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Ṫd , (Tdmax = 4.6548s (const.)). . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Achievable upper bound of Tdmax with various Ṫd for Example 5. . . . . . 101
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This thesis provides moderate stability conditions for bilateral teleoperation by ex-
ploiting the advantages of the Zames-Falb multipliers within the integral quadratic
constraint framework, where the environment can be defined as a memoryless,
bounded, and monotonic nonlinear operator. Recent advances in multiplier the-
ory for appropriate classes of uncertainties/nonlinearities are applied. Because the
classes of multipliers have infinite dimension, parametrization of these multipliers
is used to obtain convex searches over a finite number of parameters such that an
asymmetric Zames-Falb multiplier search is proposed.

The stability of the system is analysed as a Lur’e system containing time-delay
and monotone bounded nonlinearity. As a result, (less) conservative (than typical)
delay-dependent stability conditions can be developed. Performance of the results
is initially evaluated with case studies based on the numerical examples from the
neural networks while using Kalman conjecture as a benchmark. Also, a geomet-
rically intuitive stability analysis approach is provided to show when the Kalman
conjecture is true for the time delayed Lur’e interconnections. Thus, one can show
that it is possible to find a multiplier for a slope bound equivalent to the Nyquist
value without constructing the suitable multiplier by revisiting classical results in
clockwise properties of the plants with time delay.

Then, these results are applied to the bilateral teleoperation. Finally, stability
conditions are tested with different control architectures and experimentations; in
particular, bilateral teleoperation experiments over the internet between Manch-
ester, UK, and Vigo, Spain, are carried out. The advantage of the proposed approach
is demonstrated by reaching higher transparency indices for a two-channel position-
force and for three-channel bilateral teleoperation architectures while ensuring the
absolute stability with nonlinear environments.
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1 | Introduction

The technology that we have today is a result of human persistence in following

a dream and desire to make real what was simply in the imagination. Unarguably,

overcoming our bodies’ physical capabilities has been one of those dreams for decades.

Today, many technological improvements empower us to extend our physical lim-

itations. Conducting an intercontinental phone call or watching events on the tele-

vision that are occurring around the world have become standard parts of our daily

lives. Electro-mechanical devices have been developed that not only are capable of

transmitting auditory and visual information but also allow us to manipulate ob-

jects remotely. Commonly, all the names of these devices contain Tele as a prefix.

Tele is a Greek word meaning ’at a distance’, and not surprisingly, the gadget used

to manipulate objects remotely is called a teleoperator.

Teleoperation is the act of remotely carrying out a task by using robotic manip-

ulators that communicate via a communication medium such as the Internet. In a

typical teleoperation control system, reference position information generated by a

local manipulator, called the master, is transmitted to a distant robot, known as the

slave, and the operator conducts the task by relying solely on the visual information

delivered from the distant side by a camera. Conversely, in a bilateral teleoperation

control system, which is the main topic of this thesis, in addition to the visual infor-

mation position of the distant robot, a slave, or task interaction force is transmitted

to the operator side so that, with provided haptic information, the situational aware-

ness of the operator is increased.

Definition 1.1 (Haptic perception [1]). Haptic defines the sense of touch and can also

be related to other types of sensation, such as temperature; in this thesis, we will refer to it

simply in relation to mechanical interactions such as grasping.

This additional feedback is crucial in tasks requiring delicate actions such as
18



CHAPTER 1. INTRODUCTION 19

telesurgery [2], which require more steps than simply picking and placing, and in

tasks where the environment is hazardous, such as space missions, undersea explo-

ration, and nuclear decommissioning [3]. To illustrate the importance of this tech-

nology, some of the pioneering application areas are going to be heedfully presented

in the subsequent section.

1.1 Teleoperation Systems and Applications

This section briefly introduces the definition, components, and application areas of

teleoperation systems. Teleoperation is a combination of two words: tele and operation.

The remote control systems that are commonly used in the academic research are an

example of Teleoperation systems. As a system, the teleoperator enables a human to

move, sense (if possible), and mechanically manipulate objects from a distance [4].

Any mechanism that enables a human to perform tasks over a distance can be called

a teleoperator.

As an electromechanical device, a robot can interact with its surroundings based

on the actuators and different types of sensors on the device. A robot can be fully

autonomous (acting on its own) or semi-autonomous, with some degree of auton-

omy. Types of robots vary from humanoid robots with self-intelligence, such as

Asimo1, to industrial robots of different sizes and shapes that conduct work based

on predetermined tasks. A manipulator used within the teleoperator might be like a

humanoid robot; serial links may be mounted on a robotic body with a camera pro-

viding visual information, or an industrial manipulator that looks like a mechanical

arm may be used. The level and type of the autonomy, however, differentiate a

robot from a teleoperator which has a variety of control algorithms, from remote

operation to supervisory control.

However, despite the necessity of using robots for working environments that

are hazardous for humans, fully autonomous robots cannot be implemented for all

tasks because their capabilities have not yet reached the intelligence and dexterity

of humans, and is not expected to in the near future. Additionally, there exist a great

number of tasks for which it is not possible nor plausible to pre-plan what needs to

be carried out; the task itself might depend on spontaneous decisions which are im-
1The Honda’s Humanoid Robot
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possible to be made with any artificial intelligence that exists currently. Therefore, it

can be said that the teleoperation system combines advantages of using electrome-

chanical manipulators and robots with human intelligence within the same architec-

ture. Also, expanding on the human capabilities increases the safety and enhances

the task quality. These conveniences paved the way for using teleoperators in many

different operation areas; in fact, for some applications they became the key element

for success. The following sections highlight some of the main application areas of

teleoperation.

1.1.1 Space

Needless to say, environmental conditions in outer space are extremely dangerous

and hostile for any living creature on Earth, and particularly for human beings.

Conditions are such that an astronaut cannot survive in outer space more than 30s

without a spacesuit, as losing consciousness may occur within less than 15s due to

lack of oxygen. In addition, body fluids and blood start to evaporate and then freeze

due to lack of air pressure and heat. See [5] for detailed information regarding the

hazardous conditions of a low pressure medium. Furthermore, extreme tempera-

tures occur based on exposure to solar radiation; it can reach 120◦C in sunlight and

−100◦C in shade.

Despite these hazardous conditions, space walks are necessary for maintenance

of spacecraft such as the International Space Station (ISS) and for exploration mis-

sions over extraterrestrial areas. Thus, special suits have been designed for astro-

nauts to protect them during their necessary space walks. These suits must cre-

ate enough pressure to keep body fluid in a liquid state, have sufficient oxygen for

breathing, provide heat isolation from extreme outside temperatures, and contain

radiation protection, as cosmic radiation is deadly for any living creature. No mat-

ter how functional the suit is, extraterrestrial missions remain hazardous. Despite

the necessity of wearing a spacesuit, it reduces the operator’s functionality, partic-

ularly the dexterity of the human hands that is crucial during maintenance of the

spacecraft. In addition to these concerns, when considering the restrictions on con-

trol and artificial intelligence that today’s fully autonomous robots have, researchers

have focused on designing a locally autonomous space robot system that can be con-
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trolled by an operator [4].

ROTEX2 was one of the first teleoperated robots to be designed for space mis-

sions. It was a multi-sensory (force-torque sensors, laser range finders, stereo cam-

eras, etc.), six-degree-of-freedom (DOF) serial link manipulator that could be teleop-

erated with the help of video cameras from a nearby spacecraft. In addition, it could

be controlled from the ground control unit on Earth with a special operating mode

known as predictive computer graphics (to reduce detrimental effects of time de-

lay) [6, 7]. Mainly, the robot had three tasks: connecting-disconnecting mechanical

or electrical components from the spacecraft, which is necessary for maintenance;

grasping floating objects (might be useful for space junk clean-up); and assembling

a simple mechanical structure. Despite the number of the sensors that the robot had,

feedback to the human for on-line operation was provided only by a video camera.

ETS-VII3 was an orbiter that had two robotic arms to be used for space exper-

iments, and which were used particularly for rendezvous docking4. As the satel-

lite was unmanned, the robotic arms were controlled (teleoperated) from a control

station located on Earth. A communication satellite was used to transfer data be-

tween the ground control unit and the satellite. Due to the time delay existing in

long-distance communication, predictive computer graphics were used for on-line

controlling of the robotic arms. In addition, a test-bed, which was located on the

ground and was similar to the robotic system in space, was used to evaluate design

of the teleoperation system [8].

ROKVISS was another robotic system designed and used in space missions. It

was mounted on the outside of the International Space Station (ISS) to complete and

evaluate various experiments. The experiments were conducted using a small robot

that had two controlled joints. This robot was different, in terms of design and con-

trol perspectives, from the previously used space robots in two aspects: it had a fully

autonomous control system (due to the time limit for direct link experiments), and in

teleoperation mode it was able to supply force feedback to the operator to achieve a

level of telepresence. In teleoperation mode, video images of the robot’s joint angles

and torque values were fed back to the human operator. A force feedback control
2Robot Technology EXperiment
3Engineering Test Satellite No.7
4An orbital maneuver; connecting two space-crafts
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algorithm was used for this experiment, yet the maximum communication time de-

lay was restricted to 0.5s. Due to this limitation, the teleoperation mode was used

only when ISS was flying over the ground station (over-flight situation). In other

circumstances, communication satellites were required to be used; in such circum-

stances the communication delay would exceed the human capability5 to carry out

a task [9]. Ultimately, ROKVISS had two main objectives: testing the usefulness of

lightweight robotic arms and verification of the direct teleoperation with force feed-

back. The latter process was essential for satellite maintenance tasks that required

precision.

A number of different robotic systems have been designed, tested, and used in

space missions, particularly for maintenance of the ISS. Among them is Canadarm,

which is a six-DOF robotic arm that has been used on more than 50 space missions.

These early designed robots and experiments exposed the importance and useful-

ness of teleoperation systems in space missions. However, some challenges remain

to be resolved in teleoperation of space robots, including communication time delay,

limited bandwidth, and limitation of on-board computational systems. In addition,

these robots must be highly reliable and able to operate precisely. Consequently,

precise analysing, testing, and accurate modelling are essential to validate them on

the ground before dispatching them to space.

1.1.2 Undersea

The history of mankind is full of scientific achievements and exploration stories

brought about by our intelligence and curiosity. We were able to send spacecraft

and fully autonomous high-tech robots deep into space or to distant planets. Mas-

sive telescopes such as the Hubble Space Telescope (HST) were built for use in explo-

ration of the cosmos. Despite these strides, the least known places in the universe

may be located on our own planet; they are the oceans’ depths and deep-sea bot-

toms. It has been claimed that more is known about the Moon than the deepest part

of the oceans [10]. Of course, the reason is not our lack of interest, it is the chal-

lenges and conditions that welcome us as we go deeper into the water. For instance,

sunlight cannot illuminate and penetrate deep into the water because it is scattered
5Consider the level of frustration experienced in conducting such a task using a sluggish com-

puter
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while travelling through the water. Light might be detectable at 1,000 m into the

ocean, yet it is rare to have significant visibility after 200m [11]. Second, pressure

increases by 1 atmosphere every 10m toward the bottom of the ocean. The deepest

point of the ocean is measured as approximately 10,000 m and, for comparison, the

height of Mount Everest is approximately 9,000 m above sea level. Due to the ex-

treme pressure, it is impossible for a human to go to the bottom of the ocean, even

with special devices. That is why deep water exploration submarines generally are

unmanned and remotely operated vehicles, and are operated from the control unit

on a ship at the surface of the sea.

Despite these hazardous environmental conditions, deep locations in the oceans

must be reached for scientific and commercial (oil and gas) purposes. In the off-

shore oil industry, remote undersea vehicles which have two robotic arms are used

for maintenance and material handling [12,13]. In some situations, high dexterity is

required for undersea material handling. For instance, recovering cockpit voice and

flight data recorders, known as ’black-boxes’, is a process that must be carried out

meticulously for crash investigations. An example of this is the Air France Flight 447

data recovery. Therefore, it is essential to have robust and reliable bilateral teleoper-

ation systems for underwater tasks and explorations. Many submarines which have

robotic manipulators were designed and used for these purposes. An example is the

Jason undersea vehicle operated by Woods Hole Oceanographic Institution [4]. Re-

search on teleoperated sub-sea vehicles is increasing due to the usefulness of having

such robots for marine experiments, geological exploration, and material recovery.

1.1.3 Nuclear Decommissioning and Toxic Material Handling

Discovery of the relationship between mass and energy changed the world in many

ways and brought a new concept to our daily lives: nuclear energy. When uranium

atoms split, a huge amount of energy releases to the medium. In nuclear power

plants, this released energy is used for generating pressurised steam which is used

for turning generator shafts and subsequently leads to electricity generation. Today,

nuclear energy supplies more than 15% of the world’s electricity consumption. This

ratio increases dramatically with the rise in energy demand, particularly in countries

where this ratio is more severe; France produces over 75%, and U.S derives nearly
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20% of their electricity from nuclear energy [14]. In military (no need to include

weapons of mass destruction), nuclear energy is used in submarines and gigantic

aircraft carriers, which can sail more than 20 years without refuelling.

However, there are high risks in nuclear fission as an energy source, and it is gen-

erally described in two ways: radio-toxicity and accessibility. The former describes

the damage level of the radiation, which can be exemplified as unseen bullets to the

human body. The latter describes the amount of time that the body stayed under

the influence of the radiation during transportation, assembling, etc. [15]. The aim

of the research in that area is to reduce the accessibility level, because after discharge,

the level of radio-toxicity remains high for many years (thousands), so accessibility

is crucial for preventing damage from these hazardous materials. For this reason,

the hazardous toxic materials generally are reserved in isolated capsules to prevent

accessibility. No matter how hazardous the materials are, the problem would be

solved as long as it is not accessible to anyone or anything. In some circumstances,

the solution might not be that simple, as in the example of the reactor at the Cher-

nobyl nuclear power plant. Reactor number 4 was covered with a 2-meter-thick

concrete wall to prevent radiation emission to the environment. But construction

workers, fire fighters, military officers, and other people who worked on the region

after the disaster were exposed to high levels of radiation that caused the death of

many. Therefore, for such situations, a teleoperation system is essential and must be

used with precision to separate humans from the hazardous environments. Another

example is the more recent disaster in Fukushima. There, remote-controlled robots

were sent to the core of the plant to carry out some tasks after the incident because

the radiation level was destructive for humans.

Furthermore, each nuclear power plant has a lifetime, and when it completes its

life cycle, it must be dissembled so the occupied place can be used for other pur-

poses. The number of power plants that reach their expiration date and require de-

commissioning has increased gradually as commercial nuclear energy began in the

mid 1950s. In the U.K., for instance, decommissioning of 25 nuclear power plants

has already begun. It is extremely technical, as during the process all hazardous

radioactive materials must be cleaned up completely and precisely. Robot technol-

ogy is necessary, as radiation is dangerous for any living creatures, yet due to the

complexity of the process, fully autonomous robots still are not suitable. However,
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teleoperated robots are expected to have a great impact on this application area;

thus, a number of teleoperation systems have been designed for decommissioning

purposes [16]. Additionally, regulation of nuclear toxic material storage for military

use is not as restricted as it is for commercial nuclear power plants. Therefore, for

many years radioactive disposals of the military were buried in deserts within cap-

sules. Unfortunately, these capsules were faced with corrosion after many decades

and started to leak through the underground water sources, particularly in the U.S.

That, of course, is a major problem and might only be solved with a teleoperation

system for transportation of massive amounts of heavy toxic materials.

1.1.4 Telesurgery and Telediagnosis

Today, technological improvements and discoveries have made a huge effect on

medical sciences. Diagnostic methods for illnesses have improved and accuracy has

increased dramatically with the help of electronic devices such as X-rays, magnetic

resonance imaging (MRI), and ultrasound imaging. More information has become

available and accessible. Despite the adverse effects that some of them have, no-

body questions their value, as their usefulness has been shown in different aspects.

Another revolution has come about with telesurgery and the use of robotic systems

in medicine. These devices increase the performance level of operations beyond the

human limitations in terms of dexterity and scale. For instance, a surgeon’s hand

vibrates, which reduces the quality of the operation. This will not be an issue with

robotic surgery, as the vibration is eliminated via filters.

Moreover, minimally invasive surgery decreases the level of trauma drastically

and enables the patient to return to the activities of daily life as soon as one day

after the operation. The revolution, of course, brought some challenges to doctors

or surgeons, as rather than looking directly at the anatomy of the patients, they

need to perform their jobs via a computer screen; in addition, they lack the tactile

sensation that is vital for special operations [17]. For instance, laparoscopic surgery

was the first application for which special types of robotic devices such as the da

Vinci robot were designed and used, see Figure 1.1.

With this type of surgery, hand movements of the surgeon are transmitted to the

apparatus via electromechanical devices. This paved the way for distance surgery,
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in which the patient and surgeon do not need to be in the same room or even in

the same country, as in [2]. The impact of this technology might be beyond our esti-

mations. The number of experts that can perform specialized operations is limited,

so the ability for the surgeons to conduct different operations, when needed, at op-

posite sides of the world, without actually being there, will be valuable. However,

a number of challenges exist for researchers and designers to overcome; one chal-

lenge is latency. Time delay that occurs during communication must be limited due

to performance limitations of the mechanical system as well as the human [17]. It

has been stated that if the total communication time is more than 1s, performance

of the system decreases drastically, and beyond that the operation is not at all realiz-

able in terms of the human point of view . An acceptable time limit of approximately

350ms has been established for safety of the overall operation [2].

Figure 1.1: Telesurgery between US (surgeon) and France (patient) (Image is taken
from [2])

As robots began to appear in operating rooms, new opportunities and devel-

opments arose, and new challenges appeared for engineers and surgeons as well.

Many researchers have worked to bring tactile sensations into telesurgery and also

to improve robustness against latency.

The reader might ask why, if teleoperation has such wide application areas and

resolves many fundamental problems while separating humans from the hazardous

mediums, we still sending people to outer space or to nuclear facilities in critical

states. The answer will be provided upon solving the indispensable problems that

bilateral teleoperation has: modelling dynamics of the human and environment, as

they are part of the interconnected system, and providing robustness against com-
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munication time delay. In other words, absolute stability, which is discussed rigor-

ously in other sections, must be provided. However, we can state that some of the

mentioned technologies already have begun to play a role in the 21st century, and

others need more time for improvements. Here, we attempt to show some other

methods that can be followed while solving chronical issues in bilateral teleopera-

tion. But before moving on to that, let us briefly discuss some current meritorious

efforts in the field of bilateral teleoperation.

1.2 Brief Current Scope of the Related Work

The design aim of a bilateral teleoperation is to include a kinaesthetic feedback chan-

nel so that performance and success rate are increased while operational cost and

time are decreased. A bilateral teleoperation needs to fulfill two key criteria: abso-

lute stability, which means that functionality must be held for any possible human

and environment pairs; and transparency, which means that the environmental in-

teraction forces or the impedances must be transmitted well to the operator side.

Unfortunately, a trade-off exists between these two measures; namely, it is impos-

sible to obtain an ideally transparent operation, where the operator feels only task

impedance and absolutely stable bilateral teleoperation [18]. With highly variable

uncertainties, the overall control design process transforms into a challenging task.

Over the years, many efforts have been made to overcome these obstacles that pre-

vent a physically realisable high-performance teleoperation system. Early research

on the topic primarily used network theory due to the lack of today’s computational

power and the simplicity of the theory, and passivity theory became the main tool

used by many researchers [19–22].

Passivity is an energy-related phenomenon; a system is called passive if the en-

ergy injected into its input ports is higher than the energy extracted from its output

ports [23]. Passivity is independent from the model parameters6, which makes it

appropriate for teleoperation, as designs contain highly variable uncertainties; hu-

man and environment. Therefore, the stability in a bilateral teleoperation is carried

out by transforming the overall system into a network consisting of one port for
6The effect of a substantial time delay on the passivity will be discussed in the forthcoming sec-

tions.
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the passive human-environment pair connected to two ports for the network, con-

taining manipulator and controller dynamics, etc. With the passivity assumption

of the operators, if we can find a way to guarantee that the two-port network is

also passive, then stability of the interconnection is ensured. Llewellyn’s stability

criterion proposes certain conditions [24] while ensuring stability of the intercon-

nection, but in addition to the passivity uncertainties, the assumption of linear time

invariant (LTI) operators must be made. These conveniences, model avoidance and

linearity, come with a price: conservatism of the design, as it needs to be robust

against a wide range of uncertainty classes such that stability of the system with a

simple PD-controller may not be guaranteed [25, 26].

To reduce conservatism, the definition of uncertainties was restricted such that

stability was required for an upper-bounded environment instead of the full class,

and reasonable performance specifications were obtained [27, 28]. For instance,

defining the environment as a set of models consist of mass, spring, and damper

with upper bounded parameters’ constants is a frequently applied technique. Those

results indicate how descriptions about uncertainties affect the overall performance,

yet present stability analysis methods are restricting us to extend or outperform the

current definitions.

