zph
s

ωph
+ 1

(2.3)

Then, we optimized the variables mh, bh, kh, ωzh, zph and ωph to fit each measure-
ment to the model minimizing the cost function WZh

(iω) = ‖Zh(iω)−Zmeas
h (iω)‖2

for ω ∈ 2π[1, 30] rad/s. The optimization is done using a constrained nonlinear op-
timization method provided by the command fmincon in Matlabr. In practice the
optimization problem has several local minima, thus initial conditions and inter-
val constraints must be provided to the solver. Those initial conditions and their
respective constraints are estimated based on the measurements and are adjusted
until a satisfactory match between Zh(iω) and Zmeas

h (iω) is obtained. The result-
ing parameters were found to be within the following ranges; mh ∈ [0.39, 0.67] kg,
bh ∈ [7.50, 9.66] N s/m, kh ∈ [649.54, 903.82] N/m, ωzh ∈ [62.85, 134.55] rad/s,
zph ∈ [0.38, 0.59] and ωph ∈ [80.03, 94.59] rad/s. To reduce complexity of the

Operator
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Master Device

fh

f IDm
fm

xm

Figure 2.4: Diagram for arm-hand dynamics identification.
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Figure 2.5: Arm-hand frequency response measurements and low-frequency ap-
proximations.

model, we have used a low-frequency approximation by allowing variation only on
kh and by fixing all other parameters to their centered values in the correspond-
ing intervals, mh = 0.53 kg, bh = 8.58 N s/m, ωzh = 98.7 rad/s, zph = 0.49 and
ωph = 87.31 rad/s. The corresponding fits are depicted in solid red lines in Fig.
2.5. Finally, to include extra variation in kh, we enlarge the range of values of kh
by 20%, and we use kh ∈ [584.55, 994.20] N/m. Thus the minimum and maximum
human arm-hand stiffness we consider are kh = 584.55 N/m and k̄h = 994.2 N/m
respectively. The resulting Zh(s) fits for kh and k̄h are depicted with dashed lines
in Fig. 2.5. One can see that the approximation works well for low frequencies and,
moreover, allows to reduce the number of uncertain parameters in the operator
model. It also has the implications that the system’s performance could decrease
for users with dynamic properties that differ largely from those here considered.
It is possible to extend the operator uncertainty structure at the cost of increasing
the numerical complexity of the synthesis procedure.

As previously mentioned, the LTI identification techniques were used to find a
structure on the operator’s arm-hand dynamics. In what follows next, we assume
that during operation kh is time-varying within the identified range kh(t) ∈ [kh, k̄h]
for all t > 0. Finally, combining the master device and operator models, we arrive
at the model diagram for the operator/master device depicted in Fig. 2.6, where f∗h
is the active force generated by the operator and ∆h = kh defines the time-varying,
bounded and uncertain parameter of the human arm-hand dynamics model. This
modeling strategy allowed us to reduce the size of the uncertainty, which in turn
reduces conservatism in the achievable performance during the control synthesis.
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Figure 2.6: Block diagram representation of the operator/master device pair.

Generalized plant

Notice that both for the operator as well as for the environment we could add
uncertainty models which are non parametric yet time-varying, so as to account
for unmodeled dynamics, e.g. in the master/slave devices models. This will not
change the application of the method except the utilized multiplier structure, but
for simplicity, we restrict our analysis and synthesis to the parametric uncertainty
case. Moreover, as shown by the experiments later, with the selected uncertainty
description the teleoperated system presents satisfactory performance.

Having the models of the environment/slave-device and operator/master-device,
we set up an LFR model of the teleoperation system as a generalized plant G as
in Fig. 2.7.

The different components of the illustrated diagram are defined as follows:

� From the previous modeling, the vector of uncertain parameters is given by:
δ1 = kh, δ2 = ke, thus δ = col(kh, ke). The uncertainty block is then defined
as:

∆(δ(t)) =

[
kh(t) 0

0 ke(t)

]
, ∆ ∈∆,

where

∆ =

{[
kh 0
0 ke

]
: kh ∈ [kh, k̄h], ke ∈ [ke, k̄e]

}
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Figure 2.7: Generalized plant.

� The vector q and p contain the signals interfacing the uncertainty, thus from
Fig. 2.3 and Fig. 2.6, we can infer that

q = col(xm, xs), p(t) = ∆(δ(t))q(t)

One can see that the model can be easily adapted to the cases in which other
parameters might also be assumed to be uncertain.

� The measured signals are collected in the vector y. A control technique will
be applied to an experimental academic setup that is equipped with force
and position sensors in both the master and the slave devices. We will use all
available sensors of the setup for two reasons: first, to show that our method
can easily deal with a complex structure in the controller, and second, for
not limiting the available information to improve the system’s performance.
Therefore, we have that

y = col(fh, fe, xm, xs) + yn,

where
yn = col(fhn, fen, xmn, xsn).

represents the noise in the measurements.

� The disturbance signals of the system are represented by the vector w. We
treat the active forces from the operator and environment as disturbance
signals. Including the noise channels yn as disturbances explicitly increases
the robustness properties that would help to obtain a controller more suitable
for the actual implementation. Thus, we define

w = col(f∗h , f
∗
e , fhn, fen, xmn, xsn).

� Additionally, the actuation signal vector u contains the forces actuated from
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the motors of the master and the slave devices. Thus,

u = col(fm, fs)

� The performance vector z is defined as

z = col(fh − fe, xm − xs, fm, fs)

Via the component, fh − fe, we enforce that the human operator should
feel the same force applied by the environment. The second component,
xm − xs, is the position error to obtain tracking between master and slave.
The actuation variables are also included as channels to be penalized to avoid
controllers with high gains.

� G is the model that contains all the fixed model dynamics of the different
components of the bilateral teleoperation system: the master device, the
slave device, the fixed operator dynamics and the fixed environment dy-
namics if present. One can obtain a numerical model of G from the model
diagrams presented in Figures 2.3 and 2.6 by making a partition as follows:



q
z
y


 = G



p
w
u




where G is assumed to be LTI.

� Kc is the to-be-designed controller that maps the measured signals y to the
actuation signals u.

The control design problem is then to find a controller Kc that achieves robust
stability and robust performance for all ∆ ∈ ∆. At this point we still need to
define what structure the controller Kc will have and the type of performance that
is required from the system. This will be the subject of the coming sections.

Augmented generalized plant model for control design

The model presented in Fig. 2.7 is not suitable in its actual form for control design.
Therefore, we augment the model such that the model that will be used for control
design is illustrated in Fig. 2.8. The different components of the augmented plant
are described as follows:

� V and W are weighting filters described with stable LTI systems. They allow
to shape in frequency domain the desired system performance. These filters
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Figure 2.8: Generalized plant with weighting filters, uncertainty transformation
and scaling. The dashed block in the upper part equals ∆(δ) provided r = 1.

will be defined in detail in Section 2.2.3. Meanwhile they are assumed to be
known.

� w̃ and z̃ are weighted copies of w and z via predefined filters V and W
respectively. That is w = V w̃ and z̃ = Wz.

� δ̃ is the vector of the transformed uncertain parameters δ̃i ∈ δ̃i, i = 1, . . . , np

such that δ̃i = [δ̃i, δ̃i] ∈ R+ and 0 ∈ δ̃i. Specifically, δ̃ = col(δ̃1, δ̃2) =
col(k̃h, k̃e), where k̃h ,k̃e are the transformed parameters corresponding to
kh and ke respectively. In particular, we will use the following specific trans-
formation functions to the parameters: In order to apply this procedure to
our design case, we modify the loop such that the scaling r = 0 corresponds
to the nominal case. We apply a transformation to the uncertainty parame-
ters such that δi ∈ [δi, δ̄i] are mapped to the uncertain parameters δ̃i ∈ [0, 1],
i = 1, . . . , np. This is achieved via the following transformations:

δ̃i =
δi − δi
δ̄i − δi

, i = 1, .., np (2.4)

� ∆̃(δ̃) is the block diagonal concatenation of the parameters in δ̃.

∆̃(δ̃(t)) =

[
k̃h(t) 0

0 k̃e(t)

]
, ∆̃ ∈ ∆̃,

where

∆̃ =

{[
k̃h 0

0 k̃e

]
: k̃h ∈ [δ̃1,

¯̃
δ1], k̃e ∈ [δ̃2,

¯̃
δ2]

}
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� The vector q̃ and p̃ contain the signals interfacing the new uncertainty block
∆̃. Thus p̃(t) = ∆̃(δ̃(t))q̃(t).

� r ∈ [0, 1]: is a scaling factor that allows to scale down the uncertainty block
∆̃. This allows to perform an iterative process during the control design
in which one starts with the nominal case r = 0, i.e. no uncertainty, and
finalizes with an unscaled uncertainty set for r = 1. We will refer to a
nominal plant if r = 0. If r = 1 we have that ∆(δ) equals the dashed block
in the upper part of Fig. 2.8.

� T∆ : R2np×2np is a constant matrix such that :
(
q̃
p

)
=

(
r 0
0 1

)
T∆

(
p̃
q

)

T∆ is used to map one to one the uncertain parameter set ∆ to the trans-
formed uncertain parameter set ∆̃. The transformation T∆ allows to obtain
a nominal value of ∆(δNom) ∈ ∆ for r = 0. The transformations applied to
the parameters in Eq. (2.4) can be achieved with the following transformation
matrix

T∆ =

(
0 diag(δ̄1 − δ1, . . . , δ̄np

− δnp
)

I diag(δ1, . . . , δnp
)

)

One can construct a model of the generalized plant G̃ by making the intercon-
nection of blocks depicted in Fig. 2.8. The generality of the modeling procedure
allows for adaptation to more complex linear dynamics of master and slave devices,
other types of operator/environment models and other combinations of measured
variables. Finally, we denote the state space representation of G̃ by the following
equation:




ẋ
q̃
z̃
y


 =




A B1 B2 B
rC1 rD11 rD12 rE1

C2 D21 D22 E2

C F1 F2 0







x
p̃
w̃
u




2.2.2 Robust control design with guaranteed performance spec-
ifications

The common method for designing robust controllers is the use of multipliers to
characterize the uncertainty and the performance specifications. It is also well-
known that the overall robust control design is non-convex and, if exists, a con-
vexifying procedure is not yet known. In the now-classic µ-synthesis framework
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Skogestad and Postlethwaite (2005), it has been observed that an upper bound
computation with an iterative algorithm is possible and tested extensively in prac-
tice to conclude its validity. It is remarked that the resulting non-convex conditions
of the µ-synthesis framework can be shown to be bilinear in the unknowns and fix-
ing a subset of unknowns renders the problem convex in the remaining ones. In this
fashion the multipliers and the to-be-designed controller are alternately fixed and
at each step the uncertainty size is enlarged incrementally. This iterative scheme
has originated from the µ-synthesis problem and since it deals exclusively with a
norm bounded uncertainty type, the multiplier is typically denoted by D hence
the name D-K iteration. Along similar lines, µ-tools are extended to more general
cases and classes of multipliers have been reported in the literature Megretski and
Rantzer (1997), Polat (2011). In line with our experimental setup, we focus on a
particular uncertainty class, namely, the class of arbitrarily fast time-varying real
parametric uncertainties.

Uncertainty description

We will use a specific class of Integral Quadratic Constraints (IQCs) (see Megretski
and Rantzer (1997)) to model uncertainties ∆̃ ∈ ∆̃. Then consider P as a set of
symmetric matrices P ∈ R2np×2np that satisfy the following IQC

∫ T0

0

(
∆̃(δ̃)q̃(t)
q̃(t)

)T
P

(
∆̃(δ̃)q̃(t)
q̃(t)

)
dt ≥ 0 (2.5)

for all q ∈ L2[0, T0], T0 ∈ R+ and ∆̃ ∈ ∆̃.

The matrix P is a so called multiplier. It allows to describe mathematical proper-
ties of the uncertainty block ∆̃. The set P needs to be further classified in order
to describe specific type of uncertainties. Thus Eq. (2.5) as such cannot be used
for control design because we need first to formalize the relation between ∆̃ and
P. If both q and T0 are arbitrary, condition in Eq. (2.5) is equivalent to

(
∆̃(δ̃)
I

)T
P

(
∆̃(δ̃)
I

)
� 0 ∀∆̃ ∈ ∆̃ (2.6)

Next, if the class ∆̃ is convex, it can be expressed as a convex combination of
generators δ̃i, i = 1, . . . , 2np . In our specific case we have only four generators:

δ̃1 = col(δ̃1, δ̃2), δ̃2 = col(δ̃1,
¯̃
δ2), δ̃3 = col(

¯̃
δ1, δ̃2) and δ̃4 = col(

¯̃
δ1,

¯̃
δ2). One way to

find a set P of symmetric matrices P that describes ∆̃ and satisfies (2.6) is the
following: because of the convexity property of ∆̃, it suffices to force concavity
in the left hand side of (2.6) and evaluate (2.6) only at the corner points δj , j =
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1, . . . , 2np that generate ∆̃. Therefore, the convex class ∆̃ can be described by the
next finite number of inequality conditions:

(
I
0

)T
P

(
I
0

)
� 0 (2.7)

(
∆̃(δ̃j)
I

)T
P

(
∆̃(δ̃j)
I

)
� 0, j = 1, . . . , 2np (2.8)

where condition in Eq. (2.7) ensures concavity of the left hand side of condition in
Eq. (2.6). Therefore, the resulting P matrices classified by Eq. (2.7) and Eq. (2.8)
imply that Eq. (2.6) holds.

In this case, P is then a constant full block multiplier describing bounded and
time-varying real parametric uncertainties. This is an important distinction of
the methods in this thesis with those in Vander Poorten (2007), in which a more
wider class of uncertainty is taken into account, which might add conservatism in
the achievable performance. Also notice that imposing structure and dynamics in
the matrix P , other types of uncertainty can be described as shown in Polat and
Scherer (2012), which can be exploited in future works.

Performance description

We have chosen the performance criterion based upon the L2 gain of the mapping
from disturbance channels w̃ to the performance channels z̃ as is customary in
model-based H∞ control, e.g., see Skogestad and Postlethwaite (2005). The L2

gain from w̃ to z̃ can be expressed as:

sup
0 6=w̃∈L2

||z̃||2
||w̃||2

< γ, (2.9)

in which γ can be interpreted as a worst-case gain from the disturbances w̃ to the
performance signals z̃. Therefore, instantaneous responses that can be felt by the
operator have a direct effect on the performance criterion. This makes the L2 gain
a suitable performance criterion for teleoperation systems.

The L2 gain can be expressed as a quadratic performance criterion: (2.9) is equiv-
alent to each of the following conditions:

||z̃||22 < γ2||w̃||22 for all 0 6= w̃ ∈ L2

∫ ∞

0

(
w̃(t)
z̃(t)

)T
Pp

(
w̃(t)
z̃(t)

)
dt < 0 for all 0 6= w̃ ∈ L2, (2.10)
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with

Pp =

(
−γ2I 0

0 I

)

In fact, it is possible to use other quadratic performance criteria, see, e.g., Sec-
tion 1.3 and Scherer and Weiland (2000). To keep the generality of the theory
used here, we will use the symbol Pp to describe our performance criterion.

We proceed with the LMI-based robust controller design such that the closed loop
is robustly stable and satisfies the performance specifications.

Robust Control Synthesis

We make use of an LTI controller Kc(s) = Cc(Is − Ac)−1Bc + Dc, which we will
identify with its state space description:

ẋc = Acx+Bcy
u = Ccx+Dcy

.

by writing

Kc(s) =

[
Ac Bc
Cc Dc

]
.

We also introduce the shorthand notation for the closed loop matrices

G̃(s) ? Kc(s) =



A B1 B2

C1 D11 D12

C2 D21 D22




=




A+BDcC BCc B1 +BDcF1 B2 +BDcF2

BcC Ac BcF1 BcF2

r(C1 + E1Dc) rE1Cc r(D11 + E1DcF1) r(D12 + E1DcF2)
C2 + E2Dc E2Cc D21 + E2DcF1 D22 + E2DcF2




obtained via closing the loop in Fig. 2.8 with the controller Kc(s).

We will utilize the following controller-multiplier iteration method: Let P be the
set of symmetric matrices P that satisfy conditions (2.7) and (2.8) and assume we
have a controller Kc(s) that achieves nominal stability;
Theorem 2.1. The closed loop system G̃(s) ? Kc(s) with r ∈ (0, 1] shown in
Fig. 2.8 is robustly stable for all ∆̃ ∈ r∆̃ with a guaranteed performance charac-
terized by Pp if there exist a symmetric matrix X and P ∈ P such that

X � 0 (2.11)
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and

(
?

)T



0 X 0 0
X 0 0 0
0 0 P 0
0 0 0 Pp







I 0 0
A B1 B2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2



≺ 0 (2.12)

holds.

For notational convenience we also introduce the partitions

P =

(
Q S
ST R

)
, Pp =

(
Qp Sp
STp Rp

)
.

where Q,R, S ∈ Rnp×np , Qp ∈ Rdim(w)×dim(w), Sp ∈ Rdim(w)×dim(z) and Rp ∈
Rdim(z)×dim(z).
Remark 2.2. Theorem 2.1 allows to do analysis of robust performance of the sys-
tem given a controller Kc(s). Then all the involved conditions are LMIs. However,
in the case of controller synthesis, there is an issue. In (2.12), the outer factors
involving the state-space matrices of Kc(s) multiply the blocks of the multiplier
involving unknown variables rendering the constraint a Bilinear Matrix inequal-
ity (BMI). Nevertheless, by means of the transformations that have been given in
Scherer and Weiland (2000); Masubuchi et al. (1998); Scherer. et al. (1997), it is
possible to make (2.12) an LMI when P is fixed. Moreover, Ac, Bc, Cc, Dc matrices
also multiply each other, hence a linearization is needed. Fortunately, this can be
avoided with a Schur complement argument.

Initially, we have neither a controller nor a multiplier by which the constraints
are satisfied. Hence one typically starts with the nominal system G̃nom = 0pq ? G̃
(which is an upper LFT and equivalent to removing the uncertainty channels).
Then it is well-known how to design a nominally stabilizing controller (i.e. r = 0)
with certain performance level. This makes it possible to search for a feasible
multiplier via Theorem 2.1. Obviously, we can not expect a robust stability cer-
tificate from the initial controller Knom since there is no constraint enforcing it.
Thus, we need to first scale down uncertainty size to the level that Knom robustly
stabilizes the system. This scaling (often simply a gain) can be subsumed into the
uncertainty channels of the closed loop plant. Then by a line search over the fea-
sible uncertainty size denoted by r ∈ (0, 1], we obtain feasible stability multipliers.
Then, we switch to the controller step of the iteration.

As we pointed out in Remark 2.2, there exists a transformation such that the
conditions in Theorem 2.1 are converted into LMIs, such transformation is briefly
replicated here for completeness. The main difficulty with the bilinear terms in
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(2.12) is resolved by changing the search over the variables from X , Ac, Bc, Cc, Dc

to another derived set of variables v = {X,Y,K,L,M,N} where X is the left
upper block of X , Y is the left upper block of X−1 and

(
K L
M N

)
=

(
U XB
0 I

)(
Ac Bc
Cc Dc

)(
V T 0
CY I

)

+

(
XAY 0

0 0

)
(2.13)

which results from a congruence transformation which is omitted here but detailed
in Scherer and Weiland (2000). Hence the closed loop state-space matrices become

(
A(v) Bj(v)

Ci(r, v) Dij(r, v)

)

=




AY +BM A+BNC Bj +BNFj
K AX + LC XBj + LFj

ri(CiY + EiM) ri(Ci + EiNC) ri(Dij + EiNFj)


 (2.14)

for i, j = 1, 2 with r1 = r and r2 = 1. Finally, the positivity constraint on X � 0
becomes

X(v) =

(
Y I
I X

)
� 0 (2.15)

In summary, following result gives the conditions for a stabilizing controller with
guaranteed performance levels. Note that it boils down to verifying (2.12) in a
different set of variables. For convenience we will omit the v and r dependence
from the boldface variables.
Theorem 2.3. There exists a controller Kc(s) and a Lyapunov certificate X such
that the closed loop is robustly stable against all ∆̃ ∈ r∆̃ with r ∈ (0, 1] with Pp
performance if and only if there exist variables v such that X � 0 and

(
?

)T




0 0 0 I 0 0
0 Q 0 0 S 0
0 0 Qp 0 0 Sp
I 0 0 0 0 0
0 ST 0 0 R 0
0 0 STp 0 0 Rp







I 0 0
0 I 0
0 0 I
A B1 B2

C1 D1 D12

C2 D21 D2



≺ 0 (2.16)

hold.

At this point, (2.16) is not still an LMI since boldface variables enter quadratically,
however it suffices to apply the Linearization Lemma described in Scherer and
Weiland (2000) to render it as an LMI; having zero in the parameter intervals
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implies R,Rp � 0 and hence we can find a factorization Tl such that

(
Ql + SlBl(v) +Bl(v)TSTl Bl(v)TTl

TTl Bl(v) −Ul

)
≺ 0 (2.17)

where

Bl(v) =




A(v) B1(v) B2(v)
C1(v) D1(v) D12(v)
C2(v) D21(v) D2(v)




Ql = diag(0, Q,Qp)

Sl = diag(I, S, Sp)

Ul = diag(I,R−1, R−1
p )

Tl = diag(0, I, I)

Constraint (2.17) is now affine in the variables v. After solving for v, the controller
parameters can be recovered by solving (2.13) for the original variables

(
Ac Bc
Cc Dc

)

=

(
U XB
0 I

)−1(
K −XAY L

M N

)(
V T 0
CY I

)−1

where U and V are arbitrary invertible matrices satisfying I−XY = UV T . In our
case we have selected U = X and V = X−1 − Y . Clearly we assume the existence
of a nominal controller that provides an initial condition for the first iteration that
will not lead to a local minimum very close to r = 0, which in practice is actually
the case. To summarize, we start with the design of a nominal controller designed
for r = 0. Then, we iterate the following two steps:

� for a fixed controller Kc(s), maximize r using the bisection algorithm and
get the multiplier P , while optimizing for the Pp.

� for a fixed P matrix, maximize r using the bisection algorithm and get the
controller Kc(s) while optimizing for the Pp.

The procedure is stopped when either, no further progress on increasing r < 1, or
when r approaches 1 with the desired accuracy. Details on the iterative procedure
are given in Appendix B, from which we have used the version I of the iterative
procedure.

In the next section we describe how to translate the performance specifications via
weighting filters W and V .
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2.2.3 Weighting filter design

In robust control design it is customary to implement frequency dependent weights
on the performance channels (Fig. 2.7). The filters V and W are block diagonal
transfer matrices emphasizing the frequency band in which we want the particular
channel to be penalized. Thus V = diag(Vf∗h , Vf∗e , Vfhn

, Vfen , Vxmn , Vxsn) and W =
diag(Wfh−fe ,Wxm−xs

,Wfm ,Wfs). Ideally, one wants to have fh − fe = 0 and
xm − xs = 0. In this case we would get perfect transparency, but as is known,
this type of design is unrealistic and has poor stability properties. Instead, it is
desirable to relax such a strict requirement by appropriate choices of V and W .

Instead we are interested in forcing the force and position tracking errors such that
in frequency domain |Fh(ω)−Fe(ω)| < γ|Fw(ω)| and |Xm(ω)−Xs(ω)| < γ|Xw(ω)|,
where Fh(ω), Fe(ω), Xm(ω), Xs(ω) are the Fourier transform of fh, fe, xm,xs re-
spectability, Fw(ω) and Xw(ω) represent the desired level of force and position
tracking in the frequency band of interest and γ > 0 is as small as possible. We as-
sume |Fw(ω)| > 0 and |Xw(ω)| > 0 sufficiently small at low frequencies to achieve
force and position tracking for sufficiently slow varying forces and positions. This
will lead to a desired level of performance in the frequency range in which the hu-
man operator performs movements. On the other hand, we need to have feasible
control action with magnitude bounded forces fm, fs and a reduced amplification
of disturbance w to z at high frequencies. This to avoid saturation and the ex-
citation of high frequency dynamics. These requirements are translated into the
filters W and V which are shaped accordingly. To illustrate how to achieve this,
consider the design of a controller Kc for the nominal plant. Suppose that, for
given V , W this leads to:

sup
w̃

||W (s)(G(s) ? Kc(s))V (s)w̃||2
||w̃||2

< γ.

for some, preferably small, value of γ > 0. In the LTI case then we have that

||W (s)(G(s) ? Kc(s))V (s)||∞ < γ,

where || · ||∞ denotes the H∞ norm. In particular, this implies that the (m,n)th
entry of W (s)(G(s) ? K(s))V (s) satisfies

|Wn(iω)(G(iω) ? K(iω))mnVm(iω)| < γ,

for which non-zero W , V implies that

|(G(iω) ? K(iω))mn| <
γ

|Wn(iω)Vm(iω)| .

Hence, with γ > 0 fixed, frequencies at witch V and W have higher magnitude,
will result in frequencies at which G(s)?Kc(s) has smaller magnitude and therefore
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Figure 2.9: Magnitude bode plot of 1/Wxm−xs and 1/Wfm .

less amplification from w to z. This property can actually be employed to define
the filters V and W per frequency of interest.

We translate the performance specifications by defining the following filters:

Wfh−fe(s) =


cs1

s

ωbw
+ 1

s

ωbw
+ clf1




2

Wxm−xs
(s) = cxscs2

s

ωbw
+ 1

s

ωbw
+ clf2

Wfm(s) = Wfs(s) = cs3

s

ωlp
+ 1

s

ωr
+ 1

Vf∗h = Vf∗e = cs4

Vfhn
= Vfen = cs5

Vxmn
= Vxsn

=
cs6
cxs
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Typical shapes of the magnitude-bode plots |1/Wxm−xs
(iω)| (which has a similar

shape as |1/Wfh−fe(iω)|) and |1/Wfm(iω)| (which the same shape as |1/Wfs(iω)|)
are shown in Fig. 2.9.

ωbw defines the desired closed-loop bandwidth, ωlp defines the desired bandwidth
of the actuation force signals. With the values clf1, clf2 we put a limit to Wfh−fe
and Wxm−xs at low frequencies. This also ensures the filters Wfh−fe and Wxm−xs

to be stable. Stability of all filters is necessary to ensure that a stabilizing controller
Kc exists for the guaranteed plant. A second order filter was selected for Wfh−fe
to increase the tracking performance obtained in practice. On the other hand
for Wxm−xs

a first order filter was sufficient. To avoid non-causal Wfm and Wfs ,
we inserted high frequency poles at ωr. Moreover, cxs is used to scale penalties
on positions with respect to penalties on forces. This makes the magnitude of
positions and forces numerically comparable. To keep the tuning more intuitively,
cxs is tuned independently and it is not integrated into the scaling cs2 in Wxm−xs

.
Finally, cs1, . . . , cs6 are scaling constants that are used for further tuning.

The structure of the weighting filters was designed to achieve position and force
tracking. However, other choices may be explored. For instance, one can add
an intermediate impedance between the positions and forces of environment and
operator to mimic a “mechanical tool” as described in Vander Poorten (2007) in
which again perfect transparency is avoided. This can be achieved by adapting V
and W .

2.3 Robust control applied to a 1-DoF academic setup

The potential of the synthesis method described above is demonstrated by applying
it to the experimental setup described in Appendix A. We demonstrate the robust
performance properties of the Robust Controller (hereafter referred to as RC) by
means of simulations and experiments under operating conditions of permanent
contact with springs and sudden changes of environment stiffness.

Using frequency response measurements, the parameters of second order models
for the devices of the 1-DoF setup are identified. The parameters are listed in
Table 2.1. In the same table we show the parameters of the operator and the
environment dynamics that are computed at the end-effector. We have selected
ke ∈ [80, 3000] N/m because we aim to guarantee performance and stability for
environment stiffness values in the range of soft tissue environments.
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2.3.1 Synthesis results

The numerical parameters of the weighting filters are selected as follows. We have
selected ωbw = 2π× 10 rad/s as the desired closed loop bandwidth. The actuation
forces fm, fs were penalized from 60 Hz and beyond, hence ωlp = 2π × 60 rad/s.
clf1 and clf2 are selected to be small shifts to the poles at the origin to render
the corresponding filters stable, i.e., clf1 = clf2 = 10−2 and ωr = 2π × 500 rad/s.
We assume that the bandwidth of the actuators and sensors is higher than ωlp,
so that stability is not compromised. In fact this assumption is validated by the
experiments. Next, the scaling cxs corresponds to the scaling between the forces
in the disturbance channels and the positions in the performance channels. Now,
to estimate the order of such scaling, assume that we indeed achieve perfect force
and position tracking, therefore we can assume that the scaling between fh and
positions is equivalent to the environment stiffness. Because the force due to the
arm-hand dynamics opposes to the force f∗h (Fig. 2.6), cxs is expected to be bigger
than the environment stiffness. Therefore the k̄e can be used as a lower bound for
cxs > 3000(0.075)2 = 16.9. Note that the end-effector length is included since the
internal parameters are computed at the rotational axis. We have further tuned
experimentally by increasing it until satisfactory results were obtained, which led
us to the value cxs = 31.6.

The scaling parameters cs1, . . . , cs6 are tuned iteratively with the design process.
We start with all values at 1, i.e. no scaling. The synthesis process is run and if
no controller is found or the results are not satisfactory, e.g. factor r is too small,
we relax the penalization on the actuation variables by decreasing cs3. In case
we still do not make progress, then we start relaxing the penalization on one (or
more) performance variable(s) by decreasing the respective scaling parameter(s),
depending on where we want to sacrifice performance, for instance by decreasing
cs6 we allow for more position-sensor noise amplification. We iterate on the pre-
vious steps to obtain finally the values cs1 = 0.56, cs2 = 0.5, cs3 = 0.4 cs4 = 1,
cs5 = 0.5 and cs6 = 0.25. We have included low-pass filters with a bandwidth of

Table 2.1: Numerical parameters
m′m = 1.36× 10−3 m′s = 1.29× 10−3 kg m2/rad
b′m = 1.01× 10−1 b′s = 6.02× 10−2 N m s/rad
k′m = 1.75 k′s = 0.46 N m/rad
mh = 0.53 me = 0 kg
bh = 8.58 be = 0 N s/m
kh ∈ [584.6,994.2] ke ∈ [80,3000] N/m
ωph = 87.31 ωzh = 98.7 rad/s
zph = 0.49 −
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200 Hz to the output signals y which are implemented in the experimental setup.

We limit our focus to the case when the operator is grasping the device, however,
this leaves out the case when the user releases the master device, for which only
stability is relevant. Roughly speaking, when the operator releases the device, the
total mass of the system decreases, increasing the open-loop gain and possibly
compromising stability. Instead of increasing the number of uncertain parameters
to cover the release case in a conservative fashion, we utilize an alternative prag-
matic approach. It consists in making the design using a reduced but fixed value
of mh = αmN

h for 1 > α ≥ 0 such that the system is stable in free air. Under
the previous assumptions, the synthesis algorithm was performed. The LMI’s for
controller synthesis were solved using the solver SeDuMi Sturm (1999). We started
from α = 0 and we increased it by steps of 0.1. For each tested α, the desired
scaling value r = 1 was achieved using the algorithm described in Appendix B.2.
We stopped increasing α when stability of the system in free air was not satisfied,
which was verified analytically and also experimentally. In this fashion, we took
the penultimate tested α. Therefore we finally used mh = 0.4mN

h . The gamma
values and scalings obtained at each controller/multiplier iterations for the final
design are shown in Table 2.2. As a remark, the order of the controller is the order
of the generalized plant G, which already includes the weighting filters. In our
case, the controller is of order 15, the respective magnitude Bode diagram of the
RC is shown in Fig 2.10.

In Table 2.2, one can see that during the synthesis process, a minimal L2-gain per-
formance γ = 4.86 is achieved for the desired ranges of environment and operator
parameters. That is, feasibility of the synthesis LMIs for (α, r, γ) = (0.4, 1, 4.851).
This design was made for α = 0.4, however the performance can be different for
the more realistic mass value α = 1. To illustrate the performance decrease, we
also analyze the performance using the obtained generalized plant (including the
weighting filters) in closed loop with the designed controller. Such analysis can
be done by minimizing γ while solving the LMI’s of Theorem 2.1. We did two

Table 2.2: γ and r during iterations of the final design
Iter. r γ Kc/P

1 0 2.391 Kc

2 0.141 3.443 P
3 0.382 3.966 Kc

4 0.556 3.808 P
5 0.792 4.386 Kc

6 0.883 4.211 P
7 1.0000 4.851 Kc
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Figure 2.11: Weigthed L2-gain performance analysis with different controllers for
increasing maximum environment stiffness k̄e

performance analysis of the obtained RC, one for α = 0.4 used during synthesis,
and another for α = 1. The resulting γ values as a function of k̄e are given in Fig.
2.11.

When α = 0.4, one can see that we obtain γ ≈ 5 for k̄e≤ 3000 N/m as already
expected from Table 2.2. On the other hand, when the analysis is done for α = 1,
which better describes the real system behavior during normal operation, γ in-
creases for increasing values of k̄e, i.e. there is a bigger influence of the disturbance
signals on the performance channels hence a degradation of the overall perfor-
mance. Notice that unfortunately, there is no one to one correspondence between
the γ values and the resulting performance. This is because γ is the worst-case L2

gain from the weighted inputs to the weighted outputs. Therefore γ is a relative
and not absolute measurement.

For α = 1 and 0k̄e> 2500 N/m no feasible γ was found. Since our test is only
sufficient, and it accounts for arbitrarily fast time-varying uncertainty, infeasibility
for all values of γ in this analysis results means that there might exist a series of
driving signals and time-varying change in environment that can destabilize the
system. However, we were not able to destabilize the system when tested with
environment stiffness values up to k̄e≈ 3000 N/m, as shown in the simulations and
experimental results.

Finally, we performed a similar performance analysis with α = 1 to other well-
known architectures for bilateral teleoperation: “position-position” (P-P) archi-
tecture, “position-force” (P-F) architecture and “transparent four-channel” (T4C)
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architecture. The control laws are given by; for the “position-position” controller,

fm = gmdCpt(s, ωolc)(xs − xm)

fs = gsdCpt(s, ωolc)(xm − xs)

for the “position-force” controller,

fm = −L(s, ωlpc)fe

fs = gsdCpt(s, ωolc)(xm − xs)

and for the “transparent four-channel” controller,

fm = gmdCpt(s, ωolc)(xs − xm)− L(s, ωlpc)fe

fs = gsdCpt(s, ωolc)(xm − xs) + L(s, ωlpc)fh

where

Cpt(s, ωolc) =




s

ωolc/6
+ 1

s

ωolc/6
+ clfc




(
s

ωolc/3
+ 1

)
L(s, ωlpc)

is a standard position tracking controller based on a weak integrator (i.e. with
limited gain for low frequencies) and a lead filter, L(s, ωlpc) is a second order low
pass filter at ωlpc , gmd and gsd are gains to guarantee a 0dB open loop-gain at
the desired bandwidth ωolc on the master and slave devices respectively. To make
in some extent a fair design of the classical controllers with respect to the RC,
the parameters were manually tuned such that the controller frequency response
approximates that of the controller elements from xm and xs to fs of the RC.
This is illustrated in Fig 2.10 where the magnitude bode diagram of the P-F
controller is compared to that of the RC. Therefore we used clfc = 2.2 × 10−2,
ωlpc = 2π × 300 rad/s, gmd = 15.84, gmd = 14.72 and ωolc = 2π × 30 rad/s

The performance analysis results by minimizing γ using Theorem 2.1 and the gen-
eralized plant with the classical controller architectures are shown in Fig. 2.11.
During the analysis no γ values were found for the “transparent four-channel”
architecture, which was expected because of its poor stability properties (See
Lawrence (1993b)). Moreover, for k̄e< 2500 N/m the RC has higher performance
than the other conventional architectures in the sense that γ is smaller. Similarly,
for k̄e< 3000 N/m, the “position-force” controller presents a better performance
than the “position-position”. However, in our analysis, no γ value was found for
the “position-force” controller for k̄e> 3500 N/m. This is in accordance with the
known fact (see, e.g., Aliaga et al. (2004)) that the “position-force” controller has
poorer stability properties than the “position-position” controller. Especially, it is
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Figure 2.12: Operating conditions for testing the RC: Transient Part (TP) and
Permanent Contact Part (PCP)

known that the “position-force” architecture presents stability issues for stiff envi-
ronments. From the analysis results, we can see that with the RC the performance
has been increased at the price of reducing the maximal environment stiffness for
which stability is guaranteed.

2.3.2 Simulation results

The RC was discretized using a Tustin approximation with a sample rate of 2000Hz
which is also the case for the experiments. In order to test the controller, we
simulate a scenario in which an operator manipulates the system with the slave
device in free-air and then gets in contact with a spring located at xs > 0. As an
example of such situation consider Fig. 2.12, where we used f∗h = 9(1 + tanh((t−
1.5)/0.2)) + 6(cos(πt)− 1) N and kh = 776.7 N/m for the operator. The Transient
Part (TP) corresponds to a time slot where there is a transition between free air
and contact with the spring. The Permanent Contact Part (PCP) is a time slot
after the TP has passed and periodic movements are performed while being in
permanent contact with the spring.

We performed simulations of the RC for three different springs ke = 850 N/m,
ke = 2300 N/m and ke = 3500 N/m. The first two springs are within the range
in which robust stability is guaranteed according to Fig. 2.11. The third spring
is used to evaluate the system’s behavior outside such range. The time domain
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Figure 2.13: Time domain responses from simulations of interaction with different
springs during the PCP.

signals of positions and forces for the PCP are presented in Fig. 2.13.

One can see that for all spring values, position and force tracking is achieved. The
position tracking is slightly degraded for increasing values of environment stiffness.
Such tendency of performance degradation was already observed in Fig. 2.11. The
system is still stable for ke = 3500 N/m though the robust analysis test performed
in the previous section does not guarantee robust stability. We further analyze
the performance of the RC via force vs. position plots. Because such plots are
a good indication of the system’s performance for fixed environments, they were
also obtained for the controllers based on the P-P and P-F architectures when
interacting with the soft spring with ke = 850 N/m.

The forces fh and fe are displayed against the positions xm and xs in Fig. 2.14.
For illustrative purposes, the forces and positions plots are shifted such that all the
plots at the environment side have the (0, 0) point in common. The slope of the fe
vs. xs plots represent the stiffness of environment and the slope of the fh vs. xm
plots represent the stiffness being felt by the operator. For all test springs using
the RC, the slopes of the plots of the operator and environment sides are similar,
thus the operator feels a realistic spring in all cases and a high performance is
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indeed achieved. As already observed from the time domain plots, the performance
slightly decreases for increasing environment stiffness values. Next, Fig. 2.14 shows
that for soft environments, the P-P and P-F architectures have lower performance
compared to the RC. The reflected stiffness kr to the operator is bigger than the
environment stiffness of ke = 850 N/m. The operator feels a stiffer environment
with the classical architectures, being more noticeable for the P-P controller. These
results confirm the theoretical analysis previously performed.

Regarding the TP behavior, the corresponding time domain signals to the RC are
shown in Fig. 2.15. Especially for ke = 850 N/m and ke = 2300 N/m, a smooth
transition is made despite the sudden change in environment stiffness, validating
the robust performance properties of the proposed RC. For the third spring, which
is larger than k̄e with guaranteed performance, one can observe a small overshoot
at the transition instance and tracking performance worsens.

2.3.3 Experiments

In this section, we validate the promising simulation results with experiments
on a physical setup. We test three springs with stiffness values ke≈ 850 N/m,
ke≈ 2300 N/m and ke≈ 3500 N/m respectively. They were placed below the end-
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Figure 2.15: Time domain responses from simulations of interaction with different
springs during the TP.

effector of the slave device as shown in Fig. A.1. We drove the system under
similar operating conditions as to the simulation part, i.e. Transient Part and
Permanent Contact Part.

The time domain response of the signals xm, xs, fh and fe for the PCP are shown
in Fig. 2.16. Results are very similar to those of simulations. In all three cases,
position and force tracking is achieved with slight decrease of position tracking
performance as the environment stiffness increases. Now, In Fig. 2.17 we plot the
forces versus the positions at both master and slave sides with the same plot shifts
are used for a better visual comparison. One can see that, with all test springs,
the stiffness the human feels is very close to the real environment stiffness. This
shows that the performance criteria used during the design step of the RC were
successful in meeting the requirements of transparency in the time domain, not
only in simulation, but also experimentally.

The time domain response of the signals xm, xs, fh and fe for TP are also shown in
Fig. 2.18. This time, the position signals were shifted such that all spring positions
coincided at xs > 0. As expected, the transition with ke< 2500 N/m was made
in a smooth fashion, validating experimentally the performance achieved by the
proposed controller. For the transition with ke≈ 3500 N/m, an overshoot can be
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Figure 2.16: Time domain responses from experiments of interaction with different
springs during the PCP.
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Figure 2.18: Time domain responses from experiments during the TP of a transi-
tion from free air to different springs at xs > 0

observed especially in the force signals. According to our robust performance anal-
ysis from Fig. 2.11 stability is not guaranteed. In practice, we only experienced the
overshoot but we could not destabilize the system. However, such overshoot can
degrade the subjective haptic perception of the environment. Though the analysis
can introduce conservatism, it still ensures a safe and high performance opera-
tion of the system under realistic conditions in which the human an environment
dynamics vary with time.

Finally, the TP time slot is further analyzed and the corresponding power spectral
density plots are shown in Fig. 2.19 . For all cases, the system presented position
tracking up to 10 Hz and force tracking up to 4 Hz for the time-varying stiffness.
Thus, practically high-performance is achieved up to 4 Hz. One can see that for
the third stiffness the overshoot can be also noticed in frequency-domain by an
increase of the power concentration of the environment forces between [4,10] Hz,
which might not be safe for the environment, for instance when the environment
is, say a soft tissue. Therefore, it is validated that Fig. 2.11 can give a good
indication for the safe region of operation of the bilateral system, which shows
that the model and the assumptions we made are sufficiently realistic.

As final remarks, we have assumed that the human arm-hand stiffness can vary in-
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Figure 2.19: Power Spectral plots of responses from experiments after transition
from free air to different springs at xs > 0.

finitely fast. However, in reality the operator can only change the mechanical prop-
erties of his/her arm-hand only with a bounded rate of variation. Including such
information in the control design could further reduce the conservatism. Method-
ologically, the conservatism reduction is made possible via frequency-dependent,
i.e., dynamic multipliers Megretski and Rantzer (1997) as opposed to the con-
stant multipliers utilized here. Moreover, we did not consider delays, and thus, no
conclusions can be drawn on how it would worsen the performance and stability
properties of the system. However, we emphasize that it boils down to rewriting
the interconnection such that delays are also collected in the uncertainty block.
Via the use of dynamic multipliers, which are a class of IQCs, this case can be
analyzed applying the tests given in Polat and Scherer (2012). Finally, we con-
sidered here devices that can be modeled via LTI models, thus for devices with
strong non-linear behavior, existing techniques like feedback linearization could be
applied before the techniques here described.
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2.4 Conclusions

In this chapter, we have presented a systematic approach towards control design
for bilateral teleoperation. Such approach uses a parametric model of a bilateral
teleoperation system, this allowed us to handle the uncertain parameters of the
bilateral system systematically. Operator and environment with bounded and
time-varying stiffness were considered. The experimental results demonstrated
that such uncertainty description allowed to obtain high performance and stability
simultaneously in the range of soft environments, not only for continued contact
with the environment, but also for sudden changes in it. Moreover, the analysis,
simulation and experimental results of the controlled system were consistent with
each other, showing that the assumptions we made during modeling and synthesis
were appropriate, thus demonstrating the potential of the design methodology here
presented.

In the next chapter, dependency on the environment properties are included during
control design, allowing for different controller for soft and hard environments.
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Chapter 3

Switching Robust Control for
Bilateral Teleoperation

WHEN the environment of the teleoperation system varies within a
large range, a single controller might not be sufficient to achieve

both stability and high performance. In this chapter we propose the syn-
thesis of a switching robust controller that allows to design multiple robust
controllers suitable for different ranges of environment stiffness, so that an
overall better performance is achieved. The controllers are scheduled using
an estimate of the environment stiffness. During the design we account
for smooth switching among controllers and for the fact that environment
estimators will have limited accuracy and uncertainty. We present syn-
thesis, simulation and experimental results of the proposed approach, thus
showing the effectiveness of the method to improve the robust performance
of the teleoperated system.

3.1 Introduction

Teleoperation systems can provide a feeling of tele-presence using force feedback
while an operator manipulates a remote environment by means of a master and a
slave device. It is desirable that the system has high performance, e.g. the opera-
tor feels as if he/she is manipulating the environment directly, in a stable fashion.

This chapter is based on the following manuscript: López Mart́ınez, C. A., Molengraft, R.
v. d., and Steinbuch, M. (2014c). Switching robust control for bilateral teleoperation. Under
review for journal publication
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However, there is an inherent trade-off between (robust) stability and performance,
see, e.g., Hannaford (1989); Lawrence (1993b), and it is a challenging problem to
design controllers that meet an appropriate balance, see, e.g., Hokayem and Spong
(2006), Passenberg et al. (2010). Control design tools based on Passivity theory,
see, e.g., Niemeyer and Slotine (1991), Ryu (2007), have been widely used. They
mainly focus on stability but the stability/performance trade-off is not taken into
account systematically. More recent works by, e.g. Kim et al. (2013), Willaert
et al. (2014) consider performance in the design, but either neglect the fact that
both operator and environment dynamics are inherently time-varying, or the ap-
plicability is limited to master and slave devices with identical mass-damper-spring
dynamics.

Additionally, in many applications environment parameters such as mass, damping
and stiffness are bounded. In Chapter 2, we included this boundedness into the
control design process to balance performance and stability. We also experimen-
tally validated the design of a robust Linear Time Invariant (LTI) controller, which
yields a high performance for time-varying environment stiffness in the range of
those encountered in soft tissues in applications such as minimally invasive surgery,
needle insertion, etc. However, in the same sort of applications there are other tis-
sues with larger stiffness coefficients, for example up to around 7000N/m for the
ribcage (Bankman et al. (1990)) and there might even be rigid contacts, e.g. in
the collision of two robotic arms. Therefore, it is desirable to increase the range in
which performance and stability is achieved in order to get closer to the require-
ments of real-life surgical conditions.

On the other hand, there is no guarantee that a single LTI controller exists that en-
sures both performance and stability for a large range of time-varying environment
stiffness values. To cover a large region of environment stiffness, one can add flex-
ibility in the control design, for instance by means of estimating the environment
stiffness and use such estimation to design a controller that adapts accordingly.
Some works, e.g. by Willaert et al. (2010), Cho et al. (2013), design controllers
that depends on the estimate of the environment stiffness, however either they do
not guarantee robust performance, or the achieved operating range is limited to
low environment stiffness. Moreover, such works rely on accurate, unbiased, low
noise and/or fast convergence of the estimated environment stiffness, requirements
which in practice are difficult to meet simultaneously.

Another approach to address performance and stability, when the environment
stiffness varies in a wide range, is the use of switching control. Some existing
switching control methods suggest to switch between different operating points of
the overall system, see, e.g., Liberzon (2003), Leith and Leithead (2000), though
systems with uncertainty are not considered and/or smooth switching is not guar-
anteed. Multiple model adaptive control, which is also a switching based method,
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has been used in teleoperation in Shahdi and Sirouspour (2005), however uncer-
tainty in the operator is not included and there is no smooth switching between
controllers.

We propose the use of a switching robust controller that accounts for uncertainty
in the operator and environment dynamics as well as uncertainty and noise in
the estimation of the environment stiffness ke that is used for control schedul-
ing. We use operator and environment models such that the uncertainty ∆ in the
bilateral teleoperation system is defined by the operator and environment stiff-
ness parameters. The human operator’s model structure is based on an operator’s
hand measurements. The proposed multi-controller structure consists of Nc LTI
robust controllers, in which the ith controller has robust performance in an un-
certainty region ∆i, such that all regions combined cover the uncertainty set ∆.
Moreover, such controllers are designed to share a common quadratic Lyapunov
function, which ensures stable and smooth switching between them. Additionally,
to be robust to uncertainty and noise in the estimated parameter that allows the
scheduling of the robust controllers, we define a minimum overlapping between the
regions ∆i.

In this thesis it is the first time that experiments are presented using switching
robust control in teleoperation, such that robust performance is guaranteed under
time-varying uncertainty in the operator, the environment, and the estimation of
the scheduling parameter ke. The synthesis, simulations and experiments demon-
strate the potential of the proposed method to improve the robust performance in
teleoperation systems.

In Section 3.2 we describe the system’s modelling and the framework for control
design of the proposed switching robust controller for teleoperation systems. Syn-
thesis, Simulations and experimental results are presented and discussed in Section
3.3. Finally, in Section 3.4 the conclusions are presented.

3.2 Switching robust control approach

3.2.1 LFR model of a teleoperation system

Similarly as in Chapter 2, we make use of a Linear Fractional Representation
(LFR) of the bilateral teleoperation system. Deriving a LFR of a system amounts
to isolating the uncertain parameters such that an interconnection structure as
depicted in Fig. 3.1 is obtained. Let δi = [δi, δi], i = 1, . . . , np be families of
bounded parametric uncertainties with possibly different lower and upper bounds.
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Figure 3.1: Linear Fractional Representation of a System.

Let δi(t) ∈ δi, i = 1, . . . , np be parametric uncertainties and define the vector δ as
the vector of all np parametric uncertainties, that is, δ = col(δ1, . . . , δnp) ∈ Rnp .
∆(δ) is the block diagonal mapping that acts on δ, i.e. ∆(δ) = diag(δ1, . . . , δnp

).
q and p are the signals interfacing with the uncertainty block in the sense that
p = ∆(δ)q. In particular, at any time instant t this means that p(t) = ∆(δ(t))q(t)
is an ordinary matrix multiplication. To derive the LFR model of the teleoperation
system, the uncertainty parameters δ are defined and then isolated and collected
into the uncertainty block ∆(δ). To this end, we first define the models of the
different components of a teleoperation system. We apply our methods on a sys-
tem using the particular mass-damper-spring models for master and slave devices,
which interact with the operator and environment respectively as depicted in Fig.
3.2, where mm > 0, bm ≥ 0, km ≥ 0 are the fixed parameters of the master device;
ms > 0, bs ≥ 0, ks ≥ 0 are the fixed parameters of the slave device; fm, fs are the
actuation forces to the master and slave devices respectively; fh, fe represent the
total force exerted by the operator and environment respectively; and xm, xs are
the positions of the master and slave devices respectively. By definition they also
represent the positions of the operator and environment respectively.

Operator

1

mms2 + bms+ km

fm

fh

xm

(a)

Environment

1

mss2 + bss+ ks

fs

fe

xs

−

(b)

Figure 3.2: Diagram of (a) operator/master device and (b) environment/slave
device.
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Operator model

For the operator, we make use of a model with the same structure as presented in
Chapter 2. In such a model the main source of uncertainty comes from the oper-
ator’s arm-hand stiffness kh, which allows to reduce the numerical control design
complexity. This also implies that the human arm-hand mass mh is considered
fixed, and as shown in the results in Chapter 2, the control design for mh ≈ 0.5 kg
delivered unstable controllers for when the master device is released, i.e. all the
operator’s mechanical properties are zero. In this chapter our focus is on increas-
ing the system’s performance given that the operator and environment models
resemble the operating conditions sufficiently close. Therefore we consider specific
operating conditions such that mh is low. Obtaining models and the correspond-
ing control design that account for a wider range of operating conditions is left as
future work. In this work, such conditions of low operator mass are achieved when
the system is manipulated only with the hand, resting the wrist on a rigid object
as shown in Fig. 3.3. The experimental setup is further described in Appendix A.

Next, we identified experimentally the hand dynamics of an operator while the
operator manipulated, in the way previously explained, the master-device of the
experimental setup, which has built-in force and position sensors. The operator
dynamics are inherently time-varying and to obtain a time-varying model can be a
difficult task. Instead, we simply identify several LTI models and then we combine
them into a time-varying model. This works under the assumption that the oper-
ator can behave as an LTI system if he/she tries to remain static. We presented
seven virtual springs to the operator with stiffness values kVe ∈ [0, 5000] N/m such
that fm = −kVe xm+f IDm , in which f IDm will be used as a disturbance signal for sys-
tem identification. In particular, we used a system’s sampling rate of 2000 Hz and
a frequency range of [1, 60] Hz for the multi-sine. Initially we set f IDm = 0 N and
then the operator was asked to move the master device in order to feel the virtual

Soft Spring,
Stiff Foam,
Rigid Block

Slave
Device

Master
Device Operator’s

hand

Figure 3.3: 1-DoF setup for bilateral teleoperation. The operator rests his wrist
in a rigid block to bound his dynamics to those of the hand.
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Figure 3.4: Hand frequency response measurements Zmeas
h (iω) and low-frequency

approximations Zh(iω).

spring. Subsequently, the operator was asked to stop in a position of his/her choice
where he/she could still feel the virtual spring. The idea is that the operator exerts
a force level such that he/she could feel that he/she has a correct haptic perception
of the virtual environment. This is clearly subjective to the operator. Neverthe-
less, the aim of the experiment is that the operator changes intuitively his/her
exerted force and grip for different virtual springs. Afterwards, a multi-sine signal
was applied to the master device via f IDm while the operator tried to keep his/her
hand static. Forces fh(t) and positions xm(t) were measured and then their Fourier
transforms Fmeas

h (jω) = F(fh(t))(jω) and Xmeas
m (jω) = F(xm(t))(jω) were com-

puted. Next, we obtained frequency response function (FRF) measurements of

the operator’s hand dynamics as Zmeas
h (jω) =

Fmeas
h (jω)

Xmeas
m (jω) in a frequency range of

[1,60] Hz. The corresponding hand FRF measurements for all virtual springs are
shown in Fig. 3.4.

Based on the measurements, for the hand dynamics Zh(s) we use the model struc-
ture given in (3.1), where mh, bh, kh, are the mass, damping and stiffness of the
human hand, ωzh, zph and ωph are the parameters of the filter Qh(s) which char-
acterizes the measured operator dynamics above 30 Hz .

Zh(s) =
Fh(s)

Xm(s)
= (mhs

2 + bhs+ kh)Qh(s), (3.1)
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bh

kh
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km

f∗h

fh

fm
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Operator

−

−
Qh(s)

∆h

Figure 3.5: Block diagram representation of the operator/master device pair.

where

Qh(s) =

s

ωzh
+ 1

s2

ω2
ph

+ 2zph
s

ωph
+ 1

.

Then, we optimized the variables mh, bh, kh, ωzh, zph and ωph to fit each measure-
ment to the model minimizing the cost function WZh

(iω) = ‖(Zh(iω)−Zmeas
h (iω))/

|Zmeas
h (iω)|‖2 for ω ∈ 2π[1, 60] rad/s. The optimization is done using a constrained

nonlinear optimization method provided by the command fmincon in Matlabr.
In practice the optimization problem has several local minima, thus initial con-
ditions and interval constraints must be provided to the solver. Those initial
conditions and their respective constraints are estimated based on the measure-
ments and are adjusted until a satisfactory match between Zh(iω) and Zmeas

h (iω) is
obtained. The resulting parameters were found to be within the following ranges;
mh ∈ [0.112, 0.134] kg, bh ∈ [5.88, 8.94] N s/m, kh ∈ [1257, 2501] N/m, ωzh ∈
[69.5, 102.5] rad/s, zph ∈ [0.54, 0.70] and ωph ∈ [184.0, 239.8] rad/s. To reduce
complexity of the model and control design, we have used a low-frequency approxi-
mation by allowing variation in kh only and fixing all other parameters to their cen-
tered values in the corresponding intervals, thus mh = 0.123 kg, bh = 7.41 N s/m,
ωzh = 86 rad/s, zph = 0.62 and ωph = 211.9 rad/s. The corresponding fitted mod-
els are depicted in Fig. 3.4. Finally, to include possible extra variation in kh, we
enlarge the range of values of kh by 20%, and we use kh ∈ [1131.3, 2751.1] N/m.
The resulting Zh(s) fitted models for kh and k̄h are depicted with dashed lines
in Fig. 3.4. One can see that the approximation fits well for low frequencies and,
moreover, allows to reduce the number of uncertain parameters in the operator
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model. Because only kh is considered uncertain, using the model proposed here for
control design has implications. Mainly, the system’s performance could decrease
for users with dynamic properties that differ largely from those considered here.
It is possible to extend the number of uncertainty parameters in the operator’s
model at the cost of increasing the numerical complexity of the synthesis proce-
dure. The operator identification was performed for a single operator. From the
arm-hand models presented here and in Chapter 2, we can already conclude that
the structure of Eq. 3.1 covers sufficiently well the dynamics of different arm-hand
configurations, i.e. different arm-hand poses that result in the use of different
groups of muscles. This is an indication that the operator’s model-structure pre-
sented here could be valid for other users as well. Regarding the range of variation
of the operator’s model-parameters, it is clear that different arm-hand configura-
tions result in different ranges of variation of parameters. This can be seen if we
compare the parameters found here with those in Chapter 2. Furthermore, the
parameters are expected to vary among different users. Nevertheless, less variation
is expected if the arm-hand pose during experiments is similar among users. How-
ever, more subjects are needed to evaluate whether the structure of the operator’s
model and the proposed low frequency approximation are still valid.

Though the identification was performed via LTI techniques, in what follows below,
we assume that during operation kh is time-varying in the sense that kh(t) ∈
[kh, k̄h] for all t > 0.

Finally, combining the master device and operator models, we arrive at the model
diagram for the operator/master device depicted in Fig. 3.5, where f∗h is the active
force generated by the operator and ∆h = kh defines the time-varying, bounded
and uncertain parameter of the human hand dynamics model.

Environment model

Next, we consider environments with mass-damper-spring dynamics:

fe = f∗e + (meẍs + beẋs + kexs),

which model a significant class of applications of interest. Here, me, be and ke
are the non-negative mass, damping and stiffness coefficients of the environment
respectively, and f∗e is the active force from the environment, if present. We focus
on the environment stiffness ke as the main cause of the dynamic variation, hence
me and be are assumed fixed and ke is assumed to be bounded (though within
a wide range), and in addition time-varying. This choice is suitable for applica-
tions in which the effect of ke on fe is dominant, e.g. in stiffness discrimination
tasks like those in surgery. For other environment types the uncertainty struc-
ture and parameters can be redefined. One should keep in mind that because of



3.2 Switching robust control approach 71

G

∆(δ)

Kc

w z

p

u

q

y

Figure 3.6: Generalized plant.

the intrinsic robust stability/performance trade-off, it is expected that the greater
the uncertainty set, the lower the achievable performance. Subsequently, the cou-
pled environment/slave-device system can be obtain in a similar way as for the
operator/master-device system. The uncertainty block in the environment/slave-
device model is given, then, by ∆e = ke.

Generalized plant

Having the two models of environment/slave and operator/master, we set up an
LFR model of the teleoperation system as a generalized plant G as in Fig. 3.6. The
different elements of the diagram are defined in the same way as for the model
presented in Chapter 2. They are described briefly here as follows: From the
modeling we have that the uncertain parameters are δ1 = kh, δ2 = ke, thus δ =

col(kh, ke). The uncertainty block is then defined as ∆(δ(t)) =
[
kh(t) 0

0 ke(t)

]
, ∆ ∈

∆, where

∆ =

{[
kh 0
0 ke

]
: kh ∈ [kh, k̄h], ke ∈ [ke, k̄e]

}
.

The vector q and p contain the signals interfacing the uncertainty, thus we can
infer that q = col(xm, xs), p(t) = ∆(δ(t))q(t). One can see that the model can
be easily adapted to the cases in which other parameters might also be assumed
to be uncertain. The measured signals are included in the vector y, and we as-
sume that we can measure the position and forces of the master and slave devices,
possibly contaminated with measurement noise vector. Therefore, we have that
y = col(fh, fe, xm, xs)+yn, where yn = col(fhn, fen, xmn, xsn) represents the noise
in the measurements. The disturbance signals of the system are represented by the
vector w. We treat the active forces from the operator and environment as distur-
bance signals. Including the noise channels yn as disturbances explicitly increases
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the robustness properties that would help to obtain a controller more suitable for
the actual implementation. Thus, we define w = col(f∗h , f

∗
e , fhn, fen, xmn, xsn).

Additionally, the actuation signal vector u contains the forces actuated from the
motors of the master and the slave devices. Thus, u = col(fm, fs). The perfor-
mance vector z is defined as z = col(fh− fe, xm−xs, fm, fs). Via the component,
fh − fe, we enforce that the human operator should feel the same force applied
by the environment. The second component, xm − xs, is the position error to ob-
tain tracking between master and slave. The actuation variables are also included
as channels to be penalized to avoid controllers with high gains. G is the LTI
model that contains all the fixed model dynamics of the different components of
the bilateral teleoperation system: the master device, the slave device, the fixed
operator dynamics and the fixed environment dynamics if present. Finally, Kc is
the to-be-designed controller that maps the measured signals y to the actuation
signals u.

The control design problem is then to find a controller Kc that achieves robust
stability and robust performance for all ∆ ∈ ∆. At this point we still need to
define what structure the controller Kc will have, which will be the subject of the
next section.

3.2.2 Switching robust control design using a common
quadratic Lyapunov function

In Chapter 2, using Linear Matrix Inequalities (LMI’s) (Scherer and Weiland
(2010)), we synthesized a single LTI robust controller with robust performance
for bounded environment stiffness ke in the range of low stiffness environments.
Our research focus is on obtaining high performance teleoperated systems for a
wider range of environment stiffness ke ∈ [ke, k̄e], covering not only soft stiffness
environments. As it will be shown later, the achievable performance of controllers
designed with the methodology presented in Chapter 2 degrades considerably as
the maximal environment stiffness k̄e is increased. From a control point of view,
one of the reasons for this performance degradation is the lack of flexibility of the
controller to adapt to large changes in the uncertainty parameters of the system.
Therefore, in this chapter we present control architecture in which we increase the
flexibility of the controller architecture so we can achieve a better performance
index and therefore reduce the performance degradation for large ranges of ke.

We propose a switching robust control architecture. The main idea consists of
scheduling different robust controllers according to the estimate k̂e of the actual
value of ke. Thus, we design a specific number Nc of LTI controllers, in which
the ith controller has an uncertainty set ∆i of robust performance, such that all
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regions combined form a larger set such that ∆ ⊆ ∆1 ∪ . . . ∪ ∆Nc
, where ∆

describes the uncertainty region of the system.