Polat and Scherer [29] showed that stability analysis of teleoperation can be con-

ducted by using integral quadratic constraints (IQCs). Stability is transformed to

convex search for suitable passive multipliers that ensure frequency dependent in-

equalities by using equivalent linear matrix inequalities (LMI); for more detailed

information, we refer the reader to [30]. Those results show that methods such as

multipliers for robust control to analyse stability against a class of uncertainty can be

applied to bilateral teleoperation as well. Furthermore, possible application of the

IQC methodology within the inherently non passive systems (particularly in teleop-

eration) also have been highlighted in [31]. That implies, while analysing absolute

stability of the bilateral teleoperation IQC framework can be practiced alongside

with Multiplier theory to extend the definition of the troublesome perturbations

such as human and environment without including any additional conservatism

within the analyses that current approaches have. In comparison, the Zames-Falb

multiplier [32, 33] is attracting significant attention, courtesy of today’s computa-

tional power. This class of multipliers is used to analyse stability against slope-
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restricted monotonic nonlinear uncertainties [34–38] which might exists within the

bilateral teleoperation architecture.

Apart from that, in bilateral teleoperation, if there exists a physical distance be-

tween two manipulators, the time delay phenomenon, which can hinder the per-

formance and also destabilize the overall system, emerges [39]. A number of ef-

forts have been made to improve performance and recover stability of teleoperation

while the communication channel accommodates a constant or time varying delay:

wave variables and scattering transformation paved the way for stable, yet con-

servative, time-delayed teleoperation by making the communication channel pas-

sive [40–44]. Less conservative results also were obtained with the controller’s pas-

sivity property [45, 46]. Techniques that analyse stability against time delay are

divided into two categories: delay-independent, where the stability margin is in-

dependent from the delay itself, and delay-dependent, where the system is stable

against a pre-determined maximum time delay. By considering the possible allow-

able time delay, more useful results are obtained for the practical applications.

In this thesis, we have tried to show, in brief, that a theoretical framework, which

is first implemented for bilateral teleoperation by Polat and Scherer [29], can provide

a sufficient solution to the aforementioned challenges and problems in the stability

analysis of bilateral teleoperation. IQC framework is not only allowing us to analyse

different classes of uncertainties within the same schema but also leading us to less

conservative stability condition in bilateral teleoperation by providing combination

of the different multiplier sets. Although the proposed methodology has a wide

range of application areas, some of which are described here, we will focus our

attention on bilateral teleoperation.

1.3 Objectives and Contributions

The objective of this thesis is twofold. The first is to engage the theoretical frame-

work of the IQC approach with a useful tractable computational search for a par-

ticular class of multipliers (e.g Zames-Falb multipliers) so that stability analysis of

the systems that contain a distinct class of perturbations, such as delay or slope

restricted nonlinearity, can be carried out with ease. By virtue of the proposed

technique, the second is to carry out stability analysis of the bilateral teleoperation
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with slope restricted nonlinear environments, then evaluating the numerical analy-

ses via long- and short-distance bilateral teleoperation experiments. Toward these

purposes, the outline of this thesis is highlighted as follows.

1.3.1 Structure of the Thesis

In Chapter 2, we start by providing fundamental information related to the perfor-

mance measure of the designed bilateral teleoperation: particularly, the one that is

based on the transmitted force feedback to the human operator. Then, the main

methods which have been used for stability analysis of the teleoperation, such as

passivity and network theories, as covered in literature, are discussed and their

pros and cons addressed. In addition, we highlight how the time delay problem

that naturally occurs during long-distance transmission in the bilateral teleopera-

tion architecture has been handled in literature.

Chapter 3 provides essential information related to methodologies that princi-

pally constitute the main scope of this study: IQC framework and Multiplier ap-

proach. Differences and common grounds between these two techniques are in-

dicated with a bit test of historical perspective by showing how the Western and

Soviet worlds approached the same problem and provided solutions from different

perspectives. In the sequel, a number of classes of multipliers and IQC frameworks

are provided for the particular class of uncertainties and nonlinearities which nat-

urally occur in the bilateral teleoperation architecture, such as constant or variable

time delays. Additionally, these multiplier classes are combined to be able to define

an interpretation for the specific classes of structured uncertainties, such as diago-

nal combination of delay and nonlinearity. Conclusively, prospected multipliers are

parametrized to obtain an efficient search within the defined class.

In Chapter 4, we show how the proposed stability analysis framework can be

used in the first place for systems containing saturation type nonlinearity along with

time delay based on the aforementioned parametrization and search. Compatibility

of the proposed method is illustrated with numerical examples that are predomi-

nant in literature. In addition, we chose stability of the Retarded Neural Networks

as a case study and obtained less conservative stability conditions in a similar fash-

ion, particularly with constant time delay scenarios. Then, recent developments on
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Kalman and Aizerman conjectures for time-delayed systems are discussed, as their

conclusions are used as benchmarks in the numerical examples. Next, a simple ge-

ometrically intuitive sufficient stability condition is derived for the first-, second-,

and third-order time-delayed Lur’e7 systems, where delay and bounded nonlinear-

ity are within the same loop. This understanding is important when choosing an

appropriate order of the multiplier.

In Chapter 5, uncertain operators such as the human arm and the environment

in bilateral teleoperation are defined as a perturbation, while the overall system is

transformed into the Lur’e interconnection. The assumption related to the environ-

ment is modified and it is assumed that the slave is interacting with monotonic,

slope restricted, and bounded nonlinear type of environment. Zames-Falb multipli-

ers which provide positivity for this class of nonlinearities are used to regain posi-

tivity of the admittance matrix (i.e the nominal system) of the teleoperation system.

Then, results are extended to time-delayed bilateral teleoperation, and comparison

between different types of control architectures is provided numerically and exper-

imentally. Long-distance bilateral teleoperation is evaluated experimentally by set-

ting up two distance laboratories, one in Manchester (UK) and the other in Vigo

(Spain). Numerical and experimental results show that the proposed approach in

this thesis reduces the conservatism in the main stream designs and allows us to

modify freely the assumption related to the perturbation without including any ad-

ditional complications.

As a final note, Chapter 6 provides some concluding remarks and future works.

For completeness, the Appendix provides mathematical details of the basis func-

tions which play a key role within the parametrization of the multipliers. Also, we

discuss another technique, the Quadratic Separation approach, which is used for

stability analysis of the same type of system. Then, we highlight the similarities

between two approaches (IQC versus Quadratic Separation) and when/how these

two disassociate from one another.
7It has been depicted as Lurye or Lure as well.
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1.3.2 Contributions and Publications

The contribution of this thesis is twofold. In the first place, different classes of mul-

tipliers are combined to analyse stability of the structured uncertainty consisting

of time delay and saturation type nonlinearity. In order to carry out a search for

multiplier within the defined class, multipliers are factorized such that asymmetric

factorization is provided for the Zames-Falb multiplier. Secondly, multiplier ap-

proach, along with IQC theory, is used to analyse absolute stability of the bilateral

teleoperation with nonlinear environments. Then, theoretically obtained stability

conditions are experimentally evaluated via two distant robotic manipulators. The

results are mainly illustrated in Chapters 4 and 5 which are based on the subsequent

publications:

• Tugal H., Carrasco J., Heath W., Absolute stability of clockwise systems with delay

and saturation, Submitted to Conference on Decision and Control, IEEE, 2017.

• Tugal H., Carrasco J., Falcon P., Barreiro A., Stability Analysis of Bilateral Tele-

operation with Bounded and Monotone Environments via Zames-Falb Multipliers,

Transaction of Control System Technology, IEEE, 2016.

-This study will be also presented in a workshop entitled "Methods for Sta-

bility Analysis of Haptic Teleoperation Systems" in the 2017 American Control

Conference in Seattle, USA by Dr. Joaquin Carrasco.

• Tugal H., Carrasco J., Stable Bilateral Teleoperation with Nonlinear Environments:

Multiplier Approach, IFAC-PapersOnLine, 49.30 (2016), pp.308-313.

• Tugal H., Carrasco J., Maya-Gonzalez, M., Teleoperation with memoryless, mono-

tone, and bounded environments: A Zames-Falb multiplier approach, European Con-

trol Conference 2015 (ECC15), Austria.



2 | Brief Literature Survey on Bilat-

eral Teleoperation

As human beings we were only able to reach and manipulate the objects which are

within the near distance that our limbs can grasp, as we were limited by the capa-

bilities of our own bodies. But, mankind’s history contains many efforts that have

tried to eliminate such deficiencies. In accordance with this purpose many inven-

tions/improvements in mechanical devices, now, enable us to reach and manipulate

heavy or hazardous materials without any effort or danger. Such tools have became

an indispensable part of our daily lives by virtue of their usefulness; a very sim-

ple example will be the long metal handles used to retrieve a hot object from the

fire. But we were still limited to be in the same place and medium in order to be

able to carry on the process. It is hard to tell which one came first; whether the hu-

man desire to reach distances or the essential requirement for separating personal

from the hazardous environments, yet handling distance objects was became daily

practice with the help of the enhanced electromechanical devices. During this con-

tinuum the term Teleoperation were started to be used in the terminology to define

the applications where objects are manipulated remotely via manipulators.

In the early design of teleoperator two manipulators, master and slave, were

connected to each other with mechanical gears, cables, and chains. Due to the

lack of having electromechanical tools within the design, operating such type of

machine was required to apply extensive amount of man power. The first electro-

mechanically coupled teleoperator was designed by Raymond Goertz in 1952 for

handling radioactive materials1 behind a sealed chamber, so that researchers could

work more safely without wearing any protection suit. As the design’s only ob-
1Strictly speaking a bomb making process
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jective was minimizing the effect of the harmful radioactivity as much as possible,

the feedback information was restricted and operation mainly based on the visual-

feedback behind sealed glass. Despite that, as Goertz stated in the first instance, that

ensuring stability of coupled manipulators is more complicated than uncoupled one

therefore much more effort is required for design of practically feasible stable tele-

operation that provides high performance [47].

In addition to the complexity of the coupled dynamics, the problem can be moved

to another dimension once we start to concern about how the human and the robot

will cooperate. To provide a level of cooperation force feedback is supplied to the

human operator by courtesy of the developments in the electronics especially in

sensors and transducers. The interaction has been discussed for decades and as al-

ways ideal one was aimed and occasionally even without concerning its feasibility.

To specify level of the additional feedback (creates differences between lateral and

bilateral teleoperations) the term Telepresence, which defines an ideal of sensing such

that measured information is communicated to the human side sufficiently natural

way that human operator feels physically being in the remote side, was introduced.

In this chapter our aim is to analyse and synthesize the prevalent control strate-

gies and analytical methodologies related to the bilateral teleoperation that not only

enable us to carry out tasks remotely but also providing fundamental haptic infor-

mation. But, covering all the relevant literature within this modest chapter is almost

impossible, yet we can still refer malcontent reader to exclusive surveys carried out

in different time periods such as [22, 48–50]. In the first place we would like to

start with details that might be the explanation of the subsequent question: what

is the main aim of designing bilateral teleoperation; namely what is desired to be

achieved, and how is the achievement measured ?

2.1 Performance Measures

There are some criteria that are used to measure the quality of bilateral teleoperation

in terms of performance; position tracking and force reflection. The former simply

defines how well the slave manipulator mimics the movements of the master ma-

nipulator which is a general aim in most robotic systems. The later will be depicted

with different terminologies such as Transparency which defines how transparent is
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the design in terms of force reflection or environmental impedance transformation.

By impedance we imply dynamic that defines the relationship between velocity and

force. Within this terminology, here, our main focus related to the performance mea-

sure will be based on the human sensation.

Bilateral teleoperation is one of the challenging control problems that engineer-

s/scientists are dealing with because it involves highly uncertain elements, "trouble

makers" such as delay, and additionally human sensation as a performance mea-

sure. The satisfaction of human operator in terms of perceptual understanding is a

demanding task to accomplish. The main point is to provide sufficient situational

awareness to the operator via haptic perception. And one of the performance crite-

rion is how well the human ’feels’ the environmental interaction force, yet still it is

not clear what level of force feedback is enough to categorize it as being ’good’, be-

cause that might changes from one operator to another. Besides, a human has highly

sophisticated neural mechanism that is hard to understand from the engineering

point of view (might be only for control engineers), but enables us to identify our

surroundings with the limited information obtained via contact. For instance we are

capable of identifying an object only by touching it with a simple stick not necessar-

ily with our bare hands [51].

Nonetheless, many researchers have been neglected aforementioned type of per-

formance criterion in a bilateral teleoperation system. They particularly analysed

stability margin against time delay, the uncertainties in human and environment

dynamics, and non-linearity of the manipulators, yet the human sensation or oper-

ator perfective has never been mentioned or stated. It should be noted and clearly

indicated that the main aim of a bilateral teleoperation is to supply satisfactory (if

possible) haptic information to the operator via designed controllers; the design that

does not consider human sensation is similar to manufacturing an aircraft that has

superb flying characteristic, yet is not able to carry any passenger or cargo supplies

which are the main objectives in the first place.

2.1.1 Transparency

It is described as that a physical object is transparent if the light travelling through it

has not been scattered. In a similar vein, in bilateral teleoperation transparency de-



CHAPTER 2. LITERATURE ON BILATERAL TELEOPERATION 36

fines how well the environmental interaction force or task impedance is transmitted

to the human side without being scattered. The level of transparency is measured

by describing how well the human operator feels as if he is interacting with the

distance task directly.

Definition 2.1 (Ideal Transparency [52]). A bilateral teleoperation is said to be ideally

transparent if the operator is beguiled in a way that interaction with the distant task is

taking place directly; without any teleoperator.

In an ideal condition the operator is able to feel only the impedance2 of the en-

vironment without any interference from the dynamics of the manipulators or their

controllers. In order to achieve such level of optimism, the environmental inter-

action impedance should be transformed to the human side without being dimin-

ished and dynamics of the manipulators should be cancelled out with the aid of

controllers. Thus, in the optimum conditions transmitted impedance, let us define

it as Zt , should be equivalent to the task impedance Ze (Zt = Ze). In a full synchro-

nisation scenario forces (Fi) and positions of the both sides3 (or velocities (Vi) as in

most cases) are required to be equivalent as Fh

−Ve

=

 0 I

−I 0

Vh

Fe

 ,
where Vh, Ve, Fh, and Fe represent the master and slave velocities, the hand force on

the master, and the slave force on the environment, respectively.

This level of transparency has been aimed to be end-point of the many different

controller architectures. And once the determined optimum transparency is achieved

it can be said that impedance at one side is transformed to the other side precisely.

Namely, if this transparency level is achieved the operator feels as he is touching

to the task with his bare hands. Now, some critical questions need to be asked or

queries need to be raised. A human hand is capable to complete rather complicated

tasks, yet it is not useful alone for carrying out some tasks such as driving a nail and

there are some useful tools that we use in our daily lives e.q. hammer and screw-

driver. While using such devices of course we ’feel’ how much force we need to
2That is a measure of how much an environment resists motion when interacted with slave ma-

nipulator.
3Subscripts, h and e will be associated with human and environment, respectively.
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apply, yet the force we perceive is not the force that is on the interacting point and it

should not be, as this is the main idea of using a tool. This picturesque description

shows how a performance criterion might confuse us when we pull out human sen-

sations and only focus on the matrix representation of the performance, but we will

insist no more on this argument.

On the other hand while measuring the performance of bilateral teleoperation in

terms of the human sensation, transparency is not the only characterisation, there

are many kinds of it as given delicately in [53]. Perceptual transparency that defines

the operator perfection of the task is the one that mentioned above, tried to be ob-

tained in many designs, and the one that we will take into consideration, yet it is

worth mentioning some of them as well for the integrity.

2.1.2 Zwidth

In teleoperation the designed controller should achieve environmental impedance4

transmission from slave side to master side in order to obtain haptic interaction.

And the design should work in a desired way with different types of environments

or namely with a wide range of impedances. In a short way, if the controller man-

ages to transmit a wide range of environmental impedances to the operator side

then that indicates usefulness of the designed system in wide range of application

areas.

Naturally, in free space (Ze = 0) the transmitted impedance (Zt) should be small

enough and indeed in optimum conditions it should be zero. Also maximum

impedance occurs while the slave manipulator interacts with a rigid object such

as a wall or a stiff object. Minimum and maximum transmitted impedances are

generally described with Z f and Zc, respectively. These two measures define the

extreme situations that the slave manipulator might encounter and the designed

system should perform desirably with any other environment that has impedance

within the range of Z f and Zc [54]. Then, Zwidth can be described as the area between

these two transmittable impedances over a range of frequency [50], subsequently

Zwidth =
1

ωmax−ωmin

∫ ωmax

ωmin

|logZc( jω)|− |logZ f ( jω)|dω.

4This implies the mechanical impedance, yet the term used in electrical engineering terminology
will be defined in subsequent section.
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Instinctively, increase within the value of Zwidth indicates that the teleoperation

system can be used in many different environments without any danger also that

improves sensation of human operator in terms of impedance distinction [55]. Sta-

bility, however, restricts the maximum achievable Zt , due to the substantial trade

off the maximum Zc that can be rendered by relating with the mechanical damp-

ing value. And one way to enlarge Zwidth is to increase damping mechanically or

electronically.

2.2 Stability Analysis via Network Theory

Even though early designed teleoperation systems were only concerned about sep-

arating the human beings from the hazardous mediums, shortly after that stabil-

ity became one of the main concerns because interaction with the task itself subse-

quently changes the dynamics of the overall system and that can imperil the stabil-

ity [56]. Also, it did not take long to bring in the telepresence terminology within the

scope of interacting robotic. As the dynamics became more coupled more systematic

analysis of the designs were started to be required. Having limited computational

power in the late 1980s and early 1990s paved the way to use well established cir-

cuit and network theories within the teleoperation analysis as any interconnected

system can be represented like a network interconnection [23]. Somehow, over the

past research history this beneficial methodology transformed into a tradition. As a

consequence, entire bilateral teleoperation system has frequently been defined and

expressed as a two-port network as illustrated in Figure 2.1, where the operator and

environment are modelled by the LTI impedances Zh and Ze [57]. It should be noted

that to simplify the energy calculation of the network and to sustain compatibility

with the passivity theory velocity information is used as a port variable instead of

more intuitive position information.

Definition 2.2 (m-port network [58]). A physical device that consists of a number of

circuit elements or some components with m pairs of terminals to connect to external circuits

is called an m(multi)-port network.

For this case, the literature overall bilateral teleoperation was divided into three

main different layers. The first and the third layers are the human operator and
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environment. The second layer is the combination of the electromechanical master

manipulator, the communication medium which connects master and slave manip-

ulators, and slave manipulator along with its local control properties. In the for-

ward section, we will see that this second layer is also divided amongst themselves

to overcome some particular problems such as time delay in the transmission. To

increase the comprehensibility we will start with and clarify some of these defini-

tions which are frequently utilized in network theory yet have not been commonly

used in the control terminology.

Two Port Network

Master +

Slave

Communication +

-

−

+

ve

Fe

Environment

Ze
F∗e

-

−

+

Operator

Zh
F∗h

vh

Fhe e
e e

+

−
+

−
jj

Figure 2.1: Network representation of the bilateral teleoperation, where human and
environment are defined as a one port and the rest, including the designed con-
trollers, is depicted as two-port network. Master and slave velocities, operator force
on the master, environmental interaction force, and the operator and environment
exogenous force inputs are depicted as vh, ve, Fh, Fe, F∗h , F∗e , respectivelly.

Remark 2.1. The force applied by the human operator to the master manipulator is resolved

into two categories: the voluntarily applied force is depicted as F∗h which moves master ma-

nipulator from one point to another. And, it is assumed that human will not consciously

cause any instability while operating the system, hence in general F∗h is assumed to be

bounded (contrary situation might occurs, see [59]). Then, the involuntary force applied

to the master is depicted as Fh which is caused by the mass and muscle activities of the

human hand/arm and will be utilized while defining the dynamics of the human operator.

A port is simply terminal of the network, namely pinpoint where any element

connects to the network. In circuit theory terminology, voltage across the port en-

ables the current transmission between network and the connected circuit element.

A model of an electrical socket is a good example for one port network where the

entire interconnected system is modelled as one port network that has only two ter-

minals, see Figure 2.2 (a) for the block diagram illustration. A port has two main

variables, current and voltage, and each can be defined as an input or output of the

system. Based on the determined input or output definition of the network model

can be entitled differently. These terms in electrical energy terminology might seem
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to be irrelevant to the teleoperation, yet correlation will be clear once forces and

velocities in a robotic system are associated with the voltages and currents, respec-

tivelly. If we get back to the topic, the correlation between the different measures in

the network is depicted with varied immitance matrices.

2.2.1 Immitance Matrices

For an m-port network the matrix that defines linear relationship between the cur-

rents and voltages at the ports is generally called immitance matrix; impedance and

admittance matrices are the particular example of it. In order to express admittance

matrix the applied voltage, V (s), is defined as an independent and flowing current,

I(s), (assuming there is no open circuit circumstance) as a dependent variables. Sub-

sequently, linear relationship between the network’s parameters will be designated

as I(s) = Y (s)V (s), where Y (s) will be called as admittance matrix of the network,

N. Besides, if the applied current and measured voltage are defined as indepen-

dent and dependent variables, respectively, we can specify the impedance matrix

as V (s) = Z(s)I(s). Similarly, Z(s) is going to be called as impedance matrix of the

network. It is clear that these two matrices are the inverse of one another, and

mathematically obtaining Z(s)Y (s) = I is distinct (if both exist). Electromechanical

devices, i.e. robotic manipulators, are also distinguished based on their dynamics

behaviours. An admittance type device, generally, has high inertia and friction and

receive force as an input and apply force to its interaction environment. Conversely,

impedance type devices are designed to have much lower inertia and friction using

the velocity signals as inputs and acts as a velocity source to its environment. As a

short note, the mechanical-electrical analogy becomes clear once force and velocity

are depicted as voltage and current, respectively. The control paradigm used in bi-

lateral teleoperation becomes dissimilar depending on which type of device is being

used to realize high degree of transparency [60].