To describe the partition, let δ(i)j = [δ(i)j , δ(i)j ], i = 1, . . . , Nc; j = 1, . . . , np be
families of bounded parametric uncertainties. Let δ(i)j(t) ∈ δ(i)j , i = 1, . . . , Nc;
j = 1, . . . , np be parametric uncertainties and define the vectors δ(i) = col(δ(i)1, . . . ,
δ(i)np

) ∈ Rnp , i = 1, . . . , Nc. ∆i(δ(i)), i = 1, . . . , Nc are the block diagonal map-
pings that acts on δ(i), i.e. ∆i(δ(i)) = diag(δ(i)1, . . . , δ(i)np

), i = 1, . . . , Nc. Then,
each subregion ∆i is described by ∆i ∈∆i, where the class ∆i is defined as

∆i =
{

diag(δ(i)1, . . . , δ(i)np
) : δ(i)1 ∈ [δ(i)1, δ(i)1], . . . , δ(i)np

∈ [δ(i)np
, δ(i)np

]
}

for i = 1, . . . , Nc, that ∆ ⊆∆1∪ . . .∪∆Nc . In our specific case np = 2. Therefore
each regions ∆i, i = 1, . . . , Nc is a ‘rectangle’ in the kh − ke plane. The specific
distribution of ∆i, i = 1, . . . , Nc will be given in Section 3.2.3.

Augmented plant model for control design

Before describing the control synthesis method, we need to augment the model
shown in Fig. 3.6 in order to incorporate the uncertainty partitions ∆i, i = 1, . . . , Nc
and a more suitable form that is usable for control design. To this end, consider
the model diagram presented in Fig. 3.7 in which we have augmented and parti-
tioned the model in Fig. 3.6 in Nc augmented generalized plants G̃i. The different
components of the augmented model are described as follows:

� V and W are weighting filters described with stable LTI systems. They allow
to shape in frequency domain the desired system performance. These filters
will be defined in detail in Section 3.2.5. Meanwhile they are assumed to be
known.

� w̃ and z̃ are weighted copies of w and z via predefined filters V and W
respectively. That is w = V w̃ and z̃ = Wz.

� δ̃(i), i = 1, . . . , Nc. are the vectors δ̃(i) = col(δ̃(i)1, . . . , δ̃(i)np
) of the trans-

formed uncertain parameters δ̃(i)j ∈ δ̃(i)j such that δ̃(i)j = [δ̃(i)j , δ̃(i)j ] and

0 ∈ δ̃(i)j for i = 1, . . . , Nc and j = 1, . . . , np. The main idea is that the

intervals δ(i)j are mapped one to one to the intervals δ̃(i)j . The specific

transformations from parameters δ(i)j to δ̃(i)j will be given in Section 3.2.3.
Meanwhile they are assumed to be known.

� ∆̃i(δ̃(i)), i = 1, . . . , Nc is the block diagonal concatenation of the parameters
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∆̃i(δ̃(i))
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Kci

Vw̃ z̃
w z
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p̃i q̃i

G̃i

Figure 3.7: Set of generalized plants with weighting filters, uncertainty transfor-
mation and scaling. The dashed block in the upper part equals ∆i(δ) provided
r = 1.

in ˜δ(i).

∆̃i(δ̃i(t)) = diag(δ̃(i)1, . . . , δ̃(i)np
), ∆̃i ∈ ∆̃i,

where

∆̃i =
{

diag(δ̃(i)1, . . . , δ̃(i)np
) : δ̃(i)1 ∈ [δ̃(i)1, δ̃(i)1], . . . , δ̃(i)np

∈ [δ̃(i)np
, δ̃(i)np

]
}

for i = 1, . . . , Nc.

� The vector q̃ and p̃ contain the signals interfacing the new uncertainty block
∆̃. Thus p̃(t) = ∆̃(δ̃(t))q̃(t).

� r ∈ [0, 1]: is a scaling factor that allows to scale down the uncertainty blocks
∆̃i. This allows to perform an iterative process during the control design
in which one starts with the nominal case r = 0, i.e. no uncertainty, and
finalizes with an unscaled uncertainty set for r = 1. We will refer to a
nominal plant if r = 0. If r = 1 we have that ∆i(δi) equals the dashed block
in the upper part of Fig. 3.7.

� T∆i
: R2np×2np , i = 1, . . . , Nc are constant matrices such that :

(
q̃i
p

)
=

(
r 0
0 1

)
T∆i

(
p̃i
q

)
, i = 1, . . . , Nc

T∆i
is used to map one to one the uncertain parameter set ∆i to the trans-

formed uncertain parameter set ∆̃i. The transformations T∆i
allows to
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obtain a nominal values of ∆i(δ
Nom
(i) ) ∈ ∆i for r = 0. The specific transfor-

mations from matrices T∆i,i=1,...,Nc
will be given in Section 3.2.3. Meanwhile

they are assumed to be known.

� Kci, i = 1, . . . , Nc are then the LTI controllers Kci(s) = Cci(Is−Aci)−1Bci+
Dci, which we will identify with its state space description by writing

Kci(s) =

[
Aci Bci
Cci Dci

]
,

One can derive a model of the generalized plant G̃i for i = 1, . . . , Nc. We denote
its state space representation by the following equation:




ẋ
q̃i
z̃
y


 =




Ai B(i)1 B(i)2 Bi
rC(i)1 rD(i)1 rD(i)12 rE(i)1

C(i)2 D(i)21 D(i)2 E(i)2

Ci F(i)1 F(i)2 0







x
p̃i
w̃
u


 , i = 1, . . . , Nc

Uncertainty and performance description

Similarly as in Chapter 2, we will use a specific class of Integral Quadratic Con-
straints (IQCs) (see Megretski and Rantzer (1997)) to model uncertainties ∆̃i ∈
∆̃i. Then consider Pi as sets of symmetric matrices Pi ∈ R2np×2np that satisfy
the following IQC

∫ T0

0

(
∆̃i(δ̃i)q̃i(t)

q̃i(t)

)T
Pi

(
∆̃i(δ̃i)q̃i(t)

q̃i(t)

)
dt ≥ 0 (3.2)

for all q ∈ L2[0, T0], T0 ∈ R+, ∆̃i ∈ ∆̃i and i = 1, . . . , Nc.

The matrix Pi for a specific i is a so called multiplier. It allows to describe
mathematical properties of the uncertainty block ∆̃i. The set Pi needs to be
further classified in order to describe specific type of uncertainties. Because the
class ∆̃i is convex, it can be expressed as a convex combination of generators
δ̃j(i), j = 1, . . . , 2np . Then, as shown in Chapter 2, we can describe ∆̃i by means

of classifying the sets Pi by the symmetric matrices Pi that satisfy the following
finite number of inequalities

(
I
0

)T
Pi

(
I
0

)
� 0 (3.3)

(
∆̃i(δ̃

j
(i))

I

)T
P

(
∆̃i(δ̃

j
(i))

I

)
� 0, i = 1, . . . , Nc j = 1, . . . , 2np (3.4)
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In fact, (3.3) and (3.4) imply also (3.2), see Sections 1.3 and 2.2.2. In this
case, matrices Pi, i = 1, .., Nc are then constant full block multipliers describing
bounded and time-varying real parametric uncertainties. Also notice that imposing
structure and dynamics in the matrices Pi, other types of uncertainty can be
described as shown in Polat and Scherer (2012), which can be exploited in future
works. Once we characterize the uncertain sets ∆i by Pi, we will describe the
performance criterion used here.

We have chosen the performance criterion based upon the L2 gain of the mapping
from disturbance channels w̃ to the performance channels z̃ as is customary in
model-based H∞ control, e.g., see Skogestad and Postlethwaite (2005). The L2

gain from w̃ to z̃ can be expressed as:

sup
06=w̃∈L2

||z̃||2
||w̃||2

< γ, (3.5)

in which γ can be interpreted as a worst-case gain from the disturbances w̃ to the
performance signals z̃. Therefore, instantaneous responses that can be felt by the
operator have a direct effect on the performance criterion. This makes the L2 gain
a suitable performance criterion for teleoperation systems. The L2 gain can be
expressed in a standard form as a quadratic performance criterion:

∫ ∞

0

(
w̃(t)
z̃(t)

)T
Pp

(
w̃(t)
z̃(t)

)
dt < 0 forall 0 6= w̃ ∈ L2, (3.6)

with

Pp =

(
−γ2I 0

0 I

)

The standard form to describe performance in Eq. (3.6) allows the use of other
quadratic performance criteria via Pp, see,e.g., Section 1.3 and Scherer and Weiland
(2000). To keep the generality of the theory used here, we will use the symbol Pp
to describe our specific performance criterion.

We proceed with the LMI-based switching robust controller design such that the
closed loop is robustly stable and satisfies the performance specifications. The
robust control synthesis concepts are adapted from Scherer and Weiland (2010).

Switching robust control synthesis using a common Lyapunov function

First, we describe a general framework to design switching robust controllers, then
in Section 3.2.3 we provide a more specific framework of the control design applied
to the bilateral teleoperation problem.
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We introduce the shorthand notation for the closed loop matrices

G̃i(s) ? Kci(s) =



Ai B(i)1 B(i)2

C(i)1 D(i)11 D(i)12

C(i)2 D(i)21 D(i)22


 , i = 1, . . . , Nc (3.7)

obtained by closing the loop in Fig. 3.7 with the controller Kci, such that the
obtained system has as inputs the vector col(p̃i, w̃), and as outputs the vector
col(q̃i, z̃).

Initially, assume we have certain Kci(s) that achieves nominal stability for each
∆i for i = 1, . . . , Nc. That is for when r = 0. Moreover, let Pi, i = 1, . . . , Nc be
the sets of symmetric matrices Pi that satisfy conditions (3.3) and (3.4);
Theorem 3.1. The closed loop systems G̃i(s) ? Kci(s) with r ∈ (0, 1] shown in
Fig. 3.7 are robustly stable for all ∆̃i ∈ r∆̃i with robust quadratic performance
characterized by Pp if there exist a symmetric matrix X and matrices Pi ∈ Pi

such that (3.3), (3.4),
X � 0 (3.8)

and

(
?

)T



0 X 0 0
X 0 0 0
0 0 Pi 0
0 0 0 Pp







I 0 0
Ai B(i)1 B(i)2

0 I 0
C(i)1 D(i)11 D(i)12

0 0 I
C(i)2 D(i)21 D(i)22



≺ 0 (3.9)

holds for i = 1, . . . , Nc. Moreover robust stability and quadratic performance are
also achieved for arbitrary fast switching between the uncertain closed loop systems
r∆̃i ? G̃i(s) ? Kci(s) for i = 1, . . . , Nc.
Remark 3.2. The point of Theorem 3.1 is that all closed loop systems G̃i(s) ?
Kci(s) share a common quadratic Lyapunov function V (x) = xTXx. This means
that the overall switched system is globally stable under arbitrary fast switching
between all Nc controllers (see Liberzon (2003)). Moreover, the resulting switching
is smooth because there are not discontinuities in the obtained Lyapunov function.
Thus, the design of the Kci controllers can be linked to ensure robust stability and
quadratic performance under switching of controllers and for all ∆ ∈∆, assuming
that each controller is active in its own uncertainty region of operation.
Remark 3.3. Theorem 3.1 allows to do analysis of robust performance of the
system given the controllers Kci(s), i = 1, . . . , Nc. Then all the involved condi-
tions are LMIs. However, in the case of controller synthesis, there is an issue. In
(3.9), the outer factors involving the state-space matrices of Kci(s) multiply the
blocks of the multiplier Pi involving unknown variables rendering the constraint a
BMI. However, by means of the transformations that have been given in Scherer
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and Weiland (2010); Masubuchi et al. (1998); Scherer. et al. (1997), it is possi-
ble to make (3.9) an LMI when either Pi or (Aci, Bci, Cci, Dci) are fixed. More-
over, (Aci, Bci, Cci, Dci) matrices also multiply each other, hence a linearization is
needed. Fortunately, this can be avoided with a Schur complement argument. In
Chapter 2 it is shown how to perform such linearization for one controller. This
procedure can be expanded to the multi-controller case in a straightforward way.

Initially, we have neither a controller nor a multiplier by which the constraints are
satisfied. Hence one typically starts with the nominal system Gnom = 0p̃iq̃i?G̃i, i =
1, . . . , Nc (which is an upper LFT and equivalent to removing the uncertainty chan-
nels). Then we design a nominally stabilizing controllers Kci(s), i = 1, . . . , Nc de-
noted by Kcnom with certain performance level, utilizing equations in Theorem 3.1
after removing the columns and rows corresponding to the uncertainty channels.
As mentioned in remark 3.3, extra transformations are needed to arrive to LMI’s
that allow to design the controller parameters, mainly two steps are needed, first
a congruence transformation is used to arrive to transformed parameters and sub-
sequently a linearisation lemma is applied. The necessary procedure is illustrated
in Chapter 2 (see also Scherer and Weiland (2010)) for one controller and can be
expanded to the multi-controller case in a straightforward way. After having com-
puted a nominal controller Kcnom, it is possible to search for feasible multipliers
via Theorem 3.1. Obviously, we can not expect a robust stability certificate from
the initial controller Kcnom since there is no constraint enforcing it. Thus, we
need to first scale down the uncertainty size with small r to the level that Kcnom

robustly stabilizes the system. Then by a line search over the feasible uncertainty
size via the scaling factor r ∈ (0, 1], we obtain feasible stability multipliers Pi.

Clearly, we assume the existence of a nominal controller that provides an initial
condition for the first iteration that will not lead to a local minimum very close
to r = 0, which in practice is actually the case. To summarize, we start with the
design of a nominal controller. Then, we iterate the following steps:

� for fixed controllers Kci, maximize r using the bisection algorithm and get
the multipliers Pi, while minimizing γ, keeping γ < γ̄, for a certain γ̄.

� for fixed Pi matrices, maximize r using the bisection algorithm and get the
controllers Kci while minimizing γ, keeping γ < γ̄, for a certain γ̄.

� Once r = 1 is achieved, we iterate the two previous steps and on each the
performance level γ is minimized until no further progress can be made.

The value γ̄ is introduced such that at the initial steps of the iterative synthesis
procedure we allow γ to be large, in order to avoid local minima around small values
of the uncertainty scaling r, and then, after reaching r = 1, we minimize γ. Details
on the iterative procedure are given in Appendix B, from which we have used the
version II of the iterative procedure. As a final remark, we emphasize that the
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Figure 3.8: Uncertainty regions ∆i of a switching robust controller.

resulting controllers obtained by this methodology do not have a specific internal
structure. Thus, typically full matrices Aci, Bci, Cci and Dci, for i = 1, . . . , Nc are
obtained, which results in controllers that use all combinations of the measured
inputs to compute the actuation outputs.

3.2.3 Tailor-made solution for bilateral teleoperation

In order to apply the procedure presented in Section 3.2.2 to our design case, we
need first to select the partition of the uncertainty set ∆ =

{[
kh 0
0 ke

]
| kh ∈ [kh, k̄h],

ke ∈ [ke, k̄e]
}

.

We consider adaptation of the controller to changes in ke. This because we are
interested in a large range of variation in ke. Moreover, from the operator modeling
we found that kh varies in a more limited range. Next, define the uncertainty
blocks ∆i such that ∆i =

{[
kh 0
0 kei

]}
for i = 1, . . . , Nc and ∆i ∈ ∆i, where the

class ∆i =
{[

kh 0
0 kei

]
: kh ∈ [kh, k̄h], kei ∈ [kei, k̄ei]

}
and ∆ ⊆∆1 ∪ . . .∪∆Nc . The

distribution of regions ∆i is illustrated in Fig. 3.8. In view to the nomenclature
used in Section 3.2.2, we have that δ(i) = col(kh, kei), i = 1, . . . , Nc. For a better
illustration and readability, we will make use of the parameters kh and kei, the
corresponding vector δ(i) can be constructed at the moment that the synthesis
procedure is implemented.

Next, the overlapping between the regions will be exploited later to avoid chatter-
ing behavior and to guarantee robustness to uncertainty in the estimation of ke.
We assume that

ke = ke1 < ke2 < k̄e1 < ke3 < k̄e2 < . . . < k̄eNc = k̄e

Next, we still need to define all kei and k̄ei. There is a lot of flexibility in this
respect, here we present a distribution in which only Nc and k̄e1 are tunable
parameters, however other choices can be made.
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Figure 3.9: Overlapping of two adjacent uncertainty regions.

First, we define the ranges ∆kh and ∆kei as the projection of the uncertainty
regions ∆i on the parameters kh and ke respectively. In this case ∆kh = {kh : kh ∈
[kh, k̄h]

}
and ∆kei =

{
kei : kei ∈ [kei, k̄ei]

}
.

Next, we define the amount of overlapping between ranges ∆kei sufficiently large
to make the system robust to noise and uncertainty in the estimation of ke. To
illustrate this, consider that the estimate k̂e of ke is given by:

k̂e = ke ± ε(ke) + η(ke) (3.10)

where ε(ke) represents the magnitude of the uncertainty in k̂e and η(ke) represents
the zero-mean noise signal in the estimation such that |η(ke)| < ηc for ke ∈ [ke, k̄e].
Note that ε and η can possibly depend on ke. Next, to guarantee robust perfor-
mance of the whole switching system, consider the overlapping section in the ke
axes of two adjacent regions ∆i, ∆i+1 as depicted in Fig. 3.9, where

kei+1 ≤ k̄ei − 2ε(k̄ei)− 2ηc (3.11)

and it is assumed that ε(k̄ei) > ε(kei+1).

ε(k̄ei) accounts for the uncertainty in the estimation and the introduced hysteresis
gap with size 2ηc avoids chattering behavior due to noise. Then, if the switching
from region i to a higher indexed region is taken when k̂e > k̄ei − ε(k̄ei) and

the switching from region i + 1 to a lower indexed region is taken when k̂e <
kei+1 + ε(k̄ei), considering that Eq. (3.10) holds, robustness against uncertainty

and noise in k̂e is guaranteed.

Now, we need to apply a transformation to the parameters such that the scaling
r = 0 correspond a the nominal case ∆i(δ

Nom
(i) ) ∈∆i. Therefore, the uncertain pa-

rameters kh and kei are transformed to new uncertain parameters k̃h, k̃ei, thus the

new uncertainty block is given by ∆̃ =
[
k̃h 0

0 k̃ei

]
, for which the synthesis procedure

is applied.

Such transformation needs to have linear representation so it can be incorporated
into the augmented generalized plant via T∆i

. We consider a transformation from
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ke1 to k̃e1 ∈ [0, 1] as follows:

k̃e1 =
ke1 − ke
k̄e1 − ke

(3.12)

One can show that the nominal case k̃e1 = 0 correspond to kNe1 = ke and that
k̃e1 ∈ [0, 1] is mapped back to ∆ke1 =

{
ke1 : ke1 ∈

[
ke, k̄e1

]}
, i.e. we fix ke1 = ke.

For kh we use a similar transformation.

Now, for kei, i > 1 we use the transformation from kei to k̃ei ∈ [−1, 1]:

k̃ei =
1

rd

(
kei/k

N
ei − 1

kei/kNei + 1

)
(3.13)

where kNei is the untransformed nominal value corresponding to k̃ei = 0 and 0 <
rd < 1 is a parameter. One can show that k̃ei ∈ [−1, 1] is mapped back to

∆kei =

{
kei : kei ∈

[
1− rd
1 + rd

kNei ,
1 + rd
1− rd

kNei

]}
(3.14)

We see that kei(rd, k
N
ei ) and k̄ei(rd, k

N
ei ). Now, connecting Eq. (3.14), Eq. (3.11),

the parameters of the environment ke, k̄e, specifications of the estimator ε(ke), ηc,
and predefining k̄e1, Nc, it is possible to compute kNei and rd. Thus in the following
we summarize the synthesis tuning procedure.

First, we set ke1 = ke. Then, we specify k̄e1, which can be used as a tuning
parameter. Next, using Eq. (3.11), we can compute ke2(ke, ε, ηc), which can be
replaced in Eq. (3.14) to find then for any i > 1: kNei (rd, ke, ε, ηc), kei(rd, ke, ε, ηc)
and k̄ei(rd, ke, ε, ηc). Then, rd can be computed if we define a priori the number of
controllers Nc, given that k̄eNc

(rd, ke, ε, ηc) = k̄e. This function is non-linear but
can be numerically solved using for instance a bisection algorithm. Now, combining
all transformations, then the corresponding transformation matrices are:

T∆1
=

(
0 diag(k̄h − kh, k̄e1 − ke1)
I diag(kh, ke1)

)

and

T∆i =

(
diag(0, kNei ) diag(k̄h − kh, rd)
diag(1, kNei ) diag(kh, 2rd)

)
, i = 2, . . . , Nc

Hence, all what is left, is to use the synthesis process described in Section 3.2.2 for
the transformed uncertainty ∆̃, which in turn will guarantee robust performance of
the overall system for the whole uncertainty set ∆ =

{[
kh 0
0 ke

]
: ke ∈ [ke, k̄e], kh ∈

[kh, k̄h]
}

and uncertainty and noise in the estimate k̂e.
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Figure 3.10: Estimator with Change Detection

As a final remark, we emphasize that transformation in Eq. (3.13) serves just as
a way to distribute the regions when Nc > 2 with a reduced number of tuning
parameters. However other choices can be explored, for example manually dis-
tributing the regions a priori and then using transformation in Eq. (3.12) for all
parameters.

3.2.4 Environment estimation

To be able to implement the proposed switching robust control, we need a mecha-
nism that tells the controller when to switch from Kcj(s) to Kci(s) on the basis of
changes (possibly rapid and sudden) in the environment stiffness ke. In this thesis,

we make use of an estimator that provides an estimate k̂e of ke. Such estimate is
used in the way illustrated in Section 3.2.3 to determine when to activate certain
controller Kci(s).

Particularly, the estimator needs to be able to deal with abrupt changes of the envi-
ronment stiffness in order to schedule the different controllers Kci(s), i = 1, . . . , Nc
correctly. To this end, we have chosen one estimator proposed in Gustafsson (2000)
(see page 25), the structure of which is shown in Fig. 3.10. The working principle
of this estimator is as follows: the filter block processes the discrete inputs uk and
outputs yk of a system described by a model (in our case an environment model)

to get an estimate θ̂k of certain parameters θk (the parameters of our environment
model). Then, the signal εk is used to detect abrupt changes in the parameters
and under certain criteria, the detector block sends an alarm to the filter to adapt
quickly to the changes. Following the guidelines in Gustafsson (2000), the different
blocks are described below.

Environment model as a linear regression model

The environment model selected here is given as

fme(t) = ke(t)xs(t) + f∗e (t) + fen(t)
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where fme denotes the measured environment force. If we sample the previous
model at discrete time instants denote by k, then the environment model equation
can be incorporated into the discrete version of a standard linear regression model
given by:

yk = ϕTk θk + ek

where ek = fen(k), yk = fme(k), the parameter vector is then θk = col(ke(k), f∗e (k))
and the so called regression vector ϕk is given by ϕk = col(uk, 1) with uk = xs(k).

The linear regression model can be interpreted as the measurement equation in a
discrete state space model,

θk+1 = θk + vk

yk = ϕTk θk + ek

where vk is the parameter noise and Qk = Cov(vk) and Rk = Cov(ek). Note that
the variation in the parameter θ is embedded in the signal vk, also known as the
innovation signal.

Filter

Having such state model, we can utilize a Kalman filter to get an estimate θ̂k =
col(k̂e(k), f̂∗e (k)) of the parameter vector θ (see Gustafsson (2000), page 142).
This results in a Kalman filter for linear regressions, which is implemented in its
recursive form as follows:

ϕk = col(uk, 1)

Kk =
Pk−1ϕk

Rk + ϕTk Pk−1ϕk

Pk = Pk−1 −
Pk−1ϕkϕ

T
k Pk−1

Rk + ϕTk Pk−1ϕk
+Qk

θ̂k = θ̂k−1 +Kk(yk − ϕTk θ̂k−1)

εk = yk − ϕTk θ̂k

where Rk is taken as 1 without loss of generality and Qk is a design parameter
that determines the speed of converge of the filter. Large values of Qk make the
filter to react faster but also the estimate will have more noise. The variable εk
is the error between the actual measurement and the reconstructed measurement
obtained with θ̂k.
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Detector

The detector block is defined as a threshold function in order to decide when to
make the filter to react fast. Thus, when |εk| < L|εk|, no alarm is generated and we
use Qk = Qnom. When |εk| ≥ L|εk|, it means that ŷk has deviated too much from
the true measurement and the filter must adapt rapidly to the new environment
by setting Qk = Qfast.

Therefore, the estimator is tuned via L|εk|, Qnom and Qfast. This tuning is es-
sential to be able to detect abrupt changes fast enough to schedule on time the
controllers of the multi-controller structure. The next step in the design is then
to translate the specifications via weighting filters W and V .

3.2.5 Weighting filter design

In robust control design it is customary to implement frequency dependent weights
on the performance channels (see Fig. 3.7). The filters V and W are block diagonal
transfer matrices emphasizing the frequency band in which we want the particular
channel to be penalized. Thus V = diag(Vf∗h , Vf∗e , Vfhn

, Vfen , Vxmn , Vxsn) and W =
diag(Wfh−fe ,Wxm−xs

,Wfm ,Wfs). Ideally, one wants to have fh − fe = 0 and
xm − xs = 0. In this case we would get perfect transparency, but as is known,
this type of design is unrealistic and has poor stability properties. Instead, it is
desirable to relax such a strict requirement by appropriate choices of V and W .

Instead we are interested in forcing the force and position tracking errors such that
in frequency domain |Fh(ω)−Fe(ω)| < γ|Fw(ω)| and |Xm(ω)−Xs(ω)| < γ|Xw(ω)|,
where Fh(ω), Fe(ω), Xm(ω), Xs(ω) are the Fourier transform of fh, fe, xm,xs re-
spectability, Fw(ω) and Xw(ω) represent the desired level of force and position
tracking in the frequency band of interest and γ > 0 is as small as possible. We as-
sume |Fw(ω)| > 0 and |Xw(ω)| > 0 sufficiently small at low frequencies to achieve
force and position tracking for sufficiently slow varying forces and positions. This
will lead to a desired level of performance in the frequency range in which the hu-
man operator performs movements. On the other hand, we need to have feasible
control action with magnitude bounded forces fm, fs and a reduced amplification
of disturbance w to z at high frequencies. This to avoid saturation and the excita-
tion of high frequency dynamics. These requirements are translated into the filters
W and V which are shaped accordingly. Thus we put more weight at frequencies
where we want to lower the L2-gain. We translate the performance specifications
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by defining the following filters:

Wfh−fe(s) =


cs1

s

ωbw
+ 1

s

ωbw
+ clf1




2

Wxm−xs(s) = cxscs2

s

ωbw
+ 1

s

ωbw
+ clf2

Wfm(s) = Wfs(s) = cs3

s

ωlp
+ 1

s

ωr
+ 1

Vf∗h = Vf∗e = cs4

Vfhn
= Vfen = cs5

Vxmn = Vxsn =
cs6
cxs

Typical shapes of the magnitude-bode plots |1/Wxm−xs(iω)| (which has a similar
shape as |1/Wfh−fe(iω)|) and |1/Wfm(iω)| (which the same shape as |1/Wfs(iω)|)
are shown in Fig. 3.11.

ωbw defines the desired closed-loop bandwidth, ωlp defines the desired bandwidth
of the actuation force signals. With the values clf1, clf2 we put a limit to Wfh−fe
and Wxm−xs at low frequencies. This also ensures the filters Wfh−fe and Wxm−xs

to be stable. Stability of all filters is necessary to ensure that a stabilizing controller
Kc exists for the guaranteed plant. A second order filter was selected for Wfh−fe
to increase the tracking performance obtained in practice. On the other hand
for Wxm−xs

a first order filter was sufficient. To avoid non-causal Wfm and Wfs ,
we inserted high frequency poles at ωr. Moreover, cxs is used to scale penalties
on positions with respect to penalties on forces. This makes the magnitude of
positions and forces numerically comparable. To keep the tuning more intuitively,
cxs is designed independently and it is not integrated to cs2 in Wxm−xs

. Finally,
cs1, . . . , cs6 are scaling constants that are used for further tuning.

3.3 Switching robust control applied to a 1-DoF aca-
demic setup

To demonstrate the potential of our approach, in this section we provide synthesis,
simulations and experimental results of a teleoperation system using a switching
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Table 3.1: Numerical parameters

m′m = 0.7× 10−3 m′s = 0.84× 10−3 kg m2/rad
b′m = 1.44× 10−1 b′s = 1.17× 10−1 N m s/rad
k′m = 0.20 k′s = 0.14 N m/rad
mh = 0.123 me = 0 kg
bh = 7.41 be = 0 N s/m
kh ∈ [1131.3,2751.1] ke ∈ [80,20000] N/m
ωph = 211.9 ωzh = 86 rad/s
zph = 0.62 −

robust controller. The procedure is applied to the experimental setup described in
Appendix A. Using frequency response measurements, the parameters of second
order models for the devices are identified. Those parameters are listed in Table
3.1. In the same table we show the parameters of operator and environment
dynamics computed at the end-effector. We have selected ke ∈ [80, 20 000] N/m
because we aim to guarantee performance and stability for environment stiffness
values in a wide range.

On the following subsections the tuning of synthesis procedure is illustrated, sub-
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Figure 3.11: Magnitude bode plots of 1/Wxm−xs
and 1/Wfm .
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Table 3.2: Achieved L2 gain γ for different Nc and k̄e1. For Nc = 1, k̄e1 = k̄e =
20 000 N/m

k̄e1 Nc = 1 Nc = 2 Nc = 3

2000 37.6099 8.5254 10.7056
2500 37.6099 7.9688 7.0874
3000 37.6099 11.6333 14.4165
3500 37.6099 10.1025 24.5288
4000 37.6099 8.3862 17.6172
4500 37.6099 9.4531 29.2603
5000 37.6099 30.1880 17.1069

sequently simulations and experiments are carried out for different cases of fixed
and time-varying environment stiffness.

3.3.1 Synthesis results

The first step is to select the numerical parameters of the weighting filters. The
tuning procedure is an iterative process. Because this step was already performed
in Chapter 2 for the 1-DoF academic setup utilized here, we use the same numerical
parameters. Then, we set ωbw = 2π×10 rad/s as the desired closed loop bandwidth.
The actuation forces fm, fs were penalized from 60 Hz and beyond, hence ωlp =
2π × 60 rad/s. We set clf1 = clf2 = 10−2 and ωr = 2π × 500 rad/s. For the rest
of the scaling factor, we use cxs = 31.6, cs1 = 0.56, cs2 = 0.5, cs3 = 0.4 cs4 = 1,
cs5 = 0.5 and cs6 = 0.25. Next, the environment estimator parameters ε(ke) and
ηc are selected to be ε(ke) = 0.1ke and ηc = 200 N/m. This gave sufficient overlap
between uncertainty regions during the experimental phase.

In order to explore the flexibility offered by the number of controllers Nc and
maximal bound k̄e1 of controller Kc1 on the achieved performance index γ, we
performed the synthesis procedure for different Nc and k̄e1. As described at the
end of Section 3.2.3, for the synthesis of each set of controllers, at the initial steps
of the iterative synthesis procedure we allow γ to be large. This is achieved with
the condition γ < γ̄, with γ̄ = 100, in order to avoid to some extent local minima
around small values of the uncertainty scaling r. Then, after reaching r = 1,
γ is minimized. The results for different Nc and k̄e1 are illustrated in Table 3.2.
Because we are interested in wide range of environments only, note that for Nc = 1,
k̄e1 is fixed to k̄e1 = k̄e = 20 000 N/m.

No hard conclusions can be made here because the synthesis procedure is non-
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convex, therefore there is no guarantee to achieve the global optimum during the
controller design. Nevertheless, the results shows that indeed the proposed switch-
ing architecture leads to improved performance during the synthesis in comparison
to a single LTI robust controller. We see that adding one extra controller, i.e.
Nc = 2 is enough to achieve a considerable increase of performance. Nc = 3 led
to the best γ for k̄e1 = 2500 N/m. Nevertheless, for all the k̄e1 tested, on average
γ is better for Nc = 2 than for Nc = 1 and Nc = 3. The latter case can be due
to the fact that an increase in the number of controllers increases the numerical
complexity as well, thus it is more likely that the solver face numerical problems
in some of the intermediate steps, for instance on finding a suitable gradient to
find a sub-optimal.

3.3.2 Simulation results

For simulation purposes we compare the results from the LTI Robust Controller,
hereafter referred as the RC, and a Switching Robust Controller, hereafter referred
as SRC. We selected the SRC with he best achieved γ during the synthesis pro-
cedure, i.e. the one corresponding to Nc = 3 and k̄e1 = 2500 N/m in Table 3.2,
hereafter referred as SRCN3.
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Figure 3.12: Time domain responses from simulations of interaction with different
springs at xs > 0, using a single Robust Controller (RC). Transient Parts (TP)
and Permanent Contact Part (PCP) are illustrated.
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In order to test the controllers, we simulate a scenario in which an operator manip-
ulates the system with the slave device in free-air and then gets in contact with a
spring located at xs > 0. Then after some periodic movements the operator comes
back again to the slave in the free-air situation. As an example of such scenario
consider the top-left plot in Fig. 3.12,

where we used f∗h = 9(1 + tanh((t− 1.5)/0.2)) + 4(cos(2πt)− 1)− 9(1 + tanh((t−
3.5)/0.2)) N and kh = 1131.3 N/m for the operator. The Transient Parts (TP)
correspond to time slots where there is a transition between free air and contact
with the spring or vice-versa. The Permanent Contact Part (PCP) is a time slot
after the TP has passed and periodic movements are performed while being in
permanent contact with the spring.

We then simulate the closed-loop system for three different springs ke = 900 N/m,
ke = 4000 N/m and ke = 20 000 N/m. Initially we simulate the system using the
RC, the corresponding time domain signals of positions and forces are presented
in Fig. 3.12. From the TP one can see that the controller is robust to sudden
changes in the environment. This is in accordance with the results in Chapter 2
in which a single RC was also designed. From the PCP, on one hand we observe
that force tracking is achieved for all cases with slight decrease for the low stiff
environment. On the other hand, the position tracking performance of the RC
is noticeably degraded. The magnitude of xm is larger than the one of xs. As a
consequence, the operator perceives a lower stiffness in comparison with the real
environment stiffness. This can be observed from force versus position plots on the
environment and operator sides as in the left plot of Fig. 3.13, where for illustrative
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Figure 3.14: Time domain responses from simulations of interaction with different
springs at xs > 0, using a Switching Robust Controller (SRC) with Nc = 3. y-axis

of the k̂e-plots are zoomed-in for illustration purposes.

purposes, the forces and positions plots are shifted such that all the plots had the
(0, 0) point in common. The slope of the fe versus xs plots represent the stiffness
of environment and the slope of the fh versus xm plots represent the stiffness being
felt by the operator.

Subsequently, the SRCN3 is simulated. The environment estimator described in
Section 3.2.4 is implemented and tuned according to the guidelines in Gustafsson
(2000). For simulation purposes we use the following parameters; L|εk| = 0.2 N,
Qfast = diag([107, 10]) and Qnom = diag([1, 10−5]). The time domain responses

of the whole system are depicted in Fig. 3.14, where the y-axis of the k̂e-plots are
zoomed-in for illustration purposes.

First, we observe that the chosen environment estimator is indeed capable to follow
rapid and sudden changes in the environment, which allows to schedule the correct
controller. Next, from the TP we see that the switching takes place smoothly in all
cases, because all controllers of the SRCN3 share a common Lyapunov function.
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Table 3.3: Orthogonal linear regression analysis results to evaluate stiffness reflec-
tion in the simulations. kr is the estimated stiffness and dr is the mean distance of
the estimated line. Between brackets the percentage of the environment stiffness
that is reflected to the operator is shown.

Parameters Units Env. Operator
RC SRCN3

kr N/m 900 795 (88%) 746(83%)
dr × 10−4 - 0 4.2 0.04

kr N/m 4000 2876 (72%) 3492(87%)
dr × 10−4 - 0 0.58 0.96

kr N/m 20000 8153 (41%) 13930 (70%)
dr × 10−4 - 0 0.35 0.98

Finally, from the PCP we can observe that both position and force tracking are
improved with respect to the RC, especially noticeable in the position tracking.
Force versus position plots are illustrated in the right plot of Fig. 3.13. When
using the RC in an environment with low stiffness, from the figure one can observe
a noticeable hysteresis-like effect in the perceived dynamics by the operator. Such
effect can be seen as dynamics on top of a pure stiffness, which are expected to
appear in the figure as straight lines as it is the case for the environment stiffness.
Such dynamics can be caused by the damping injected by the controller, causing a
phase difference between the position and force signals in the operator side. Thus,
the less deviation from a straight line in the figure the closer is the resemblance
with a pure stiffness. In that respect, for low stiffness the SRCN3 presents a great
improvement. In order to make a better evaluation of the results in Fig. 3.13, we
performed an orthonormal regression in order to fit straight lines to each of the
force versus position plots presented in the figure. The orthonormal regression
optimization uses the sum of the square of the distances of the points to the
fitted line as a function cost. From the regression we can obtain the fitted line
slope kr and the mean distance dr to the fitted line. kr indicates the estimated
stiffness and dr gives a rough indication on the amount of dynamics on top of
that stiffness. The results are shown in Table 3.3. For low stiffness, the RC
presents a better reflected stiffness than the SRCN3, however, as indicated before,
the hysteresis-like effect is much larger than with the SRCN3, which worsens the
overall operator’s perception of the soft spring. Regarding the results for the
other two virtual springs, the SRCN3 has a better stiffness reflection than the RC.
Though the amount of reflected dynamics are less with the RC. This discrepancy
in the behaviour of the controllers is a result of the synthesis optimization, which
aims to minimize the L2 gain from disturbance to performance variables (including
tracking error) of the overall system under the presence of uncertainties. In this
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the three LTI controllers of the SRCN3.
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particular case, the SRCN3 introduces higher phase difference between the force
and position signals of the master and slave sides for higher values in ke. This still
resulted in a more optimal controller in terms of the γ value. In turn, from the
simulations and the respective analysis, one can see that the improvement of the
L2 gain of the system yielded better environment stiffness reflection.

As pointed out in Section 3.2.2, the obtained MIMO controllers and their corre-
sponding SISO components do not have a specific structure like those of typical
PID controllers. Instead, the obtained controllers are “full” controllers in the sense
that they have components corresponding to all combinations of the available in-
puts and outputs. Because of this lack of structure, from the different controllers
and their realizations it is not straightforward to determine specific parameters
like proportional gains, damping, etc. Consider the bode plots of the RC and the
LTI controllers of the SRCN3 depicted in Fig. 3.15. For illustration purposes, we
have only used the position input channels. In general, one can see that the Kci,
i = 1, . . . , 3 of the SRNC3 present higher gains than the RC, which in general re-
sults in a better tracking performance. Interestingly, the SRCN3 controllers have
a change in sign with respect to the RC in the channels involving fm and xm, xs.
Moreover, in the component from xm to fs of the RC, the phase decreases while
the gain increases, which correspond to non-minimum phase behaviour of the cor-
responding component. These kind of designs are not intuitive and they are the
result of the underlying numerical optimization. Finally, the difference among the
Kci, i = 1, . . . , 3 seems not to be too large. This suggests that it could be possible
to find a single controller using a similar strategy as the one used to find the SRC.
For instance, in future works one can explore the use of a single controller but still
partitioning the uncertainty region during the synthesis procedure.

3.3.3 Experiments

In this section, we validate the simulation results with experiments on a physical
setup. We test three different environments shown in Fig. 3.3; a soft spring with
stiffness ke≈ 850 N/m, one stiff foam with ke≈ 6000 N/m and a metallic rigid block
to test hard contacts. They were placed below the end-effector of the slave device
as shown in Fig. 3.3.

Next, the environment estimator is re-tuned experimentally. This process can
be done without the SRC, for instance using a classical controller scheme like
position-position architecture. Using the guidelines of Section 3.2.4 we finally use
with the folllowing parameters; L|εk| = 0.9 N/m, Qfast = diag([108, 103]) and
Qnom = 0.5× diag([103, 10−2]).

Next, for implementation of the switching architecture we tested several SRCs.
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During the experimental phase we noticed that the output of the environment
estimator worsens for high values of stiffness, e.g. ke> 5000 N/m, having high
noise and uncertainty. This can be due to noise in the signals, for example be-
cause of quantization. Thus, we recommend to use switching boundaries within
ke < 5000 N/m. This made it difficult to differentiate between the uncertainty
areas in that range, thus making the switching structure to fail. However, for
stiffness values in the low and medium range, the environment estimator showed
satisfactory results. Moreover, note that accuracy is needed only around overlap-
ping regions, thus the SRC offers an advantage in that respect. On the other hand,
some of the controllers appear to excite un-modelled high-frequency resonance dy-
namics, causing high frequency vibrations, which rendered these controllers useless.
Based on those findings, we have selected the SRC corresponding to Nc = 2 and
k̄e1 = 2000 N/m in Table 3.2, hereafter referred as SRCN2, which still have an
largely improved performance in comparison with the RC.

For the experiments, we drove the system under similar operating conditions as to
the simulation part, i.e. Transient Parts and Permanent Contact Part. The time
domain response of the closed-loop system is shown in Fig. 3.16, where the y-axis
of the k̂e-plots are zoomed-in for illustration purposes. The environment estimator
works fast and with low noise for environment stiffness up to ke ≈ 5000 N/m. The
discrepancy for high stiffness values will be explained later on this section together
with the analysis of force versus position plots. By analysing the data of the time-
responses, one can compare the time when the slave enters into contact with the
environment and the time when the estimator switches to a fast convergence mode.
For the first two environment stiffness this time was approximately 60 ms and for
the hard contact this time was less than 10 ms. For all cases, after the fast mode
was active, the convergence time was less than 10 ms. In fact, for the hard contact,
the switch of controller took place within 15 ms after the slave device entered in
contact with the metal block.

From the estimator structure in Section 3.2.4 one can see that the estimates of
the environment stiffness k̂e and the exogenous environment force f̂∗e are simulta-
neously computed. In general, the accuracy and convergence of the parameters of
an estimator depend not only on the tuning but also on having a correct model.
Thus, the proposed estimator works well only for environments where stiffness is
the dominant phenomenon. In the experimental results, we can see that k̂e(k)
stays around an average value despite continuous movements. This is an indica-
tion that the parameters have reached convergence. Moreover, the estimations
accuracy was enough to distinguish between the different test springs, which is the
main goal of the use of the estimator in the multi-controller structure. A correct
tuning of the proposed estimator is important, this because a fast detection in the
changes allows to schedule the controllers on time. We emphasize that accuracy
is only needed to estimate which region of stiffness is active.
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Figure 3.17: Force versus Position plots from experiments of interaction with dif-
ferent springs during the PCP using the SRCN2. The larger the slope the larger
the stiffness.

During the TP, most of the transitions are made in a stable and smooth fashion de-
spite that the environment changes rapidly and the switching between controllers.
These results are in accordance with the obtained simulations results. Although
theoretically the controller is designed for ke up to 20000 N/m, the system re-
mained stable during the transition from free-air to the hard contact, showing
only a small overshoot. Moreover, the depicted response of the hard contact corre-
sponds to a soft hand’s grip of the end effector, for medium-hard grips transitions
with less overshoot were achieved.

Next, regarding the PCP, force and position tracking results are very similar to
those of simulations, despite that we implemented a controller with a slightly
increased γ. The results of the PCP are further analysed by plotting the forces
versus the positions at both master and slave sides as shown in Fig. 3.17. At
first sight, the stiffness reflected to the operator appears to be close to the real
environment stiffness for all test springs. The results are similar to those of the
SRCN3 shown in the right plot of Fig. 3.13. The main difference is that for the
soft environment, during the experiments of the SRCN2 the resemblance of a pure
stiffness on the operator side is less than in simulations of the SRCN3. This
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Table 3.4: Orthogonal linear regression analysis results to evaluate stiffness reflec-
tion from the experiment results. kr is the estimated stiffness and dr is the mean
distance of the estimated line. Between brackets the percentage of the environment
stiffness that is reflected to the operator is shown.

Parameters Units Env. Operator
SRCN2

kr N/m 835 743(88%)
dk × 10−4 - 0.51 2.96

kr N/m 6370 5641(88%)
dk × 10−4 - 0.76 0.81

kr N/m 141110 54458 (39%)
dk × 10−4 - 0.02 1.34

is also the case in simulations using the SRCN2 (not shown here). For a pure
environment stiffness, the discrepancy on the operator side is a result of a phase
difference between the force and position signals reflected to the operator. Such
phase difference is not directly minimized during the control synthesis. Instead,
the magnitude of the force and position tracking error is minimized. Thus, two
controllers can result in a similar system’s performance level γ but different phase
behavior between the force and position signals reflected to the operator. During
the experiments with the SRCN2, those added dynamics were slightly noticed,
being the stiffness still the main phenomenon felt by the operator. To quantify
the results in Fig. 3.17, a similar analysis as with the simulation results is done.
We performed an analysis of the experimental force versus position plots of the
PCP by fitting straight lines to them using an orthonormal regression. The results
of the analysis are displayed in Table 3.4. Because the stiffness of the soft spring
changes at xe > 5 mm, for that specific case we restricted the data to xe < 5 mm.
One can see from the table that a high percentage of the environment stiffness is
reflected to the operator for the soft spring and the stiff foam. Moreover these
percentages are also similar to those obtained in simulations of the SRCN3 (see
Table 3.3), which has a similar γ. For the hard contact, it seems that the reflected
stiffness is poor with only 39% of the original stiffness. However, the reflected
stiffness kr = 55 000 N/m is high enough to give the operator a realistic feeling of
a hard wall. Interestingly, for the stiff-foam and the hard contact, the environment
stiffness values in Table 3.4 are higher than those estimated by the environment
estimator, see Fig. 3.16. The reason is that high stiffness values result in lines
with high slopes. The environment estimator uses a least squares optimization,
which penalizes the deviation points to a line only in the force signal, making
it more sensitive to sensor noise for high values of stiffness. Thus, the stiffness
estimator accuracy is compromised for high stiffness values. Instead, the results in
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Figure 3.18: Weighted L2-gain performance analysis of the SRC2 for different
operator masses mh = αmN

h with mN
h = 0.123 kg.

Table 3.4 were obtained with an orthonormal regression which uses the distance of
the points to the fitted line, which makes this technique more accurate. Accuracy
for all environment stiffness values in the range of interest is not required in the
proposed multi-controller structure, being this property one of its main advantages.
An adequate estimation k̂e is only needed in the overlapping region between the
uncertainty sets ∆1 and ∆2. Thus, the recursive least squares method used by
the environment estimator still provides a good solution.

Now, the focus on this work was on improving the performance given that the
uncertainty description matches the experimental conditions. Thus, because the
modelling assumes a low operator mass, the former experiments were performed
trying to use only the operator’s hand as shown in Fig. 3.3. As soon as this oper-
ating conditions are kept, we drove the system in different ways but we could not
destabilize it. However, we experimented with other operator configurations in
which more muscles and therefore more mass is used. For those cases we observed
that the system presented unstable behaviour for transition to stiff environments.
The methodologies based on model, like the one here used, guarantee the required
performance under the explicitly modelled dynamics of the system. Thus for con-
ditions outside those considered during the synthesis process no a priori conclusion
can be made. Nevertheless, we can make an analysis on how the robust perfor-
mance of the system is affected as a function of the operator mass.

Consider Fig. 3.18 in which we make an analysis of the performance of the closed
loop system in Fig. 3.7, i.e. including weighting filters, as a function of k̄e, i.e. the
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maximal environment stiffness. The different plots correspond to different operator
masses mh = αmN

h as a function of the nominal operator mass mN
h = 0.123 kg

found in Section 3.2.1, the rest of the parameters remain unchanged. For the case
α = 1, as expected the system is robustly stable for all k̄e <= 2.0 kN/m. For α = 2,
no γ value was found for k̄e >= 1.5 kN/m, which means that robust performance
is not guaranteed in that region. Moreover for k̄e <= 1.0 kN/m a degradation in
performance is already noticeable. For α = 3 and α = 4, γ values were only found
for k̄e <= 5.0 kN/m and a trend in degradation of performance can be noticed as
the operator mass increases.

Finally, we give some indications on how the uncertainty description can be im-
proved to account a priori also for larger ranges of operator’s mass. It is desirable
to include the operator parameters ranging from zero up to the maximum of their
variation. This ranges from the case when the operator releases the device, up to
the case when a tight grip is performed under different arm-hand configurations.
However, there are two main challenges while doing so. On one hand, when the
parameters become zero, notice that the system becomes uncontrollable in terms
of performance because the controller has no more effect on fh. On the other
hand, the constant multipliers utilized here for uncertainty description takes into
account arbitrary fast time-varying parameters, thus it introduces too much con-
servatism if also the operator’s mass is made uncertain. The first issue could be
addressed by separating conditions for robust stability and for robust performance,
thus having two different uncertain parameter ranges for each of them. Reduction
of the conservatism in the second issue is possible via frequency-dependent, i.e.,
dynamic multipliers (Megretski and Rantzer (1997)), with which is possible to im-
posed bounds on the rate of variation of the operator’s parameters. These issues
will be topic of future research.

3.4 Conclusions

In this chapter we proposed a new approach towards control design for bilateral
teleoperation. We used a multi-controller structure in which several robust con-
trollers are scheduled according to an estimate k̂e of the environment stiffness. The
synthesis results demonstrated that with the proposed Switching Robust Con-
troller (SRC) we were able to improve the achieved performance in comparison
with the case when only a single LTI robust controller is used. Simulations and
experiments validated the synthesis results, the designed SRC achieved robust per-
formance for all the uncertainty region it was designed for, i.e. low mass operator
with time-varying stiffness and time-varying environment stiffness within a wide
range. Moreover, the switching among robust controllers was made in a stable and
smooth way, because they all share a common Lyapunov function.
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In the next chapter, we propose a similar multi-controller structure, in which sta-
ble switching among controllers is achieved without the requirement of a common
Lyapunov function.
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Chapter 4

Switching Robust Control via
Dwell Time Conditions

IN switching robust control, stable and smooth switching among con-
trollers will be guaranteed by the existence of a common Lyapunov func-

tion. In this chapter, we propose a method to further reduce conservatism
in the achievable performance of switching robust control synthesis for tele-
operation systems. In this approach multiple Lyapunov functions with a
special structure are introduced, which are linked by conditions of minimum
average dwell time switching among controllers. We show the advantage
of the proposed method by means of a control design synthesis for a 1-DoF
teleoperation system, and by means of simulations of the corresponding
closed loop system.

4.1 Introduction

Teleoperation systems are used to manipulate a remote environment by means
of a master and a slave device. Moreover, the use of haptic feedback can pro-
vide a feeling of tele-presence to the operator. It is desirable that the system
presents high performance, e.g. the operator feels as if he/she is manipulating
the environment directly, in a stable fashion. Nevertheless, the inherent trade-

This chapter is based on the following manuscript: López Mart́ınez, C. A., Molengraft, R.
v. d., and Steinbuch, M. (2014d). Switching robust control synthesis for teleoperation via dwell
time conditions. In 9th International Conference, EuroHaptics 2014, Versailles, France. Springer.
To appear online



102 Chapter 4 Switching Robust Control via Dwell Time Conditions

off between performance and (robust) stability represents a challenging problem
in designing controllers that meet an appropriate balance (Hokayem and Spong
(2006), Passenberg et al. (2010)). During many years the focus of the control
design was only on stability. Therefore, passivity (Niemeyer and Slotine (1991))
based methods have been widely used to design controllers that guarantee sta-
bility but performance is often not taken into account. Moreover, some of these
techniques are only applicable to Linear Time Invariant (LTI) systems, while, in
practice operator/environment dynamics are inherently time-varying and partially
bounded. Some works have explicitly addressed performance and stability while
incorporating those properties. For instance, Vander Poorten (2007) used virtual
shunt dynamics to put bounds on the maximum operator impedance. In Chapter 2
we have used a parametric model to include time variation and boundedness of
the operator and the environment dynamics. This allowed us to balance trans-
parency and stability during the control design process. We achieved a limited
robustness range of environment stiffness, not fully covering realistic conditions
in applications such as minimally invasive surgery, needle insertion, etc., in which
environment stiffness can vary from 83N/m for fat, up to 6902N/m for the ribcage
bone, see Bankman et al. (1990). Furthermore, hard contacts might be present for
example during collision between instruments. Therefore, it is desirable to further
increase the range of environment-related parameters for which performance and
stability can be guaranteed in order to cover the requirements of real-life surgical
conditions.

To increase the region of performance, one can think about estimating the en-
vironment stiffness and use such estimation to design a controller that adapts
accordingly. Willaert et al. (2010) and Cho and Lee (2009) use environment esti-
mation for bilateral teleoperation control. However they do not provide quantita-
tive information on the environment stiffness range in which robust performance
is achieved, or the achieved operating range is limited to soft environment stiff-
ness. Moreover, these works rely on unbiased, low noise and fast convergence of
the estimated environment stiffness, requirements which in practice are difficult to
meet simultaneously.

In Chapter 3 we proposed the use of switching robust control. We accounted for
uncertainty in the operator and environment dynamics as well as uncertainty and
noise in the estimation of the environment stiffness that is used for control schedul-
ing. The controllers were designed such that they share a common quadratic Lya-
punov function, which ensures stability under arbitrary fast switching between
them. This in fact adds conservatism since it is expected that consecutive switch-
ing between controllers does not happen infinitely fast. Therefore, to decrease
such conservatism, an average switching dwell time concept (Hespanha and Morse
(1999)) can be used. Its application to control synthesis poses a challenging prob-
lem due to non-linearity of the resulting conditions. Such a concept has been
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already used in Kruszewski et al. (2012) for robustness against time-varying de-
lays, and also in Lu et al. (2006) for LPV control of an aircraft. Based on the
latter work we propose an extension to the methods in Chapter 3, such that the
requirement of a common Lyapunov function is relaxed and we find conditions
for control synthesis that reduce the conservatism in the achievable performance.
This is the first time that conditions of average dwell time are used to synthesize
controllers in switching robust control for teleoperation systems. We validate the
proposed method by means of a control design synthesis for a 1-DoF teleoperation
system and we present simulations showing transition and contact with different
environments.

In Section 4.2 we briefly discuss the model of the 1-DoF teleoperation system and
we describe the framework for control synthesis of the proposed method. Sim-
ulations are presented and discussed in Section 4.3. Finally, in Section 4.4 the
conclusions are presented.

4.2 Adding control design flexibility via dwell time
conditions

4.2.1 Model of the teleoperation system for switching robust
control

Generalized plant

We use the same model as in Chapter 2 which is briefly discussed here. The model
consists of two subsystems, an operator/master-device pair and an environment/slave-
device pair. We consider master, slave devices and environments with mass-
damper-spring dynamics. For the operator’s arm model, we used the same model
as the one that is identified in Chapter 2. The model is described by an impedance
Zh(s), which consists of a mass-damper-spring system and a filter Qh(s) modeling
the operator’s arm-hand dynamics above 10 Hz. In such a model only the operator
stiffness kh is considered to be uncertain and time-varying. Therefore, ∆e = kh
represents the uncertainty block of the operator/master-device dynamics. Simi-
larly, only the environment stiffness ke is considered uncertain. Therefore, ∆h = ke
represents the uncertainty block of the environment/slave-device pair dynamics.

Subsequently, all different components are gathered and the teleoperation is mod-
eled using a so called generalized plant structure. The system model’s structure
is shown in Fig. 4.1, where q and p are the signals interfacing the uncertainty



104 Chapter 4 Switching Robust Control via Dwell Time Conditions
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Figure 4.1: Generalized plant.

block ∆, w the disturbances of the system, y the measured signals, u the actu-
ation signals, and z the performance signals. G contains all fixed parameters of
operator, master and slave devices. The controller Kc in this case represents the
controller to be designed. In the model, the operator stiffness kh and the en-
vironment stiffness ke are assumed to be uncertain, bounded and they are also
considered time-varying to account for more realistic behavior. Thus, the number
of uncertain parameters of the system is np = 2 and the vector of uncertain pa-
rameters is δ = col(δ1, δ2) with δ1 = kh, δ2 = ke. The uncertainty block is then

defined as ∆(δ(t)) =
[
kh(t) 0

0 ke(t)

]
, ∆ ∈∆, where

∆ =

{[
kh 0
0 ke

]
: kh ∈ [kh, k̄h], ke ∈ [ke, k̄e]

}
.

Please see Section 2.2.1 for details.

Augmented plant model for control design

Before introducing the model used for control design, first we discuss the main
idea of switching robust control for bilateral teleoperation presented in Chapter 3.
It consists of designing a specific number Nc of LTI controllers, in which the
controller Ki, i = 1, ...Nc has an uncertainty region ∆i of robust performance,
such that ∆ ⊆ ∆1 ∪ ... ∪∆Nc

. Each Ki is then activated in its corresponding

region ∆i based on an estimate k̂e of ke with possibly uncertainty and noise.

Thus, the uncertainty region ∆ is partitioned in Nc sub regions

∆i =

{[
kh 0
0 kei

]
: kh ∈ [kh, k̄h], kei ∈ [kei, k̄ei]

}

such that ∆ ⊆∆1 ∪ ...∪∆Nc
, for i = 1, ..., Nc as illustrated in Fig. 4.2. Based on

the figure, we define uncertainty vectors δ(i) = col(kh, kei), i = 1, . . . , Nc. Define
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k̄ei k̄ei+1k̄e1 k̄eNc = k̄ekei+1keike1 = ke keNc
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k̄h ∆1 ∆i ∆i+1 ∆Nc

Figure 4.2: Uncertainty regions ∆i of a switching robust controller.

also the uncertainty blocks ∆i(δ(i)) =
[
kh 0
0 kei

]
for i = 1, . . . , Nc such that ∆i ∈

∆i. Note that although ke is estimated, it is still considered as an uncertainty
on each sub-region ∆i. There is overlap between the regions to avoid incorrect
scheduling of controllers due to uncertainty and noise in the estimation of ke, e.g.
when a controller is activated in a region ∆i that does not correspond to it. We
consider that the estimate k̂e of ke is given by k̂e = ke± ε(ke) + η(ke) where ε(ke)

represents the magnitude of the uncertainty in k̂e and η(ke) represents a zero-mean
noise signal in the estimation whose magnitude is bounded, i.e. |η(ke)| < ηc for
ke ∈ [ke, k̄e]. The distribution of the regions is similar as in Chapter 3 and is
specified in more detail in Section 3.2.3.

Next, we need to augment the model shown in Fig. 4.1 in order to incorporate the
uncertainty partitions ∆i, i = 1, . . . , Nc and a more suitable form that is usable
for control design. Consider the model diagram presented in Fig. 4.3 in which we
have augmented and partitioned the model in Fig. 4.1 in Nc augmented generalized
plants G̃i. The different components of the augmented model are described in the
same way as in Section 3.2.2. We summarize the description as follows:

The blocks V and W are weighting filters described with stable LTI systems.
They allow to shape in frequency domain the desired system performance. See
Section 3.2.5 for details. w̃ and z̃ are weighted copies of w and z via predefined
filters V and W respectively. That is w = V w̃ and z̃ = Wz. δ̃(i) = col(k̃h, k̃ei), i =
1, . . . , Nc. are the transformed version of the parameters vectors δ(i). The specific

transformation is given in Section 3.2.3. ∆̃i(δ̃(i)), i = 1, . . . , Nc is the block di-

agonal concatenation of the parameters in δ̃(i). The vector q̃ and p̃ contain the

signals interfacing the new uncertainty block ∆̃. Thus p̃(t) = ∆̃(δ̃(t))q̃(t). The
variable r ∈ [0, 1] is a scaling factor that allows to scale down the uncertainty
blocks ∆̃i. This allows to perform an iterative process during the control design
in which one starts with the nominal case r = 0, i.e. no uncertainty, and final-
izes with an unscaled uncertainty set for r = 1. We will refer to a nominal plant
if r = 0. If r = 1 we have that ∆i(δi) equals the dashed block in the upper
part of Fig. 4.3. T∆i

: R2np×2np , i = 1, . . . , Nc are constant matrices that allow
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G

T∆i

∆̃i(δ̃(i))

r

W

Kci

Vw̃ z̃
w z

u y

qp

p̃i q̃i

G̃i

Figure 4.3: Set of generalized plants with weighting filters, uncertainty transfor-
mation and scaling. The dashed block in the upper part equals ∆i(δ) provided
r = 1.

to map one to one the uncertain parameter set ∆i to the transformed uncertain
parameter set ∆̃i. The transformations T∆i

allows to obtain nominal values of
∆i(δ

Nom
(i) ) ∈∆i for r = 0. The specific transformations from matrices T∆i,i=1,...,Nc

are given in Section 3.2.3. The blocks Kci, i = 1, . . . , Nc are then the LTI con-
trollers Kci(s) = Cci(Is − Aci)−1Bci + Dci, which we will identify by their state
space description by writing

Kci(s) =

[
Aci Bci
Cci Dci

]
, i = 1, . . . , Nc. (4.1)

One can derive a model of the generalized plant G̃i for i = 1, . . . , Nc. We denote
its state space representation by the following equation:




ẋp
q̃i
z̃
y


 =




Ai B(i)1 B(i)2 Bi
rC(i)1 rD(i)1 rD(i)12 rE(i)1

C(i)2 D(i)21 D(i)2 E(i)2

Ci F(i)1 F(i)2 0







xp
p̃i
w̃
u


 , i = 1, . . . , Nc

Uncertainty and performance description

Similarly as in Chapter 2, we will use a specific class of Integral Quadratic Con-
straints (IQCs) (see Megretski and Rantzer (1997)) to model uncertainties ∆̃i ∈
∆̃i. Then consider Pi as sets of symmetric matrices Pi ∈ R2np×2np that satisfy
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the following IQC

∫ T0

0

(
∆̃i(δ̃i)q̃i(t)

q̃i(t)

)T
Pi

(
∆̃i(δ̃i)q̃i(t)

q̃i(t)

)
dt ≥ 0 (4.2)

for all q ∈ L2[0, T0], T0 ∈ R+, ∆̃i ∈ ∆̃i and i = 1, . . . , Nc. The matrix Pi
is a so called multiplier. To describe bounded and time-varying real parametric
uncertainties we used the same matrix families Pi, i = 1, . . . , Nc described in
Sections 1.3 and 2.2.2.

We have chosen the performance criterion based upon the L2 gain of the mapping
from disturbance channels w̃ to the performance channels z̃ as is customary in
model-based H∞ control, e.g., see Skogestad and Postlethwaite (2005). The L2

gain from w̃ to z̃ can be expressed in a standard form as a quadratic performance
criterion:

∫ ∞

0

(
w̃(t)
z̃(t)

)T
Pp

(
w̃(t)
z̃(t)

)
dt < 0 for all 0 6= w̃ ∈ L2, (4.3)

with

Pp =

(
−γ2I 0

0 I

)

The standard form to describe performance in Eq. (4.3) allows the use of other
quadratic performance criteria via Pp, see, e.g., Section 1.3 and Scherer and Wei-
land (2000). To keep the generality of the theory used here, we will use the symbol
Pp to describe our specific performance criterion.