Then, in some particular circumstances it is infeasible to define all the voltages

V and currents I as dependent or independent variables. For instance, impedance

representation of an open port circuit or admittance matrix definition of a short cir-

cuit is not achievable. Besides, defining all the identical signals (V (s) or I(s)) within

the same terminology may not be useful for the analysis and synthesis. Therefore,
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some voltages or currents variables within the network can be expressed as depen-

dent and the remaining are being defined as independent variables. In this case,

Hybrid matrix, H(s), can express the overall relations among the interconnection in a

straightforward fashion as R(s) = H(s)U(s) while R(s) and U(s) are containing infor-

mation related to voltages and currents.

(a)

Network
One Port+

V

i -

−

e
e

(b)

+

V
−

i -

N

1ohm

e
+

−
m

Figure 2.2: Simple one-port network representation (a), and augmented m-port net-
work (b) [58].

Additionally, Scattering matrix, S(s), representation is a commonly used expres-

sion while analysing the behaviours of a transmission line. We would like to pro-

pose more detailed information as applying this matrix into the delayed teleopera-

tion is a frequently used methodology. To express clearly, let us assume that there

exists an augmented m-port network N with a series of resistance connected at its each

ports as illustrated in Figure 2.2 (b). Then, the voltage source can be expressed as

e(t) = v(t)+ i(t). The only physical response of the network to the voltage source,

e(t), is the port current flowing within it. But, it is clear that e(t)− (v(t)− i(t)) = 2i(t),

therefore v(t)− i(t) and v(t)+ i(t) will be called as response and excitation vectors,

respectively. In general, it is common to use 1
2(v(t)+ i(t)) and 1

2(v(t)− i(t)) as incident

voltage (vi) and reflected voltage (vr). As a result the scattering matrix can be defined as

V r(s) = S(s)V i(s) by using incident and reflected voltages. More detailed discussion

will be provided when scattering transformation is used for bilateral teleoperation

with time delays.

In this thesis, unless otherwise specified, the term immitance matrix will be used

to specify all the matrix representations (admittance, impedance, and hybrid) of the

network.

2.2.2 Stability with Linear Network Theory

As the network theory dominated the literature of bilateral teleoperation’s stability

analyses some applicative theories such as Llewellyn stability conditions emerged to



CHAPTER 2. LITERATURE ON BILATERAL TELEOPERATION 42

simplify the complex analyses therewithal provide exact stability conditions. Thus,

two-port network is investigated by Llewellyn theory whose main motivation was

to investigate stability of the linear electricity transmission lines. The method is

based on linear behaviour of the network and its ports which can be nonlinear yet

required to be linearised at least locally. Many researchers applied the proposed

conditions to bilateral teleoperation either by investigating the stability or designing

the controllers within the overall system, see [61] and references therein.

It can be said that a linear two-port network is stable if and only if there is no

passive sets that can terminate the network and lead unstable behaviours. The fol-

lowing theorem gives exact conditions for stability of the proposed two-port net-

work.

Definition 2.3 (Positive Real System [62]). A rational transfer function matrix G(s) is

called positive real if

• poles of all elements of G(s) are in ℜ{s} ≤ 0,

• for all real ω for which jω is not a pole of any element of G(s), the matrix G( jω)+

G∗( jω) is positive semi-definite,

• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue

matrix lims→ jω(s− jω)G(s) is positive semi-definite Hermitian.

For single input single output (SISO) systems second condition reduces to ℜ{G( jω)} ≥
0,∀ω ∈ R.

Theorem 2.1 (Llewellyn’s Stability Criteria [24]). A Linear Time Invariant two-port

network, N, described with its immitance matrix

N( jω) =

 N11( jω) N12( jω)

N21( jω) N22( jω)


and interconnected to two LTI passive one-port networks as in Figure 2.1 is stable if and

only if the following conditions are satisfied:

• N11 and N22 are positive real transfer functions,

• The inequality n(ω)=−ℜ{N12( jω)N21( jω)}
|N12( jω)N21( jω)| +2

ℜ{N11( jω)}ℜ{N22( jω)}
|N12( jω)N21( jω)| ≥ 1, holds

for all ω≥ 0,
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where ℜ{·} denotes real parts of the complex number.
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Figure 2.3: A two-port network terminated with an impedance Ze in port 2 and if
input impedance (Zin) of Ze is also passive, then it can be concluded that network N
is passive as well.

The aforementioned theorem is based on the bilinear transformation (Mobius

Transformation) along with one of the port’s input impedance when the other port

terminated with a passive impedance [63]. Let illustrate the correlation between the

network representation of the bilateral teleoperation, depicted in Figure 2.1, and the

given theorem by assuming that there exists a passive Ze connected one side of the

two port network as in Figure 2.3. The driving point impedance of Ze from other

side of the network can be determined as

Zin = N11−
N12N21

N22 +Ze

where Ni j denotes the network quantities for i, j = 1,2. Namely, Zin is basically bi-

linear transformation of the Ze subsisting right side of the complex plane (by being

passive). As known, in bilinear transformation a straight line, which is the imagi-

nary axis in this case due to the passivity of Ze, is transformed into a circle centred at

Cin with radius rin. To define the required impedance transmission of Ze to Zin. The

circle parameters can be defined as follows

Cin = N11−
N12N21

2R22
, rin =

|N12N21|
2R22

. (2.1)

This circle needs to lie in the right half side of the complex plain so that one can

conclude that the transformation preserves the passivity, in other words one can en-

sure that the two port network is passive as well. Therefore the following inequality

needs to be satisfied

ℜ{Cin}− rin ≥ 0. (2.2)

Substituting (2.1) into (2.2) leads to

2R11R22−ℜ{N12N21}− |N12N21|
2R22

≥ 0,
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which holds when the conditions given in the theorem above are satisfied.

On the contrary, from teleoperation point of view the first condition implies pas-

sivity of the master and slave manipulators as positive realness of the transfer func-

tion implies passivity of the system, namely first condition is necessary to have pos-

itive realness of the network when the ports are not coupled. The second condi-

tion5 implies stability of the interconnected system (effect of the coupling). In other

words, this condition shows whether or not the image of a passive operator (human

or environment) terminating at one side of two-port network is passive as well from

the other side of the network, as illustrated in Figure 2.3.

Remark 2.2. Within the Network Theory terminology while defining a two-port network

the neighbouring port currents are towards the network, yet while representing bilateral

teleoperation as a two-port network, as in Figure 2.1, port 2 signal (ve) is outwards the

network as it is assumed that environment is under the influence of slave’s velocity, ve.

The conditions in Llewellyn’s Criteria can be implemented with any kind of

immitance matrix, N, such as hybrid, H, or impedance matrices, Z, etc. From an-

alytical point of view, frequency gridding is the most convenient and frequently

used methodology while checking the given last condition, but missing the criti-

cal frequency is always the hidden danger. It must be noted that, absolute stability

is ensured by obtaining the passivity as a passive network will always be stable,

but an absolutely stable system is not required to be passive. This is a celebrated

phenomenon yet has not been specified intermittently in a way that led to some

misconception such that passivity is as if an essential property for a bilateral tele-

operation. With this methodology human operator and environment are model as

a class of operators depicted with linear mass (M), spring (K), and damper (B), i.e.

Fi(s) = (s2Mi + sBi +Ki)Xi(s) for i = h,e, where F and X denote force and position.

Remark 2.3. Within the bilateral teleoperation architecture Llewellyn’s Stability Theorem

implies depicted two-port network is absolutely stable while interconnected with any LTI

passive human and environment if the given conditions are satisfied. Stability, here, is based

on the passivity which means if the last condition does not hold then the system is said to be

critically stable as there might exist a particular passive human-environment pair makes the

system unstable.
5The n(ω) will be called as stability index
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It is worth mentioning that, proposed Llewellyn criterion only allows us to anal-

yse stability of the bilateral haptic systems with one-DOF manipulators. Yet, an

extended version (re-formulation) that presents the criteria for multilateral teleop-

eration with the m-DOF manipulators is proposed in [64]. As known, stability is

not the only concern in a controlled system, so that the subsequent section will be

based on the efforts that have been carried out to figure out what control architec-

ture leads to higher transparency if a particular task (for a given environment) is

being considered in the bilateral teleoperation system.

2.3 Control Architectures in Bilateral Teleoperation

Challenges in the bilateral teleoperation lead engineers and researchers to design

different control architectures where the main aim was ensuring the stability of

teleoperation along with improving the haptic information sufficiently. Also, ef-

fort to answer some open questions increased varieties of the architectures: with a

determined task what type of control architecture gives the better performance mea-

sures like fidelity? Sensory information from the robotic manipulators in bilateral

teleoperation has been the key element to distinguish difference between each de-

sign. Individual data that is being transmitted, in teleoperation, is designated with

a transmission channel and the number of these channels determines type of the ar-

chitecture and eventually its name. All compositions can be gathered in three main

branches which are Two-, Three-, and Four-Channel control architectures.

2.3.1 Two-Channel Control Architecture

This is the simplest possible form of the bilateral teleoperation control architecture.

Only one measurement is being transmitted from one side to another. For instance, if

we are sending position information to the slave side, as a reference signal, and force

is sent back to the master manipulator, for obtaining transparency, then the design

is going to be called two-channel6 position-force architecture. Generally, the former

name (position in this case) is referred to the signal being transmitted from master to

slave and the later one is used to identify the data transmitted from slave to master.
6One channel for transmission from master to slave and one for the vice versa
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Unless stated otherwise we will follow the same notation. Naturally, within this

control architecture different types of design can be constructed depending upon

the transmitted data form and that can be listed as follows

• Position-Position (P-P)

• Position-Force (P-F)

• Force-Position (F-P)

• Force-Force (F-F)

We will briefly discuss only the first two of them as they are the most commonly

used and implemented architectures within the (impedance type) bilateral teleop-

eration framework. It is important to highlight that position information does not

mean explicitly position signal has been particularly used; for instance in [40], and

in many others, velocity signal has been used without any indication in order to

comply with the passivity analysis. Yet, in our analyses, that will be proposed in the

subsequent chapters, we have examined the designs where position information is

explicitly being transmitted. Therefore, we have referred to the different architec-

tures with ’Position’ instead of ’Velocity’, also in this way we retain integrity with

the literature.

Strictly speaking Position-Force (P-F) architecture is built on the foundation of

the bilateral teleoperation where slave is designed to follow position of the master

and a measured force signal, that appears as a result of the environmental interac-

tion, is sent back to the master side to create a sort of situational awareness to the

human operator. It provides direct connection between environmental force and hu-

man operator and there are only two controllers/parameters required to be tuned,

one for position tracking (slave controller Cs
7 aims to reduce position error es) and

the other one for force scaling (K f ), see Figure 2.4 for the general block diagram

representation. This control architecture has been investigated by many researchers

in different aspects see [65–67], but still despite its simplicity stability is the main

drawback of the design as transmitted force feedback provokes the master position

and that might trigger further interaction forces [51]. Thus, to establish the stabil-
7Subscripts, m and s will be associated with master and slave, respectively.
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ity the essential solution is to significantly attenuate the force feedback that is being

transmitted to the operator side.

Another common solution for improving stability within P-F architecture is to

interpolate additional damping values into the system, yet a sluggish response at

free space movements became inevitable when the damping is injected to the mas-

ter manipulator. Besides the stability might be in danger especially when the slave is

in hard contact and human operator is not grasping the master manipulator as it had

been concluded that there is a linear relationship between stability and the operator

grasp. Inherently a heavier grasp has the same effect as adding extra damping to

the master manipulator [65]. Additionally, within this control architecture trade off

between two performance measures, transparency and position tracking, needs to

be meticulously handled because a high gain in slave controller gives more priority

to the position tracking thus leading to worse force fidelity8 specifically when the

slave is in contact with hard mediums. Consequently, that might leads the reader to

think the controller design problem in position-force architecture should be handled

as an optimization issue with a good objective function such that tracking and ro-

bust stability of the system define constraints and fidelity describes objective of the

optimization. Yet, as highlighted in [68] such an optimization problem is nonconvex

that cannot be solved with tractable methodologies.
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Figure 2.4: Two-channel (delay free) position-force bilateral teleoperation control
architecture: the block diagram representation where ∆h denotes uncertain human-
arm dynamics and F∗h is depicted as the voluntarily bounded force applied by the
human operator and it is mostly dismissed in the stability analyses.

On the other hand, being force sensor free system leads to utilisation of the

Position-Position (P-P) controller which is prelusively implemented bilateral tele-

operation in 1950s [69]. It is also known as position error based control method-

ology as both sides’ control philosophies are based on utterly position mismatches

between two manipulators. For instance, a PD (Proportional-Derivative) type con-
8Sensitivity of the transmitted impedance to changes in the environmental impedance
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troller at both sides simply creates a virtual spring and damper between motors of

two manipulators, pulling them together is a kind of imitation of the early mechan-

ical designs. If identical manipulators were used, then both controllers minimize

the position difference regardless of which device is falling behind in terms of track-

ing [70]. Also, it has been stated that highly accurate position controller at the master

side (master controller Cm) is not desirable as system response becomes sluggish in

free space movement. Due to being lack of force sensor, however, eliminating the

inertias, frictions, and unmodelled nonlinear dynamics of the slave manipulators

that distort the human sensation regarding to the environmental impedance in P-P

architecture is impossible.
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Figure 2.5: Generalized block diagram of two-channel (delay free) position-position
bilateral teleoperation control architecture, where ei defines position error signals
for i = m,s.

Force feedback attenuation in P-F architecture due to the stability issue and un-

avoidable sluggish response in P-P architecture pawed the way more complex bi-

lateral teleoperation designs. The complexity generally increased by transmitting

additional information between master and slave manipulators.

2.3.2 Three- and Four-Channel Control Architectures

In order to achieve the optimum transparency conditions, Lawrence [52, 71] claimed

that the two-channel control architectures, where only one kind of measured infor-

mation (force or position) is sent from local side to another, falls short. The reason

is that within this control methodology eliminating or cancelling out dynamics of

the manipulators and controllers, that are being sensed by the human operator right

along with environmental impedance, is infeasible. In four-channel control method-

ology also known as Lawrence’s philosophy, however, both position and force infor-

mation of two manipulators are being transmitted from one side to another. It was

stated that, all four channels illustrated in Figure 2.6, are necessary in order to attain
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ideal transparency measure in bilateral teleoperation, see also [72] where similar phi-

losophy has been proposed independently. Parameters in four-channel architecture,

as illustrated in Figure 2.6, are chosen such that dynamics of the master and slave

(let define Ym and Ys as their admittances) and their controllers (Cm and Cs) are can-

celled out: namely, C1 = (Y−1
s +Cs), C4 =−(Y−1

m +Cm), and optimum transparency is

obtained with C3C2 = I.

To illustrate the mentioned optimum transparency measure, let us assume that

slave manipulator is interacting with a linear passive environment whose impedance

is Ze and the aim is to transmit this impedance to the master side. Inherently, hu-

man operator ’feels’ the transmitted impedance, Zt , which is function of the task’s

impedance, Ze. Based on the linearised model of manipulators general hybrid ma-

trix of a two-port teleoperation network can be formulated as [70] Fh

−Ve

=

 H11 H12

H21 H22

 Vh

Fe

 (2.3)

where Fi and Vi are forces and velocities of the human and environment for i = h,e.

As a short note, negative sign is used in the lower part of the matrix at left side of

inequality in (2.3) for the sake of keeping uniformity with the Network theory where

on the contrary to Figure 2.1 port signal ve always towards the inwards of the two-

port network. If we continue, by adopting the environment’s impedance, Fe = ZeVe,

and the equality in (2.3) the relationship between Ve and Vh can be pointed as −Ve =

(I +H22Ze)
−1H21Vh. Consequently, the relationship between the Ze and transmitted

impedance, Fh = ZtVh, can be pulled out from

(Zt−H11)Vh =−H12Ze(I +H22Ze)
−1H21Vh. (2.4)

Evidently, the following fundamental features can be depicted from (2.4) which is

equivalent to aforementioned ideal hybrid matrix;

• The perfect transparency, which is almost impossible to obtain in practice, is

when the Zt is approximately equal to Ze, that means H22 and H11 need to be

equal to 0 and off-diagonal elements H12 and H21 need to be I and −I, respec-

tively.

The quantitative measurement of this feeling is an open question and has been

discussed by many researchers over the years as it is an intuitive measure and de-
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pends what the human operator is actually feeling [53, 73]. Further, extension ver-

sion of this design methodology was proposed by introducing local force feedback

in a way that performance is improved without increasing level of the feed-forward

forces, see [70, 74].
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Figure 2.6: General four-channel bilateral teleoperation control architecture: so-
called the Lawrence architecture.

Further effort for optimization of transparency indicated that similar perfor-

mance measures can be achieved with less information transmitted via Three-Channel

architecture. Briefly, by cancelling individual communication channel four types of

different sub-control methodologies can be designed based on this technique; P-PF,

F-PF, PF-P and PF-F [28,75,76], yet we will give more detailed information and com-

parison with two-channel approach related to the PF-F architecture in chapter 5.

2.3.3 Energy Based Control

Passivity based analysis approach has been implemented more often than not de-

spite providing only sufficient conditions for the stability status of a system. The ap-

proach is convenient as it can not only be applied to any linear or nonlinear systems

but also highly complex systems by only considering the individual components,

and it is simply based on a comprehensible physical concept: energy. In [77], the

mentioned approach has been implemented to bilateral teleoperation by observ-

ing and adjusting energy flow of each port. Every time instant flowed energy is

observed, Eobsrv, by Passivity-Observer (PO); that is assumed to be faster than the

dynamics of the system. And it is terminated that the system (or port) dissipates the
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energy if Eobsrv(t)> 0 or contrary supplies energy if Eobsrv(t)< 0. The observation in

teleoperation is based on

Eobsrv(k) = ∆T
k

∑
i=0

f (ti)v(ti),

where ∆T is the sampling period. The amount of energy that ruins the dissipativ-

ity is resolved/damped with a controller called Passivity-Controller (PC). That is to

say that, a time variable element is embedded into the terminals of the ports to dis-

sipate the extra (undesirable) energy. This control methodology can be represented

by a resistance connected to the circuit; the energy flow of the overall circuit can be

reduced by simply manipulating the value of the resistance itself which eventually

regulates the energy of the system. The main convenience of the approach is to be

model-insensitive as it purely depends on the measured signals, yet once we con-

sider the worst case scenario where the active energy is higher than the energy that

controller cannot dissipate then requirement of the meticulous design is brought

to the light. The proposed idea has been implemented to general control systems

in [78], to bilateral teleoperation in [19,77] and for time delayed teleoperation in [79]

as well.

2.4 Bilateral Teleoperation with Time Delay

An ultimate bilateral telerobotic system should be robust against uncertainties and

should give sufficient haptic feedback information to the operator so that compli-

cated tasks can be carried out meticulously. However, it is challenging to have

a high performance teleoperation that contains both the uncertainties and addi-

tionally latency that naturally occurs in the long-distance communication medium.

Time delay is an important phenomenon in bilateral teleoperation, due to the fact

that it effects not only performance but also stability of the system [80]. Strictly

speaking, passivity can easily be destroyed by the phase lags introduced by com-

munication delays. Also, as known, analysing the time delayed systems is more

complicated than the delay free one as with time delay the system transforms from

a finite-dimensional to an infinite-dimensional system [81]. In the literature, there

are a number of efforts that tried to improve performance and also guarantee the

stability of teleoperation system while the communication channel accommodates
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constant or time varying delays [29, 40–44, 82, 83]. In this brief section particular

methodologies that overcome the problem caused by time delay will be analysed

and discussed.

2.4.1 Scattering Transformation

One of the first methods that deal with the delay in bilateral teleoperation is the

so-called Scattering Transformation. Its fundamental is based on passification of the

delayed communication medium. Based on the assumption that all other elements

in the bilateral teleoperation system is passive operator, except delayed commu-

nication medium that jeopardizes the overall passivity, transforming the delayed

communication medium into the passive network leads to obtain overall a passive

interconnected system. Thus stability (indeed passivity) of the interconnected sys-

tem will be ensured.

As mentioned previously, any interconnected system can be defined as an in-

terconnection of one-port and two-port networks. Correspondingly, a teleoperation

system will be interpreted as a complete network in such a way that human and

environment will be described as one port and master, slave, and communication

channel will be described as two-port networks. The main aim in scattering trans-

formation is to transform communication medium into two-port passive network,

see Figure 2.7.
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−
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Figure 2.7: Dissociated two-port network block diagram of time delayed bilateral
teleoperation where Fmd and vsd denote desired force and velocity, respectively.

The subsequent information mainly based on [40]. General impedance matrix

representation of the each block can be expressed as F(s) = Z(s)V (s). In a similar

vein, the scattering operator that maps effort plus flow ( f +v) into effort minus flow

( f − v) can be defined as scattering matrix S(s)

F(s)−V (s) = S(s)(F(s)+V (s)).
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And this scattering matrix can be defined within hybrid matrix description of a two-

port network as

S(s) =

 1 0

0 −1

(H(s)− I)(H(s)+ I)−1, (2.5)

where H(s) defines hybrid matrix of the network. Passivity of the system can be

reviewed from its scattering operator; a system is said to be passive if the norm

of its scattering matrix is less than 1. If there exists a delay in the communication

channel, the network representation of the transmission will be non-passive. This

phenomenon can be shown in the following equations. The hybrid matrix of the

communication medium in bilateral teleoperation with delay can be expressed as

H(s) =

 0 e−sTd

−e−sTd 0

 ,
where time delay depicted as Td , then its scattering matrix can be calculated as

in (2.5):

S(s) =

 1 0

0 −1

 −1 e−sTd

−e−sTd −1

 1 e−sTd

−e−sTd 1

−1

=

 − tanh(sTd) sech(sTd)

sech(sTd) tanh(sTd)

 .
That renders ‖S‖∞ = ∞, thus time delayed system is neither bounded nor passive.

That implies even a small delay leads to a non-passive communication channel.

But, Anderson and Spong [40] justified it so that passivity of the communication

channel will be guaranteed independent of the time delay9. With their design com-

munication channel mimics the characteristic of an energy transmission line, which

is passive and naturally contains time delay.

A linear two-port lossless transmission line element has the following input-

output relationship

Fin(s) = Z0 tanh(sl/v0)vin(s)+ sech(sl/v0)Fout(s), (2.6)

−vout(s) =−sech(sl/v0)vin(s)+(tanh(sl/v0)/Z0)Fout(s), (2.7)

where Fin, vin define input and Fout , vout define output forces and velocities, l repre-

sents length of the line, Z0 =
√

L/C, and v0 = 1/
√

L/C; impedance and capacitance
9Yes, even if the duration of delay is equal to one year.
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of the transmission line is depicted as L and C, respectively. Similarly, the commu-

nication channel, assumed to be two-port network, in teleoperation system can be

expressed based on (2.6) and (2.7) by setting Z0 = 1 and v0 = l/Td such that;

Fmd(s) = tanh(sTd)vm(s)+ sech(sTd)Fs(s), (2.8)

−vsd(s) =−sech(sTd)vm(s)+ tanh(sTd)Fs(s), (2.9)

where Fmd is depicted as reflected force and vsd is velocity set point based on the

two-port representation of the communication channel, with a constant transmis-

sion delay Td ; Fmd = Fs(t − Td) and vsd = vm(t − Td). Let us express (2.8) and (2.9)

based on the scattering matrix representation so that the passivity can be investi-

gated conveniently, Fmd(s)− vm(s)

Fs(s)+ vsd(s)

=

 0 e−sTd

e−sTd 0

 Fmd(s)+ vm(s)

Fs(s)− vsd(s)

 . (2.10)

Based on the scattering matrix proposed in (2.10) it can be concluded that ‖S‖∞ = 1,

hence by using the communication law given the following equations the passivity

property of the communication channel in bilateral teleoperation can be recovered.

In an electricity transmission line, in order to reduce energy loses over the lines,

a transformer increases the voltage on one end and another one decreases on the

other end, with the ratio of n and 1/n. A similar method is necessary for avoid-

ing implementation problem in the teleoperation when scattering transformation is

used as the force and the velocity signals may differ by orders of magnitude.

Scattering transformation is not the only way to passivate the delayed commu-

nication medium. Wave variables is another recognized methodology that shares

the same philosophy with the aforementioned approach.

2.4.2 Wave Variables

In previous section, it was illustrated that how stability of the time delayed bilat-

eral teleoperation was achieved independent of the delay by using scattering trans-

formation. Niemeyer and Slotine reformulated the scattering transformation and

introduced the wave variables that can be used for the analysis of time delayed bilat-

eral teleoperation in a similar fashion [41, 82]. In a general manner, the principles
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of wave variables are close to the passivity terminology. It basically separates the

input-output powers and associates them with the input-output wave variables.

In order to define the framework, assume that there exists a two-port network

such that v1 and F1 are input variables increasing the power and v2 and F2 are out-

put variables that decrease the power flow. Then the total power of the two-port

network can be calculated with wave variables as follows

P = vT
1 F1− vT

2 F2 =
1
2

pT
1 p1−

1
2

nT
1 n1 +

1
2

pT
2 p2−

1
2

nT
2 n2 (2.11)

where apparently pi signals increase power of the network, on the other hand ni

signals decreases the total power and they will be referred as input and output wave

variables. Thus, transformation from power variables (v,F) to wave variables (p,n)

has been introduced implicitly. Distinctly, based on (2.11) this transformation can be

defined as follows,

p1 =
1√
2b

(F1 +bv1), p2 =
1√
2b

(F2−bv2),

n1 =
1√
2b

(F1−bv1), n2 =
1√
2b

(F2 +bv2),

where b is a positive constant value and going to be referred as characteristic impedance

or wave impedance. Generally speaking it is desired to have higher and lower val-

ues of this impedance when the slave is in contact with environment and in free

space, respectively. As the value of the impedance effects behaviour of the system it

should be tuned meticulously, we can refer reader to [84] for the method of selection

of the b parameter. The wave variables can be transformed from power variables

and complementary transformation from wave to power variables is also possible.

A system is said to be passive if the output energy, provided by output waves,

is lower than the input energy provided by input waves. Previously, it has been

shown that even a small delay might destroy passivity of the communication

medium, but with proper transformation this undesired phenomenon can be elimi-

nated. The application of the wave variables to the teleoperation can be illustrated

with an example where velocity information is sent from master to slave, and mea-

sured force is sent from slave to master via communication channel which accom-

modates a constant delay such that

vs(t) = vm(t−Td), Fm(t) = Fs(t−Td),
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where vi and Fi denote velocity and force of the master and slave manipulators for

i = m,s.

In a passive communication medium, power dissipation is always positive, but

as mentioned previously once there exists a latency, unfortunately power dissipa-

tion becomes negative. In that case, stability of the overall system might be in dan-

ger as a combination of some controllers and manipulators might lead to a non-

passive interconnection [41]. Conversely, with the properly inserted dissipation el-

ements a time delayed communication channel can be transformed into a passive

system regardless of the value of the time delay. For this purpose, instead of power

variables, force and speed, wave variables are transmitted via the communication

medium, with the following transformation,

nm(t) = ps(t−Td) and ns(t) = pm(t−Td)

Based on the proposed wave variables power flow of the architecture illustrated in

Figure 2.8 can be calculated as,

P =
1
2
(

pm(t)2−nm(t)2 + ps(t)2−ns(t)2)
=

1
2
(

pm(t)2−ns(t−Td)
2 + ps(t)2−nm(t−Td)

2)
=

1
2

d
dt

(∫ t

t−Td

pm(λ)2 + ps(λ)2dλ
)
.

As positivity of storage energy is preserved, it can be concluded that the commu-

nication channel remains passive regardless of time delay duration. This demon-

strates usefulness of the wave variables for obtaining passive delayed communica-

tion channel. Additionally passivity is independent of the delay itself and informa-

tion related to delay duration does not need to be known priorly.

On the other hand, signal reflection is a well-known phenomenon in the power

transmission lines; a signal reflects back to its original direction if the impedance of

the material, where the signal is being transmitted, is not homogeneous along the

material or if there exists a change in the impedance of the transmission medium10.

The reflected back signal can cause some damages and an unwanted consequences

within the system like a deterioration in the original signal. Therefore this phe-

nomenon must be eliminated rigorously. One of the eliminating method is impedance
10Similar phenomenon when light reflects from water surface
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matching which implies the equivalence of the impedances at each terminal by

choosing characteristic impedance b, see [41] for more detailed information. Also,

local impedance controller can be implemented into the both sides (master and

slave) which receive force information and provide velocity signals; the block di-

agram representation is illustrated in Figure 2.8. The controllers at both sides are

basically a PI (Proportional Integral) controller which consists of a spring and a

damper. Energy will be transmitted with spring and will be slightly dissipated over

the damper.
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Figure 2.8: Wave transmission and impedance matching in bilateral teleoperation
under velocity control at both sides (with a constant transmission delay Td , vmd =
vs(t−Td)), where Ki and Bi need be chosen close to b for i = m,s (ẋ = v).

To sum up, the main concern of the scattering transformation or wave variables

is ensuring stability while there is a time delay in the communication channel. And

its aim is to guarantee the stability, whatever the value of delay, we refer reader

to [85, 86] for more detailed information.

On the contrary, time delay in the communication channel is not always a con-

stant value as discussed previously, it highly depends on the communication method

and medium itself. For example, if two manipulators are connected via Internet then

latency is going to be a time varying parameter as speed of the transmission depends

on various parameters such as network traffic, bandwidth, and distance between the

terminals. Strictly speaking, the aforementioned scattering transformation guaran-

tees passivity of the communication channel when the time delay is constant and

not varying [87]. Therefore, it is required to reformulate the transformation in order

to be used for time varying delays as well. And such a methodology is proposed by

Lozano et al. in [88] where passivity is guaranteed not only for constant but also for

time varying delays.
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Figure 2.9: Scattering transformation for bilateral teleoperation with variable time
delays [88].

As in general, input and output energy of communication medium with variable

delay needs to be calculated in order to be able to validate the passivity property.

Firstly, total power in the communication channel can be obtained subtracting the

output power from the input power

Pin(t) = vmd(t)Fm(t)− vsd(t)Fs(t)

In the case of constant network delay we have already showed that the communi-

cation channel is going to be passive with wave variable transformation in (2.11),

when the network delay is time varying the previous results do not hold the passiv-

ity condition as now the transmission equation becomes

ps(t) = pm(t−T1(t)), nm(t) = ns(t−T2(t))

where, T1(t) and T2(t) are time varying delays. The stored energy in the communica-

tion channel can be calculated in a similar manner. But in this case, the communica-

tion channel is going to be passive only when the delay is decreasing, but otherwise

(increasing delay scenario) it shows non-passive behaviours. This phenomenon can

be clearly seen in the following equation∫ t

0
Pin(τ)dτ =

1
2

(∫ t

t−T1(t)
pT

m(τ)pm(τ)+
∫ t

t−T2(t)
nT

s (τ)ns(τ)dτ

−
∫ t−T1(t)

0

Ṫ1(σ)
1− Ṫ1(σ)

pT
m(σ)pm(σ)dσ−

∫ t−T2(t)

0

Ṫ2(σ)
1− Ṫ2(σ)

nT
s (σ)ns(σ)dσ

)
,

where σ = τ−Ti(τ). As duration of delay cannot be bigger than the time itself vari-

ation of the delay is bounded such that Ṫi(t) ≤ 1. A time varying gain, ki, can be

inserted after the time varying delay block in Figure 2.9 so that the potential non-

passive element of the time varying delay will be eliminated. After the alteration,

new transmission equations are

ps(t) = k1(t)pm(t−T1(t)) nm(t) = k2(t)ns(t−T2(t)).
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Now the total energy flow can be calculated as∫ t

0
Pin(τ)dτ =

1
2

(∫ t

t−T1(t)
pT

m(τ)pm(τ)+
∫ t

t−T2(t)
nT

s (τ)ns(τ)dτ

+
∫ t−T1(t)

0

1− Ṫ1(σ)− k2
1

1− Ṫ1(σ)
pT

m(σ)pm(σ)dσ

+
∫ t−T2(t)

0

1− Ṫ2(σ)− k2
2

1− Ṫ2(σ)
nT

s (σ)ns(σ)dσ
)
.

In order to eliminate the second terms, which may destroy passivity, in the above

equation the time varying gain ki is chosen to be as k2
i = 1− Ṫi. In this way the system

is going to be passive and when the time delay is constant, ki = 1, the initial results

are going to be obtained. While designing a control law for a bilateral teleoperation,

where the Internet medium is used as a communication environment information

about time delay such as its variation and maximum delay duration is substantial.

Another method for eliminating difficulties related to the time varying delays is

simply using buffers at input output ports of the communication medium. A virtual

time delay, that is bigger than any delay that might occurs during the transmission,

can be designated so that the scattering transformation can be used with this virtual

time delay rather than time varying delay and the passivity is going to be ensured

conveniently [89]. Complexity and conservativeness of the stability analysis while

communication medium accommodating variable time delay will be discussed rig-

orously with IQC framework as well in the forthcoming stages.

2.4.3 Position Mismatch with Passive Communication

This section highlights the notorious property of the passivity based control method-

ology used in the time delayed bilateral teleoperation: position mismatch between

the manipulators. It is desired that the slave manipulator tracks the position of the

master, especially in the free space movement precise tracking is desired. But, when

the scattering transformation or wave variables are implemented to eliminate active

behaviours of the transmission delay the position error problem starts to rise to sur-

face as such control schemas ensures only the velocity tracking [42,82,90–92]. To be

able to use the passivity approach and simplify the power calculation velocity has

been transmitted and velocity controller is implemented within the system. As a

result, the position draft becomes inevitable especially when the initial positions of
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two manipulators are different from each others or slave contacts with a stiff envi-

ronment. Moreover, the delay can be time varying and this aggravates the problem,

because the wave variable will be distorted and that deteriorates the position mis-

match between master and slave.

In order to eliminate the position mismatch a number of methods have been

introduced; for instance transmitting not only the wave variables but also their in-

tegrals, which contains position and momentum information, and adding a cor-

rective term that increases the synchronisation between the manipulators is pro-

posed in [82]. Also, a new configuration bilateral teleoperation was designed in [44],

where speed and force information are sent via scattering transformation and also

delayed position information were used in order to overcome that unwanted mis-

match. With the additional position controllers synchronisation between the ma-

nipulators is ensured. Lyapunov stability analysis approach were implemented to

obtain the range of the position control gains in the both sides. When the controller

parameters hold the condition based on the manipulators’ damping values such

that K2Td
2 < BmBs, it has been proved that the interconnection system is stable and

the position error will eventually diminish. The stability property is turned to a de-

lay dependent property from delay independent one as duration of the time delay

affects parameters of the controllers.

As a final note, these methods that guarantee stability against any size of the

communication delay are analogous with implementing the small gain theorem.

Strictly speaking, norm of the delay operator is always equivalent to 1 and by sim-

ply ensuring norm of the nominal system is less then the gain of delay operator

we would also guarantee the stability independent of the delay without including

any other additional transformation within the depicted interconnection, see [23]

for more detailed information about the relationship between passivity and small

gain theorems.

2.5 Some Other Control Techniques for Teleoperation

Ensuring stability (strictly speaking passivity) of the time delayed teleoperation

is a nontrivial problem. Obtaining a passive communication medium that con-

tains latencies is prominent in the literature on bilateral teleoperation. By scattering
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and wave transformation the transmission channel remains passive and stability of

the teleoperation was guaranteed for any constant and after some restoration for

time varying delays as well. In addition, Lee and Spong [93] showed that simple

proportional-derivative (PD) controller can be used with time delayed bilateral tele-

operation without jeopardizing passivity of the overall system. Namely, master and

slave can be directly connected with virtual springs and dampers over time delayed

communication channel. Energetic passivity of the closed loop teleoperation is ob-

tained by using passivity concept of the controllers. For this control methodology

the delay needs to be symmetric (required to be equal in both directions, from mas-

ter to slave or vice versa) and it is assumed that time delay was known in advance.

Furthermore, in [45] similar methodology was applied yet in this case only the

upper bound of the round trip delay is required to be known. The main advantage

of these proposed architectures is that, exact position information is being transmit-

ted therefore tracking and fidelity can be ensured without any additional synthesis.

In some aforementioned approaches, such as scattering transformation, the com-

munication channel itself is passivated, yet here with suitably chosen parameters,

controllers and communication channel are passivated all together.

The main theoretical premise behind [45, 93] is that stability of the intercon-

nection is ensured for an upper bounded time delay and synchronisation between

the manipulators is obtained such that the position mismatch approaches to zero

(xm(t)− xs(t)→ 0). In order to dissipate the energy generated by delayed commu-

nication channel and the controller a dissipation gain (Kd) is inserted into the con-

trollers. And also an supplementary damping (Pe) is implemented into the system

to ensure master-slave coordination. In order to guarantee the energetic passivity of

the system, dissipation gain Kd was introduced as

Kd =
Ttotal

2
Kp,

where Kp is the proportional controller gain and Ttotal is round trip communication

delay. With the designed PD controllers and with the condition given above the

interconnected system is energetic passive besides the position error between master

and slave eventually diminish.

On the contrary, [46] states that within the proposed methodology it has been

assumed that both human and environment can be described by using stable op-
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erators in L∞ that mapping from velocity to force but the desired stability and per-

formance criterion with simple PD-like schemas can be obtained under classical as-

sumption of the passive terminals, yet with provided sufficiently large damping

injected to both manipulator’s subsystems. In that presented system, parameters of

the controllers must hold the following inequality in order to obtain required stabil-

ity and performance criterion

BmBs > Td
2KmKs,

where Td is the time delay in the communication channel, Km, Ks are proportional

gains for eliminating the position errors, and Bm, Bs are scalar gains for the injected

damping. It is worth highlighting that stability analysis covers only master, slave,

controllers, and communication channel. In other ways, the affects of human and

environment has been ignored, under favour of the assumptions, in order to be able

to use Lyapunov equations for the stability analysis.

There seems to be no compelling reason to argue that the proposed framework

achieves passable transparency only at low frequencies as no force sensor is used

and the mechanical movements occur at the low frequencies [73]. Yet, by using the

control law above the human operator feels a force at all the time; phenomenon

known as sluggish transparency. This type of performance is extensively common

when two-channel position error algorithm is being implemented in bilateral tele-

operation. Especially within the aforementioned approach due to the time delay,

even when the slave is in the free motion the master controller applies relentless

force while the operator tries to move the master manipulator. To eliminate such

a behaviour, a gain switching control scheme was proposed in [94]. The controller

gains were being changed based on the detection of the impedance change at the

slave side (whether it is in contact with environment or not). However, it should be

noted time delay has not been considered, therefore stability was not an issue com-

pared to the delayed one. It needs to be state that the upper bound of the controller

parameters are obtained from only stability point of view, but there is not any spe-

cific tuning rules for the designed controller in order to be able to obtain optimum

performance criterion particularly transparency point of view.

Despite the fact that passivity theory dominated the research field of the bilateral

teleoperation, there are also different algorithms that have been used for analysis
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and control of teleoperation system to overcome challenges, such as H∞, adaptive,

sliding mode, and model predictive controllers. Let us start with the H∞ control that

transfers controller design affair to a mathematical optimization problem, so with

the optimum controller stability can be ensured along with a desired performance

objective. The standard problem in this method is to find a proper controller that

minimizes infinity norm of the lower fractional transformation of the system under

the constraint of internal stability. An H∞ controller was designed for delay free bi-

lateral teleoperation in [95]. The dynamic relationship between master and slave

manipulators was the main performance criterion. Then, a controller methodology

that uses the H∞ optimum control theory and µ-synthesis was designed for time de-

layed teleoperation in [96]. Here, depending on the interaction between slave and

environment the control algorithm was divided into two different parts. A separate

controller was designed with H∞ technique when there is no environmental interac-

tion and the other one was designed when the slave interacts with the environment.

Additionally, there is sufficient research on predictive controller to draw any

firm conclusions about the implementation on bilateral teleoperation. For instance,

Sheng and Spong designed a Model Predictive Controller (MPC) for time delayed

bilateral teleoperation in [97]. Their main aim is to analyse robustness of MPC when

the time delay is unknown, hereby impedance of the environment was assumed to

be known. An MPC was designed for teleoperation when the slave is not in an

interaction with the environment (Fe = 0), and then performance of the MPC was

analysed when slave is contacted with environment, and also when there is a mis-

match between real forward time delay and the assumed one (predicted one). It was

stated that when the mismatch is high, proposed method fails to provide a stable bi-

lateral teleoperation, yet when the time delay is known MPC can provide stable

interconnection between master and slave. On the basis of the evidence currently

available, it seems fair to claim that information of the time delay is crucial while

implementing MPC for bilateral teleoperation.

Likewise, an MPC was designed for time delayed bilateral teleoperation in [98]

as well, yet as distinct from the previous approach here the time delay is assumed

to be known. Two separate controllers were designed for the free movement and

rigid contact. In order to obtain transparency objective an LQG controller/observer

pair is used at both master and slave sites. It must be noted that to use this synthesis
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methodology, the operator and environment need to be modelled, therefore second

order LTI dynamics have been used for the human operator and environment. As

the proposed method is model based predictive controller, the models should be

sufficiently good in order to obtain robustness even when there exists high latencies.

Also, a different control structure was designed in [99] where the slave manipulator

was controlled with PI controller and a Smith predictor is inserted in the master side

to predict the future behaviours of the slave, thus this predicted signal and master

position (displacement) signal is sent to the bilateral predictive controller.

Adaptive controller is used for obtaining high performance when the model

used in the system is poorly modelled or time varying. Adaptation mechanism,

as the name suggests, modifies the system parameters to adapt the internal or ex-

ternal changes. In teleoperation, adaptive controller is designed to cope with opera-

tor, master, slave, environment model uncertainties, and time delays. The adaptive

controllers that designed to overcome latency can be divided two main categories;

passivity based adaptive controller and Virtual Internal Model (VIM) adaptive con-

troller [100]. There are a number of researches in the literature that use the adaptive

method to overcome different problems in teleoperation. It is possible to find all

kinds of adaptive controller that have been designed for bilateral teleoperation in a

recently published detailed paper by Chan et al. [101].

Apart from these controller methodologies it has been stated that when comput-

ers are used as a medium for the controllers discretization needs to be carried out,

yet this process might destroy the passivity of the overall interconnection. The find-

ings in [102] lend support to the claim that discretization jeopardizing the passivity

and discrete time controller was analysed along with continuous time master, slave,

human operator, and environment. The trade off between performance and stabil-

ity was investigated in the existence of the sampling rate and controller parameters

were chosen based on this trade off, see [103] for more detailed information.