4.2.2 Switching robust control design using multiple quadratic
Lyapunov functions

In Chapter 3, we designed a switching robust controller for the 1-Dof teleoperation
system described in Appendix A. It consists of Nc = 2 controllers sharing a com-
mon quadratic Lyapunov function V (x) = xTXx, with x representing the state
vector of the closed loop system. This makes the overall switched system glob-
ally stable in case of arbitrary fast switching between the Nc controllers (Liberzon
(2003)). In this way, the design of the different Kci(s) controllers is linked to en-
sure robust performance under switching of controllers and for ∆ ∈∆, given that
each controller Ki is active in its corresponding region of operation ∆i. With this
methodology, in Chapter 3 it was shown that it is possible to improve robust per-
formance, as compared with the case when using a single controller. However, the
requirement of a common Lyapunov function might limit the potential of the pro-
posed multi-controller structure. To add additional flexibility other than having
more than one controller, we propose the use of multiple Lyapunov functions.
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µ

τa

≤ e−λ0tVj(x(ts))

Vi(x)

Vj(x)

tts

V (x)

Figure 4.4: Interpretation of dwell time conditions

The disadvantage of the requirement of a common Lyapunov function is that it
adds unnecessary conservatism. In real applications such as minimally invasive
surgery, the slave devices might encounter sudden changes in the environment,
however consecutive switching of environment is not expected to take place in-
finitely fast. Therefore, we might relax the requirement of a common Lyapunov
function and allow a different one per controller, given that we guarantee specific
conditions on how much they differ. In order to achieve this, we make use of the
average dwell time concept in switching systems by Hespanha and Morse (1999).
It basically states that a switched system has average dwell time τa if the average
time between consecutive switches in the system is at least τa.

Such concept has been applied for stability analysis of switched systems, see Liber-
zon (2003). Consider a switched system with Nc subsystems. Consider a switch-
ing signal σ(t) ∈ {1, . . . , Nc} that determines which subsystem is active at time
t. Then consider that each subsystem of the switched system has a Lyapunov
function Vi(x) for i = 1, . . . , Nc such that

Vj(x) ≤ µVi(x), i, j = 1, . . . , Nc (4.4)

for some µ > 1. It is proven that (see Liberzon (2003), Section 3.2.2), if

∂Vi
∂x

ẋ ≤ −λ0Vi(x), i = 1, . . . , Nc (4.5)

fro some λ0 > 0, then the switched system is stable for every switching signal σ
with average dwell time

τa >
ln(µ)

λ0
.

Eq. (4.5) guarantees a minimal exponential decay constant λ0 of the Lyapunov
functions Vi(x), i = 1, . . . , Nc. To interpret those results, consider Fig. 4.4, in
which there is a switching from system i to system j at the time instant ts. The
value of the Lyapunov function after switching has a bound given by Eq. (4.4).
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Thus, because of the minimal exponential decay rate guaranteed by Eq. (4.5), after
τa seconds it is guaranteed that Vj(x) ≤ Vi(x) and it would be safe to switch to
another controller again.

Now, this same concept is applied to the robust control design for bilateral teleop-
eration systems. We know that conditions on Theorem 2.1 and 3.1 come from the
theory of dissipative systems (see Section 1.3), in which basically we have that

∂V

∂x
ẋ ≤ s(w, z) (4.6)

where s(w, z) ≥ 0 is a so called supplied function which is specified by the used
performance criterion, see also Scherer and Weiland (2000). Thus, we simply have
to extend (4.6) (applied to each closed loop i of Fig. 4.3) with the right hand side
of Eq. (4.5) to obtain

∂Vi
∂x

ẋ− s(w, z) ≤ −λ0Vi(x), λ0 > 0, i = 1, . . . , Nc, (4.7)

which implies (4.5) if the external input w = 0. Consequently, a guaranteed
exponential decay rate of the function t 7→ V (x(t)) with decay rate λ0 is obtained.
Then using also (4.4) and quadratic Lyapunov functions of the form Vi(x) =
xTXx, i = 1, . . . , Nc we arrived to the following result:

Initially, assume we have certain Kci(s) that achieves nominal stability for each
∆i for i = 1, . . . , Nc. That is for when r = 0. Moreover, let Pi, i = 1, . . . , Nc be
the sets of symmetric matrices Pi that satisfy conditions (3.3) and (3.4). Then:

Theorem 4.1. Given constants µ > 1, λ0 > 0, the closed loop systems G̃i(s) ?
Kci(s) with r ∈ (0, 1] shown in Fig. 4.3 are robustly stable for all ∆̃i ∈ r∆̃i with
robust quadratic performance characterized by Pp if there exist symmetric matrices
Xi, and symmetric matrices Pi ∈ Pi such that

Xi � 0 (4.8)

Xi � µXj (4.9)

(?)
T




0 Xi 0 0 0
Xi 0 0 0 0
0 0 λ0Xi 0 0
0 0 0 Pi 0
0 0 0 0 Pp







I 0 0
Ai B(i)1 B(i)2

I 0 0
0 I 0
C(i)1 D(i)11 D(i)12

0 0 I
C(i)2 D(i)21 D(i)22




≺ 0 (4.10)
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holds for i, j = 1, . . . , Nc. Moreover, robust stability is achieved for switching
between the uncertain closed loop systems r∆̃i ? G̃i(s) ?Kci(s), i = 1, . . . , Nc if the
average dwell time

τa >
ln(µ)

λ0
(4.11)

The matrices Ai, B(i)m, C(i)n, D(i)mn i = 1, . . . , Nc, m, n = 1, 2 are given in (3.7)
and correspond to the state space realizations of the systems obtained by closing
the loop in Fig. 4.3 with the controller Kci, such that the obtained system has as
inputs the vector col(p̃i, w̃), and as outputs the vector col(q̃i, z̃). Therefore, the
controller matrices Aci, Bci, Cci, Dci, are incorporated in the matrices in in (3.7).

Now, our goal is to find conditions that could lead us to reduce conservatism of the
control synthesis procedure requiring a common Lyapunov function. However a
new problem arises when translating conditions in Eq. (4.9) to synthesis conditions.
To illustrate this, we describe first how a standard controller synthesis procedure
works.

Similar as in Chapters 2 and 3, Eq. (4.10) is actually not a LMI when Kci, Xi and
Pi are unknown. It is still possible to obtain controllers via an iterative synthesis
procedure. If we iterate between a controller step to find controllers Kci and an
analysis step to find uncertainty multipliers Pi, it is possible to make Eq. (4.10) an
LMI as follows. When the controllers Kci are known, Eq. (4.10) becomes already a
LMI, i.e. linear in the unknown parameters Xi and Pi. However, in the case when
Pi is known, two additional steps are needed to transform Eq. (4.10) into a LMI.
The details of these steps are found in the work of Scherer and Weiland (2000).
Here we will describe part of the first step, which is key to understand the control
synthesis method proposed here. It consists of the congruence transformation
of the Lyapunov functions Vi(x) = xTXix. Consider the next partition of the
matrices Xi,

Xi =

(
Xi Ui
UTi ∗

)
and X−1

i =

(
Yi Vi
V Ti ∗

)
(4.12)

with Ui, Vi arbitrary invertible matrices that satisfy XiYi + UiV
T
i = I. Next, if

we apply a congruence transformation to Eq. (4.8) with matrix

YAi =

(
Yi I
V Ti 0

)
(4.13)

it is transformed to

Xi =

(
Yi I
I Xi

)
� 0. (4.14)
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In a similar way Eq. (4.10) is transformed with matrix

YBi = diag(YAi, I, I) (4.15)

to an equation that depends on the collected matrix variables vi = {Xi, Yi,Ki,
Li,Mi, Ni}, where Ki, Li,Mi, Ni are transformed variables that represent the con-
troller. By an additional step such equation can be made affine in its unknowns,
see Section 2.2.2 for a similar procedure applied to the synthesis of a single robust
controller. The resulting transformed equations are given here for completeness:

Define

Ai(vi) =

(
AiYi +BiMi Ai +BiNiCi

Ki AiXi + LiCi

)

B(i)n(vi) =

(
B(i)n +BiNiF(i)n

XiB(i)n + LiF(i)n

)

C(i)m(r, vi) =
(
rm(C(i)mYi + E(i)mMi) rm(C(i)m + E(i)mNiCi)

)

D(i)mn(r, vi) =
(
rm(D(i)mn + E(i)mNiF(i)n)

)

for m,n = 1, 2. i = 1, . . . , Nc. r1 = r and r2 = 1. Define also

B(i)l(v) =




Ai(v) B(i)1(v) B(i)2(v)
C(i)1(v) D(i)11(v) D(i)12(v)
C(i)2(v) D(i)21(v) D(i)22(v)




Al = col(I, (I 0 0));

Q(i)l = diag(0, Qi, Qp, λ0Xi)

S(i)l = col(diag(I, Si, Sp), 0)

U(i)l = diag(I,R−1
i , R−1

p )

Tl = diag(0, I, I)

for i = 1, . . . , Nc. Then Eq. (4.10) is equivalent to
(
ATl Q(i)lAl +ATl S(i)lB(i)l(v) +B(i)l(v)TST(i)lAl B(i)l(v)TTl

TTl B(i)l(v) −U(i)l

)
≺ 0,

i = 1, . . . , Nc (4.16)

Now, the main inconvenience with Theorem 4.1 to arrive at synthesis conditions
comes from the fact that we can not apply a congruence transformation with YAi
to Eq. (4.9) because it involves different indexes i, j. One can think of treating
only equation (4.9) without transformation. Thus, from (4.12) we get the following
equation for Xi:

Xi =

(
Xi Ui
UTi −UTi YiV −Ti

)
(4.17)
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The non-linear lower-right term in Eq. (4.17) poses an issue to make the synthesis
process solvable with LMIs. To solve this issue, we use the same trick applied by
Lu et al. (2006), which is described in the following paragraphs.

First, one can select Vi = Yi and therefore Ui = Y −1
i −Xi, thus Xi in Eq. (4.17)

becomes

Xi =

(
Xi Y −1

i −Xi

Y −1
i −Xi Xi − Y −1

i

)
(4.18)

which can be written as

Xi =

(
I −I
0 I

)(
Y −1
i 0
0 Xi − Y −1

i

)(
I −I
0 I

)T
.

Therefore, partitioning the closed loop state vector as x = col(xp, xc), where xp
and xc are the state vectors of the plant and controller respectively, the quadratic
Lyapunov functions Vi(x) becomes:

Vi(x) = xTp Y
−1
i xp + (xc − xp)T (Xi − Y −1

i )(xc − xp) (4.19)

In this partition xp and xc have the same dimension. This is indeed the case when
the nominal controller is designed with the same methods proposed here.

Now, note that conditions in Eq. (4.4) are only necessary at the moment of switch-
ing. Therefore, if at the switching moments the controller state vector is reset to
xc = xp, the Lyapunov function at the switching instant becomes

Vi([xp, xp]
T ) = xTp Y

−1
i xp (4.20)

Next, if (4.14) holds, from partition in (4.12) we can conclude that Yi � 0 and
therefore Y −1

i � 0, which can be substituted in condition (4.9) to obtain

Y −1
i � µY −1

j , i, j = 1, . . . , Nc.

Finally, we can also conclude that

Yi � µYj , i, j = 1, . . . , Nc, (4.21)

which are conditions affine in (Yi, Yj) that can be used together with conditions
in (4.14) and (4.16) to synthesize controllers Kci, given that Pi is known and that
the controller state is reset to xc = xp at the switching instants.

We formalize the result by the following synthesis theorem.
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Theorem 4.2. For given Pi ∈ Pi and given constants µ > 1, λ0 > 0. There exist
controllers Kci(s) and Lyapunov certificates Xi as in (4.18) such that the closed
loop systems G̃i(s) ?Kci(s) are robustly stable for all ∆̃i ∈ r∆̃i with r ∈ (0, 1] and
with robust quadratic performance characterized by Pp if there exist variables vi =
(Xi, Yi,Ki, Li,Mi, Ni) such that (4.14), (4.21) and (4.16) hold for i, j = 1, . . . , Nc.
Moreover, robust stability is achieved for switching between the uncertain closed
loop systems r∆̃i ? G̃i(s) ? Kci(s), i = 1, . . . , Nc if the average dwell time

τa >
ln(µ)

λ0

provided that the controller is reset to xc = xp when a switching occurs.

The matrices of the state space representation of each Kci(s) are then computed
using the following equation

(
Aci Bci
Cci Dci

)

=

(
Ui XiBi
0 I

)−1(
Ki −XiAiYi Li

Mi Ni

)(
V Ti 0
CiYi I

)−1

(4.22)

with Vi = Yi and Ui = Y −1
i −Xi.

Before summarizing the iterative synthesis procedure, for the robust analysis steps
we need Lyapunov certificates Xi compatible with those obtained with Theo-
rem 4.2, i.e. Xi with structure as in (4.18). Therefore, to obtain Pi when Ki

is known, we use the following theorem.

Theorem 4.3. Given given constants µ > 1, λ0 > 0 and controllers Kci(s), the
closed loop systems G̃i(s) ? Kci(s) with r ∈ (0, 1] shown in Fig. 4.3 are robustly
stable for all ∆̃i ∈ r∆̃i with robust quadratic performance characterized by Pp if
there exist symmetric matrices Xi � 0, YIi = Y −1

i � 0 ,and symmetric matrices
Pi ∈ Pi such that

Xi =

(
Xi YIi −Xi

YIi −Xi Xi − YIi

)
� 0 (4.23)

YIi � µYIj (4.24)

and (4.10) hold for i, j = 1, . . . , Nc. Moreover, robust stability is achieved for
switching between the uncertain closed loop systems r∆̃i ? G̃i(s) ? Kci(s), i =
1, . . . , Nc if the average dwell time

τa >
ln(µ)

λ0
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provided that the state of the controller is reset to xc = xp when a switching occurs.

We finally summarize the synthesis procedure as follows. We define each region
∆i, transform it and scale in the same way as in the methods in Chapter 3.
Then, without loss of generality, the uncertainty parameters can be transformed
into new parameters k̃h ∈ [0, 1], k̃ei ∈ [0, 1] such that transformed uncertainty

becomes ∆̃i =

[
k̃h 0

0 k̃ei

]
. Then, we design first a nominal controller for r = 0,

by using Theorem 4.2 after removing the uncertainty channels. Then, we iterate
the following steps:

� for fixed Ki, maximize r using the bisection algorithm and get the corre-
sponding matrices Pi by using Theorem 4.3 while minimizing γ, keeping
γ < γ̄, for a certain γ̄.

� for fixed Pi, maximize r using the bisection algorithm and get the corre-
sponding controllers Kci by using Theorem 4.2 while minimizing γ, keeping
γ < γ̄, for a certain γ̄.

� Once r = 1 is achieved, we iterate the two previous steps and on each the
performance level γ is minimized until no further progress can be made.

The value γ̄ is introduced such that at the initial steps of the iterative synthesis
procedure we allow γ to be large. This allows to avoid local minima around small
values of the uncertainty scaling r. Then, after reaching r = 1 we minimize γ.
Details on the iterative procedure are given in Appendix B, from which we have
used the version II of the iterative procedure.

Now, the reset conditions introduced here helped to relax the requirement of a
common Lyapunov function. However, the actual implementation of such reset
poses two issues. Firstly, it requires the implementation of an observer that could
follow abrupt changes accurately and in a robustly stable fashion. Secondly, even
if we implement such observer, sudden high frequency peaks might be introduced
when resetting the controller state, which in theory does not represent an issue
for stability since the total Lyapunov function remains decreasing, however un-
modeled dynamics can be excited in practice leading to instability. In fact such
peaks were observed in simulation. A solution to avoid those issues is not to
perform the controller state reset at the moment of switching. All we have to do is
to perform a final analysis using Theorem 4.1, take r = 1 and minimize γ. In fact
even less conservative results are obtained in the analysis since we do not have to
enforce a particularly structure in Xi. Thus, the reset conditions are only used to
be able to have a synthesis procedure based on LMI’s that relax the requirement
of a common Lyapunov function.
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4.3 Simulation results

To show the advantage of the proposed method with respect to that in Chapter 2
and Chapter 3. In this chapter we use the model parameters from Chapter 2 of
the following subsystems: weighting filters, operator, master and slave parameters.
The uncertainty partition is done in the same way as in Chapter 3. The rest of
the parameters are set to: Nc = 2, ke ∈ [80, 20000]N/m to include soft and stiff
environments, k̄e1 = 3900N/m, γ̄ = 40, µ = 1.2, λ0 = 0.3, |ε(ke)| < 0.15ke and
ηc < 50N/m. The remainder parameters are then computed: τa = 0.608sec,
ke1 = 80N/m, ke2 = 2350N/m and k̄e2 = 20000N/m.

The LMIs involved in the controller synthesis procedure were solved using the
solver Sedumi by Sturm (1999). We performed the synthesis procedure for three
cases: a single controller, two controllers with a common Lyapunov function and
two controllers with different Lyapunov functions with average dwell time con-
ditions. For the first and second case we obtained γ = 24.7 and γ = 19.64 re-
spectively, for the third case we obtained γ = 14.95 using Theorem 4.3, and after
performing analysis without controller state reset using Theorem 4.1 we obtained
γ = 12.98.

To further asses the performance of the different controllers, we simulate the system
in time domain. For the operator stiffness we used the nominal stiffness kh =
776.7N/m. For the environment, we used different virtual springs such that when
the slave position changes from free air at xs < 0 to xs ≥ 0, we test three different
stiffness values consecutively on each transition to xs ≥ 0: ke = 800N/m, ke =
4000N/m and ke = 20000N/m. To simulate the desired task we used the human
active force f∗h = (0.2 − 0.6cos(πt))N . Moreover, because the implementation
of the environment estimator is not on the focus of this work, we constructed
manually the estimate k̂e by taking ε(ke) = 0.14keN/m and ηc = 49N/m.

The time domain responses of master and slave device’s positions and operator and
environment forces are depicted in Fig. 4.5 for all three cases from left to right.
For the last two cases there is a switch of controllers so that the corresponding
controller K2 is active when in contact with the springs ke = 4000N/m and ke =
20000N/m. At first sight, all cases achieve position and force tracking. The
differences between the test cases can be better seen in the error signals, which are
further illustrated in Fig. 4.6. From the position error signals, one can see that the
position tracking is better with the first case compare to the second one, however
improvement can be noticed in the force tracking of the second case with respect to
the first. In fact we obtained a better γ for the second case. The weighting filters
scaling could be such that slightly more relevance is given to force tracking. The
weighting filters tuning can be evaluated when the system is tested experimentally.
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Figure 4.6: Force and position error responses. Gray areas indicate contact with
environment.

Now, using the controller synthesized with the method proposed here, one can see
that in general both position and force tracking are improved with respect to the
other two cases. The improvement is especially noticeable in the force tracking
signals after the peak response following the controller switching. However, an
increase in the peak force right after contact with the different environments is
observed for the controller proposed here.

When the slave device is in free air, the smaller the magnitude of the force felt
by the operator, the better is the haptic feeling of free air, and it is improved by
the last two controllers in comparison with the case where a single controller is
used. Moreover, one can see that all the controllers can handle the transition from
ke = 0N/m to ke = 20000N/m, representing a hard contact.

As a last remark, the controller here designed guarantees robust stability given
that the switching sequence satisfies the minimum average dwell time. Under the
specific testing scenarios presented here, simulations showed that the transitions
are stable. However, one can wonder whether there is any guarantee that the
system will always present stable transitions and satisfy the average dwell time.
In theory, the theorems presented here do not guarantee that explicitly because
smoothness during the switching is not guaranteed. For instance, large value of
µ gives more freedom during the control design which can improve the perfor-
mance level γ. However, for large values of µ, the procedure would get close
to the case of having independent Lyapunov functions, for which a direct switch
among controllers would cause oscillatory behavior that may compromised the
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stability. Therefore, there is a trade-off between a smooth transition guaranteed
by a common Lyapunov function and an improved performance level γ obtained
via multiple and independent Lyapunov functions. Moreover, a large value of λ0

results in an increased rate of decay of the Lyapunov functions Vi, which can be
beneficial to rapidly reject transient responses after controller switching. However,
there might not exist a controller that results in a large value of λ0 and also meets
the requirements imposed on the actuation signals via the weighting filters.

In fact, initial exploratory experiments were performed with the controller pro-
posed here. For some tests, the increased peak forces in the system’s response,
after contact with the environment, made the operator to react in such a way that
the average dwell time was not satisfied. Hence, it would be interesting to study
in depth the effect of the design variables µ and λ0 not only on γ, but also on the
time-domain response (in simulations and experiments) during the transition after
controller switching.

4.4 Conclusions

In this chapter, we have proposed a new methodology for control synthesis of a
switching robust controller for bilateral teleoperation. It is not required to have
a common Lyapunov function among its controllers but instead the controllers
are linked with a condition based on average dwell time switching. The synthe-
sis results showed already that we can achieve a lower L2 gain γ using the new
relaxed conditions. Moreover, simulations confirmed the expected improvement
in position and force tracking with respect to the case where a single controller
and two controllers with a shared Lyapunov function are used. Thus the results
demonstrated the potential of the approach towards increasing performance of the
system.

In the next chapter, we will introduce a multi-controller structure that allows for
independent performance optimization of its different robust controllers.
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Chapter 5

Bumpless Transfer of Robust
Controllers for Teleoperation

IN THIS CHAPTER we propose a controller scheme with multiple ro-
bust controllers in which every controller is performance-optimized sep-

arately. The switching among them is based on bumpless transfer and they
are scheduled using an environment stiffness estimator. Limited accuracy
and noise of such estimator is also taken into account during control de-
sign. We show the applicability of the approach by experiments on a 1-DOF
teleoperated system.

5.1 Introduction

Bilateral teleoperation systems are intended to provide a feeling of tele-presence
using force feedback while an operator manipulates a remote environment by means
of a master and a slave device. It is desirable that the system presents high per-
formance, e.g. the operator feels as if he/she is manipulating the environment
directly, in a stable fashion. However, the inherent trade-off between performance
and (robust) stability represents a challenging problem in designing controllers
that meet an appropriate balance, see, e.g., Hokayem and Spong (2006), Passen-
berg et al. (2010). Passivity (Niemeyer and Slotine (1991)) based methods have
been widely used to design controllers that guarantee stability but performance

This chapter is based on the following manuscript: López Mart́ınez, C. A., Molengraft, R.
v. d., and Steinbuch, M. (2014a). High performance teleoperation by bumpless transfer of robust
controllers. In IEEE Haptics Symposium 2014, pages 209–214, Houston, TX, U.S.A
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is not taken into account. On the other hand, operator/environment dynamics
are inherently time-varying, operator dynamics are bounded and in many appli-
cations environment parameters such as mass, damping and stiffness are bounded
as well. Such properties are often not taken into account explicitly. Some works
have addressed performance and stability while incorporating knowledge on op-
erator/enviroment bounded dynamics. For instance, in Vander Poorten (2007)
the author used virtual shunt dynamics to put bounds on the maximum operator
impedance. In the methods presented in Chapter 2, we included such proper-
ties during the control design process to balance transparency and stability. We
also experimentally validated the design of a robust Linear Time Invariant (LTI)
controller, which yields a high performance for time-varying environment stiffness
in a limited range. However, for applications such as minimally invasive surgery,
needle insertion, etc., environment stiffness can vary from 83N/m for fat, up to
2483N/m for bone (see Gerovich et al. (2004)) and even up to 6902N/m for the
ribcage (see Bankman et al. (1990)). Furthermore hard contacts might be present
for example by collision between instruments. Therefore, it is desirable to further
increase the range in which performance and stability is achieved in order to cover
the requirements of real-life surgical conditions.

In many cases there is no guarantee that a single LTI controller exists that ensures
both high performance and stability for a wide range of environment stiffness
values. In case such controller exists, finding it involves a non-convex optimization
process, see, e.g., Vander Poorten (2007) and Chapter 2, which might lead to
a local optimum. To increase the region of performance, one can think about
estimating the environment stiffness and use such estimation to design a controller
that adapts accordingly. Some works, e.g. Willaert et al. (2010), Cho and Lee
(2009), use environment estimation for bilateral teleoperation control. However
they do not provide quantitative information on the environment stiffness range in
which robust performance is achieved, or the achieved operating range is limited to
soft environment stiffness bellow 500N/m. Moreover, these works rely on unbiased,
low noise and fast convergence of the estimated environment stiffness, requirements
which in practice are difficult to meet simultaneously.

Switching control could provide a solution to the problem into consideration. Some
existing switching control methods suggest to switch between different operating
points of the overall system, see, e.g., Leith and Leithead (2000), Liberzon (2003),
but uncertainty in the parameters is not taken into account or stable switching
is not guaranteed. Multiple model adaptive control, which is also a switching
based method, has been used in teleoperation in Shahdi and Sirouspour (2005).
However performance is not guaranteed and the results exhibit undesired high
frequency responses. We have already explored switching robust control techniques
in Chapters 3 and 4. We designed switching robust controllers that account for
uncertainty in the operator and environment dynamics, as well as uncertainty
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and noise in the estimation of the environment stiffness that is used for control
scheduling. In Chapter 3, the controllers were designed such that they share a
common quadratic Lyapunov function, which ensures stable and smooth switching
among them. In Chapter 4, the requirement of a common quadratic Lyapunov
function was relaxed. Instead, different Lyapunov functions are used that are
linked using conditions from a minimum average dwell time requirement.

Therefore in this chapter we propose a controller scheme similar as in Chapters 3
and 4, with the main difference that every controller is designed separately and
the switching among them is based on bumpless transfer (see Zaccarian and Teel
(2005)). In this way we avoid the conservatism added by requiring conditions link-
ing the different Lyapunov functions, yet achieving stable switching. This allows
to optimize the performance of each controller in its respective range of operation.
Moreover, we implemented the whole scheme experimentally, including the bump-
less compensator and an environment estimator capable of following rapid changes
in the environment stiffness. This is the first time that experiments are presented
in teleoperation using switching of robust controllers by bumpless transfer. In such
a way, robust performance is guaranteed while interacting with different types of
environments, either with soft or with stiff environments. Furthermore, when the
environment changes from one type to the other, the switch between the under-
lying controllers is done such that high frequency peaks in the system’s response
are avoided.

In Section 5.2 we describe the framework for control design and implementation
of the proposed controller scheme. Experiments are presented and discussed in
Section 5.3. Finally, in Section 5.4 the conclusions are presented.

5.2 Bumpless transfer in bilateral teleoperation

5.2.1 Linear fractional representation of a teleoperation system

To formulate the synthesis problem of our switching controller, we first describe
the teleoperation system model. It was already presented in Chapter 2 and it is
briefly discussed here. The model consists of two subsystems, operator/master-
device pair and environment/slave-device pair. We consider master, slave devices
and environments with mass-damper-spring dynamics. For the operator’s arm
model, we used the same model identified in Chapter 2. The model is described
by an impedance Zh(s), which consists of a mass-damper-spring system and a
filter Qh(s) modeling the operator’s arm-hand dynamics above 10 Hz. In such a
model only the operator stiffness kh is considered to be uncertain and time-varying.
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Figure 5.1: Generalized plant with weighting filters.

Therefore, ∆h = kh represents the uncertainty block of the operator/master-device
dynamics. Similarly, only the environment stiffness ke is considered uncertain.
Therefore, ∆h = ke represents the uncertainty block of the environment/slave-
device pair dynamics.

Subsequently, all different components are gathered and the teleoperation is mod-
eled using a so called generalized plant structure. The system model’s structure
is shown in Fig. 5.1, where q and p are the signals interfacing the uncertainty
block ∆, w the disturbances of the system, y the measured signals, u the actu-
ation signals, and z the performance signals. G contains all fixed parameters of
operator, master and slave devices. The controller Kc in this case represents the
controller to be designed. In the model, the operator stiffness kh and the en-
vironment stiffness ke are assumed to be uncertain, bounded and they are also
considered time-varying to account for more realistic behavior. Thus, the number
of uncertain parameters of the system is np = 2 and the vector of uncertain pa-
rameters is δ = col(δ1, δ2) with δ1 = kh, δ2 = ke. The uncertainty block is then

defined as ∆(δ(t)) =
[
kh(t) 0

0 ke(t)

]
, ∆ ∈∆, where

∆ =

{[
kh 0
0 ke

]
: kh ∈ [kh, k̄h], ke ∈ [ke, k̄e]

}
.

V and W are weighting filters described with stable LTI systems. They allow to
shape in frequency domain the desired system performance. See Section 3.2.5 for
details. w̃ and z̃ are weighted copies of w and z via predefined filters V and W
respectively. That is w = V w̃ and z̃ = Wz.

Finally, for the actual implementation of the synthesis procedure, a transformation
of the parameters and a scaling are used. Please see Section 2.2.1 for details.
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5.2.2 Uncertainty region distribution and robust control design

In Chapter 2, using Linear Matrix Inequalities (LMI’s) (Scherer and Weiland
(2010)), we synthesized a single LTI robust controller with robust performance
operation for environment stiffness ke up to ≈ 3000N/m. In order to increase the
operational range of environment stiffness and being able to deal with stiff envi-
ronments, we propose the use of a multi robust-controller structure that schedules
different robust controllers according to the estimate k̂e of ke. The idea is to de-
sign certain number Nc of LTI robust controllers, in which the ith controller has
an uncertainty region ∆i of robust performance, such that all regions combined
covers the desired region ∆.

A similar framework has been presented in Chapters 3 and 4. The method pre-
sented here differs in two main points. Firstly, the switching strategy in Chapter 3
is based on the existence of a common Lyapunov function, which might not exist
or in order to find it we might have to sacrifice performance. In Chapter 4 the
Lyapunov functions involved in the control synthesis are linked using dwell time
conditions, which could still introduce conservatism in the achievable performance.
The switching here is based on bumpless transfer (see Zaccarian and Teel (2005)
and references therein) and does not require conditions linking the involved Lya-
punov functions. This allows for independent performance optimization of each
controller. Secondly, in the methods in Chapters 3 and 4 the partition of the whole
uncertainty has to be made prior to the controller synthesis, increasing the num-
ber of variables to be defined beforehand. Here instead, only the whole desired
uncertainty region and a desired level of performance need to be defined, because
the synthesis algorithm proposed here finds automatically a distribution of the
regions.

The methodology consists on designing a certain number Nc of robust controllers,
which will be determined by the synthesis algorithm itself. In order to divide the
uncertainty region ∆ into sub-regions ∆i, i = 1, ..., Nc, we define Nc uncertainty

blocks ∆i such that ∆i =

[
kh 0
0 kei

]
for i = 1, ..., Nc and ∆i ∈ ∆i, where the

class ∆i =

{[
kh 0
0 kei

]
: kh ∈ [kh, k̄h] ∧ kei ∈ [kei, k̄ei]

}
and ∆ ⊆∆1∪...∪∆Nc .

Such partition is depicted in Fig. 5.2. There is overlap between the regions to
avoid chattering behavior due to noise and to avoid wrong scheduling of controllers
due to uncertainty and noise in the estimation of ke. To illustrate this, consider
that the estimate k̂e of ke is given by:

k̂e = ke ± ε(ke) + η(ke) (5.1)

where ε(ke) represents the magnitude of the uncertainty in k̂e and η(ke) represents
the zero-mean noise signal in the estimation such that |η(ke)| < ηc for ke ∈ [ke, k̄e].
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Figure 5.2: Uncertainty regions ∆i of a switching robust controller.