3 | Preliminaries on Multiplier and

IQC Theories

The first task of a control engineer is to obtain a model of the plant that is desired

to be controlled. But, a mathematical model will never be able to characterize

all the properties of the plant precisely. A meticulously designed controller for the

model might produce undesirable or unexpected behaviours due to the sensitivity

of the overall design to the model mismatches. At that point, the engineers may

use their experience and intuition to slightly modify the controller for achieving a

level of desire from the performance of the controlled system. This technique has

been practically useful and implemented frequently for simple plants that require to

accomplish straightforward tasks. Thus in these type of applications control theory

might have little effect. On the other hand, as complexity of the systems boosted

with some operators like nonlinearities, intuitional approach becomes difficult to

perform and apply. Therefore, the demand for a theory that is able to cope with

obscurity of the real plants rose to the surface. And this bring us to the robustness

terminology: a design is called robust if it can cope not only with a certain model but

also with a set of models which are within the neighbouring subsets of the particular

model [104].

In this chapter, in the spirit of [105], we will introduce some particular method-

ologies in robust control analysis that are mostly based on frequency-domain stabil-

ity criteria: Multiplier theory and Integral Quadratic Constraints framework.

65
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3.1 Multiplier Approach

An interconnection between a linear system and bounded nonlinearity is said to be

absolutely stable if the depicted feedback, known as Lur’e system [160], has a globally

uniformly asymptotically stable equilibrium point at the origin for all nonlinearity

within the given class. Yet, revealing the absolute stability of such an interconnec-

tion is a nontrivial task, thus multipliers are the first technique that are being pro-

posed for this purpose. Strictly speaking, multipliers are virtual operators1 that are

being inserted (with its inverse) into a feedback system such a way that overall feed-

back interconnection remains unchanged, yet stability analysis of the overall system

can be carried out more conveniently based on the well established positivity prop-

erty of the individual loops. Also, complexity of the stability problem in the Lur’e

structure is reduced as approach leads to simple solution based on the linear part

only. Along with the usefulness, multiplier approach also reduces the conservatism

of the stability analysis based on pure small gain and passivity theorems. In the

same manner as in [106], let us assume that we would like to investigate stability

of the system illustrated in Figure 3.1 (so-called Lur’e structure) where the feedback

interconnection is defined by v = Gw+ f ,

w = ∆(v)+g;
(3.1)

where g, w, ∆(v) ∈ Lm
2e and Gw, v, f ∈ L l

2e. This interconnection is said to be well-

posed if the map (v,w) 7→ (g, f ) has a causal inverse on Lm+l
2e [0,∞). The well-posedness

condition is for ensuring that there exists a solution for the differential equation of

the system, and it can be said that real systems naturally have well-posedness prop-

erty. Additionally it can also be said that the interconnection is stable if for any

(g, f ) ∈ Lm+l
2 , then (w,v) ∈ Lm+l

2 . Namely, this is the well-known bounded-input

bounded-output condition; the system will be called stable if applying external well

behaved bounded signals only create well-behaved signals that decay to the zero

over the time interval.

In addition to this, positivity property of the each forward channel can be inves-

tigated in order to ensure stability of the interconnected system. It leads to so-called
1An operator maps from one space domain into another space domain.
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∆

G

+

v

w +

f

g

Figure 3.1: Classical feedback interconnection of a nominal plant and perturbation

passivity theory, yet firstly let us propose the following definitions:

Definition 3.1 (Positive Operators [107]). Let H be a Hilbert space with inner product

denoted by 〈 ,〉 and let A be an operator in H ; then A is said to be positive if ℜ{〈Ax ,x〉} ≥ 0

for every x ∈H .

Definition 3.2 (Truncation [108]). The set Ln
pe consists of all measurable functions f :

[0,∞)→ Rn such that the truncations

fT (t) =

 f (t), 0≤ t ≤ T (t ∈ R+)

0, t > T

are in Ln
p for all finite T ≥ 0.

Theorem 3.1 (Passivity Theorem [109]). Let us assume that feedback interconnection

in (3.1) is well-posed. The system is stable if the following inequalities

〈vT ,∆vT 〉 ≥ 0,

〈vT ,GvT 〉 ≤ −ε‖vT‖2,

hold for some ε > 0, for all v ∈ Lm
2e[0,∞), and T ∈ R+.

Remark 3.1. Note that positivity is tested on Lp spaces yet passivity is tested over extended

Lpe spaces, which emphasizes that causality condition is required for a positive operator to

be passive as well.

In order to enhance passivity property of the each forward channel a bounded

causal operator M can be embedded into the system along with its bounded inverse

thereby the entire interconnection transformed from Figure 3.1 to Figure 3.2 (a). The

original system’s property remained consistent, yet now passivity of the individual

feedforward operators can be investigated together with property of the injected
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multiplier M. That additional operator can distribute extra2 passivity property of

the individual element to the other operators within the interconnection. The main

objective with this methodology is to somehow simplify the stability analysis of the

interconnection (particularly when there exists a nonlinearity within the loop) in the

circumstances where proving or establishing stability of the original system is more

complex than the one with multiplier.
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Figure 3.2: Lur’e interconnection with injected bounded multiplier M (a), factoriza-
tion is implemented to maintain the causality property (b).

Real world physical and realizable systems respect an intuitive and fundamental

property called causality. In the nature that we are in, there is always a reaction to

every action not other way around: effect cannot create its cause. Consistently, to be

able to apply physically intuitive passivity theory while analysing the stability all

the operators within the interconnection need to hold the causality property. This

is to say both multiplier M and its inverse M−1 need to be causal and the passiv-

ity theory cannot be applied if any of these are non-causal [110]. In many stability

analysis problems as well having or using particularly casual operators is one of

the main concerns. In a feedback interconnection being able to obtain two positive

operators, which are also causal, is a desired condition as it leads to a nicely stable

interconnected system. Therefore, developing causal operators from arbitrary posi-

tive operators is crucial. Let us propose the technique that provides causal positive
2The intention of this terminology will be clear in the further section once we illustrate passivity

of the operator with and without multipliers.
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operators from any positive operators:

Theorem 3.2 (Factorization [107]). Let us assume that there exists a positive operator M

on the Hilbert space of functions. And let M holds the factorization such that M = M−M+,

where M+ is a causal and M− is invertible bounded operator with causality property of

(M∗−)
−1. Then, M+(M∗−)

−1 is a positive and causal operator.

The theorem shows that a causal positive operator can be obtained from a non-

causal positive operator and the only condition that is required to satisfy the fac-

torization property. It received a great deal of attention as restriction on using only

casual operators while using Multiplier theory can be eliminated as once a positive

operator (either causal or non-causal) obtained factorization can be carried out to

hold required causality property of the each sub-system within the loop.

Therefore, in such circumstances where causality of the inverse operator became

an issue, multiplier M needs to be factorized as M = M−M+ such that M∗− and M+

and their inverses are bounded and causal, as a result the overall loop is transformed

from Figure 3.2 (a) to Figure 3.2 (b) without any intervention. Now we are ready to

propose the stability theorem based on the multiplier theory:

Theorem 3.3 (Multiplier Theory [106]). Let M : jR→Cm×l be bounded measurable func-

tion. Assume that

1. feedback interconnection between G∈RHl×m
∞ and ∆ : Lm

2e[0,∞)→L l
2e[0,∞) is well-posed,

2. ∆ satisfies,

∫ ∞

−∞

 v̂( jω)

∆̂v( jω)

∗ 0 M∗( jω)

M( jω) 0

 v̂( jω)

∆̂v( jω)

dω≥ 0, ∀v ∈ Lm
2 ,

3. M can be factorized into M = M−M+, where M+, M∗−, and their inverses are casual and

bounded,

4. there exists a positive ε such that G( jω)

I

∗ 0 M∗( jω)

M( jω) 0

 G( jω)

I

≤−εI, ∀ω ∈ R.

Then, the positive feedback interconnection between G and ∆ is stable.
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On the other hand, a new framework to analyse absolute stability of the sys-

tems in the frequency domain was proposed; that is so-called IQC theorem where

sufficient stability conditions can be provided for complicated interconnected sys-

tems. In other words, by following this aforementioned stability technique multi-

plier search can be carried out with ease via convex optimization leading to tractable

solutions.

3.2 Overview of IQC Theory

Looking for the convenient approaches that simplify stability analysis of the sys-

tems containing nonlinearities or uncertainties has always been a great deal of in-

terest. Input-output approach in other words Operator approach has dominated

the western literature among the small gain and passivity theorems are the well-

recognized, yet it is agreed that these techniques give conservative conditions for the

stability tests. To reduce the conservatism gap within the input-output approach,

multiplier theory is proposed along with loop transformation and well established

especially while analysing systems with the nonlinearities. Then, the focus of the

interest among the researches moved to find appropriate multiplier or to illustrate

existence of the multiplier that holds the constraints/conditions such that the sta-

bility is ensured. Combined with the causality requirement, however, search for the

appropriate class of multiplier became the main issue in the input-output stability

approach.

On the other hand, within the same period absolute stability technique has dom-

inated the Soviet world where Russian researches used the multipliers in a different

sense; instead of defining them as operators they are used simply as mathemati-

cal tools. Herein, so-called Integral Quadratic Constraints theory, which was intro-

duced by Megretski and Rantzer in [111, 112] where the operators have been im-

plicitly analysed in frequency domain, was the first bridge between Input-Output

and Absolute stability approaches, reader referred to [105] and references therein

for detailed analysis and synthesis related to this combination. IQC is simply based

on the definition of the nonlinearities or perturbations where they are defined in the

format of quadratic constraints frame work.
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Definition 3.3 (Integral Quadratic Inequality [112]). Let Π : jR→ C(l+m)×(l+m) be a

Hermitian bounded measurable function. Two signals u ∈ Lm
2 [0,∞) and y ∈ L l

2[0,∞) are

said to satisfy the IQC defined by Π, if

∫ ∞

−∞

 û( jω)

ŷ( jω)

∗Π( jω)

 û( jω)

ŷ( jω)

dω≥ 0. (3.2)

Moreover, a bounded system ∆ : Lm
2e[0,∞)→ L l

2e[0,∞) is said to satisfy the IQC defined by

Π if u and ∆u satisfy the IQC defined by Π for all u ∈ Lm
2 .

Once the appropriate quadratic constraints expressed for the troublesome oper-

ators (e.g. nonlinearities), stability of the system that is depicted as a Lur’e structure

can be analysed by using the IQC theorem:

Theorem 3.4 (IQC Theory [112]). Let G ∈ RHl×m
∞ , and ∆ be a bounded causal operator. If

the following statements hold:

1. for every τ ∈ [0,1], the interconnection of G and τ∆ is well-posed,

2. for every τ ∈ [0,1], τ∆ satisfies the IQC defined by Π,

3. there exist ε > 0 such that G( jω)

I

∗Π( jω)

 G( jω)

I

≤−εI, ∀ω ∈ R.

Then, the positive feedback interconnection of G and ∆ in Figure 3.1 is stable.

The matrix in the middle, Π( jω), will be referred as an IQC multiplier for sake of

preventing possible confusion with the previous multiplier definition given for M.

But, the relationship comes to the light as it can be noted that multiplier and IQC the-

ories have similarities such that their equivalence was indicated with the condition

that right lower corner of the IQC multiplier Π is negative semi-definite [113, 114].

IQC approach can be seen as a generalization of the multiplier methodology, yet

with an additional convenience: there is no need to concern about the causality

property as it is not based on the time domain specifications yet the price paid for

this convenience is the homotopy argument; well-posedness condition is required

for the G−τ∆ interconnection for all τ∈ [0,1]. Conversely, it can also be stated that in

multiplier approach once the positive multiplier is obtained then it can be factorized
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as desired (such that having causality property), we refer reader to [110] for more

information about in what conditions both approaches are equivalent.

Remark 3.2. Generally, Π : jR→C(l+m)×(l+m) can be any Hermitian bounded measurable

function in the form as
[

Π11 Π12
Π∗12 Π22

]
, yet throughout this thesis we will restrict to have Π11 ≥ 0

and Π22 ≤ 0 so that the second condition in Theorem 3.4 will be satisfied if and only if ∆

satisfies the IQC defined by Π. It implies that the existence of IQC will be equivalent to have

a multiplier [113].

Some well-known stability analysis methods in robust control can be expressed

via IQC theory such as passivity and small gain theorems. For instance, let us as-

sume that ∆ is a passive LTI operator then the following quadratic constraint holds û( jω)

∆̂u( jω)

∗ 0 I

I 0

 û( jω)

∆̂u( jω)

≥ 0.

In a similar fashion, if it is assumed that the perturbation holds the small gain con-

dition then IQC for the ∆ operator can be expressed as û( jω)

∆̂u( jω)

∗ I 0

0 −I

 û( jω)

∆̂u( jω)

≥ 0.

As shown, frequency independent IQC multipliers can be used to express the pas-

sivity and small gain theorems via IQC and as stated previously these methodolo-

gies are notorious to give conservative stability conditions [115].

∆

IQC(Π1)
IQC(Π2)

IQC(Π3)

Figure 3.3: Increase in the number of the IQCs defined for an uncertainty set reduces
the conservatism gap. IQC(Π) represents the set of systems that satisfy the IQC
defined by Π: a graphical illustration.

On the other hand, conservatism due to a particular perturbation can be reduced

once the number of IQCs defined for the particular uncertainty class is increased

(if feasible). Namely, if some multipliers Πi, for i = 1, ...,n have already known to
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satisfy (3.2), then their conic combination,

Π( jω) =
n

∑
i=1

xiΠi( jω), xi ≥ 0, i = 1, ...,n,

also satisfies (3.2) [116]. This can be interpreted as, the set of IQCs for the depicted

class of uncertainty is somehow covering the undefined intersection region, which

for sure includes the set of perturbation as well, as illustrated in Figure 3.3. For the

sake of completeness let us propose the following definition:

Definition 3.4 (Canonical Combination). Given a number of vectors x1,x2, . . . ,xn in the

vector space, the canonical combination of these vectors is

α1x1 +α2x2 + · · ·+αnxn,

where αi is a real number which satisfies αi ≥ 0, i = 1, ...,n.

Moreover, assume that ∆ is a structured uncertainty; diagonal combination of

different perturbations such that ∆ = diag(∆1, ...,∆n) and each subsystem satisfies

IQC defined by

Πi( jω) =

 Πi(11) Π∗i(12)

Πi(12) Πi(22)


where i = 1, ...,n, then overall system satisfies the IQC defined by

Π =



Π1(11) 0 · · · 0 Π∗1(12) 0 · · · 0

0 . . . . . . ... 0 . . . . . . ...
... . . . . . . 0

... . . . . . . 0

0 · · · 0 Πn(11) 0 · · · 0 Π∗n(12)

Π1(12) 0 · · · 0 Π1(22) 0 · · · 0

0 . . . . . . ... 0 . . . . . . ...
... . . . . . . 0

... . . . . . . 0

0 · · · 0 Πn(12) 0 · · · 0 Πn(22)



.

After expressing appropriate class for multipliers holding IQC for the set of

uncertainties, then robustness of the feedback interconnection between a nominal

plant and pre-defined set of uncertainties will be investigated with the last condi-

tion in Theorem 3.4. Stability condition can be checked based on the frequency-

dependent, infinite dimensional inequality with a frequency gridding, but it can
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be transformed into a frequency-independent finite dimensional LMIs by using the

Kalman-Yakubovich-Popov (KYP) lemma:

Lemma 3.1 (KYP lemma [117]). Given A ∈ Rn×n, B ∈ Rn×m, M = M> ∈ R(n+m)×(n+m),

with det( jωI−A) 6= 0 for all ω, where [A,B] are controllable. The following two statements

are equivalent:

i) ( jωI−A)−1B

I

∗M

( jωI−A)−1B

I

≤ 0,

ii) There is a matrix P ∈Rn×n such that P = P> andA>P+PA PB

B>P 0

+M ≤ 0.

Remark 3.3. One can write the last condition in Theorem 3.4 as a finite dimensional LMI

based on the above classical KYP lemma as: Given a minimal transfer function defined with

state-space matrices as G( jω) =C( jωI−A)−1B+D, then the following two statements are

equivalent:

i) G( jω)

I

∗ M̄

G( jω)

I

≤ 0,

ii) There is a matrix P ∈R such that P = P> andA>P+PA PB

B>P 0

+[C D
]>

M̄
[
C D

]
≤ 0.

Relationship between this multiplier and the one in Lemma 3.1 is distinct as

M =
[
C D

]>
M̄
[
C D

]
.

The lemma has various applications in systems theory and control. Also, based

on the system that is being analysed, the equivalence between frequency dependent

inequality (FDI) and LMI can be proposed for a particular frequency range by using

Generalized KYP lemma, see [118] for more detailed information.
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3.3 Classes of Multipliers

In this section, definitions of the different classes of multipliers that we shall use

while analysing absolute stability of the bilateral teleoperation are given.

3.3.1 Passive and Zames-Falb Multipliers

A SISO LTI system ∆ ∈ RH∞ is said to be passive if ∆( jω)+∆( jω)∗ ≥ 0 for all ω ∈R.

One can define an off-diagonal identity matrix as a multiplier, yet as mentioned that

leads to conservative stability conditions. To reduce the conservatism frequency de-

pendent class of multipliers preserving the positivity of this class is defined in [119]:

Definition 3.5. Let λ be a function, then λ belongs to the class of passive multipliers P if

λ(ω) = λ(ω)∗ and λ(ω)> 0.

Lemma 3.2 ( [119]). Given a bounded LTI passive system ∆ and λ ∈ P , then ∆ satisfies the

IQC defined by

Π(ω) =

 0 λ(ω)

λ(ω) 0

 . (3.3)

A nonlinearity φ : L2e[0,∞)→ L2e[0,∞) is said to be memoryless if there exists

N : R→ R such (φv)(t) = N(v(t)) for all t ∈ R. Henceforth we assume that N(0) = 0.

A memoryless nonlinearity φ is said to be bounded if there exists a positive constant

C such that |N(x)| < C|x| for all x ∈ R. The nonlinearity φ is said to be monotone if

for any two real numbers x1 and x2 we have

0≤ N(x1)−N(x2)

x1− x2
, ∀x1 6= x2.

The class of multiplier that attain positivity of this class of nonlinearity is defined as

follows:

Definition 3.6 (Zames-Falb Multiplier [32, 33]). Let Z be a rational transfer function.

Then, Z belongs to the multiplier class of Zames-Falb multipliers Z, if the following three

conditions are satisfied:

• Z( jω) = z0−
∫ ∞

−∞
q(t)e− jωtdt, (3.4)

•
∫ ∞

−∞
|q(t)|dt < z0, (3.5)

• q(t)≥ 0, ∀t ∈R. (3.6)
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Remark 3.4. A different class of multipliers can be generated by removing the last condition,

but further a condition in the nonlinearity (being odd) is required.

Lemma 3.3 ( [33]). Given a memoryless, monotone and bounded nonlinearity φ and any

Z ∈ Z, then the nonlinearity satisfies the IQC defined by

Π( jω) =

 0 Z( jω)∗

Z( jω) 0

 . (3.7)

A comparison between the rest of the classes for this type of nonlinearities and

the class Z is given in [37], for more detailed information we refer reader to the

tutorial paper [120] and its extended version [38].

3.3.2 Multipliers for Time Delay

Delay is an intrinsic behaviour of the most systems hereby over the years it has

engaged the attention of many researches [121]. The, literature is dominated by the

Lyapunov-Krasovskii functional technique [81, 122], but a considerable effort was

made based on IQC framework [123–127] as well.

In this section we will briefly discuss the multipliers for constant and time vari-

able delays that will be used in the robustness analyses. To begin with, in the IQC

framework, the uncertainty based on delay operator, ∆( jω) = e− jωTd , is encapsu-

lated with a negative unit, i.e. ∆d( jω) = e− jωTd −1, hence one can think of the block

∆d as a perturbation of the feedback without delay. Subsequently, a positive feed-

back interconnection is injected into the nominal system to not make any changes in

the original interconnection, see Figure 3.4 for the mentioned "loop shifting" in the

block diagram.

The first multiplier that we want to propose for the constant delay is conic com-

bination of the two multipliers; one is based on the magnitude of the frequency

response and the other depends on its characterization in the complex plane. On

the complex plane, the operator ∆( jω), with a given time delay Td , characterizes

a unit circle whose centre is located at the origin and that can be interpolated as

∆∗d∆d +∆d +∆∗d = 0. This property can be defined as a quadratic function by using
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Figure 3.4: Time delayed system with feedback and feedforward transformation,
where ∆d = e−sTd −1.

any negative definite function Ω :R→R as I

∆d( jω)

∗ 0 Ω(ω)

Ω(ω) Ω(ω)

 I

∆d( jω)

≥ 0, ∀ω ∈R. (3.8)

The negativity condition of Ω can be removed as the quadratic formulation in (3.8)

holds for all Ω (negative or positive), yet depicted as a negative definite with pro-

posed positive inequality so that the interior region of the unit circle on the complex

plane can be defined while characterizing the uncertainty as a quadratic inequality.

Also right lower corner of the IQC multiplier is going to be negative definite. In the

contrary case the outer space can be expressed yet that might leads to ill conditions

while carrying out the numerical search for the depicted multiplier.

Conservatism that appears when small gain property of the norm bounded de-

lay operator is used can be reduced with a predefined transfer function, Wd( jω), in

a way that lower amplitudes of the uncertainty in the lower frequencies can be uti-

lized. Amplitude covering property of the Wd can be seen in Figure 3.5, with the

following rational transfer function [128];

Wd( jω) = 2
( jω)2T 2

dmax +3.5 jωTdmax +10−6

( jω)2T 2
dmax +4.5 jωTdmax +7.1

.

Thus, multiplier eventually the stability condition will be based on the maxi-

mum time delay duration and it will be standing on the gain relation depicted as

W ∗d ( jω)Wd( jω)≥ ∆∗d( jω)∆d( jω). Quadratic form of the inequality can be reproduced

with any positive definite D :R→R as I

∆d( jω)

∗ Wd( jω)∗D(ω)Wd( jω) 0

0 −D(ω)

 I

∆d( jω)

≥ 0, ∀ω ∈R. (3.9)

Let us propose the first multiplier class for the constant time delay by conic com-

bination of the inequalities given in (3.8) and (3.9) as:
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Figure 3.5: Covering gain of the delay with a rational transfer function, Tdmax =
28msec.

Definition 3.7. Given a delay Tdmax, Π belongs to the class of multipliers ΠΠΠd1 if there

exist D(ω) = D∗(ω) ≥ 0, Ω(ω) = Ω∗(ω) ≤ 0, and Wd( jω) ensures |Wd( jω)| ≥ |∆d( jω)|,
∀Td ∈ [0,Tdmax],∀ω ∈R, such that

Π( jω) =

 Wd( jω)∗D(ω)Wd( jω) Ω(ω)

Ω(ω) −D(ω)+Ω(ω)

 . (3.10)

Remark 3.5. Generally, multiplier classes for time delay are defined with any Ω(ω), yet the

negativity condition was included to define the interior region of the unit circle and also to

ensure that right lower part of the multiplier (−D(ω)+Ω(ω)) is negative definite. Yet, it is

possible and plausible to relax this condition on Ω with Ω(ω) ≤ D(ω) but it will be stated

only the circumstances leading to useful results in the further analysis.

Lemma 3.4. Let ∆d( jω) be a time delay operator with constant unknown time delay Td ∈
[0,Tdmax], it satisfies the IQC defined by Π ∈ΠΠΠd1.

Based on the behaviour of the ∆d on the complex plane another quadratic in-

equality can be defined with rational approximation of the delay operator. Recently,

Pfifer and Seiler [129] illustrated tighter circle constraints constructed by a rational

transfer function, ϒd , that encircles ∆d and the origin in the complex plane. Namely,

the class of uncertainty is defined with a circle centred at the midpoint between ori-

gin and ∆d with a radius equal to the absolute value of this point, see Figure 3.6

for illustration of the circles in the complex plane. An example of ϒd was defined
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in [112] as

ϒd( jω) =
−2.19( jω)2 +9.02( jω

Tdmax
)+ 0.089

T 2
dmax

( jω)2−5.64( jω
Tdmax

)− 17
T 2

dmax

,

where Tdmax is maximum delay duration that the design is required to be robust.

Subsequently, quadratic inequality of the tighter circle description can be depicted

with any positive definite D :R→R as I

∆d( jω)

∗ 0 ϒd( jω)∗D(ω)

ϒd( jω)D(ω) −D(ω)

 I

∆d( jω)

≥ 0, ∀ω ∈R (3.11)
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Figure 3.6: Encapsulation of the delay in the complex plane with a restricted circle.
See [130] for an analogous interpretation.

A class of multiplier can be expressed based on the restricted circle proposed

in (3.8) and (3.11) and their canonical combination as:

Definition 3.8. Given a delay Tdmax, Π belongs to the class of multipliers ΠΠΠd2 if there

exist D(ω) = D∗(ω) ≥ 0, Ω(ω) = Ω∗(ω) ≤ 0, and ϒd( jω) with ∆d ∈ C(ϒd, |ϒd|), ∀Td ∈
[0,Tdmax],∀ω ∈R, such that

Π( jω) =

 0 ϒd( jω)∗D(ω)+Ω(ω)

ϒd( jω)D(ω)+Ω(ω) −D(ω)+Ω(ω)

 . (3.12)

Lemma 3.5 ( [129]). Let ∆d( jω) be a time delay operator with constant unknown time delay

Td ∈ [0,Tdmax], then it satisfies the IQC defined by Π ∈ΠΠΠd2.
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Both multipliers proposed in (3.10) and (3.12) can be used while analysing the

uncertainties caused by constant time delays, but unfortunately there is no direct

recipe to define which one gives better performance specifications. Also, canoni-

cal combination of the proposed multipliers can be implemented to define single

perturbation caused by the constant delay. But, we choose not to combine them

as combination will eventually increase complexity of the final IQC multiplier, also

early synthesis revealed that no profits are gained in the result of the combination.

On the other hand, depending on the architecture of the system, delay may be-

come time variable operator as well, for instance when the Internet is used as a

communication medium delay may vary due to the congestion, bandwidth, or the

transmission distance. In that case, delay, Td(t), will be depicted as unknown time-

variable parameter that satisfies

0≤ Td(t)≤ Tdmax, 0 < |Ṫd(t)| ≤ d, ∀t ≥ 0.

The subsequent information are particularly based on [127, 131, 132]. Firstly, let

us remark that time variable delay is not a bounded operator (in L2 space) if there

is no restriction on the variation of the delay; that can be shown with the example

proposed in [127] with the given functions

y(t) =

1, t ∈ [0,ε],

0, otherwise,
Td(t) =

t, t ∈ [0,T0],

T0, otherwise.

It can be stated that y(t−Td(t)) is equivalent to 1 for t ∈ [0,ε+T0] and 0 otherwise.

The energy of y(t −Td(t)) is equal to ε+T0, yet energy of y(t) is equal to ε; so that

gain of the time variable delay operator becomes unbounded as ε→ 0.

Then, let V denote a time-delay operator; V (v) := v(t−Td(t)) also ∆d(v) be V − I;

∆d(v) := v(t − Td(t))− v(t). IQC related to the time variable delay operator can be

defined by properties of the V as it is a bounded operator on L2 if the variation of

the delay is restricted as d < 1 and any multiplier depicted for V leads to a multiplier

for ∆d . Consequently an IQC can be deduced for any symmetric positive definite Ω

as

∫ ∞

0

 v(t)

v(t−Td(t))

∗ d
1−d Ω Ω

Ω Ω

 v(t)

v(t−Td(t))

dt ≥ 0, ∀t ≥ 0. (3.13)
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In a similar fashion as in constant time delay case, ∆v is a bounded operator on L2

and this amplitude bound can be covered with a bounded rational transfer function

Wv such that ‖Wv‖2 ≥ ‖∆v‖2 where Wv is any rational transfer function satisfying

|Wv( jω)|>

1+ 1√
1−d

, if Tdmax|ω|> 1+ 1√
1−d

,

Tdmax|ω|, if Tdmax|ω| ≤ 1+ 1√
1−d

,

Figure 3.7 illustrates such an amplitude covering property with different rational

transfer functions. Then, this can be rendered with the following multiplier connec-

tively with any positive definite D :R→R as

Π( jω) =

 Wv( jω)D(ω)W ∗v ( jω) 0

0 −D(ω)

 . (3.14)
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Figure 3.7: Covering gain of the delay with rational transfer functions; Wv1 is with
Ṫd = 0.5, Wv2 is with Ṫd = 0.1, ∆d = e−sTdmax−1, Tdmax = 28msec. Sparse frequency grid
is the cause of not having legitimate jumps in the gain of ∆d at the higher frequencies.

Correspondingly, final multiplier for variable delay operator can be depicted

with the canonical combination of (3.13) and (3.14) as follows.

Definition 3.9. Given a variable delay Td(t) ∈ [0,Tdmax] with |Ṫd(t)| ≤ d < 1,∀t ≥ 0, Π

belongs to the class of multipliers ΠΠΠv if there exist D(ω) = D∗(ω)≥ 0, Ω(ω) = Ω∗(ω)≤ 0,

and a rational transfer function Wv( jω) satisfying

|Wv( jω)|>

1+ 1√
1−d

, if Tdmax|ω|> 1+ 1√
1−d

,

Tdmax|ω|, if Tdmax|ω| ≤ 1+ 1√
1−d

,

then

Π( jω) =

 Wv( jω)D(ω)W ∗v ( jω)+ d
1−d Ω(ω) Ω(ω)

Ω(ω) −D(ω)+Ω(ω)

 , (3.15)
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where, d is variation of the delay, Ṫd .

Lemma 3.6 ( [127]). Let ∆d be a variable time delay operator with delay Td(t) ∈ [0,Tdmax]

and |Ṫd(t)| ≤ d < 1,∀t ≥ 0, ∆d satisfies IQC defined by Π ∈ΠΠΠv.

Remark 3.6. Having a restriction on the variation of the delay as |Ṫd(t)| ≤ d < 1 is a rea-

sonable assumption as delay cannot grow higher than the time itself. But, contrary situation

might occur once there is no package utilization applied when the Internet is used as a com-

munication medium.

It can be noted that multiplier defined for time variable delays, (3.15), is equal to

(3.10) when Ṫd(t) = 0 (constant time delay case).

3.4 Parametrization and Combination of the

Multipliers

Based on the IQC methodology or multiplier approach absolute stability problem of

the classical Lur’e problem can be split into two sub-problems: First, start by defin-

ing appropriate class of multipliers in a way that depicted IQCs are hold based on

these definitions. Once the proposed IQCs are ensured to hold, then the system is

said to be stable if it can be illustrated that there exists a multiplier within the de-

fined class that holds quadratic inequality with the nominal plant as in Theorem 3.4.

Therefore, it is required to carry out a search for a multiplier within the defined class,

yet one can perform a convex search within the defined class if the depicted multi-

plier is parametrized in an appropriate fashion. Within this section we will initially

discuss the parametrization of the aforementioned class of multipliers and later ex-

amine the combination of the different class of multipliers that will be used for the

absolute stability analysis of the bilateral teleoperation in the further chapters.

3.4.1 Parametrization of the Class of Multipliers

In the spirit of [29], we propose the following parametrization for the frequency

dependent passive multiplier λ(ω). Given n ≥ 2 and α > 0, let define a transfer

function vector as

nΛα( jω) =
[

1 1
jω+α ... 1

( jω+α)n−1

]>
, α > 0, (3.16)
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which will be used to parametrize the multipliers and depicted as basis function, see

Appendix for the minimal state space representation.

Firstly, we use the same parametrization for frequency dependent passive mul-

tiplier λ(ω) as in [29]. Then, a subclass of the set of multipliers P is given by

λ(ω) = nΛα( jω)∗Kh
nΛα( jω), where Kh = K>h , and λ(ω) ∈ R+. Henceforth we sim-

plify the notation for passive multipliers by using Λh( jω) = nΛα( jω) for some n and

α.

Secondly, we will parametrize the Zames-Falb multiplier using Szegö’s polyno-

mials. Following [133] and [134], Z ∈ Z in Definition 3.6 can be approximated as

Z( jω) = z0−
n−1

∑
i=1

(
ai

( jω+α)i −
bi(−1)i−1

( jω−α)i

)
, (3.17)

if n is chosen sufficiently large. Initially we factorize class of Zames-Falb multiplier

as Z( jω) = nΛα( jω)∗Kz
nΛα( jω), where Λα is a basis function with the same structure

as in (3.16), and Kz is a matrix containing free parameters of the Z function (z0, ai and

bi) at its first column and row

Kz =



z0 −a1 −a2 · · · −an−1

−b1 0 0 · · · 0

−b2 0 0 · · · 0
...

...
... . . . ...

−bn−1 0 0 · · · 0


.

Condition (3.5) in Definition 3.6 requires the inverse two-sided Laplace trans-

form of the summation in (3.17)3. It is given by

q(t) =

e−αt(a1 + ta2 + · · ·+ tn−2an−1
(n−2)! ), if t ≥ 0;

eαt(b1− tb2 + · · ·+(−1)n−2 tn−2bn−1
(n−2)! ), if t < 0;

(3.18)

and using that q(t)≥ 0 for all t, it follows by direct integration such that∫ ∞

−∞
q(t)dt = (a+b)ᾱ < z0, (3.19)

where a and b are vectors contain all free parameters as

a =
[

a1 a2 · · · an−1

]
,

b =
[

b1 b2 · · · bn−1

]
,

3The transfer function in (3.17) is noncausal, and its region of convergence (ROC) includes the
imaginary axis. See Table 8.4 in [135].
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and ᾱ is a vector designated as

ᾱ =
[

1/α 1/α2 · · · 1/αn−1
]>

.

The final constraint q(t) ≥ 0 in Definition 3.6 is implemented as an LMI as fol-

lows. Firstly, two transfer functions are generated:

H1(s) =

n−1

∑
i=1

ai(−1)i−1s2(i−1)(i−1)!−1

(−s+1)n−1(s+1)n−1 ,

H2(s) =

n−1

∑
i=1

bi(−1)i−1s2(i−1)(i−1)!−1

(−s+1)n−1(s+1)n−1 ;

(3.20)

then q(t)≥ 0 for all t ∈R is equivalent to the conditions H j( jω)≥ 0 for j = 1,2 and all

ω ∈R; finally these two conditions are expressed as LMIs via KYP Lemma, see [134]

for the minimal state space representations of these transfer functions.

Remark 3.7. Note that the positivity of q(t) given in (3.18) is equivalent to the positivity

of the polynomials (
a1 + ta2 +

t2a3

2!
+ · · ·+ tn−2an−1

(n−2)!

)
,

and (
b1 + tb2 +

t2b3

2!
+ · · ·+ tn−2bn−1

(n−2)!

)
,

for all t ≥ 0; since e±αt > 0 for all t. Then positivity of q(t) is independent on the value of α.

By default, we check the positivity of q(t) assuming α = 1. See the proof in [133] for further

details. Similarly, the same conclusion can be reached for the anticausal component of the

multipliers.

Although this parametrization has been shown to be a complete parametriza-

tion when N→ ∞ [136], this limit is not feasible due to numerical issues. To increase

the flexibility without increasing the order of the multiplier, we propose a second

method similar to the parametrization proposed in [137], Z( jω)=Λα,β( jω)∗KeΛα,β( jω),

so that flexibility of the asymmetric poles in a multiplier can be used (see example

in [32, 38]). Let Λα,β( jω) be a second basis function given by

Λα,β( jω) =
[

nΛα( jω)> nΛβ( jω)>
]>

, (3.21)
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with β,α > 0, and Ke containing free parameters of Z function expressed as

Ke =



z1 −a1 −a2 · · · −an−1 0 · · · 0

0 0 0 · · · 0 0 · · · 0
...

...
... . . . ...

... . . . ...

0 0 0 · · · 0 z2 · · · 0

0 0 0 · · · 0 −b1 · · · 0

0 0 0 · · · 0 −b2 · · · 0
...

...
... . . . ...

... . . . ...

0 0 0 · · · 0 −bn−1 · · · 0



(3.22)

and condition proposed in (3.19) is redefined as

aᾱ+bβ̄ < z1 + z2, (3.23)

where β̄ is defined similarly to ᾱ. Equivalently, conditions on H1 and H2 still ensure

that the new q(t) is non-negative for all t ∈R, as has been mentioned in Remark 3.7.

Henceforward, we will use Λe as the basis associated with the Zames-Falb multi-

plier, regardless of the selection on the poles and order. If one pole is used, it means

that the first option has been used whereas the second option has been used if two

poles are given.

Furthermore, parametrization of the multipliers for uncertainties caused by time

delay can be performed in a similar fashion as in passivity multiplier. For constant

time delay case, infinite dimensional frequency dependent functions Ω(ω) and pos-

itive definite D(ω) can be parametrized as

D(ω) = nΛα( jω)∗Kd
nΛα( jω),

Ω(ω) = nΛα( jω)∗Kr
nΛα( jω),

(3.24)

where Kd,r = K>d,r and basis functions Λα are designed as in (3.16) with different

poles and orders. Henceforward we will use the notation Λd and Λr to represent

some selection for the poles and orders of these two multipliers.

3.4.2 Combination of the Class of Multipliers

IQC is a powerful framework that enables us to analyse different types of uncertain-

ties in one characterization. By dint of this property previously proposed IQCs will
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be combined in a regular base to overcome stability issues caused by specific obsta-

cles such as saturation in actuator or latency in the feedback. Here, we are interested

in three combinations of multipliers. Firstly, we will combine Zames-Falb and time

delay multipliers in order to analyse stability of the systems with saturation and

delayed states. Secondly, combination of passive and Zames-Falb multipliers will

be proposed as that is going to be used in the stability analysis of delay free bilat-

eral teleoperation while assuming human is linear and environment is nonlinear

operators. Thirdly, together with these two, multipliers for time delay also will be

combined to analyse stability of the time delayed bilateral teleoperation.

(a)
?

φe(·)
∆d

-

(c)

∆h
φe(·)

∆d1
∆d2 ?

-

(b)
?

∆h
φe(·)

-

Figure 3.8: Structured uncertainties: (a) is nonlinearity, φe, and time delay, ∆d , (b)
is passive, ∆h, plus nonlinear, and (c) is combination of the passive, nonlinear and
time delays.

Firstly, let us define the class of multipliers for the structure in Figure 3.8 (a) by

combining the class of Zames-Falb multipliers (3.7) and multipliers proposed for

time delay (3.12).

Definition 3.10. Given some selection of Λe, Λd , and Λr, let us define the class of multipliers

ΠΠΠa as the set of multipliers with the structure given by

Π =

 Ψa(1,1)

Ψa(2,1)

∗



0 0 K>e 0 0 0 0 0

0 0 0 Kd 0 0 0 0

Ke 0 0 0 0 0 0 0

0 Kd 0 −Kd 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Kr

0 0 0 0 0 0 0 0

0 0 0 0 0 Kr 0 Kr


︸ ︷︷ ︸

Ka

 Ψa(1,1)

Ψa(2,1)


︸ ︷︷ ︸

Ψa

, (3.25)

where Ψa(1,1) = diag(Λe,Λdϒd,Λe,Λd), Ψa(2,1) = diag(0,Λr,0,Λr), and Ke, Kd , Kr are

defined by (3.22), and (3.24), respectively; and satisfying the following constraint and

LMIs:
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• The parameters in the matrix Ke satisfies

aᾱ+bβ̄ < z1 + z2, (3.26)

• there exists X j = X>j such that, A>j X j +X jA j C>j −X jB j

C j−B>j X j −(D j +D>j )

≤ 0, (3.27)

where A j, B j, C j, D j are state space parameters of H j(s) in (3.20), for j = 1,2,

• there exist symmetric matrices, Pd , Kd such that, A>d Pd +PdAd PdBd

B>d Pd 0

−[ Cd Dd

]>
Kd

[
Cd Dd

]
≤ 0, (3.28)

• there exist symmetric matrices Pr, Kr such that, A>r Pr +PrAr PrBr

B>r Pr 0

+[ Cr Dr

]>
Kr

[
Cr Dr

]
≤ 0, (3.29)

where A j, B j, C j, D j are state space parameters of the basis functions Λ j( jω), for

j = d,r.

Lemma 3.7. Given an uncertainty ∆ = diag(φe,∆d) as in Figure 3.8 (a) and Π ∈ΠΠΠa, then

∆ satisfies the IQC defined by Π( jω).

Secondly, we develop the class of multipliers that we will use to analyse the ab-

solute stability of the bilateral teleoperated system when the human block is mod-

elled as an LTI passive system and the environment as a bounded and monotone

nonlinearity and defined as a structured uncertainty as in Figure 3.8 (b). We com-

bine frequency dependent multipliers for LTI passive systems, (3.3), and Zames-Falb

multipliers, (3.7) as follows.

Definition 3.11. Given some selection of Λh and Λe, let us define the class of multipliers

ΠΠΠb as the set of multipliers with the structure given by

Π( jω) =

 Ψb( jω) 0

0 Ψb( jω)

∗


0 0 Kh 0

0 0 0 K>e

Kh 0 0 0

0 Ke 0 0


︸ ︷︷ ︸

Kb

 Ψb( jω) 0

0 Ψb( jω)

 , (3.30)
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where Kh is any symmetric matrix, Ke is defined in (3.22), and Ψb( jω) =
[

Λh( jω) 0
0 Λe( jω)

]
;

and satisfying the following conditions:

• there exist symmetric matrices Ph and Kh such that, A>h Ph +PhAh PhBh

B>h Ph 0

−[ Ch Dh

]>
Kh

[
Ch Dh

]
≤ 0, (3.31)

where Ah, Bh, Ch, and Dh are the state space representation of Λh( jω),

• constraint (3.26) and LMI (3.27) are satisfied.

Lemma 3.8. Given a structured uncertainty block ∆ = diag(∆h,φe) as in Figure 3.8 (b),

then ∆ satisfies the IQC defined by Π( jω) ∈ΠΠΠb.

Lastly, let us define the class of multipliers for the structured uncertainty illus-

trated in Figure 3.8 (c); namely we combine passive, Zames-Falb, and time delay

multipliers as follows;

Definition 3.12. Given some selection of Λh, Λe, Λd1 , Λd2 , Λr1 , Λr2 and rational transfer

functions ϒdi , i = 1,2; let us define the class of multipliers ΠΠΠc as the set of multipliers with

the structure given by

Π =

 Ψc(1,1)

Ψc(2,1)

∗


0 K̄>1 0 0

K̄1 K̄2 0 0

0 0 0 K̄3

0 0 K̄3 K̄3


︸ ︷︷ ︸

K̄

 Ψc(1,1)

Ψc(2,1)

 , (3.32)

where K̄1 = diag(Kh,Ke,Kd1 ,Kd2), K̄2 = diag(0,0,−Kd1,−Kd2), K̄3 = diag(0,0,Kr1,Kr2), and

Ψc(1,1) = diag(Λh,Λe,Λd1ϒd1,Λd2ϒd2,Λh,Λe,Λd1,Λd2),

Ψc(2,1)= diag(0,0,Λr1,Λr2,0,0,Λr1,Λr2); and satisfying the constraint (3.26) and LMIs (3.27),

(3.28), (3.29), and (3.31) 4.