Next, consider the overlapping section in the ke axes of two adjacent regions ∆i,
∆i+1 as depicted in Fig. 5.3, where

kei+1 ≤ k̄ei − 2ε(k̄ei)− 2ηc (5.2)

and it is assumed that ε(k̄ei) > ε(kei+1). ε(k̄ei) accounts for the uncertainty
in the estimation and the introduced hysteresis gap with size 2ηc avoids possible
chattering behavior due to noise, i.e. that there are rapid and repeated switching
between two controllers. Then, if the switching from the indexed region i to a
higher indexed region is taken when k̂e > k̄ei − ε(k̄ei) and the switching from

the indexed region i + 1 to a lower indexed region is taken when k̂e < kei+1 +
ε(k̄ei), considering that Eq. (5.1) holds, false switching between regions due to

uncertainty and chattering due to noise in k̂e is avoided. This methodology assumes
that the uncertainty is uniformly bounded with sufficient small bound, which in
practice might not be hold at all times, however if the estimator detects the new
environment fast enough, stability is not compromised as will be shown in the
experimental results.

Next, assume that the bounds of the region ∆i is known. Then we are interested
in designing a controller Kci(s) with a state space representation denoted by

Kci(s) =

[
Aci Bci
Cci Dci

]
, i = 1, . . . , Nc, (5.3)

that achieves robust performance for all ∆i ∈ ∆i. Following the methodology in
previous chapters, we use a performance criterion based on the L2 gain (Skoges-
tad and Postlethwaite (2005)) between disturbance variables w̃ and performance

k̄ei

kei+1

ε(k̄ei)

︸︷︷︸

︷︸︸︷ ︷︸︸︷ε(k̄ei)

2ηc

Figure 5.3: Overlap of two adjacent uncertainty regions.
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variables z̃. This gain is denoted by γ. Furthermore, it is desirable to obtain a
maximum gain γ̄ that defines the minimum performance level that we want to
achieve for each closed loop of the multi robust-controller structure. To this end,
we can apply the synthesis process described in Chapter 2 and further detailed in
Appendix B (see version I of the procedure).

Finally, in order to fully determine the regions ∆i, we propose a sequential proce-
dure. We start by the synthesis of the first controller Kc1(s). We define ke1 = ke
and we maximize k̄e1 using a bisection algorithm while keeping the performance
gain of the first controller γ1 ≤ γ̄. Once that is done, we continue with the con-
troller design of Kc2(s). By using the minimum amount of overlap as in Eq. (5.2),
we define ke2 = k̄e1−2ε(k̄e1)−2ηc and maximize k̄e2 using bisection again keeping
the performance gain of the second controller γ2 ≤ γ̄. The procedure is repeated
until we achieve k̄ei = k̄e, thus we have covered the whole uncertainty region ∆.

Now, the controllers Kci(s) guarantee robust performance for each region ∆i sepa-
rately. In order to couple the regions, we switch between the controllers as needed
by using bumpless transfer.

5.2.3 Bumpless transfer between robust controllers

There are no a priori conditions that guarantee a stable switching between the
controllers Kci(s). Therefore a suitable strategy must be used. If a direct switch
of controllers is done, the initial condition of the state of the new controller might
cause discontinuities and large peaks in the control signal. This can generate high
frequency peaks in the system’s response at the moment of switching. To decrease
such behavior, we use the same idea as in bumpless transfer in Zaccarian and Teel
(2005). Basically, the idea is to keep the off-line controllers virtually in the loop by
means of simulation. Each off-line controller put in a virtual loop with an internal
model, and such loop is perturbed using signals of the real system. The result is
that at the moment the switching occurs, the state of the new on-line controller
is compatible with the new environment, allowing that undesirable high frequency
peaks in the system’s response are decreased. In Zaccarian and Teel (2005) they
used the concept for non uncertain plants. In our case, the plant presents large
uncertainty, however the controllers designed here can deal with rapid changes in
the plant within certain region. This motivated us to implement the bumpless
transfer as depicted in Fig. 5.4, in which Kci represents the controller currently
on-line and Kcj any of all the other controllers that remain off-line. The bumpless
compensator for Kcj consists then by a plant out of the corresponding group of
plants for which the controller is robust to. Therefore, we use the same model G

as in Fig. 5.1 and we select a single element ∆ = ∆B
j =

[
kBh 0
0 kBej

]
from the
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Figure 5.4: Bumpless transfer scheme for teleoperation control

corresponding region ∆j . In this way the off-line controller is virtually kept on-line
and since we used ∆B

j ∈ ∆j , its stability, while off-line, is guaranteed. Now, at
the moment of switching, the new selected controller has been interacting with a
plant model compatible with the new environment. This in the sense that both
belong to the region of robustness of the controller that will enter on-line. This
intuitive idea makes the state of the new selected controller compatible with the
new environment and the current state of the master and slave devices. As it will
be shown in the experimental results, this way of switching makes it possible to
avoid large peaks at high frequencies in the system’s response in comparison with
a direct switching. In turn, this results in a stable switching among the controllers
as the experimental results will show.

5.2.4 Environment estimation

In order to schedule the different controllers, we need an estimator that is able to
deal with possibly rapid and sudden changes of the environment stiffness ke. We
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Figure 5.5: Estimator with Change Detection

make use of the same estimator as in Chapter 3, which is an estimator proposed
in Gustafsson (2000). The structure of the estimator is shown in Fig. 5.5. The
working principle of this estimator is as follows: the filter block processes the
discrete inputs uk and outputs yk of a system described by a model (in our case an

environment model) to get an estimate θ̂k of certain parameters θk (the parameters
of our environment model). Then, the signal εk is used to detect abrupt changes
in the parameters and under certain criteria, the detector block sends an alarm to
the filter to adapt quickly to the changes. Following the guidelines in Gustafsson
(2000), the different blocks are described below.

Environment model as a linear regression model

We write our environment model in the following form

yk = ϕTk θk + ek

where k denotes sampled time instants, yk is the measured environment force, ek is
the corresponding noise, the environment parameters vector is θk = col(ke(k), f∗e (k))
with f∗e (k) being the active component of the environment force, and the so called
regression vector ϕk is given by ϕk = col(uk, 1) with uk = xs(k) being the position
of the slave device.

Filter

For the filter block we utilize a Kalman filter for linear regressions, which is im-
plemented in its recursive form as follows:

ϕk = col(uk, 1)

Kk =
Pk−1ϕk

Rk + ϕTk Pk−1ϕk

Pk = Pk−1 −
Pk−1ϕkϕ

T
k Pk−1

Rk + ϕTk Pk−1ϕk
+Qk

θ̂k = θ̂k−1 +Kk(yk − ϕTk θ̂k−1)

εk = yk − ϕTk θ̂k
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where θ̂k is the estimated vector of the environment model parameters, Rk is taken
as 1 without loss of generality and Qk is a design parameter that determines the
speed of converge of the filter. Large values of Qk make the filter to react faster
but also the estimate will have more noise. The variable εk is the error between
the actual measurement and the reconstructed measurement obtained with θ̂k.

Detector

The detector block is defined as a threshold function in order to decide when to
make the filter to react fast. Thus, when |εk| < L|εk|, no alarm is generated and we
use Qk = Qnom. When |εk| ≥ L|εk|, it means that ŷk has deviated too much from
the true measurement and the filter must adapt rapidly to the new environment
by setting Qk = Qfast.

Therefore, the estimator is tuned via L|εk|, Qnom and Qfast. This tuning is es-
sential to be able to detect abrupt changes fast enough to schedule on time the
controllers of the multi-controller structure.

5.3 Experimental results on a 1-DoF academic setup

Experiments were carried out on the setup described in Appendix A. For the
master-slave devices, the operator and the weighting filters we have used the same
parameters as in Chapter 2. The environment estimator parameters were ex-
perimentally determined, we used Qnom = diag(1, 0.01), Qfast = diag(107, 1),
L|εk| = 1.0 N, |ε(ke)| ≤ 0.15ke and ηc = 50N/m which gave us good results in
practice. We used a desired range for ke ∈ [80, 40000]N/m to include both soft
and stiff environments as in hard contacts. Finally, we selected γ̄ = 5.

The LMIs involved in the controller synthesis procedure were solved using the
solver Sedumi (see Sturm (1999)). Because variation in mh is not considered,
making the design for its nominal value mN

h = 0.53kg can cause instability when
the master device is in free air (see Chapter 2). One possible solution to that
problem is to make the design for a reduced mass mh = rmm

N
h , rm ∈ [0, 1]. The

side effect is that there will be a decrease in performance due to the bandwidth
reduction. We proceed the design with mh = 0.3mN

h which gave us stability in
free air. Then, after applying the complete synthesis procedure we obtained in
total two controllers with γ1 = 4.45, ke1 = 80N/m, k̄e1 = 3897N/m, γ2 = 4.46,
ke2 = 2630N/m and k̄e2 = 40000N/m.

For implementation, all controllers were discretized using the tustin method with



5.3 Experimental results on a 1-DoF academic setup 129

0

2000

4000

6000
S
ti
ff
n
es
s
(N

/
m
)

 

 
k̂e

48 49 50 51

−1

−0.5

0

0.5

1

F
o
rc
e
(N

)

time [sec]

 

 

ε

Figure 5.6: Environment estimator responses to different materials

a sample period Ts = 5 × 10−4sec.. For the bumpless compensators we selected
kBh = 776.7N/m, kBe1 = 80N/m and kBe2 = 4000N/m, which are arbitrary choices.
To perform the experiments, different materials are located such that the slave
device enters in contact with them as shown in Fig. A.1. Initially the operator
moves the master such that the slave device is in free air, then it comes initially
in contact with a soft spring. The procedure is consecutively repeated for a stiff
foam and for a piece of metal.

First, we analyze the response of the environment estimator shown in Fig. 5.6.
One can see that indeed the environment estimator adapts rapidly to the new
environment, confirming the suitability of the selected estimator structure. At the
moments in which the environment changes, one can also notice that |ε| ≥ 1.0
and immediately after the filter is reset, it follows a fast convergence transient and
therefore a decrease in ε. However, some peaks in k̂e are seen before convergence
which are not present if the system is simulated. More insight is required to
understand that phenomenon and will be study in the future.

Next, the time domain results of positions and forces of the system are illustrated
in Fig. 5.7. The bottom plot shows the index of the current on-line controller.
Regarding the performance after transitions and while in contact with the different
environments, we see indeed that force and position tracking is achieved for all
cases. This indicates that the operator feels a stiffness close to the real environment
stiffness. In fact, the performance of a single robust controller while in contact with
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Figure 5.7: Response of the proposed controller to transitions from free air to
different environments

different environments has been already analysed in Chapter 2. The experiments
here performed focuses more on the transition phase, therefore sustained contact is
hold shortly. At the switching moments between the two controllers, the transition
is specially noticeable in some oscillations and an overshoot in the response of
fe, which is specially more noticeable for stiffer environments. However, such
oscillation is not of high frequency, thus avoiding the excitation of un-modeled
dynamics and it is rapidly damped after 0.2 seconds. Moreover, there is a small
oscillation in xm present only after rigid contact. One can also see that some
rapid consecutive switches occur around 48 sec and 50.5 sec due to the peaks in
k̂e, however stability was not compromised in none of the cases.

Next, to make a fair comparison, we repeated the same experiments for the case
when bumpless transfer is not applied but a direct switching. We zoom-in in the
responses of the switching instants from free air to the stiff foam and back to free
air. The actuation torques and the torque responses for both type of switching are
shown in Fig. 5.8. When the direct switching is applied, the actuation torques
present discontinuity at the switching instants causing high frequency response in
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fh and fe as well. In fact, in the transition back to free air the system becomes
unstable and the experiment stops around 29.3 sec. On the contrary, bumpless
transfer can cope with both transitions and discontinuities in the actuation forces
are barely noticeable avoiding high frequency response.

Regarding stability of the whole teleoperation system with bumpless transfer, each
robust controller guarantees robust performance within each uncertainty region
∆i. Now at the switching moments the bumpless transfer reduces the high fre-
quency peaks, however stability for fast consecutive switches is not fully guaran-
teed. The decisive factors are in fact the environment estimation and the switching
transient response. For the first, the estimator needs to be accurate enough around
the values where switching takes place. Regarding the transient response, from
the experimental results we can say that if no switching takes place within the
transient behavior, the system will remain stable thanks to the robustness of the
on-line controller. After the oscillations are damped out, i.e. approximately 0.2
sec. for our test case, a new switching could take place safely. Such transient be-
havior is still undesirable and will be felt by the operator, however, we have seen
that it is more noticeable for stiffer environments, therefore the operator could
perceive the transient as part of the change to a stiff environment and in that case
the proposed scheme will still offer a realistic feeling of such hard contacts. Thus
the methodology presents a high potential to be used in practice, provided that
a proper stability analysis will support our hypothesis on stability. As a possible
direction for stability analysis of the proposed scheme, one can start by assuming
that we know the current plant within the current active region ∆i, and by as-
suming that we also know the plant to which we are going to switch to within the
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Figure 5.8: Transitions of direct switching and bumpless transfer
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future active region ∆j . Then one can model the teleoperation system as a hybrid
system and try to find a common Lyapunov function or dwell time conditions (see
Leith and Leithead (2000)) on the switching between the respective closed loop
plants. The procedure can be then repeated for different plants among ∆i and
∆j . This will be subject of future research.

Finally, is important to mention that the computational requirements of the pro-
posed scheme can increase considerably. Define OP and OW as the order of the
plant P0 and of the weighting filters respectively. In a normal switching scheme
only one controller is computationally active a time, then only one controller Kci

of order OP+OW is computed at all instants. In the proposed scheme all the Nc
controllers are computationally active and moreover plant models are also active,
therefore it is needed to compute a system of order (OP +OW )Nc +OP (Nc − 1).
In our example we have that OP = 10, Ow = 5 and Nc = 2, therefore we went
from a computation of a system of order 15 to one of order 40.

5.4 Conclusions

In this chapter, we have presented an experimental approach to obtain high per-
formance teleoperation in both soft and stiff environments by means of the sepa-
rate synthesis of robust controllers for different environment stiffness regions. We
showed that it is possible to avoid high frequency peak responses when switching
between robust controllers by means of bumpless transfer. It has the advantage
that each controller can be designed separately to achieve a minimum level of de-
sired performance. As a result we obtained one controller for low and medium
stiffness values and another for stiff environments. Moreover, we showed that the
scheduling between the controllers can be made properly even in the case of sud-
den changes of environment thanks to the implementation of a stiffness estimator
with change detection. As a disadvantage, some transient behavior might be felt
by the operator in the switching moments, however during the experiments stabil-
ity was not compromised by it and after the transition the system presents high
performance. Hence, the potential of switching by bumpless transfer of robust
controllers in bilateral teleoperation is clear.

In the next chapter we will applied the robust control methods presented in Chap-
ter 2 and this chapter in a surgical robot, which present non-ideal properties, e.g.
different dynamics of master and slave devices, structural resonances, and no force
sensor on the master side among others.
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Chapter 6

Model-Based Robust Control
for a Non-Ideal Teleoperator

DESIGN specifications in real-life applications of bilateral teleopera-
tion, e.g. minimally invasive surgery, can impose a series of prop-

erties on the master and slave devices, such as heavy weights, high fric-
tion, structural resonances and lack of force sensors, resulting in non-ideal
teleoperators. When high quality force feedback is desired for those sys-
tems, the design and implementation of a bilateral controller becomes very
challenging. In this chapter, two recently developed control methodologies,
which provide high performance and robustness under time-varying dy-
namics of operator and environment, are implemented in a surgical setup
designed for robotic assisted surgery. The experimental results demonstrate
that using a model based robust control methodology, high performance for
free-air and soft environments is achieved, despite the limitations of the
system. Moreover, a stable and realistic interaction with stiff environments
is obtained.

6.1 Introduction

A teleoperator, which consists of a master device, a slave device and a bilateral
controller, is used to provide a feeling of tele-presence using force feedback while

This chapter is based on the following manuscript: López Mart́ınez, C. A., Molengraft, R.
v. d., and Steinbuch, M. (2014b). Model based robust control for bilateral teleoperation: Applied
to a non-ideal teleoperator. In preparation for journal publication
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an operator manipulates a remote environment. Such systems have been used
in different applications, e.g. remote handling of hazardous materials (e.g. Wei
and Kui (2004)), teleoperation of aerial robots (e.g. Mersha et al. (2014)) and
minimally invasive surgery (MIS). In the latter, robotic devices enter the body
trough a trocar. This means that only small incisions on the patient are needed,
which results in less trauma and faster recovery times. However, the complex-
ity for the surgeon increases as compared to open surgery, which can deteriorate
his/her performance. Robot assisted MIS has been proposed as a solution for
this complication, moreover it introduces the possibility of scaling the operator’s
movements, tremor filtering and increased positioning accuracy of the robotic in-
strument. As a disadvantage, there is a lack of force feedback which was naturally
provided by the mechanical instruments in conventional MIS. Force feedback is
highly desirable as it helps the surgeons to improve diagnosis by palpation of tis-
sues (Tholey et al. (2005)) and it could reduce the completion time of the surgical
procedure (Richards et al. (2000)). Perfect force and position tracking between
the master/operator and the slave/environment sides would give the operator a
feeling as if he/she is manipulating the environment directly. However, stability
becomes an issue under such scenario, see Lawrence (1993a). Nevertheless, it is
desirable to achieve certain force and position tracking performance that would
give the operator at least a very similar perception of the real environment.Hence,
when we refer to the performance of the teleoperation system, we refer to the per-
formance with respect to force and position tracking between the master/operator
and slave/environment sides.

In practice, the implementation of force feedback in teleoperators can be very
challenging. The main reason is that both master and slave device are typically
non-ideal, e.g. due to mechanical, geometric and economic constraints. Examples
of often inevitable imperfections are friction, finite stiffness of the construction
and lack of force sensors, limitations that are not present in academic setups
that are commonly used on the literature to test bilateral controllers. Therefore,
commercially available surgical systems do not have force feedback, e.g. the Da
Vinci system (Guthart and Salisbury Jr (2000)), for which achieving force feedback
is difficult due to the high mass of the slave (Shimachi et al. (2008)).

In the last decades different methods have been proposed for the design of bilateral
controllers for teleoperators, and one of the greatest challenges is to deal with the
inherent trade-off between performance and (robust) stability of bilateral teleop-
eration, see, e.g., Hokayem and Spong (2006), Passenberg et al. (2010). Control
design tools based on passivity theory, e.g. Niemeyer and Slotine (1991), Ryu
(2007), have been widely used to ensure stability of the system. Other works,
e.g. Kim et al. (2013), Vander Poorten (2007) Willaert et al. (2014) consider
performance in the design. However, the chosen modelling approach introduces
much conservatism. Other techniques use estimation of the environment stiffness
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to improve the performance of the system, see e.g. Beelen et al. (2013), Willaert
et al. (2010), Cho et al. (2013). However, they rely on unbiased, low noise and fast
convergence of the estimated environment stiffness, requirements which in prac-
tice are difficult to meet simultaneously. High performance controllers have been
already reported in the literature, for example in Willaert et al. (2014), however
the technique is limited to master and slave devices with identical mass damper
spring dynamics. Additionally, most of the aforementioned techniques has been
implemented only on academic setups.

As a solution to those issues, we have proposed in Chapter 2 a model based method-
ology to design robust controllers against bounded and time-varying dynamics of
the operator and environment. Moreover, we also proposed multi-controller struc-
tures in Chapter 3 and Chapter 5 that improve performance on teleoperation
systems. These techniques have been successfully implemented in an academic
setup, where the results were promising, however a proof of concept in an non-
ideal teleoperator is needed.

In this chapter, we focus on the practical implementation of the control method-
ologies proposed in Chapter 2 and in Chapter 5 on a non-ideal teleoperator sur-
gical setup named SOFIE developed by van den Bedem et al. (2010), which was
designed for minimally invasive surgery. The main limitations of the setup are:
heavy weight, non-backdrivability and high levels of friction in the slave device,
and, structural resonances and no force sensors in the master device. All this
together makes the bilateral controller design and its implementation for such a
system a difficult task to accomplish.

In Section 6.2.1 we describe the surgical setup, and in Section 6.2.2 we present the
utilized modelling approach to be able to do control synthesis. In Sections 6.2.3
to 6.2.5 we recapitulate the robust control methodologies. Next, in Section 6.3 we
present the synthesis, simulation and experimental results, followed by a discussion
on them. Finally, in Section 6.4, the conclusions are given and potential future
improvements are proposed.

6.2 Model based robust control applied to SOFIE
robot

6.2.1 Experimental setup

The tele-surgical system shown in Fig. 6.1 is utilized to evaluate the potential of
model based robust control for bilateral teleoperation. The master device, designed
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Figure 6.1: Medical Robot SOFIE designed by van den Bedem et al. (2010) (picture
by Bart van Overbeeke/Bart van Overbeeke Fotografie)

by Hendrix et al. (2011), can be considered as a low friction and light device.
Moreover it does not have a force sensor and has structural resonances.

The slave device (van den Bedem et al. (2010)), on the other hand, is heavy and
it has high friction. The slave robotic system consists of a pre-surgical base, with
two manipulators as shown in Fig. 6.1, an endoscope and two instruments. The
pre-surgical base provides the initial orientation of the manipulators. It consists of
a five-DoF platform-adjustment connected to the operating table, a platform and
three five-DoF manipulator-adjustments, each carrying a four-DoF instrument-
manipulator. Each instrument-manipulator provides three rotations and one trans-
lation of an instrument-tube to manipulate the tip. The relation between these
DoFs and the nine moving bodies of an instrument-manipulator is illustrated in
Fig. 6.2; here φ and ψ are rotations in the plane tangent to the abdominal wall
of the patient, which are kinematically fixed at the trocar point P. The symbol θ
represents the angle of rotation aligned with the center line of an instrument-tube
and z represents the displacement along this same center line. The manipulator
is schematically drawn in its nominal orientation, i.e. φ = ψ = θ = 0 rad and
z = 0.19 m. The angles φ(t), ψ(t), θ(t) and the translation z(t) (in lower case) are
the signals evaluated in the time domain and they represent the displacements in
the DoFs Φ, Ψ, Θ and Z (in upper case), respectively.

All DoFs Φ, Ψ, Θ and Z of the slave-manipulator are compatible with Φ, Ψ, Θ
and Z of the master-device and can thus be coupled in joint-space.

In this work, only the Ψ Ψ is chosen for controller design and experiments,
since it exhibits the most imperfections. For instance, in Fig. 6.2, in body 7,
a brake-encoder-actuator-gearbox combination provides the movement, with a
varying transmission ratio, see Table 6.1. Furthermore, this Ψ transmission is
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Figure 6.2: Schematic Surgical Robot Sofie: joints and moving bodies. See van den
Bedem et al. (2010)

non-backdrivable, i.e. that it can only be moved from its actuation input. More
relevant information and parameters of the instrument-manipulator are provided
in Table 6.1. A real-time data acquisition (DAQ) system is used to couple the

Table 6.1: Tele-surgical system hardware parameters (van den Bedem et al.
(2010)).

Friction Slave < 2.2 N m
Gearbox ratio slave-Ψ 1100− 1700 (varying)
Force sensor Ψ:range 4 N m (20 N at the tipa)
Force sensor Ψ:noise level < 6 mN m (< 0.03 N at the tipa)
Friction master < 0.03 N m
Maximum master torque fm 0.51 N m
Sampling frequency 4 kHz

a At nominal insertion depth z = 0.19 m
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Figure 6.3: Magnitude of the Frequency Response Function (FRF) measurements
and magnitude bode diagram of the corresponding fitted models of Master and
Slave Devices in Ψ DoF.

master and the slave robot. It consists of a dSPACE rack, running a Matlab-
Simulink-generated real-time application with a sampling frequency of 4 kHz.

The magnitude of the Frequency Response Function (FRF) measurements from in-
put torque (in N m) to output rotation (in rad) of the Ψ DoF is shown in Fig 6.3.
In the same figure the respective magnitude bode diagram of the fitted models
MΨ(iω) and SΨ(iω) for both master and slave devices are shown. During all
experiments in this work, all the other DoFs are kept at their nominal values.
Hereafter, we assume the slave device interacts with the environment at the in-
strument’s tip at a distance of LSE = 19cm from the trocar point P. In a similar
way, we assume that the operator interacts at a distance of LMO = 20cm from the
rotation axes of Ψ in the master device. Therefore, for notational convenience, if
not specified otherwise, when we use units of force, distance, mass, etc., we re-
fer to those parameters computed on the interaction points previously described.
Moreover, when we use units of torque, rotation, inertia, etc., we refer to those
parameters computed either with respect to the trocar point P or to the master-
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Table 6.2: Modelling Numerical parameters

mm = 2.4× 10−3 ms = 0.5 kg m2/rad
bm = 12.8× 10−3 bs = 20.04 N m s/rad
km = 12.0× 10−3 ks = 0.0 N m/rad
mh = 0.53 me = 0 kg
bh = 46 be = 0 N s/m
kh ∈ [731,1200] ke ∈ [80,10000] N/m
ωph = 219.9 ωzh = 69.9 rad/s
zph = 1.7 −

device’s rotation axes in Ψ accordingly.

6.2.2 Modelling of the teleoperation surgical system for control
synthesis

Similarly as already presented in previous chapters, we make use of a Linear Frac-
tional Representation (LFR) of the bilateral teleoperation system. Deriving a LFR
of a system amounts to isolating the uncertain parameters such that an intercon-
nection structure as depicted in Fig. 6.4 is obtained.

∆(δ) is the block diagonal concatenation of the vector of uncertain real parameters
δ. To this end, we first define the models of the different components of the
teleoperation system under consideration. The master and slave devices interact
with the operator and environment respectively as depicted in Fig. 6.5, where
mm, bm, km and ms, bs, ks are fixed parameters of the master and slave devices
respectively which are computed from the fitted models in Fig. 6.3 and shown in
Table 6.2; MHFD represents the high frequency dynamics of the master device,
thus

MΨ(s) =
1

mms2 + bms+ km
MHFD(s);

∆(δ)

Gnom
in out

Figure 6.4: Linear Fractional Representation of a System.
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mms2 + bms+ km
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fm

fh

xm

(a)

Environment

1

mss2 + bss+ ks

fs

fe

xs

(b)

Figure 6.5: Diagram of (a) operator/master device and (b) environment/slave
device.

fm, fs are the actuation forces to the master and slave devices respectively; fh, fe
represent the total force exerted by the operator and environment respectively; and
xm, xs are the positions of the master and slave devices respectively, by definition
they also represent the positions of the operator and environment respectively.
Two main aspects of this application make the modelling different to the classical
teleoperation’s system modelling presented in literature. First, one can see that
the dynamics of the master device have been split in a mass-damper-spring system
and high frequency dynamics. Such separation will be used to obtain the final LFR
of the system. Second, the environment force is not fed-back to the slave device.
This is a simplified model of the non-backdrivability property of the slave device.
In practice, high loads on the instrument will lead to an increased friction on the
slave device, which could be modelled and then friction compensation could be
used, however, the focus is on testing the robust control technique under those
non-ideal properties. The next step is to define models for both operator and
environment.

Operator Model

For the operator, we make use of the model structure presented in Chapter 2 and
shown in Eq. (6.2.2), in which it is assumed that the main source of uncertainty
comes from the operator’s arm-hand stiffness kh, which allows to reduce the control
design complexity.

Zh(s) =
Fh(s)

Xm(s)
= (mhs

2 + bhs+ kh)Qh(s),
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where

Qh(s) =

s

ωzh
+ 1

s2

ω2
ph

+ 2zph
s

ωph
+ 1

.

We followed a similar procedure as proposed in Chapter 2. We performed different
experiments to get FRF measurements Zmeas

h (jω) of Zh(s). Because the master
device does not have a force sensor, Zmeas

h (jω) is reconstructed using two FRF
measurements. First we obtained an FRF from the closed loop from fm to xm
shown in Fig 6.5.(a), i.e. the closed loop between the master device and the
operator’s hand. Then, MFRF

Ψ (iω) in Fig 6.3 is used to compute the operator’s
hand FRF Zmeas

h (jω).

We did three experiments in which we presented three virtual springs to the
operator with stiffness values in the range kVe ∈ [0, 5000] N/m such that fm =
−kVe xm+f IDm , in which f IDm will be used as a disturbance signal for system identi-
fication. In particular, we used a system’s sampling rate of 4000 Hz and a frequency
range of [1, 40] Hz for the multi-sine. Initially we set f IDm = 0 N and then the op-
erator was asked to move the master device in order to feel the virtual spring.
Subsequently, the operator was asked to stop in a position of his/her choice where
he/she could still feel the virtual spring. The idea is that the operator exerts a
force level such that he/she could feel that he/she has a correct haptic perception
of the virtual environment. This is clearly subjective to the operator. Neverthe-
less, the aim of the experiment is that the operator changes intuitively his/her
exerted force and grip for different virtual springs. Afterwards, a multi-sine sig-
nal was applied to the master device via f IDm while the operator tried to remain
static. Actuation forces fm(t) and positions xm(t) were measured and then their
Fourier transforms Fmeas

m (jω) = F(fm(t))(jω) and Xmeas
m (jω) = F(xm(t))(jω)

were computed. Then, the frequency response function (FRF) measurements of
the operator’s arm-hand dynamics Zmeas

h (jω) is computed in a frequency range of
[1,20] Hz, the results of which are depicted in Fig. 6.6.

We observed that the quality of the obtained measurements is low especially above
10 Hz. Nevertheless, the frequency content of the operator’s movement is assumed
to be dominant in frequencies below that. Moreover, with the measurements we
are interested mainly in obtaining a rough estimation on how the operator changes
his arm stiffness. As it will be shown on the experimental results, a model based
on this measurements is sufficient to obtain satisfactory results.

To reduce the complexity on the optimization process to fit the model parameters,
we use the mass value mh found in Chapter 2 since it is assumed that the operator
uses a similar posture to manipulate the master device, i.e. with the elbow rested
on a table, thus we use mh = 0.53 kg. Then, we optimized the variables bh, kh, ωzh,
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Figure 6.6: Arm FRF Measurements in Ψ DoF.

zph and ωph to fit each measurement to the model minimizing the cost function
WZh

(iω) = ‖(Zh(iω) − Zmeas
h (iω))‖2 for ω ∈ 2π[1, 20] rad/s. The optimization is

done using a constrained nonlinear optimization method provided by the command
fmincon in Matlabr. Then, to reduce complexity of the model and the control
design, we have used a low-frequency approximation by allowing variation in kh
only and fixing all other parameters to their centred values of the corresponding
intervals found in the optimization. Such fitted models are depicted in Fig. 6.6,
where we used mh = 0.53 kg, bh = 46 N s/m, ωzh = 69.9 rad/s, zph = 1.7 and
ωph = 219.9 rad/s and kh = [877, 1000] N/m.

Finally, we include possible extra variation in kh to increase the robustness of
the system. Hence, we enlarge the range of values of kh by 20% resulting in the
range kh ∈ [731, 1200] N/m. The resulting Zh(s) fitted models for kh =731 N/m
and k̄h =1200 N/m are shown with dashed lines in Fig. 6.6. All the operator’s
parameters are summarized in Table 6.2. Though the identification was performed
via LTI techniques, in what follows below, we assume that during operation kh is
time-varying within kh(t) ∈ [kh, k̄h] for all t > 0.

Combining the master device and operator models, we arrive at the model diagram
for the operator/master device depicted in the two upper blocks in Fig. 6.7, where
f∗h is the active force generated by the operator and ∆h = kh defines the time-
varying, bounded and uncertain parameter of the human hand dynamics model.
One can see that the master device model separation in a mass-damper-spring
system and high frequency dynamics allows for a representation such that a state
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ẍmẋmxm

mh

bh

kh

bm

km

f∗h

fh

fm

Master Device

Operator

−

−

MHFD

M̂−1
Ψ = (m̂ms

2 + b̂ms+ k̂m)LPF2
−

LPF1

f̂h

−

Operator Force Estimator

Qh(s)

∆h

Figure 6.7: Block diagram representation of the operator/master device pair, and
operator force estimator.

space model can be easily extracted, which is necessary for control synthesis.

Operator’s force estimator

Next, for control synthesis it is desirable to have information about forces and po-
sitions in both operator and environment sides. However, in real-life applications,
the master device usually does not have a force sensor, as in the case here. To es-
timate the operator’s force, in this work we implement a disturbance observer see,
e.g., Schrijver and Van Dijk (2002), the structure of which is shown in the lower
part of Fig. 6.7, where M̂Ψ represents a model of the master device, LPF1 and
LPF2 are low pass filters of first and second order respectively. In a standard im-
plementation of a disturbance observer, an accurate model M̂ is highly desirable.
Moreover, the dashed interconnection in the lower part of Fig. 6.7 is used in an
standard observer to increase robustness of the estimated force accuracy against
model uncertainty. This results in the following mapping from the signals xm and
fm to the estimate f̂h in a standard disturbance observer:

f̂h = (1− LPF1)−1LPF1(M̂−1
Ψ xm − fm)
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We made two main modifications with respect to a standard disturbance observer.
First, because we are interested in the operator’s force estimation only for low
frequencies, and to decrease the order of the overall system model, in M̂−1

Ψ we use
only the low frequency part of the master device model, i.e. a mass-damper-spring
model structure, in which m̂m, b̂m and k̂m are estimates of the mass, damper
and stiffness of the master device, and in this case they only serve for illustrative
purposes since we do not know the real values, therefore we set them equal to those
of the model from Fig 6.3. LPF2 is especially used to avoid a non-proper transfer
function, which does not have a state space representation, and also to avoid
excessive amplification of high frequency noise. Second, the dashed interconnection
in the lower part of Fig. 6.7 is usually used to increase the robustness properties
of the estimator as previously mentioned. However, there is no guarantee that the
observer will be stable under such unitary feedback. Moreover, it can be seen as a
local force feed-back which will have effect on the haptic perception on the operator
side when combined with a controller, which will provide an additional loop from
f̂h to fm. Thus, to avoid those issues, we do not use the dashed interconnection.
This results in the following mapping from the signals xm and fm to the estimate
f̂h:

f̂h = LPF1(M̂−1
Ψ xm − fm)

The loop from f̂h to fm is closed only via the controller, which will provide robust
performance of the overall system and guarantee stability properties of the force
observer as will be shown in the results.

Environment model

Continuing with the system modelling, we consider environments with dominant
spring dynamics:

fe = f∗e + kexs (6.1)

Here, ke ≥ 0 is the stiffness coefficient of the environment, and f∗e is the active
force from the environment, if present. We focus on the environment stiffness ke
as the main cause of the environment dynamic variation, hence ke is assumed to
be bounded (though within a wide range), and time-varying, i.e ke(t) ∈ [ke, k̄e] for
all t > 0. This choice is suitable for applications in which the effect of ke on fe
is dominant, e.g. in stiffness discrimination tasks like those in surgery. For other
environment types the uncertainty structure and parameters can be redefined.

In contrast to the master device, the slave device does have a force sensor which
provides information on the environment force fe. Thus, the coupled environment/
slave-device system can be obtain based on Eq. (6.1) and Fig. 6.5.(b). The uncer-
tainty block in the environment/slave-device model is given, then, by ∆e = ke.
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Figure 6.8: Generalized plant with weighting filters.

Weighted generalized plant

Having the two models of environment/slave and operator/master, we set up an
LFR model of the teleoperation system as a generalized plant Gw as in Fig. 6.8,
such that
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is a state space representation of Gw. In G we embed the non-uncertain part of
the operator/master-device/force-observer and environment/slave-device models.

The uncertainty block is then defined as ∆(δ(t)) =
[
kh(t) 0

0 ke(t)

]
∆ ∈∆, where

∆ =

{[
kh 0
0 ke

]
: kh ∈ [kh, k̄h], ke ∈ [ke, k̄e]

}
.

The vector q and p contain the signals interfacing the uncertainty, thus we define
q = col(xm, xs) and p(t) = ∆(δ(t))q(t). One can see that the model can be easily
adapted to the cases in which other parameters might also be assumed to be
uncertain. We assume that we can measure the environment force and position
of the master and slave devices, possibly contaminated with measurement noise
vector yn = col(fen, xmn, xsn). The measured signals are included in the vector y

as well as the estimated operator force f̂h, thus y = col(f̂h, fe, xm, xs) + col(0, yn).
The disturbance signals of the system are represented by the vector w. We treat the
active forces from the operator and environment as disturbance signals. We include
the noise channels yn as disturbances. This allows to increase the robustness
against noise, which helps to obtain a controller more suitable for implementation.
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Thus, we define w = col(f∗h , f
∗
e , fen, xmn, xsn). Additionally, the actuation signal

vector u is defined as u = col(fm, fs). Finally, the performance vector z is defined
as z = col(fh − fe, xm − xs, fm, fs). Via the component fh − fe, we enforce that
the human operator should feel the same force applied by the environment. The
second component, xm−xs, is the position error to obtain tracking between master
and slave. The actuation variables are also included as channels to be penalized
to avoid controllers with high gains. Finally, w̃ and z̃ are weighted copies of w and
z via predefined filters V and W respectively, which allow to shape the desired
system performance.

The chosen performance criterion is defined as the L2 gain, γ, of the mapping
from disturbance channels w̃ to the performance channels z̃, as is customary in
model-based H∞ control, e.g., see Skogestad and Postlethwaite (2005). The L2

gain from w̃ to z̃ can be expressed as:

sup
06=w̃∈L2

||z̃||2
||w̃||2

< γ, (6.2)

in which γ can be interpreted as a worst-case gain from the disturbances w̃ to the
performance signals z̃. Therefore, instantaneous responses that can be felt by the
operator have a direct effect on the performance criterion. This makes the L2 gain
a suitable performance criterion for teleoperation systems.

Finally, Kc represents the to-be-designed controller. The aim of the controller
design is then to find a controller Kc that has robust performance for all ∆ ∈ ∆.
In the coming sections we will shortly describe the robust control methods to be
evaluated in the surgical setup.

6.2.3 Robust control under time-varying uncertainties

One of the main objectives in this chapter is the evaluation of the model based
control method for teleoperation proposed in Chapter 2. Such method allows to
synthesize a controller Kc such that the closed loop system in Fig. 6.8 has robust
performance under arbitrary fast and bounded parametric uncertainty given by
∆ ∈ ∆. For the details on the exact control synthesis procedure, the reader is
referred to Chapter 2.

Such control design method has been satisfactorily tested in a one-DoF academic
setup with force and position sensors in both master and slave devices. In or-
der to apply it to our specific application, all what we need is the model of our
system, which was already obtained in Section 6.2.2, and the specification of the
weighting filters W and V on the performance channels in Fig. 6.8, as it is cus-
tomary in robust control design. With these filters we specify a desired level of
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force and position tracking in frequency domain. We use the same filter struc-
ture as in Chapter 2, with the main modification that in our application we do
not have force sensor at the master side. The filters V and W are block di-
agonal transfer matrices emphasizing the frequency band in which we want the
particular channel to be penalized. Thus V = diag(Vf∗h , Vf∗e , Vfen , Vxmn , Vxsn) and
W = diag(Wfh−fe ,Wxm−xs ,Wfm ,Wfs). Ideally, one wants to have fh−fe = 0 and
xm−xs = 0. In this case we would get perfect transparency, but as is known, this
type of design is unrealistic (Lawrence (1993b)) and has poor stability properties.

Instead, it is desirable to relax such strict requirement, we are interested in forc-
ing the force and position tracking errors such that in frequency domain |Fh(ω)−
Fe(ω)| < |Fw(ω)| and |Xm(ω) −Xs(ω)| < |Xw(ω)| where Fw(ω) and Xw(ω) rep-
resent the desired level of force and position tracking in the frequency band of
interest. We use |Fw(ω)| > 0 and |Xw(ω)| > 0 sufficiently small at low frequencies
to achieve force and position tracking, which will lead to a desired level of perfor-
mance in the frequency range in which the human operator performs movements.
On the other hand, we need to have feasible control action that is magnitude
bounded forces fm, fs and a reduced amplification at high frequencies, to avoid
saturation and the excitation of high frequency dynamics. Those requirements are
translated into the filters W and V shaped accordingly. Thus we put more weight
at frequencies where we want to lower the L2-gain.

After the filters have been defined, it is possible then to design a controller for a
specific range of bounded operator and environment stiffness.

6.2.4 Switching robust control via bumpless transfer of robust
controllers

The methods in Section 6.2.3 can provide high robust performance for bounded
environment stiffness ke in the range of low stiffness environments. However, in
real-life applications it might be desired to guarantee stability of the teleopera-
tion system for a wide range of environment stiffness ke ∈ [ke, k̄e], covering also
stiff environments. In Chapter 3 it is shown that for those cases a single LTI con-
troller might not be sufficient to achieve desired levels of robust performance of the
teleoperation system, therefore the authors proposed a multi-controller structure,
which will be tested in our non-ideal teleoperator. The main idea consists of
scheduling different robust controllers according to the estimate k̂e of the actual
value of ke. Thus, a specific number Nc of LTI controllers are designed, in which
the ith controller Kci(s) has an uncertainty set ∆i of robust performance, such
that all regions combined form a larger set such that ∆ ⊆ ∆1 ∪ ... ∪∆Nc

, where
∆ describes the uncertainty set of the system. Such uncertainty distribution is de-
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Figure 6.9: Uncertainty regions ∆i of a switching robust controller.

picted in Fig. 6.9. The overlap between regions can be used to guarantee stability
under bounded uncertainty in the estimation signal k̂e.

Next, in order to switch between controllers in a stable way, in Chapter 5 we used
bumpless transfer of robust controllers, which is an extension of the bumpless
transfer technique by Zaccarian and Teel (2005). The main idea is to keep all
controllers online, either with the real plant, or with a virtual model. This idea
is illustrated in Fig. 6.10, where Kci represents the controller that is currently
active, and Kcj one of all the other Nc − 1 controllers that remain disconnected
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Figure 6.10: Bumpless Transfer Scheme for Teleoperation Control
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from the real system. The bumpless compensator for Kcj consists then by a plant
out of the corresponding group of plants for which the controller is robust to.
Therefore we used the same model G as in Fig. 6.8 but we select a single element

∆ = ∆B
j =

[
kBh 0
0 kBej

]
from the corresponding region ∆j . In this way the off-

line controller is virtually kept on-line and since we used ∆B
j ∈ ∆j , its stability,

while off-line, is guaranteed.

This technique has been experimentally tested in a one-DoF setup in Chapter 5,
and will be evaluated in our surgical system.

6.2.5 Environment estimation

To be able to implement the multi-controller structure, we need an estimator that
is able to deal with abrupt changes of the environment stiffness ke. We make
use of the same estimator as in Chapter 3, which is an estimator proposed in
Gustafsson (2000). The structure of the estimator is shown in Fig. 6.11. The
working principle of this estimator is as follows: the filter block processes the
discrete inputs uk and outputs yk of a system described by a model (in our case an

environment model) to get an estimate θ̂k of certain parameters θk (the parameters
of our environment model). Then, the signal εk is used to detect abrupt changes
in the parameters and under certain criteria, the detector block sends an alarm to
the filter to adapt quickly to the changes. Following the guidelines in Gustafsson
(2000), the different blocks are described below.

Environment model as a linear regression model

We write our environment model in the following form

yk = ϕTk θk + ek

where k denotes sampled time instants, yk is the measured environment force, ek is
the corresponding noise, the environment parameters vector is θk = col(ke(k), f∗e (k))
with f∗e (k) being the active component of the environment force, and the so called

Figure 6.11: Estimator with Change Detection
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regression vector ϕk is given by ϕk = col(uk, 1) with uk = xs(k) being the position
of the slave device.

Filter

For the filter block we utilize a Kalman filter for linear regressions, which is im-
plemented in its recursive form as follows:

ϕk = col(uk, 1)

Kk =
Pk−1ϕk

Rk + ϕTk Pk−1ϕk

Pk = Pk−1 −
Pk−1ϕkϕ

T
k Pk−1

Rk + ϕTk Pk−1ϕk
+Qk

θ̂k = θ̂k−1 +Kk(yk − ϕTk θ̂k−1)

εk = yk − ϕTk θ̂k
where θ̂k is the estimated vector of the environment model parameters, Rk is taken
as 1 without loss of generality and Qk is a design parameter that determines the
speed of converge of the filter. Large values of Qk make the filter to react faster
but also the estimate will have more noise. The variable εk is the error between
the actual measurement and the reconstructed measurement obtained with θ̂k.

Detector

The detector block is defined as a threshold function in order to decide when to
make the filter to react fast. Thus, when |εk| < L|εk|, no alarm is generated and we
use Qk = Qnom. When |εk| ≥ L|εk|, it means that ŷk has deviated too much from
the true measurement and the filter must adapt rapidly to the new environment
by setting Qk = Qfast.

Therefore, the estimator is tuned via L|εk|, Qnom and Qfast. This tuning is es-
sential to be able to detect abrupt changes fast enough to schedule on time the
controllers of the multi-controller structure.

6.3 Results of robust control applied on SOFIE robot

In this section we provide synthesis, simulations and experimental results. Initially
one robust controller designed with the method mentioned on Section 6.2.3 is
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evaluated on the surgical system. Then, a multi-controller structure as described
in Section 6.2.4 is also implemented and experimentally tested.

6.3.1 Controller synthesis results

For the controller synthesis we tune the weighting filters such that force and po-
sition tracking is achieved for frequencies below fbw = 10 Hz, and the actuation
forces fm, fs are penalized from 60 Hz and beyond. The reader is referred to
Chapter 2 for more details on the weights structure and fine tuning procedure.
Moreover, the cut-off frequency of the low pass filters LPF1 and LPF2 in the force
estimator is set to 20 Hz, which suppress noise above the frequencies of interest.

For the first controller to be evaluated, we select a desired environment range
as ke ∈ [80, 3000] N/m, which covers the range of stiffness present in soft tissue
environments (see Gerovich et al. (2004)).

Then, using the model found in Section 6.2.2, we apply the control synthesis
procedure of Chapter 2. We get a controller Kc(s) covering the uncertainty region
of interest and with a performance index γ = 10.7. The resulting order of the
controller OKc

= 21, which is equal to the order of the generalized plant Gw, i.e.
including the weighting filters. We make the remark that in comparison to classical
controller schemes like position-position error, position-force, etc., the obtained
controller does not have a defined structure, other than its number of inputs and
outputs. In that sense the controller uses all available combinations from inputs to
outputs, as opposed to most classical controller architectures in which some input-
output combinations are not used. Hereafter, the obtained Robust Controller (RC)
will be referred as the RC.

Next, for illustrative purposes, we evaluate the properties of the force estimator
when used in combination with the RC. We added uncertainty in the model used in
the estimator by setting its parameters to m̂m = cpmm, b̂m = cpbm and k̂m = cpkm
for cp ∈ [0.8, 1.2]. Then, we computed the transfer functions from fh to f̂h. We
compare two cases, in the first one, we used the standard dashed interconnection
in Fig. 6.7, in the second one, instead, we used the control element from f̂h to
fm of the RC previously designed. The magnitude bode diagrams of the resulting
transfer functions from fh to f̂h are depicted in Fig. 6.12. As reported in the
literature, the standard feedback provides robust and accurate estimations in the
frequency region of interest. However, from the figure one can see resonance peaks
that can have undesirable effects on the haptic feedback to the operator. On top
of that, the estimator is not to be stable for cp ∈ [0.8, 0.9]. On the other hand,
the estimator using the feedback via Kc(s) presents better stability robustness
properties because all transfer functions were stable. Moreover resonance peaks
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Figure 6.12: Magnitude Bode Diagram of the transfer functions from fh to f̂h
under model uncertainty; using a standard feedback loop and a feedback via the
robust controller Kc(s)

are not present which is beneficial for our application. As a trade-off, robustness
of the estimation accuracy is slightly degraded for very low frequencies, which did
not have a significant influence on the simulation and experimental phase as will
be shown later.

Next, we also evaluate a multi-controller based on bumpless transfer of robust
controllers. The controller designed based on this structure is hereafter referred
as the Bumpless Transfer Controller (BTC). For this controller, we select a wider
range of environment stiffness ke ∈ [80, 10000] N/m. We divide the total un-
certainty region in two partitions, therefore Nc = 2. We select the first region
equal to the previous synthesis case covering soft tissue environments, i.e. ∆1 ={[

kh 0
0 ke1

]
: kh ∈ [731, 1200], ke1 ∈ [80, 3000] N/m

}
. Thus we can use the controller

Kc(s) as Kc1(s). For the second region we select ∆2 =
{[

kh 0
0 ke2

]
: kh ∈ [731, 1200],

ke1 ∈ [2500, 10000] N/m}. After applying the synthesis procedure inChapter 2, we
get a controller Kc2(s) with a performance index γ = 9.2. Both controllers Kc1(s)
and Kc2(s) have an order of OKc1

= OKc2
= 21.

In order to improve the operator’s haptic perception when the slave device is in
“free air”, i.e. no contact with any environment, we implemented a PID controller
(with a weak integrator and additional low-pass filters) that tracks the position of
the master device in the slave device. The idea is that this controller is only active
when the environment force is lower than a small threshold fe < 0.05 N m. Thus,
the operator will only feel the dynamics of the light master device. We defined
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Figure 6.13: Simulated time domain response of one robust controller when inter-
acting with a soft environment

the position tracking controller as Kc0(s), the order of which is OKc0 = 3. This
controller was manually tuned. The aim is to obtain a similar position tracking
performance as the one of the controller Kc1(s). This improves in practice the
transient behavior transition between controllers Kc0(s) and Kc1(s).

Next, in order to implement the bumpless transfer structure, we need to define the
elements ∆B

j ∈∆j to compute the bumpless compensators for controllers Kc0(s),

Kc1(s) and Kc2(s) respectively. The component kBh is selected as kBh = (kh−k̄h)/2.
The components kBej are selected arbitrarily, thus we use the next three elements:

∆B
0 =

[
1016.7 0

0 0

]
, ∆B

1 =

[
1016.7 0

0 500

]
, ∆B

2 =

[
1016.7 0

0 5000

]
N/m.

The order of each bumpless compensator is OC = 16. Thus, the total order of BTC
is then OBTC = OKc0

+OKc1
+OKc2

+ 3OC = 93. This is one of the disadvantages
of this technique, which demands high computational capabilities. Finally, all
the controllers, the bumpless compensators and the force estimator blocks are
discretized with the ‘tustin’ method with a sample frequency of 4000 Hz.
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6.3.2 Simulation results

To test the controllers, we simulate a scenario in which an operator manipulates
the system with the slave device in free-air and then gets in contact with a spring
located at xs > 0. Then after some periodic movements the operator comes back
again to the slave in the free-air situation. As an example of such scenario see
Fig. 6.13. The Free Air Parts (FAP) correspond to time slots when there is no
contact with the environment. The Transient Parts (TP) correspond to time slots
where there is a transition between the FAP and contact with the spring or vice-
versa. The Permanent Contact Part (PCP) is a time slot after the TP has passed
and periodic movements are performed while being in permanent contact with
the spring. For the opertaor we have used f∗h = (2 cos(1/3πt) + cos(πt))N m and

kh = 1016.7 N/m. In the simulations, both signals f̂h and fh have unnoticeable

differences in the plots, therefore we only plot the signal f̂h when we illustrate
the operator force, this to be consistent with the experiments in which the real
operator force is not available.

First, we test the Robust Controller (RC). We simulate the closed-loop system
interacting with a spring with ke = 400 N/m, which represents a soft environment.
The corresponding time domain response of the position and force signals are
presented in Fig. 6.13. One can see stable responses during the Transient Parts
(TP), which is ensured from the synthesis of the RC. Moreover we observe that
in the Permanent Contact Part (PCP) there is force and position tracking of the
simulated teleoperated system. On the other hand, the force tracking degrades
during the Free Air Parts (FAP) and some forces are noticeable in the operator side,
These forces can degrade the haptic rendering of a free-air environment provided
by the teleoperator.

Next, we test the Bumpless Transfer Controller (BTC) by simulating the closed-
loop system with springs with ke = 400 N/m and ke = 10 000 N/m representing
soft and stiff materials respectively. For simulation purposes we assume we can
know perfectly the environment stiffness, thus we set k̂e = ke. The time domain
results are depicted in Fig. 6.14, on the left for the soft spring, and on the right
for the stiff environment.

One can see that the response in the FAPs is improved because now f̂h is close
to zero in those time slots. For the soft spring, we can see that during the TP,
the transient response is smooth and barely noticeable, despite the fact that there
is a switch between Kc0(s) and Kc1(s). Next, regarding the interaction with the
stiff spring, the response presents some overshoot behavior during the TP, yet
that overshoot in positions and forces is rapidly damped out. During the PCP, for
the soft spring force and position tracking is obtained as expected from the RC
results. For the stiff spring, we can see that the position tracking degrades slightly,
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Figure 6.14: Simulated time domain response of bumpless transfer controller when
interacting with an environment with stiffness ke = 400N/m (left) and ke =
10000N/m (right).

however the operator still would perceive a correct haptic perception of the stiff
environment as it will be shown later.

We also analyse the performance of the system by means of force versus position
plots on the environment and operator sides as shown in Fig. 6.15. The slope
of fe versus xs plots represent the stiffness of environment and the slope of the
f̂h versus xm plots represent the stiffness being felt by the operator. We can
see that in the PCP both controllers Kc1(s) and Kc2(s) provide to the operator
a haptic perception close to that of the environment, which is desirable in our
application. Moreover, during the FAP the estimated operator’s force is very
small, which is desirable when there is not environment in contact with the slave
device. These simulations results confirms that the controller design through the
proposed methods leads to promising results. In the next section we present results
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Figure 6.15: Simulated time domain response of one robust controller when inter-
acting with an environment with stiffness ke = 400N/m (left) and ke = 10000N/m
(right).

of both controllers, the RC and the BTC, that validate experimentally the used
control design methodology.

6.3.3 Experiments

In this section, we validate the RC and the BTC with experiments on the surgical
setup described in Section 6.2.1.

We test two different environments: a soft foam with stiffness ke≈ 400 N/m, and a
stiff foam with ke≈ 10 000 N/m. For the experiments, we drove the system under
similar operating conditions as to the simulation part, i.e. Free-Air Parts

Initially we test the RC controller, the time domain responses for the interaction
with both type of environments are depicted in Fig. 6.16. Regarding the interaction
with the soft foam, the response during the TPs is completely smooth, i.e. there
are neither oscillations nor overshoots, which verifies the robustness properties of
the RC controller. During the PCP, the tracking performance is less than that of
the simulations results, which can be mainly due to the high friction present in the
slave device. However, if we analyse the results by means of force versus position
plots as depicted in Fig. 6.17, one can see that in the PCP the operator perceives
a similar stiffness as that of the environment, which validates the potential of the
control approach. Next, the interaction of the RC with a stiff environment resulted
in an unstable behaviour as can be seen from the oscillations in Fig. 6.16, result
which could be already expected from the controller synthesis, because robust
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performance is not guaranteed for stiff environments. (FAP), Transient Parts
(TP) and Permanent Contact Part (PCP).

Regarding the FAPs one can see some noticeable forces on the operator side which
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were perceived as a damping action, this in fact degraded the operator’s haptic
feeling of a free-air environment. Such dynamics can be also seen in the force versus
position plots in Fig. 6.17. Next, to be able to implement the BTC, we tuned the
environment estimator experimentally. This process can be done without the BTC
being active, for instance using only the tracking controller Kc0(s). We gathered
data from tests in which we interacted with different environments. The data
were then processed off-line to tune the estimator parameters using the guidelines
of Section 6.2.5. We arrived to the following parameters: L|εk| = 0.2 N, Qfast =
diag([106, 103]) and Qnom = 0.5× diag([102, 1]).

The time domain response of the closed-loop system is shown in Fig. 6.18. The
environment estimator works fast and accurate enough to be able to distinguish
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Figure 6.18: Time domain response of the bumpless transfer controller when in-
teracting with different environments.
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Figure 6.19: Time domain response of the switching robust controller when inter-
acting with different environments

between the two types of environments. We make emphasis that a correct tuning
of the estimator is important, this because a fast detection in the changes allows
to schedule the controllers on time, accuracy is only important to determine the
region in which the stiffness environment lies and not its exact value.

Next, when interacting with the soft spring, the responses in the TPs are free
of overshoots and oscillations and the results are very similar as those in the
simulations. Moreover, the FAP is improved with respect to the RC. In fact in
this scheme the operator does not feel additional dynamics other than those of the
master device, and because it is light, the haptic perception of having a free-air
environment on the slave side is realistic. To have a different picture of the results,
forces versus position plots for this test are presented in the left part of Fig. 6.19.
One can see that the BTC provides a very similar stiffness of the environment at the
operator side at all times. The response during the TP when getting into contact
with a stiff environment presents some overshoot, however the stability was not
compromised during the experiments. Subsequently, during the PCP, the operator
performs periodic movements, however the slave does not move during this time
slot. The cause for the lack of movement of the slave device in stiff environments
comes from two combined facts: first the slave device is non-backdrivable, which
in principle means that the device only moves when it actuated from the actuation
signals fs, second, the slave device has high friction, thus, the actuation signals
from the controller need to be sufficiently large to move the slave device. Yet with
this phenomenon, the operator was able to perceive a high stiffness on the master
side as can be in Fig. 6.19.



160 Chapter 6 Model-Based Robust Control for a Non-Ideal Teleoperator

6.3.4 Discussion

The simulation and experimental results for the RC confirmed the results obtained
in Chapter 2. The description of the operator and environment as explicitly time-
varying is suitable for the controller synthesis in bilateral teleoperation, especially
because of the sudden changes in the environment. Moreover, because we used
a model based control synthesis, there are no restrictions on matches in the me-
chanical properties of the master and slave devices to apply the method, contrary
to for instance in Willaert et al. (2014). The main challenge in this chapter was
to apply the synthesis methods in an non-ideal teleoperator with properties like
the non-backdrivability of the slave device and not having a force sensor in the
master device. The latter aspect was challenging in order to get a model for the
operator. Nonetheless, it was enough to get a rough estimation of the operator’s
model parameters in order to obtain good experimental results, which shows that
even under those limitations the synthesis method can be applied.

Moreover, the fact that we included the force estimator in the system’s model, was
essential to obtain good experimental results. The standard disturbance observer
can have poor stability robustness properties as found before. In our case, the
loop from f̂h to fm was designed only by the control synthesis procedure, thus it
was guaranteed that a stable force estimator is obtained. Moreover its stability
robustness properties against model uncertainty were improved.

Next, regarding the multi-controller structure, the results showed that multiple
controllers, which were designed to have a good performance in their respective
regions of interest of environment stiffness, were successfully combined by means of
the bumpless transfer technique proposed in Chapter 5. Thus the operator could
have a good feeling when the slave is in free air, plus a good stiffness reflection
when discriminating soft tissues and, additionally, a feeling of a high stiffness for
stiff environments, all this combined while having a stable interaction. In fact, the
switching between the controller Kc0(s) and Kc1(s) is made in a stable and smooth
way, which makes the BTC very promising in applications where it is expected
that the slave device is mainly either on free-air or in contact with soft tissue. The
switch to controller Kc2(s) presents some overshoot behavior but stability was not
compromised during the experiments. The subsequent force and position tracking
was degraded but still a high stiffness is provided to the operator. However, if
force tracking under stiff environments is relevant, for instance for cutting bone,
then such an issue needs improvement. This may be achieved by implementing
friction compensation on the slave device.

Finally, during the experimental phase we noticed that the accuracy of the envi-
ronment estimator degrades for high values of stiffness, e.g. ke> 4000 N/m, the
estimated values did not increased much despite the stiff environment. One of
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the reasons we found is that the slave device barely moves right after getting in
contact with the stiff environment due to the non-backdribality and high friction
of the slave device. In terms of the parameter estimation it means that no new
information is available to update further the estimations. This behaviour would
be problematic for techniques that rely on an accurate environment estimator, e.g.
Willaert et al. (2010), Cho et al. (2013). In the BTC structure estimator accuracy
is needed only around the overlapping region between ∆1 and ∆2, which is used
to determine whether to use Kc1(s) or Kc2(s). Thus, the BTC offers an advantage
in that respect with other techniques that use environment estimation parameters
in their control laws, and rely more on parameter estimation accuracy in a wide
range of environment stiffness.

6.4 Conclusions

In this chapter we have implemented two type of controllers in a tele-surgical setup:
one with a single LTI controller, and one with a multiple-controller structure. Both
types were designed with model based robust control techniques. Because there is
no sensor at the master device, rough estimates of the operator’s model parame-
ters were computed. Even with this limitation, the obtained experimental results
matched with the theory and simulations. Moreover, due to the lack of force sensor
in the master device, a disturbance observer was implemented to obtain an esti-
mate of the operator’s force. Despite the possible mismatch between the model of
the master device and the real device, analysis showed that the proposed imple-
mentation of the operator’s force estimator delivers accurate and robust estimates.
Such result was obtained because the disturbance observer model was included in
the system’s model, improving the stability properties of the estimator after the
control synthesis. Additionally, the results showed that it is possible to combine
multiple robust controllers to reflect to the operator, in a stable way, a stiffness
similar to that of the environment. Moreover, satisfactory results were obtained
for different types of environment, ranging from free air and soft to stiff environ-
ments, despite non ideal properties of the surgical setup, like non-backdrivability,
high mass and high friction in the slave device, and lack of force sensor on the
master device. All this demonstrates the suitability and potential of the utilized
control methods to be implemented in real-life engineering practice.
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

In this thesis, we have presented a systematic approach towards control design for
bilateral teleoperation. The approach involves modelling of the teleoperation sys-
tem, in which we use models of the operator derived from experiments, and we use
pre-defined models of the environment motivated by the type of the applications
considered. In this way, the set of uncertain dynamics of the bilateral teleoperation
system can be narrowed down to those present in a particular application, thus al-
ready reducing the conservatism in the modelling phase. Moreover, the proposed
model describes the uncertain dynamics by means of parametric uncertainties.
This allowed us to handle the uncertain parameters of the bilateral system in a
systematic way. Therefore, it was possible to take explicitly into account proper-
ties like boundedness and time-variation of the operator and environment model
parameters during control design.

Based on this modelling, we used synthesis tools that allowed us to systematically
and simultaneously address stability and performance, in contrast with conven-
tional methods in which both are treated separately. Throughout this thesis, the
analysis, simulation and experimental results of the cases at hand were consis-
tent with each other, showing that the assumptions we made during modelling
and synthesis were appropriate, thus demonstrating the potential of the design
methodology here presented. In this thesis we used a performance criterion based
on force and position tracking. The synthesis tools allow for other performance
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Figure 7.1: Orthogonal linear regression analysis results to evaluate stiffness reflec-
tion in the simulations. kro(%) is the percentage of the environment stiffness that is
reflected to the operator is shown. RCS: Robust Controller for Soft environment
stiffness (Chapter 2). RCW: Robust Controller for Wide range of environment
stiffness (Chapters 3 and 4). SRCCL: Switching Robust Controller with Common
Lyapunov Function (Chapters 3 and 4). SRCDT: Switching Robust Controller
with Dwell Time conditions (Chapter 4).

criteria as long as they can be represented as linear matrix inequalities.