Lemma 3.9. A constructed uncertainty block ∆ = diag(∆h,φe,∆d1,∆d2), as in Figure 3.8

(c), satisfies the IQC defined by Π( jω) ∈ΠΠΠc.
4LMIs for D1,2(ω) and Ω1,2(ω) need to be defined for each delay
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Once the proper multipliers are combined to define the structured nonlinearities

existence of the inequality given in Theorem 3.4 with a multiplier within the defined

subclasses (if any) will be sufficient to conclude that the proposed nominal system-

uncertainty interconnections are absolutely stable. In the subsequent chapters LMI

conditions for absolute stability of three different interconnections are going to be

introduced.



4 | Stability of the Systems Subject

to Saturation and Time Delay

IQC is a framework that provides us a powerful tool to combine different classes

of multipliers for the stability analysis. For this reason, particular operators in bi-

lateral teleoperation that lead to stability loses or performance degredation will be

systematically analysed through the thesis via IQC framework. But, before moving

on to the results related to teleoperation, we examine absolute stability of the sys-

tems with saturation and time delay. Thus, the usefulness of the framework and

power of the Zames-Falb multipliers come to light while reducing the conservatism

of a well-known problem, also this will be a basis to the results based on the bilateral

teleoperation.

Therefore, this chapter reviews methodologies applied to the robustness analysis

of systems containing time delay and saturation type nonlinearities. Also, so-called

Kalman and Aizerman conjectures will be investigated for the time delayed systems

as results based on these conjectures will be used as a benchmark while validating

the results obtained via IQCs. As a last effort on this topic, based on the clockwise

properties and graphical frameworks we will show that the Kalman conjecture is

true for a wide class of time delayed Lur’e systems.

4.1 Robustness Against Saturation and Time Delay via

Multipliers

In this section we analyse absolute stability of the systems containing both nonlin-

earity and constant time delay, which is within an interval Td ∈ [0,Tdmax], via multi-

pliers. If time-domain techniques as Lyapunov-Krasovskii functional is a versatile

90
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tool for time-delay systems [138, 139]; when delay is combined with other nonlin-

earities such as saturation, the modularity of IQC framework may provide some

advantages. For examples, if the nonlinearity is slope restricted or sector bounded

then Zames-Falb multipliers outperform Lyapunov techniques [37, 38].

φe(·)
∆d

G �

-

6

j−

Figure 4.1: Time delayed Lur’e system, where ∆ is structural uncertainty containing
bounded nonlinearity, φe, and time delay, ∆d .

Consequently, assume that there exists a system with slope restricted monotonic

nonlinearity plus delayed states. After making certain interconnections the system

is transformed into the feedback connection between nominal plant G and struc-

tured uncertainty as illustrated in Figure 4.1. Then, based on Theorem 3.4 on page 71

absolute stability of the whole system is transformed to a search for appropriate

multipliers within the defined class such that Π ∈ΠΠΠa, where ΠΠΠa has been defined in

Definition 3.10 on page 86.

Corollary 4.1. Consider the negative feedback interconnection between G and a structured

uncertainty block in Figure 4.1. Let us define a minimal state space representation as

Ψa( jω)

 −G( jω)

I

∼
 Aa Ba

Ca Da

 ,
where Ψa( jω) is defined in (3.25). Assume that interconnection between G and τ∆ is well-

posed for τ ∈ [0,1]. Then, the interconnection is absolutely stable if there exist symmetric

matrices Pa and Ka, where Ka has the form as in (3.25), such that there exists

Π = (?)∗Ka

[
Ψa( jω) 0

0 Ψa( jω)

]
∈ΠΠΠa and following LMI holds A>a Pa +PaAa PaBa

B>a Pa 0

+[ Ca Da

]>
Ka

[
Ca Da

]
≤ 0. (4.1)

Proof. If LMIs (3.27), (3.28), and (3.29) hold with defined conditions, then uncer-

tainty block (a) in Figure 3.8 on page 86 satisfies IQC defined by Π( jω) ∈ΠΠΠa, see

Lemma 3.7 on page 87.
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Well-posedness condition in IQC theorem was assumed to be satisfied and as the

lower right corner of Π( jω) ∈ΠΠΠa is negative semi-definite, τ∆ satisfies the IQC de-

fined by for τ ∈ [0,1] if ∆ satisfies, so second condition in the theorem is streamlined.

Then, based on the KYP Lemma, satisfying the LMI (4.1) implies that −G( jω)

I

∗Π( jω)

 −G( jω)

I

≤−εI, ∀ω ∈R,

also holds for some ε > 0 and based on Theorem 3.4 on page 71 it can be concluded

that the proposed interconnection is stable.

Infinite dimensional inequality is converted into a finite dimensional LMI which

is a convex cone and search can be carried out with semi definite programs. We have

used Yalmip with sdpt3 solver [140] to test the LMI conditions search for suitable

class of multipliers.

4.1.1 Numerical Examples

Initially, particular examples from the literature are chosen to verify conservatism of

the proposed IQC methodology on the systems containing time delays only. Stabil-

ity analysis are based on delay dependent conditions, so that the results are found

based on the bisection search for the maximum delay duration while using semi-

definite programming for the LMIs. A numerical example which is frequently en-

countered in the literature and contains only time delay as a perturbation is going

to be analysed prelusively.

Example 1.

Consider an uncertain LTI system with single time delay in the state as

ẋ(t) = Ax(t)+Adx(t−Td), (4.2)

where Td ∈ [0,Tdmax], and A+Ad ∈Rn×n is Hurwitz that implies stability of the system

is obvious when there is no delay. Delay, Td , is assumed to be constant but unknown.

The given system in (4.2) is transformed into positive feedback interconnection of G

and ∆d = e−sTd − 1 as in Figure 4.2. And the aim is to find the maximum allowable
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(sI− (A+Ad))
−1Ad

e−sTd −1

�

-

G

Figure 4.2: Uncertain LTI system with single time delay as nominal system-
uncertainty feedback interconnection.

time delay, Tdmax, such that robustness against delay is guaranteed by using multi-

pliers proposed in (3.10) and (3.12). Consider the following state-space parameters

for the system in (4.2)

A =

 −2 0

0 0.25

 , Ad =

 −1 0

−0.1 −0.85

 . (4.3)

To demonstrate the reduced conservatism of the proposed method and for com-

parison with the methods in the literature Table 4.1 is proposed so that maximum

possible achievable time delays for the system with parameters given in (4.3) can be

observed.

Method Maximum delay: Tdmax s
Fu et al. [123] 0.6417
Theorem 7 in [123] 0.9848
Jun and Safonov [124, 125] 0.9999
Jun and Safonov [126] 1.489
Using ΠΠΠd2 1.5390
Using ΠΠΠd1 1.54
Optimal value [141] 1.54

Table 4.1: Maximum achievable time delays for Example 1 with different method-
ologies in the literature and with the ones proposed previously.

As seen from the Table 4.1 proposed method with both class of multipliers, ΠΠΠd1

and ΠΠΠd2 which are respectively proposed in Definition 3.7 on page 78 and in Defini-

tion 3.8 on page 79, give delay durations which are the closest ones to the optimal

value given in [141]. Over and above it is possible to obtain the optimum value with

Π ∈ΠΠΠd1. Figure 4.3 shows the last condition in Theorem 3.4 on page 71 is satisfied

with maximum available time delay. The order and pole location of the multipliers

are given in Table 4.3, it must be noted that similar results can also be obtained with

multipliers with less orders yet we have used the proposed ones for the consistency
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within the thesis. Lastly, it can be concluded that besides Lyapunov-Krasovskii,

IQC is also proposing efficient methodology to analyse stability of the time delayed

system.
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Figure 4.3: Minimum eigenvalues of [G; I]∗Π[G; I] with multiplier Π ∈ ΠΠΠd1 when
maximum time delay is obtained as 1.54 s.

Henceforth, we can move on to investigate the conservatism of the Corollary 4.1

which can be carried out with the following system parameters containing time de-

lay and saturation type nonlinearity simultaneously; this numerical example has

been frequently used in the literature [142–145].

Example 2.

Let us assume that there exists a system with a class of nonlinear uncertainty and

time-delay as illustrated in Figure 4.1 and described as

ẋ(t) = Ax(t)+Bx(t−Td)+Dw(t),

m(t) = Mx(t)+Nx(t−Td),

w(t) =−φ(t,m(t)),

(4.4)

where, φ(t,m(t)) belongs to the sector [K1,K2], x(t) ∈ Rn, w(t) ∈ Rk, m(t) ∈ Rk are the

state, input, and output of the system, respectively. Let A∈Rn×n, B∈Rn×n, D∈Rn×k,
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M ∈Rk×n, and N ∈Rk×n be known constant matrices with the following values

A =

 −2 0

0 −0.9

 , B =

 −1 0

−1 −1


D =

 −0.2

−0.3

 , M =
[

0.6 0.8
]

N =
[

0 0
]
, K1 = 0.2,K2 = 0.5

(4.5)

Stability of the interconnection with parameters given in (4.5) was transformed to a

convex search for multiplier class in Definition 3.10 on page 86. For comparison and

evaluation of the method results are given in the Table 4.2.

Method Maximum delay: Tdmax s
Han [142] 2.4859
Wu et al. [143] (n = 2) 3.0080
Wu et al. [143] (n = 3) 3.1110
Kazemy and Farrokhi [144] 3.0216
Zeng et al. [145] (k = 4 ) 3.1730
ΠΠΠa (i.e., using ΠΠΠd2 ) 3.2191
Counterpart of ΠΠΠa using ΠΠΠd1 3.2378
Nyquist value (φ(u) = ku) 3.2520

Table 4.2: Maximum allowable time delays for Example 2: system with delay and
slope restricted nonlinearity.

Meanwhile, similar results were obtained while using asymmetric poles in mul-

tiplier with (3.21) as in both cases positivity of the nominal system was recovered,

see Figure 4.4. Results were obtained with the basis function parameters given in

Table 4.3 unless otherwise stated parameters for Λd and Λr
1 will remain same for the

future analysis. Generally speaking, dimensions of the basis functions and poles lo-

cations have a significant effect on the result that is being obtained. One can choose

non-dynamic multiplier with minimal order yet that might leads to conservative

conditions. Here, we have chosen the lengths based on a linear search such that

increasing the parameters beyond the given values (in Table 4.3) provides nothing

but complexity in the analysis. Namely, no reduction in the conservatism (increase

in the maximum delay duration) is observed as the length of the basis function in-

creased beyond the given values, in order to require less computational power we
1Number of the delay operators based on the system’s dimension.
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have used these given parameters. Similar search was carried out for the pole lo-

cation. However, it can be stated that for this particular example pole locations of

the basis functions for time delay multipliers are not sensitive, yet they are chosen

to be different from one another (also from nominal system’s poles) to prevent any

possible numerical issues while carrying out the search. Further information related

to this issue will be provided in the future sections.

Λe Λd1 Λr1 Λd2 Λr2

Order (n) 5 4 4 4 4
Pole (−α) -10 -21 -14 -13 -8

Table 4.3: Basis functions’ parameters for retarded system with/without nonlinear-
ity.
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Figure 4.4: Minimum eigenvalues of G+G∗ (Top): Nominal system is not positive
definite without multiplier. Minimum eigenvalues with multiplier that ensures sta-
bility against Tdmax u 3.2191 sec (bottom).

4.1.2 Stability of the Retarded Neural Networks: Case Study

Neural networks have found a wide range of application areas in the recent years

such as signal processing, feedback control, parallel computing, etc. Thus leads to
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huge amount of interest to analyse and synthesis behaviours of the neural networks

both from theoretical and practical points of view. Here, there are two main reasons

why neural networks have been considered as case study: the first one is the time

delays which are frequently encountered phenomenon due to the communication

among neurons or finite speed of the information processing. And the second one

is the activation function inside a neural which usually satisfies slope restriction cri-

teria. Therefore, overall network can be depicted as a time delayed Lur’e structure

and asymptotic stability analysis can be carried out with aforementioned method-

ologies in the robust control. Literature is dominated with Lyapunov-Krasovskii

functional theorem incorporating with LMI technique while analysing the stability

of the network, yet apart from that there exist recent researches that use different

techniques such as Quadratic Separation (QS) principles [146], as well. The QC ap-

proach might be associated with the IQC theorem, so we would like to investigate

the usefulness of these techniques (particularly IQC) with neural networks.

I
(sI +A)−1W0

φ(·)
e−sTd

-

? c� j�+

Figure 4.5: Hopfield Neural Network in (4.6) as a feedback interconnection of nom-
inal system and perturbation.

Let start to analyse absolute stability of an Hopfield Neural Network (HNN)

[147] which is a type of Recurrent Neural Network (RNN) in which all connections

are symmetric. Dynamical equation of a time delayed HNN can be proposed as

follows [148]:

ẋi(t) =−aixi(t)+
n

∑
j=1

wi j f j(x j(t−Td))+ ci

and equivalently as,

ẋ(t) =−Ax(t)+W0 f (x(t−Td))+ c (4.6)

where, A = diag(a1,a2, . . . ,an) is positive matrix, delayed weight coefficients are

represented with W0 matrix; and x(t) = [x1(t),x2(t), ...,xn(t)]> is neural state vector,
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c = [c1,c2, ...,cn]
> is time independent external input,

f (x(t−Td)) = [ f1(x1(t−Td)), f2(x2(t−Td)), ..., fn(xn(t−Td))]
>

denotes activation function which is expressed as a slope restricted nonlinearity

with maximum slope K, and Td is constant transmission delay between neurons. It

is generally assumed that activation functions fi are bounded and satisfy following

inequality with fi(0) = 0

0≤ fi(x1)− fi(x2)

x1− x2
≤ ki, ∀x1 6= x2,

where ki is positive constant and will be used in the maximum slope matrix K. For

clarity, we have used the terminology in the neural network while defining the dy-

namics, yet in the analysis and synthesis activation function will be depicted as φ to

have consistency throughout the thesis.

As mentioned, once the proposed network is transformed into a nominal plant

and structured uncertainty interconnection as in Figure 4.5 then well established

methodologies, such as IQCs, can be utilized to investigate stability of the system.

The operators, time delay and activation function, will be inserted diagonally into a

structured uncertainty block then bisection algorithm can be used to gain maximum

allowable time delay within the system while searching for appropriate multipliers

attain positivity of the perturbation block. The examples are chosen from the litera-

ture such that they have been introduced frequently (see the references in the given

tables) for comparison of the proposed methodologies, in this way one can evaluate

the given methodology and compare with the state of the art results in the literature.

Example 3.

Consider the following 3rd order delayed HNN:

A = diag{4.1989,0.7160,1.9985},

W0 =


−0.1052 −0.5069 −0.1121

−0.0257 −0.2808 0.0212

0.1205 −0.2153 0.1315

 ,
K = diag{0.4219,3.8998,1.0160},

ci = 0, i = 1,2,3.
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Maximum delay durations that stability of the proposed neural network is guaran-

teed based on the different methodologies are given in Table 4.4.

Method Maximum delay: Tdmax s
Lou et al. [149] 1.7644
Mou. et al. [148] 2.597
Z. Wang [146] 2.5992
Multiplier approach; ΠΠΠa 2.6781
Nyquist value ( f (u) = Ku) 2.7563

Table 4.4: Computational results of Example 3: upper bound of the delays such that
the depicted system is stable.

As seen from Table 4.4 multiplier approach gives less conservative stability con-

ditions with systems which contain both nonlinearity and constant time delays.

Strictly speaking, in this particular example usefulness of the proposed approach

is mainly based on the multiplier defined for the time delay because the nominal

system (G21(s) = (sI + A)−1W0) that associated with Zames-Falb multiplier for re-

gaining the positive realness is already positive real. In other words, there is no

deficiency of positivity in the linear part that multiplier can regain so there is not

much to benefit from the multiplier for the nonlinearity.

On the other hand, time delays in the neural networks are not always time in-

dependent; the switching in the communication medium between the neurons or

implementing the network by digital circuits might cause to have time variable de-

lays. As the network require to have a unique and global stable equilibrium point

once it has even variable delays, there has been a great interest to ensure the stability

of the RNN with time variable delay as well. Generally, a RNN with variable time

delay is defined as

ẋ(t) =−Ax(t)+W0 f (x(t))+W1 f (x(t−Td(t)))+ c (4.7)

where 0 ≤ Td(t) ≤ Tdmax variable delay with Ṫd(t) ≤ d ≤ 1. Other parameters have

been defined in the constant time delay case, yet it can be noted that in this particular

example not all weighting coefficients have delayed activation function, yet that

does not make any significant changes in the analysis.

Similarly, the time variable delayed system will be depicted as an interconnec-

tion between a nominal system and a structured uncertainty. An illustrative exam-

ple is proposed to verify effectiveness of the given criteria.



CHAPTER 4. STABILITY OF SYSTEMS WITH SATURATION AND DELAY 100

Example 4.

Consider the given neural network in (4.7) with subsequent parameters

A = diag{1.2769,0.6231,0.9230,0.4480},

W0 =


−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −1.5785

−0.1311 0.3253 −0.9534 −0.5015

 ,

W1 =


0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

 ,

K = diag{0.1137,0.1279,0.7994,0.2368},

c = 0.

It can be stated with the achieved maximum admissible delay durations given

in Table 4.5 that IQC approach for time variable delay is compatible with frequently

used methodologies in the literature while variation of the delay has lover values.

But as the variation increases, Lyapunov technique becomes less restrictive and con-

servative. This is caused by the multiplier used to define the variable time delay; in

small variations uncertainty gap is restricted, yet opposite phenomena occurs when

the variation increases. Figure 3.7 on page 81 shows how the robustness gap in-

creases with respect to variation in the time delay based on the proposed multiplier.

In addition to that, multiplier for nonlinearity could not provide additional benefit

due to fundamentally having positive real nominal system in most numerical exam-

ples proposed for the RNN in the literature as a result conservative results become

inevitable.

To illustrate the main drawbacks of the multiplier that we have used to define

variable time delay another numerical example which is less complex than the pre-

vious one was examined as well, yet similar conservative conditions were obtained.

Example 5.
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Method Ṫd = 0.1 Ṫd = 0.5 Ṫd = 0.9
Zhang et al. [150] 3.5989 2.4530 1.8593
Zhang et al. [151] (ρ = 0.6) 3.3574 2.5915 2.1306
Wang et al. [152] 3.4886 2.6056 2.2522
Shen et al. [153] 3.5546 2.6438 2.1349
Zeng et al. [154] 3.7665 2.6814 2.2274
Ge et al. [155] 3.8428 2.7081 2.2485
Lee et al. [156] 4.0067 2.9242 2.5165
Zeng et al. [157] 4.1903 3.0779 2.8268
Counterpart of ΠΠΠa, i.e., using ΠΠΠv 3.5089 1.7998 1.3549

Table 4.5: Computational results for Example 4: upper bound of Tdmax with various
Ṫd , (Tdmax = 4.6548s (const.)).

Consider Neural Network (4.7) with parameters below,

A =

 2 0

0 2

 , W =

 1 1

−1 −1

 ,
W1 =

 0.88 1

1 1

 , K = diag{0.4,0.8}.

Results for this particular example are illustrated in Table 4.6.

Method Ṫ d = 0.8 Ṫ d = 0.9
Hua et al. [158] 1.2281 0.8636
He et al. [159] 2.3534 1.6050
Ge et al. [155] 2.8980 1.9562
Lee et al. [156] 4.1993 2.5979
Zeng et al. [157] 4.8167 3.4245
Counterpart of ΠΠΠa, i.e using ΠΠΠv 1.8487 1.2783

Table 4.6: Achievable upper bound of Tdmax with various Ṫd for Example 5.

These results establish the usefulness of the Zames-Falb and delay multipliers

while interconnected system contains both monotonic nonlinearity and latency such

as delayed neural networks. It needs to be stated that, we have used the Nyquist

criteria as a benchmark result which implicitly states that it was assumed that Aiz-

erman and/or Kalman Conjectures are true for the proposed time delayed systems

subject to saturation type nonlinearity. Yet, this is still an unsupported assumption

for some higher order systems particularly with latencies.
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4.2 Kalman Conjecture for Plant with Delay: A

Graphical Criterion

The usefulness of the absolute stability concept is indisputable: not only it provides

stability conditions for arbitrary forms of nonlinearities with only certain proper-

ties mainly based on linear part of the system but also many practical control sys-

tems can be represented as feedback interconnection of a linear part and a class of

nonlinearity. Thus, there has been many theoretical and practical contributions to

this methodology that enable us to analyse the system with classes of nonlineari-

ties [161], like Popov frequency domain approach [162]. Despite its advantages this

methodology still only provides sufficient conditions related to stability of the inter-

connection. Therefore, there have been many efforts to find necessary and sufficient

conditions for absolute stability and the first study was proposed by Aizerman for

the systems containing nonlinearities with sector restrictions via subsequent conjec-

ture.