In order to quantify and compare the results obtained with the different techniques
proposed in this thesis, we performed an analysis to determine the percentage kro
of environment stiffness that is reflected to the operator. The analysis is the same
as the one performed in Chapter 3. We took the responses in time domain of the
system and extracted the data from the time slots in which there is a permanent
contact with the environment. Then, for each set of data of forces versus positions
values, an orthogonal regression is applied in order to fit a straight line. The slope
of such a line is an estimation of the stiffness value corresponding to the respective
set of points of force versus position values. The orthogonal regression uses the sum
of the squares of the distance of the data points to the fitted line as optimization
cost. This procedure is applied to both the operator and the environment sides.
The ratio between both yields the percentage kro of environment stiffness that is
reflected to the operator. The analysis is performed for all controllers that were
designed for the 1-DoF setup utilized in this thesis. The results of the analysis for
all the simulations is presented in Fig. 7.1 and the results of the analysis for all
the experiments is illustrated in Fig. 7.2.
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Figure 7.2: Orthogonal linear regression analysis results to evaluate stiffness re-
flection in the experiments. kro(%) is the percentage of the environment stiffness
that is reflected to the operator is shown. RCS: Robust Controller for Soft environ-
ment stiffness (Chapter 2). SRCCL: Switching Robust Controller with Common
Lyapunov Function (Chapter 3). BTC: Bumpless Transfer Controller (Chapter 5).

Regarding the specific design case when a single robust controller is used, from
Figures 7.1 and 7.2 one can see that kro is always greater than 90%. Hence,
the simulation and experimental results demonstrated that the proposed methods
allowed to obtain high performance and stability simultaneously in the range of
soft environments, not only during continued contact, but also for sudden changes
of the environment as observed in the time domains plots. This confirms that
by treating explicitly the operator and environment model parameters as time-
varying, the bilateral teleoperation system is described more realistically. From
Fig. 7.1 one can see that if a single robust controller is designed for a wide range of
values of environment stiffness, the overall factor kro decreases, which is an example
of the robust stability and performance trade-off in bilateral teleoperation systems.

In order to improve the performance of the system and to extend the usable range
of values of environment stiffness, in this thesis we have also proposed a multi-
controller structure. The main idea is that several robust controllers are scheduled
according to an estimate k̂e of the actual environment stiffness. The main challenge
of this type of control is to achieve a stable and preferably smooth transition
between the different controllers, especially because in bilateral teleoperation large
overshoots and oscillatory behavior responses can degrade the haptic perception
of the operator. To this end, we explored three different methods for controller
switching, one based on the existence of a common lyapunov function, one based
on dwell time conditions, and one based on bumpless transfer.
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Even under the requirement on the existence of a common lyapunov function,
the synthesis results showed that it is possible to improve the performance of
the teleoperated system using the multi-controller structure, in comparison with
the case when only a single LTI robust controller is used. Analysis results of
kro in Fig. 7.1 confirm such overall improvement of performance. Moreover, the
simulations and experiments validated the synthesis results and also demonstrated
that indeed a smooth and stable switching among controllers is achieved because
they all share a common lyapunov function.

In the case in which the controller synthesis was based on dwell time conditions, the
theoretical results demonstrated that the flexibility added on the relation between
the lyapunov functions corresponding to the different controllers indeed resulted
in improved performance. This is confirmed by a better overall kro with respect to
the other controllers evaluated in Fig. 7.1. Although the simulation showed that
switching is made in a stable way, stability is only guaranteed under the condition
that the dwell times are respected. However, smoothness during switching is not
fully guaranteed, for instance, if a large dwell time is used during synthesis, the
results would be equivalent to having all the controllers designed independently,
for which a direct switch would cause oscillatory dynamics and large overshoots
which compromises the system’s stability. Hence, more insight is needed in the
restrictions on the usable average dwell times that can work on practice.

Interestingly, even if the controllers are designed independently, experimental re-
sults showed that stable switching among the controllers can still be achieved using
the proposed bumpless transfer scheme. The main advantage of this scheme is that
each controller can be separately optimized for performance in its corresponding
region of uncertainty dynamics. The analysis results in Fig. 7.2 shows that an
overall improved kro is achieved with the proposed scheme. In conclusion, it was
possible to successfully combine one controller optimized for low and medium
stiffness values and another optimized for stiff environments, thus improving the
overall performance of the system.

The stability of the multi-controller schemes depends on the fast convergence of
the environment estimator. However we point out that the accuracy is needed
only to determine to which region the environment stiffness belongs to. Thus
the estimator can be optimized for this purpose. In fact, we showed that it is
possible to implement an estimator that has a fast response to sudden and rapid
changes in the environment. The corresponding response time was small enough to
perform stable switching among the LTI controllers of the multi-controller schemes.
However, more insight is needed to know what is the maximum allowable estimator
response time to guarantee stability of the closed loop system. On the other hand,
a parameter estimator is not per se needed to determine which controller should
be active, because it is only needed to know to which region the environment
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currently belongs. Alternatives approaches are suggested in the next section.

Throughout this thesis we proposed different control design methodologies, sys-
tematically increasing the performance of the bilateral teleoperation system as
confirmed by the analysis of the simulation and experimental results in Figures 7.1
and 7.2 respectively. Comparing the multi-controller structures, one can see the
improvement was mainly noticeable for low environment stiffness, which is the
region of environment stiffness of major interest in many medical applications.

The model-based robust control approach was implemented in a real telesurgical
setup. Because there was no force sensor at the master device, we made use of a
disturbance observer to obtain an estimate of the operator’s force. A key aspect
to a successful implementation was the fact that the disturbance estimator was
included in the model together with the master device and operator dynamics.
In this way, the controller synthesis guaranteed the stability of the whole system
including the estimator. Moreover, analysis results showed that the proposed
implementation of the operator’s force estimator delivers robust estimations. The
experimental results demonstrated that the model-based robust control is also
suitable for non-ideal teleoperators, with characteristics such as a heavy, non-
backdrivable slave and a master device with structural resonances and no force
sensor. This shows the suitability and potential of the utilized control methods to
be implemented in real-life engineering practice.

Regarding numerical complexity of the different methods, there are two aspects to
look at, the synthesis complexity and the implementation complexity. In terms of
synthesis complexity, for the single robust controller case, the number of variables
to be solved by the LMI depends directly on the order of the models and the
number of uncertain parameters of the system. In the multi-controller case, the
synthesis complexity increases proportionally with the number of LTI controllers
to be used because all the controllers have to be designed simultaneously. In
contrast, the bumpless transfer scheme allows for independent controller design,
which allows to split the synthesis complexity in parts. On the other hand, in
terms of implementation complexity, the bumpless transfer exhibits the worse case
because all the controllers need to be active either in the loop with the real plant or
in a virtual loop with a plant model, which is the main disadvantage of this scheme.
The other schemes require less computational power since only one controller is
active at a time.



168 Chapter 7 Conclusions and Recommendations

7.2 Recommendations for future research

The methods and results presented in this thesis are just a preamble to show the
potential of the proposed approach, and it opens a new research line on modelling
and control design for bilateral teleoperation systems. There are still several open
challenges in order to develop further the methodologies here presented. Thus, in
this section we indicate the main points for improvement and give future directions
to continue this research in different areas.

Modelling
In this thesis, the human arm models were derived from experiments conducted
on one operator and for specific types of posture, while he/she grabbed the mas-
ter devices. Thus, it is desirable to broaden te model to cover different postures
and operators. It is expected that the group of muscles that an operator uses
while manipulating the master device will change for different postures. Thus,
we foresee this will increase the range of variation of parameters like mass and
damping of the model found in Chapter 2, thus more parameters would need to
be considered uncertain as well. This will increase the set of dynamics covered,
however, the utilized methods in this thesis describe arbitrary fast time-varying
parametric uncertainty, which might be too conservative, limiting the achievable
performance. Therefore, increasing the number of uncertain parameters should be
complemented by a better description of the parameters, for instance, including
bounds on the rate of variation of the operator’s arm model parameters. In fact,
Polat (2014) showed that including bounds on the rate of variation of the param-
eters of an operator’s model reduces conservatism on the achievable performance.

Moreover, during normal operation, many mechanical properties of the opera-
tor’s arm depend on the forces he/she is exerting. A model including such in-
formation could reduce the conservatism on the set of dynamics covered by the
model, which combined with the appropriate control methods could increase even
further the achievable performance.

Control Synthesis
All the proposed methods provided robust performance for the uncertainty region
taken into account during synthesis. However, outside that region, the robust sta-
bility properties are not known a-priori. For instance, when the common lyapunov
function technique was used to synthesize a multi-controller, its robustness prop-
erties degraded rapidly for increased operator’s hand mass. Thus, it is desirable
to increase the region of uncertainty for which robust stability can be guaranteed.
On the other hand, one can imagine that the uncertainty region for which robust
performance is desirable does not have to be the region for which robust stabil-
ity is needed. For instance, performance is desirable while the master device is
grabbed but it may not be required when the master device is released or grabbed
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with a light grip. This could be addressed in two ways. First, two different uncer-
tainty sets could be defined, one for stability and one for performance. Because
the controller parameters depend on the nominal augmented generalized plant in
Fig. 2.8, i.e. when r = 0, nominal G̃ must be the same for both regions, the one
for performance and the one for stability. Second, one could define a performance
measure depending on the operator parameters or even on the operator’s force.
Thus when the master device is released, the performance requirements can be
made less tight.

Environment estimation for switching control
In the multi-controller structure, we used an environment stiffness estimator to
determine which controller needs to be active. However, we emphasize that we do
not need to know per se the value of the environment stiffness but only the range
it currently belongs to. Another methodology to achieve this, could be the use
of a multi-estimator scheme, see, e.g., Yamamoto et al. (2008). The main idea is
that several environment models are evaluated and then according to a selection
criterion, one model is selected, which contains the parameters we are looking
for. One can imagine that to cover a sufficiently large range of parameter values,
many of such environment models would be needed. However, we would be only
interested in the overlapping between the partitions of the whole uncertainty region
(see Fig. 3.8 and Fig. 3.9). Therefore we could use environment models covering
only the regions of overlapping to discriminate between the different partitions.

Improving switching control
The results showed that the multi-controller with bumpless tranfer technique
presents a high potential to improve the performance of the bilateral teleoperation
system. However, its high computational power requirement is a big disadvantage.
Especially if the technique would be used in multi-DoF systems. To solve this, an-
other way to achieve stable switching among controllers is to perform a correct reset
of the states of the controller at the instant it becomes active. Many researchers
have already studied that problem in other fields. For instance, Pour Safaei et al.
(2012) propose a reset map to initialize the controller after switching. Similar con-
cepts could be applied to our bilateral control problem. Usually such reset maps
require to know the states of the plant, which in our case means that we would
need to implement a robust state observer, which is luckily a convex problem to
solve (see Scherer and Weiland (2000)). If this technique would succeed, then the
complexity of the bumpless transfer controller would be greatly reduced since in-
stead of having a bumpless compensator for each controller, we would only need
an estimator and a reset map for all controllers.

In principle, the bumpless transfer controller allows for independent controller
design. However, one would expect that if we want to switch between two con-
trollers that have a big difference in performance, for instance in position tracking,
large actuation signals are more likely to appear. Thus more insight is needed
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to know how the difference in performance between the controllers will affect the
transient behavior after the switch.

General recommendations
Finally, all the results presented in this thesis were tested in 1-DoF systems. In
order to move to a multi-DoF implementation there are a number of challenges
involved. The operator model needs to be extended to several DoF and it must be
evaluated whether it would be necessary to consider coupling between its different
DoF. In case of the multi-controller structure, a particularly difficult situation
would be, for instance, the end effector sliding over a surface, such that one DoF
is perpendicular to the surface and the other DoF is tangent to the same surface.
Particularly, the DoF tangent to the surface would experience some dynamics that
depend on the forces between the other DoF and the object. Thus, those dynamics
does not correspond entirely to being in contact nor in free air, which complicates
the selection of the controller in the multi-controller structure. Such scenarios will
definitely need to be studied in future work.
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López Mart́ınez, C. A., Molengraft, R. v. d., and Steinbuch, M. (2014b). Model
based robust control for bilateral teleoperation: Applied to a non-ideal teleop-
erator. In preparation for journal publication.
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Appendix A

1-DoF Academic Setup

The setup is shown in Fig. A.1. It consists of two similar devices, each with one
rotational degree of freedom, that are used as master and slave. A schematic view
of one of the devices is shown in Fig. A.2. The device is actuated by an electrical
motor 1O which provides the actuation force. Each device has two main segments,
the first segment 3O is attached to the motor via a capstan drive 2O, the second
segment 4O, in which the end-effector 7O is fixed, is attached to the first segment
through two elastic but stiff elements 6O. The difference in movement between
the two segments, which is in order of 100 µm, provides information about the
interaction forces fh and fe. Such difference is measured via inductive sensors 5O
that are connected to a voltage amplifier and a 16-bit Analog to Digital Converter.
At the end-effector, a force-measurement range of ±15 N with a resolution of ap-
proximately 7 mN is achieved. The position of the motor is measured by means
of incremental encoders with a resolution of 7500 pulses/revolution. The system’s

End−effectorMotor First segment

Inductive
sensors

Elastic
elements

Soft
spring

Capstan
drive

Figure A.1: 1-DoF setup for bilateral teleoperation.
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Figure A.2: Schematic of one 1-DoF device for bilateral teleoperation Hendrix
(2011)

sampling rate is 2000 Hz. During the tests, the end effector point is in contact
with the operator’s hand in the master device and with springs in the slave device
as depicted in Fig. A.1. The end effector is located at 7.5 cm from the device’s
rotational axis.
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Appendix B

Controller-Multiplier Synthesis
Procedure

In the following we will describe the controller-multiplier synthesis procedures used
in this thesis. There are two versions of the iterative synthesis procedure, both of
them explained in Sections B.2 and B.3 respectively.

The aim of the algorithm is to synthesize a multi-controller consisting of Nc LTI
robustly stabilizing controllers Kci(s), i = 1, . . . , Nc of the form

Kci(s) =

[
Aci Bci
Cci Dci

]
.

given the weighted generalized plants with transformed and scaled uncertainties.

G̃i(s) =




Ai B(i)1 B(i)2 Bi
rC(i)1 rD(i)1 rD(i)12 rE(i)1

C(i)2 D(i)21 D(i)2 E(i)2

Ci F(i)1 F(i)2 0


 , i = 1, . . . , Nc

Notice that for designing a single robust controller one can use Nc = 1.

B.1 Definitions of variables and set of LMIs

The set of variables and Linear Matrix Inequalities (LMIs) varies depending on
the specific control synthesis method used. We first give the common definitions
and then the definitions specific to each control synthesis method.
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B.1.1 Definitions common to all control synthesis methods

� r: scaling of the uncertainty channels,r ∈ [0, 1].

� δ̃j(i), i = 1, . . . , Nc. j = 1, . . . , Npg: are the Npg generators of the convex hull

δ̃(i) = co(δ̃1
(i), . . . , δ̃

Npg

(i) ) describing the region δ̃(i) of variation of the vector

δ̃(i) of transformed parametric uncertainties. It is assumed that 0 ∈ δ̃(i).

� ∆̃ij(δ̃
j
(i)), i = 1, . . . , Nc. j = 1, . . . , Npg: matrix diagonal concatenation of

the elements of δ̃j(i). i.e. ∆̃ij(δ̃
j
(i)) = diag(δ̃j(i)1, . . . , δ̃

j
(i)Np

), where Np is the

number of uncertain parameters of the system.

� Pi, i = 1, . . . , Nc: Matrix variables corresponding to the multipliers describ-
ing the uncertainty regions δ̃(i), i = 1, . . . , Nc. Assume Pi = PTi and define
the partition

Pi =

(
Qi Si
STi Ri

)

See Section 1.3 for a discussion on uncertainty description via multipliers.

� γsq = γ2: is the square of γ.

� γ
sq

, γ̄sq: minimum and maximum value allowed for γ2 at a certain iteration.

� Pp: matrix corresponding to the performance criterion

Pp =

(
Qp Sp
STp Rp

)
=

(
−γsqI 0

0 I

)

See Section 1.3 for a discussion on performance description via quadratic
performance criterion.

� vi = {Xi, Yi,Ki, Li,Mi, Ni}, i = 1, . . . , Nc: collected matrix variables used
as decision variables for the controller synthesis step.

� Define the next matrices
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Ai(vi) =

(
AiYi +BiMi Ai +BiNiCi

Ki AiXi + LiCi

)

B(i)n(vi) =

(
B(i)n +BiNiF(i)n

XiB(i)n + LiF(i)n

)

C(i)m(r, vi) =
(
rm(C(i)mYi + E(i)mMi) rm(C(i)m + E(i)mNiCi)

)

D(i)mn(r, vi) =
(
rm(D(i)mn + E(i)mNiF(i)n)

)

Xi(vi) =

(
Yi I
I Xi

)

for m,n = 1, 2. i = 1, . . . , Nc. r1 = r and r2 = 1.

� Equation to compute controller matrices:
(
Aci Bci
Cci Dci

)

=

(
Ui XiBi
0 I

)−1(
Ki −XiAiYi Li

Mi Ni

)(
V Ti 0
CiYi I

)−1

(B.1)

where Ui and Vi are invertible matrices satisfying I − XiYi = UiV
T
i . See

coming sections to see which Ui and Vi matrices are used.

� Given controllers Kci(s), i = 1, . . . , Nc, define the following closed loop sys-
tems matrices

G̃i(s) ? Kci(s) =



Ai B(i)1 B(i)2

C(i)1 D(i)11 D(i)12

C(i)2 D(i)21 D(i)22


 , i = 1, . . . , Nc.

B.1.2 Definitions for the synthesis method using a common Lya-
punov function and for the bumpless transfer method

� Only for the case that a common Lyapunov function V (x) = xTXx is used,
define:

X = X1 = X2 = . . . = XNc

Y = Y1 = Y2 = . . . = YNc

X = X1 = X2 = . . . = XNc
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� LMIana(γsq,Xi, Pi): Set of linear matrix inequality conditions for the robust
performance analysis step. The variables between brackets are the decision
variables used in these LMIs.

LMIana(γsq,Xi, Pi) is defined as:

(
I
0

)T
Pi

(
I
0

)
≺ 0, i = 1, . . . , Nc.

(
∆̃i(δ̃

j
(i))

I

)T
Pi

(
∆̃i(δ̃

j
(i))

I

)
� 0, i = 1, . . . , Nc. j = 1, . . . , Npg

Xi � 0, i = 1, . . . , Nc.

(
?

)T



0 Xi 0 0
Xi 0 0 0
0 0 Pi 0
0 0 0 Pp







I 0 0
Ai B(i)1 B(i)2

0 I 0
C(i)1 D(i)11 D(i)12

0 0 I
C(i)2 D(i)21 D(i)22



≺ 0, i = 1, . . . , Nc

Note that LMIana(γsq,Xi, Pi) indeed defines a linear constraint on the deci-
sion variables.

� LMIsyn(γsq, vi): Set of linear matrix inequality conditions for the robust
performance controller synthesis step. vi is defined in Section B.1.1. The
variables between brackets are the the decision variables used in these LMIs.
Define

B(i)l(v) =




Ai(v) B(i)1(v) B(i)2(v)
C(i)1(v) D(i)11(v) D(i)12(v)
C(i)2(v) D(i)21(v) D(i)22(v)




Q(i)l = diag(0, Qi, Qp)

S(i)l = diag(I, Si, Sp)

U(i)l = diag(I,R−1
i , R−1

p )

Tl = diag(0, I, I)

for i = 1, . . . , Nc. Then LMIsyn(γsq, vi) is defined as
(
Yi I
I Xi

)
� 0, i = 1, . . . , Nc,

(
Q(i)l + S(i)lB(i)l(v) +B(i)l(v)TST(i)l B(i)l(v)TTl

TTl B(i)l(v) −U(i)l

)
≺ 0, i = 1, . . . , Nc
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� LMInom
syn (γsq, vi): Set of linear matrix inequality conditions for the initial-

ization controller synthesis step, i.e. for the nominal plant. The variables
between brackets are the decision variables used in these LMIs. They are
obtained by removing the uncertainty channels from the LMIsyn(γsq, vi).

Define the following matrices:

B(i)l(v) =

(
Ai(v) B(i)2(v)

C(i)2(v) D(i)22(v)

)

Q(i)l = diag(0, Qp)

S(i)l = diag(I, Sp)

U(i)l = diag(I,R−1
p )

Tl = diag(0, I)

for i = 1, . . . , Nc. Then, Specifically. LMInom
syn (γsq, vi) is defined as

(
Yi I
I Xi

)
� 0, i = 1, . . . , Nc,

(
Q(i)l + S(i)lB(i)l(v) +B(i)l(v)TST(i)l B(i)l(v)TTl

TTl B(i)l(v) −U(i)l

)
≺ 0, i = 1, . . . , Nc.

� For given vi we compute the controller matrices {Aci, Bci, Cci, Dci} of Kci(s),
i = 1, . . . , Nc in Eq.(B.1) with Ui = Xi and Vi = X−1

i − Yi. This is a
particular decomposition to achieve that I −XiYi = UiV

T
i .

B.1.3 Definitions for the synthesis method using dwell time con-
ditions

� µ > 1: real number that determined a bound on the discrepancy between
Lyapunov functions represented by Xi.

� λ0 > 0: minimal exponential decay constant of the Lyapunov functions
represented by Xi

� τa: represents the average dwell time of the switched system representing
the bilateral teleoperation system and it is given by:

τa >
ln(µ)

λ0
.

See Section 4.2.2 for details.
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� YIi: matrix variables that denotes Y −1. It is used in the analysis step.

� Xi: The Lyapunov function must have the following structure.

Xi =

(
Xi YIi −Xi

YIi −Xi Xi − YIi

)
� 0, i = 1, . . . , Nc

See Section 4.2.2 for details.

� LMIana(γsq,Xi, Pi): Set of linear matrix inequality conditions for the robust
performance analysis step. The variables between brackets are the decision
variables used in these LMIs.

LMIana(γsq,Xi, Pi) is defined as:

(
I
0

)T
Pi

(
I
0

)
≺ 0, i = 1, . . . , Nc.

(
∆̃i(δ̃

j
(i))

I

)T
Pi

(
∆̃i(δ̃

j
(i))

I

)
� 0, i = 1, . . . , Nc. j = 1, . . . , Npg

Xi � 0, i = 1, . . . , Nc.

1

µ
YIj � YIi � µYIj , i, j = 1, . . . , Nc

(?)
T




0 Xi 0 0 0
Xi 0 0 0 0
0 0 λ0Xi 0 0
0 0 0 Pi 0
0 0 0 0 Pp







I 0 0
Ai B(i)1 B(i)2

I 0 0
0 I 0
C(i)1 D(i)11 D(i)12

0 0 I
C(i)2 D(i)21 D(i)22




≺ 0,

i, j = 1, . . . , Nc

Note that LMIana(γsq,Xi, Pi) indeed defines a linear constraint on the deci-
sion variables.

� LMIsyn(γsq, vi): Set of linear matrix inequality conditions for the robust
performance controller synthesis step. vi is defined in Section B.1.1. The
variables between brackets are the the decision variables used in these LMIs.
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Define

B(i)l(v) =




Ai(v) B(i)1(v) B(i)2(v)
C(i)1(v) D(i)11(v) D(i)12(v)
C(i)2(v) D(i)21(v) D(i)22(v)




Al = col(I, (I 0 0));

Q(i)l = diag(0, Qi, Qp, λ0Xi(vi))

S(i)l = col(diag(I, Si, Sp), 0)

U(i)l = diag(I,R−1
i , R−1

p )

Tl = diag(0, I, I)

for i = 1, . . . , Nc. Then LMIsyn(γsq, vi) is defined as
(
Yi I
I Xi

)
� 0, i = 1, . . . , Nc,

Yi � µYj , i, j = 1, . . . , Nc

(
ATl Q(i)lAl +ATl S(i)lB(i)l(v) +B(i)l(v)TST(i)lAl B(i)l(v)TTl

TTl B(i)l(v) −U(i)l

)
≺ 0,

i = 1, . . . , Nc

� LMInom
syn (γsq, vi): Set of linear matrix inequality conditions for the initial-

ization controller synthesis step, i.e. for the nominal plant. The variables
between brackets are the decision variables used in these LMIs. They are
obtained by removing the uncertainty channels from the LMIsyn(γsq, vi).

Define the following matrices:

B(i)l(v) =

(
Ai(v) B(i)2(v)

C(i)2(v) D(i)22(v)

)

Al = col(I, (I 0));

Q(i)l = diag(0, Qp, λ0Xi(vi))

S(i)l = col(diag(I, Sp), 0)

U(i)l = diag(I,R−1
p )

Tl = diag(0, I)

for i = 1, . . . , Nc. Then, Specifically. LMInom
syn (γsq, vi) is defined as

(
Yi I
I Xi

)
� 0, i = 1, . . . , Nc,
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Yi � µYj , i, j = 1, . . . , Nc

(
ATl Q(i)lAl +ATl S(i)lB(i)l(v) +B(i)l(v)TST(i)lAl B(i)l(v)TTl

TTl B(i)l(v) −U(i)l

)
≺ 0,

i = 1, . . . , Nc

� For given vi we compute the controller matrices {Aci, Bci, Cci, Dci} of Kci(s),
i = 1, . . . , Nc in Eq.(B.1) with Vi = Yi and therefore Ui = Y −1

i −Xi. This
particular decomposition is needed so the theorems involving the dwell time
conditions are valid. See Chapter 4.

B.2 Synthesis procedure: version I

Given the generalized plant G̃i, i = 1, . . . Nc, we aim to iteratively find robust
controllers Ki that renders the sets LMIsyn(γsq, vi) and LMIana(γsq,Xi, Pi) feasi-
ble for different values of (r, γ) ∈ [0, 1] × [0,∞]. The main idea in this procedure
is to gradually let γ increase between the iterations. This will result in a grad-
ual increase of r until r = 1 is reached. This algorithm gives higher priority to
performance than to robust stability.

Step 0. Initialization: controller for nominal plant

1: Set iteration counter is = 0 and scaling r = 0.
2: Solve set LMInom

syn (γsq, vi) while minimizing γsq.
3: Compute the controller matrices of Kci(s), i = 1, . . . , Nc using Eq. (B.1) and

save the obtained value γsq(0) = γsq.

Step 1. Robust performance analysis: multiplier step

1: Increase iteration counter is = is + 1.
2: Set γ̄sq = ρ2γsq(is−1) for some 1 < ρ < 2. The idea is to gradually let γ increase

in order to allow r to increase.
3: Start a bisection algorithm on r that maximizes r in the interval [0, 1]. To this

end, initialize r = ris−1 and r̄ = 1 and start with a test value for r ∈ [r, r̄],
e.g. r = (r + r̄)/2.

4: repeat
5: Use Kci(s), i = 1, . . . , Nc from previous controller step and solve the set

LMIana(γsq,Xi, Pi) for minimal γsq ∈ [0, γ̄sq].
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6: if LMIana(γsq,Xi, Pi) is feasible then
7: save current values of Pi. Set ris = r and γsq(is) = γsq (to eventually

be used in Step 2). Redefine the bounds r = r, then try a larger value
r = (r + r̄)/2.

8: else
9: make r̄ = r and try a smaller value r = (r + r̄)/2.

10: end if
11: until (r̄ − r) < εr for some small εr > 0
12: if ris = 1 then
13: finish
14: else
15: continue with Step 2.
16: end if

Step 2. Robust Performance synthesis: controller step

1: Increase iteration counter is = is + 1.
2: Set γ̄sq = ρ2γsq(is−1) for some 1 < ρ < 2. The idea is to gradually let γ increase

in order to allow r to increase.
3: Start a bisection algorithm on r that maximizes r in the interval [0, 1]. To this

end, initialize r = ris−1 and r̄ = 1 and start with a test value for r ∈ [r, r̄],
e.g. r = (r + r̄)/2.

4: repeat
5: Use Pi, i = 1, . . . , Nc from previous multiplier step and solve the set

LMIsyn(γsq, vi) for minimal γsq ∈ [0, γ̄sq].
6: if LMIsyn(γsq, vi) is feasible then
7: save current values of vi, ris = r and γsq(is) = γsq (to eventually be

used in Step 1), set r = r, then try a larger value r = (r + r̄)/2.
8: else
9: make r̄ = r and try a smaller value r = (r + r̄)/2.

10: end if
11: until (r̄ − r) < εr for some small εr > 0
12: if ris = 1 then
13: finish
14: else
15: continue with Step 1.
16: end if
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B.3 Synthesis procedure: version II

The main idea in this procedure is to initially let γ take a large value. This will
result in a fast convergence of r to r = 1, however with a poor performance be-
cause of the large γ. Then, γ is gradually minimized over the multiplier-controller
iteration. This algorithm gives initially higher priority to robust stability than to
performance.

Step 0. Initialization: controller for nominal plant

1: Set iteration counter is = 0 and scaling r = 0. Moreover set γsq = γLsq, with
large γLsq, say γLsq = 1002.

2: Solve set LMInom
syn (vi) for fixed γsq.

3: Compute the controller matrices of Kci(s), i = 1, . . . , Nc using Eq. (B.1). Set
γ

sq
= 0 and γ̄sq = γLsq.

Step 1. Robust performance analysis: multiplier step

1: Increase iteration counter is = is + 1.
2: if ris−1 = 1 then
3: set γ

sq
= ρ2γsq(is−1) for some 0.5 < ρ < 1. The idea is to gradually let γ

decrease.
4: else
5: keep current γ

sq
and proceed.

6: end if
7: Start a bisection algorithm on r that maximizes r in the interval [0, 1]. To this

end, initialize r = ris−1 and r̄ = 1 and start with a test value for r ∈ [r, r̄],
e.g. r = (r + r̄)/2.

8: repeat
9: Use Kci(s), i = 1, . . . , Nc from previous controller step and solve the set

LMIana(γsq,Xi, Pi) for minimal γsq ∈ [γ
sq
, γ̄sq].

10: if LMIana(γsq,Xi, Pi) is feasible then
11: save current values of Pi, set ris = r and γsq(is) = γsq (to eventually

be used in Step 2), set r = r, then try a larger value r = (r + r̄)/2.
12: else
13: set r̄ = r and try a smaller value r = (r + r̄)/2.
14: end if
15: until (r̄ − r) < εr for some small εr > 0.
16: if ris = 1 and (γsq(is) − γsq(is−1)) < εγ for some small εγ > 0 then
17: finish
18: else
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19: continue with Step 2.
20: end if

Step 2. Robust Performance synthesis: controller step

1: Increase iteration counter is = is + 1.
2: if ris−1 = 1 then
3: set γ

sq
= ρ2γsq(is−1) for some 0.5 < ρ < 1.

The idea is to gradually let γ decrease.
4: else
5: keep current γ

sq
and proceed.

6: end if
7: Start a bisection algorithm on r that maximizes r in the interval [0, 1]. To this

end, initialize r = ris−1 and r̄ = 1 and start with a test value for r ∈ [r, r̄],
e.g. r = (r + r̄)/2.

8: repeat
9: Use Pi, i = 1, . . . , Nc from previous multiplier step and solve the set

LMIsyn(γsq, vi) for minimal γsq ∈ [γ
sq
, γ̄sq].

10: if LMIsyn(γsq, vi) is feasible then
11: save current values of vi, set ris = r and γsq(is) = γsq (to eventually

be used in Step 1), set r = r, then try a larger value r = (r + r̄)/2.
12: else
13: set r̄ = r and try a smaller value r = (r + r̄)/2.
14: end if
15: until (r̄ − r) < εr for some small εr > 0.
16: Compute the controller matrices of Kci(s), i = 1, . . . , Nc using Eq. (B.1).
17: if ris = 1 and (γsq(is) − γsq(is−1)) < εγ for some small εγ > 0 then
18: finish
19: else
20: continue with Step 1.
21: end if
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