Definition 4.1 (Nyquist value, kN). The Nyquist value of a stable transfer function G(s)

is

kN = sup
k
{k > 0 : (1+ τkG(s))−1 is stable ∀τ ∈ [0,1]} (4.8)

Conjecture 4.1 (Aizerman Conjecture [163]). The following system

ẋ = Ax−Bφ(Cx) (4.9)

with A, B, and C are being constant matrices and sector bounded nonlinearity φ ∈ [0,K] is

absolutely stable if and only if the subsequent linear system

ẋ = Ax− kBCx (4.10)

is asymptotically stable for all k ∈ [0,K]

Namely, the nonlinearity within the system (4.9) is replaced with a linear gain

such that the overall interconnection is transformed into a linear system (4.10), see

Figure 4.6 with G(s) = C(Is−A)−1B. In brief, the Aizerman conjecture states that

Hurwitz, kN , and nonlinearity, φ ∈ [0,K], sectors coincide, whereas in general kN > K.

A similar conjecture is stated by Kalman for system with slope restricted nonlin-

earity in [164] as
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Figure 4.6: Conjecture in absolute stability: if the system (b) is stable for any feed-
back gain in the interval [0,k] then it is concluded that system (a) is stable for any
φ(·) ∈ [0,k].

If nonlinearity in the feedback interconnection is replaced by a constant k corre-

sponding to all possible values of dφ(u(t))
du(t) ≤K, and it is found that the closed-loop

system is stable for all k ∈ [0,K], then it is intuitively clear that the system must

be monostable; i.e., all transient solutions will converge to a unique, stable crit-

ical point.

That is to say;

Conjecture 4.2 (Kalman Conjecture [164]). The following system

ẋ = Ax−Bφ(Cx) (4.11)

with A, B, and C are being constant matrices and slope restricted nonlinearity dφ(u(t))
du(t) ∈ [0,K]

is absolutely stable if and only if the subsequent linear system

ẋ = Ax− kBCx (4.12)

is asymptotically stable for all k ∈ [0,K].

These conjectures play an indispensable role in absolute stability: for instance

system in (4.11) can correspond to a control architecture containing a class of non-

linearity and by virtue of the Kalman conjecture stability of the nonlinear system

is depicted with simple Nyquist criterion based on the linear system description

in (4.12). Thus, a complex problem of showing global stability was solved with ease.

But these conjectures have been shown to be false in general [165]. Aizerman con-

jecture has been shown to be false for 3rd order system [166] and Kalman conjecture

has been shown to be false for 4th order system [167], see Table 4.7 [168].

On the contrary, the problem of finding necessary and sufficient stability condi-

tions for nonlinear systems with time delay draw little attention except Aizerman
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Conjecture
Maximum
order of validity n Proof of sufficiency Counter example

for n+1
Kalman 3 [167] [165]
Aizerman 2 [161] [165]

Table 4.7: Validity of the conjectures in continuous time.

(or Kalman) conjecture was shown to be true for 1st and 2nd order systems with

single time delay [169, 170] for the interconnection illustrated in Figure 4.7.

φ(·)

e−sTd

G

�

�

6

−
6

+j�
j -

Figure 4.7: Feedback interconnection between nominal system (G), delay (e−sTd ),
and bounded nonlinearity (φ(·)).

Here, our main concern is the exactness of the Kalman conjecture for time de-

layed systems where delay and nonlinearity are within the same feedback loop.

Initially we will discuss previous attempts where there have been efforts to show

whether aforementioned conjectures are true or false when there exists delay within

the nonlinear system. Then, we simply illustrate that there exists a positive answer

to the subsequent question when the nominal system within the depicted intercon-

nection contains some strict properties.

Given an exponential stability conditions for linear time delayed system, are

they still valid if linear gain replaced with sector or slope bounded nonlinearity?

In contrast with [169, 170], our approach is to study convexity properties of the

Nyquist plot [171–173]. Instead of providing a multiplier, we will ensure its exis-

tence by using these properties. For stability of linear systems with delay, these

properties have been used to analyse stability of internet congestion control [174,

175].
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4.2.1 Previous Works

To begin with, assume that we have time delayed system as

ẋ = A0x(t)+Ad(x−Td) (4.13)

where A0, Ad are constant matrices, and Td is corresponding time delay. The problem

is to find the conditions related to stability of the delayed system is so-called Routh-

Hurwitz problem for quasipolynomials as exponential stability is based on location

of the characteristic equation det(λI−A0−Ade−λTd) = 0. Stability conditions for ẋ+

a0x(t)+a1x(t−Td) = 0 which is a kind of the scalar version of the system in (4.13) for

small delays are given by following inequalities

a1 > |a0|, a1 +a0 > 0, 0≤ Td <
arccos(−a0

a1
)√

a2
1−a2

0

. (4.14)

Rasvan in [169] replaced the system (4.13) with

ẋ =−a1x(t−Td)−φ(x(t))

where φ(τ), τ > 0 is sector bounded nonlinearity. Once we can analyse the sta-

bility of the linear system by replacing φ with a linear gain k and it can be con-

cluded that (given in (4.14) as well) interconnection is stable with all positive de-

lay values if |a1| > k. That is to say that for delay independent stability condition

lower sector bound required to be greater than |a1|. With a loop transformation as

φ̂(τ) = φ(τ)− |a1|τ the system can be transformed to feedback interconnection be-

tween sector bound nonlinearity, φ̂(τ) ∈ [0,∞), and the subsequent transfer function

G(s) =
1

s+ |a1|+a1e−sTd
.

It can be said that feedback interconnection between nominal system (G) and bounded

nonlinearity is stable once there exists a multiplier, M, such that ℜ{M( jω)(G( jω)+
1
k )} ≥ 0. Therefore, in [169] Popov multiplier, M( jω) = 1+β jω, was searched to en-

sure that ℜ{M( jω)G( jω)} ≥ 0,∀ω ≥ 0, so that frequency domain inequality can be

depicted as

βω− (βa1sin(ωTd))ω+ |a1|+a1cos(ωTd)≥ 0,

and it can be concluded that there exists a Popov multiplier with the subsequent

parameter range which satisfies positivity of the nominal transfer function within
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the forward loop

0 < β|a1|< 2.

That concludes delay-independent Aizerman condition is true for the given exam-

ple above.

The results are extended to 2nd order retarded system by Altshuller in [170] de-

scribed by following delay differential equation

ẍ(t)+a1ẋ(t)+φ(x)+b1ẋ(t−Td)+bx(t−Td) = 0,

where it is assumed that φ(·) is a sector bounded nonlinearity such that 0 < φ(x)x ≤
x2k. One can define the second order retarded system as interconnection of bounded

nonlinearity and the nominal system

G(s) =
1

s2 +a1s+(b1s+b)e−sTd
.

Then, absolute stability of the depicted interconnection can be investigated with

the frequency domain Popov criterion and it can be said that system is stable if the

following inequality holds

ℜ{(1+ jωβ)G( jω)}+ 1
k
> 0. (4.15)

In addition to that the following linear equation is under investigation,

ẍ(t)+a1ẋ(t)+a+b1ẋ(t−Td)+bx(t−Td) = 0. (4.16)

The problem is to check whether k in the stability condition (4.15) coincides with a

value such that (4.16) is globally asymptotically stable. Aizerman conjecture states

that these two values are same and by courtesy of the Popov multiplier it has been

shown that Aizerman conjecture is true for the 2nd order retarded system [170,176].

In the other respect, extending these aforementioned results to 3rd order systems

with symbolic solution for the appearance of a multiplier is not a straight forward

task. But, our main concern is neither providing a symbolic multiplier solution for a

given nominal system nor extending these solutions for the interconnection where

time delay and nonlinearity are in the different loops. Instead, our main concern is to

obtain a graphical condition for the Kalman conjecture while considering the inter-

connection where nonlinearity and delay are within the same loop as many practical
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control systems can be depicted in this way, see Figure 4.8 (a). Thus, absolute stabil-

ity of nonlinear systems with delays can be carried out with ease once we can show

that conjectures are true. Also, the obtained results based on this approach will be a

benchmark to the solutions achieved by less intuitive and cumbersome LMIs [177].

It can be noted that deriving a conclusion for the depicted interconnection (Fig-

ure 4.8 (a)) based on the delay independent stability condition is straight forward

because once the feedback channel depicted with constant gain k, stability of the

linear interconnection states that close loop system’s Nyquist curve remains in the

right side of the line passing through the point (−1
k ,0) in the complex plane as illus-

trated in Figure 4.8 (b). Then, when the absolute stability is investigated with the

nominal system obtained based on the loop transformation, Gk = G+ 1
k , it can be

concluded that Gk is always passive with k attained depending on the linear stabil-

ity conditions. In other words, conjectures are true as passivity will be guaranteed

even without any multiplier2, yet as known delay independent stability condition

are conservative and leads to smaller slope bounds.

ℜ

Gn-

6

e−sTd-

k
�

(a)

φ(·)

G

-�

6

?

3−1
k

ℑ

ℜ{Gk}

b

(b)

j−
ℜ{G}

Figure 4.8: (a) The Lur’e interconnection with its linear counterpart and (b) the
Nyquist region of the nominal systems in the complex plane, i.e. illustration of
classical circle criterion.

4.2.2 Clockwise Property and Graphical Framework

The results here are based on the properties of RC/RL multipliers which can pre-

serve positivity of the monotone slope restricted nonlinearities [178] and geomet-

rical interpretation of the Off-Axis circle criterion [179]. RC/RL multipliers are a

particular class of Zames-Falb multipliers [33, 180].

Loosely speaking, existence of a Zames-Falb multiplier, that concludes stability

of the nonlinear system, can be depicted via phase property of the 1+ kG( jω) as it
2There is no need to search for a multiplier
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Figure 4.9: Graphical interpretation of Off-Axis circle criterion with a nominal sys-
tem G.

needs to be between (90◦−θ0,−90◦−θ0) with θ0 ∈ [−90◦,90◦], see [180]. In particu-

lar, when the maximum difference in the phase of 1+kG( jω) at any two frequencies

is smaller than 180◦, then the Off-Axis circle criterion provides stability.

Theorem 4.1 (Off-Axis circle criterion [179]). Let G ∈ RH∞ be a nominal system in a

feedback interconnection with a slope restricted nonlinearity φ ∈ [0,k] as in Figure 4.6 (a).

If the Nyquist curve of the nominal system G( jω) lies entirely to the right of a straight line

with non-zero slope passing through the point (−1
k + ε,0) with ε > 0 (as in Figure 4.9) and

φ is monotonically increasing, then the proposed feedback interconnection is L2−stable.

It is well known that this result can ensure that a set of plant with convex prop-

erties in their frequency response satisfy the Kalman conjecture. Convexity of fre-

quency response arcs has been analysed by Hamann and Barmish [172], and it is

closely related with clockwise properties of the Nyquist plot [173]. Systems with

clockwise properties of the Nyquist plot and decreasing magnitude for all frequency

ensure that they satisfies the Kalman conjecture.

Definition 4.2 (Clockwise property [171]). Let Γ be the Nyquist curve of a transfer func-

tion G in the complex plane defined by two parametric equations

X = ℜ{G( jω)},

Y = ℑ{G( jω)},

with ω ∈ [ω1,ω2]. Then, the curvature C (ω) of Γ is defined as

C (ω) =
XωYωω−XωωYω

(X2
ω +Y 2

ω)
3
2

=
ℑ{G∗ωGωω}
|Gω|3

, (4.17)
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where subscripts denote the argument with respect to which derivatives are taken. Once

we assume that the curvature exists within the interval, then the curve said to satisfy the

clockwise property in ω0 if

C (ω0)< 0

holds ∀ω0 ∈ [ω1,ω2].

Lemma 4.1 ( [171]). A system G satisfies the Kalman conjecture if it satisfies the following

two properties:

i) The magnitude of the Bode plot of its transfer function is decreasing at all frequencies,

i.e.,

M(ω) =
d

dω
|G( jω)|< 0, ∀ω. (4.18)

ii) Its Nyquist plot is clockwise.

Remark 4.1. The first condition in the given lemma above implies that G( jω) is an all

pole transfer function (as a zero in the left hand side of the complex plane contributes to the

magnitude of the transfer function). Therefore, the results that we will derive only contain

systems have no zeros.

4.2.3 Results For Time Delay Systems

The outcome follows from the direct application of the Off-Axis circle criterion.

Thus, the implications of the results in [171] regarding to absolute stability can be

extended to time delay systems as follows:

Corollary 4.2. A first order time delayed system G(s) = e−sTd
s+a with a> 0 and Td ≥ 0 satisfies

the Kalman conjecture.

Proof. The clockwise property of the Nyquist curve of the depicted first order system

G(s) = e−sTd
s+a is investigated with the given inequality in (4.17) such that

ℑ{G∗ωGωω}=−
T 3

d a4 +2T 3
d a2ω2 +T 3

d ω4 +3T 2
d a3 +3T 2

d aω2 +4Tda2 +2a
(a2 +ω2)3 < 0,

hence C (ω) < 0 for all ω ≥ 0 and Td ≥ 0. Therefore, one can say that the clockwise

property condition is satisfied and the proof is concluded based on Lemma 4.1.

Subsequently, results can be derived for the second order systems as well.
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Corollary 4.3. A second order time delayed system G(s) = e−sTd
(s+a)(s+b) with a > 0, b > 0, and

Td ≥ 0 satisfies the Kalman conjecture.

Proof. In a similar manner, the clockwise property can be analysed via curvature

of the second order time delayed nominal system’s Nyquist curve and that can be

derived with

Gω =
d

dω
G( jω) =− jTde− jωTd

( jω+a)( jω+b)
− je− jωTd

( jω+a)2( jω+b)
− je− jωTd

( jω+a)( jω+b)2 ,

Gωω =
d

dω
Gω( jω) =− T 2

d e− jωTd

( jω+a)( jω+b)
− 2Tde− jωTd

( jω+a)2( jω+b)
− 2Tde− jωTd

( jω+a)( jω+b)2

− 2e− jωTd

( jω+a)3( jω+b)
− 2e− jωTd

( jω+a)2( jω+b)2 −
2e− jωTd

( jω+a)( jω+b)3 ,

then sign of C (ω) is given by the sign of

ℑ{G∗ωGωω}=−
1

(a2 +ω2)3(b2 +ω2)3

(
ω8 p8 +ω6 p6 +ω4 p4 +ω2 p2 + p0

)
,

where

p8 = T 3
d ,

p6 = 2Td +(3a+3b)T 2
d +(2a2 +2b2)T 3

d ,

p4 = 6a+6b+(6a2 +6ab+6b2)Td +(3a3 +6a2b+6ab2 +3b3)T 2
d +(a4 +4a2b2 +b4)T 3

d ,

p2 = 12a2b+12ab2 +(6a3b+18a2b2 +6ab3)Td +(3a4b+6a3b2 +6a2b3 +3ab4)T 2
d

+(2a4b2 +2a2b4)T 3
d ,

p0 = 2a4b+4a3b2 +4a2b3 +2ab4 +(4a4b2 +6a3b3 +4a2b4)Td +(3a4b3 +3a3b4)T 2
d

+a4b4T 3
d .

All above polynomial are non-negative, hence we conclude that C (ω) is negative for

all ω≥ 0. As a result Kalman conjecture is guaranteed based on Lemma 4.1.

So far, we have proposed some results for the nominal systems with real poles,

yet conclusion for second order systems with complex conjugate poles can be de-

rived with additional conditions on the parameters:

Corollary 4.4. A second order time delayed system G(s) = e−sTd

s2+2ξs+1 with ξ> 1√
2

and Td ≥ 0

satisfies the Kalman conjecture.
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Proof. Restriction on the damping factor will be clear with the subsequent curvature

definition for the depicted system:

Gω =
d

dω
G( jω) =− jTde− jωTd

(−ω2 +2 jξω+1)
− e− jωTd(−2ω+2 jξ)

(−ω2 +2 jξω+1)2 ,

Gωω =
d

dω
Gω( jω) =− T 2

d e− jωTd

(−ω2 +2 jξω+1)
+

2 jTde− jωTd(−2ω+2 jξ)
(−ω2 +2 jξω+1)2

+
2e− jωTd(−2ω+2 jξ)2

(−ω2 +2 jξω+1)3 +
2e− jωTd

(−ω2 +2 jξω+1)2 ,

then sign of C (ω) can be depicted with

ℑ{G∗ωGωω}=−
1

(ω4 +2ω2(2ξ2−1)+1)3

(
ω8 p8 +ω6 p6 +ω4 p4 +ω2 p2 + p0

)
,

where

p8 = T 3
d ,

p6 = 2Td +6T 2
d ξ+4T 3

d (2ξ2−1),

p4 = 12ξ+6Td(4ξ2−1)+6ξT 2
d (4ξ2−1)+T 3

d (4(2ξ2−1)2 +2),

p2 = 24ξ+4T 3
d (2ξ2−1)+6Td(4ξ2 +1)+6ξT 2

d (4ξ2−1),

p0 = T 3
d +T 2

d 6ξ+2Td(8ξ2−1)+4ξ(4ξ2−1).

All polynomials will be positive if damping factor is chosen such that ξ > 1√
2

as sign

of the numerator and de-numerator remain consistent (positive) for any given fre-

quency and time delay. Similarly, that concludes the proof with respect to Lemma 4.1.

Remark 4.2. Note that the condition ξ > 1√
2

is required to satisfy (4.18), so the delay does

not affect the result.

Corollary 4.5. A third order time delayed system G(s) = e−sTd

(s2+2ξωns+ω2
n)(s+c) with ξ > 1√

2
,

Td ≥ 0, c > 0, and ωn > 0 satisfies the Kalman conjecture.

Proof. The proof is similar to the previous result, but with more tedious algebra. The

condition to avoid resonant poles, i.e. ξ > 1√
2
, is enough to show that the negative

sign of the curvature is preserved when a delay is introduced.
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4.2.4 Discussion

With motivation of the aforementioned results it can be noted that the derived con-

ditions for the Kalman conjecture are independent of the value of the time delay. In

fact, delay contributes positively into the convexity property of the curve: i.e., as

delay increases curvature in (4.17) becomes more negative for the given examples

above. As time-delay does not affect the magnitude, i.e.

d
dω
|G( jω)|= d

dω
|Gn( jω)|, (4.19)

then it seems natural that the clockwise properties of transfer functions with delay

(Gn( jω)e−sTd ) are inherited from the transfer function without delay (Gn). If this

property is satisfied, then it would be possible to find a very large class of transfer

functions with delay that satisfies the Kalman conjecture. We pose the following

conjecture:

Conjecture 4.3. A transfer function Gne−sTd where Gn is an all pole transfer function with

damping factor greater than 1√
2

and Td > 0 satisfies the Kalman conjecture.

z1
z2

G(jω)

z2 e-jω2

G(jω)e-jω
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Figure 4.10: A geometrically intuitive counter example for the proposed generaliza-
tion of Kalman conjecture for the time delayed nonlinear systems (Depicted G( jω)
is not a rational transfer function).

The conjecture has been confirmed to be true for third order systems, see corol-

lary 4.5. Such “natural” assumptions on clockwise properties have previously been

shown to be false, see [181, 182], thus a formal proof of the above result deserves

some attention. For a general curve in the complex plane which is transformed

under delay, it is easy to find counterexamples when a curve without curvature is
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Figure 4.11: The Off-Axis criterion does not reach the Nyquist value (kN ' 0.618).

transformed into a curve with a change in the sign of its curvature as shown in

Figure 4.10.

It is then clear that geometrical properties are not enough to prove Conjecture 4.3,

but it could be shown to be true by using the Bode’s phase-gain relation in the transfer

functions [183].

Finally we discuss second order plants when the plant exhibits a resonant peak

in the magnitude, then the argument that used by [171] can no longer be used as it

is not possible to ensure that the first crossing with the negative axis of the Nyquist

plot is the only information that we need to ensure stability. So far, we have not

found any second order plant with delay that does not satisfy the Kalman conjec-

ture. However, more complicated multipliers are required, they must be designed

for each time delay, so the complexity of the problem grows exponentially as we do

not have an analytical value of the Nyquist gain.

As an example, let us consider

G(s) =
e−5s

s2 +0.05s+1
. (4.20)

The Nyquist plot of this plant shows that the Off-Axis circle criterion provides a re-

sult that does not correspond with the Nyquist gain. In particular, kOACC = 0.502 and

kN ' 0.618. Other simple multipliers such as the Popov multipliers (used in [170])

are not useful either. However, it is possible to find a Zames-Falb multiplier to show

that the Nyquist gain can be reached. In this example, let us consider the Zames-

Falb multiplier given by

M( jω) = 1−0.802e3.77 jω (4.21)
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then the real part of (1+0.618G( jω))M( jω) is positive (see Figure 4.12).

As the plant has a delay, it is natural to use the class of irrational Zames-Falb

multipliers [33, 180]. We have carried out a manual search, but more sophisticated

searches over this class of multipliers have been proposed [184, 185].
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Figure 4.12: Real part of (1+ knG( jω))M( jω) with M( jω) = 1−0.802e3.77 jω.

This analysis clearly shows the advantages of multiplier theory over Lyapunov-

Krasovskii functional for input/output delays. None of the current techniques based

on Lyapunov-Krasovskii functionals can exploit the properties of slope-restricted

nonlinearities as Zames-Falb multipliers as the analysis can fully be carried out in

the frequency domain.

To sum up, a simple geometrically intuitive sufficient stability condition can be

derived for the time delayed Lur’e system where delay and bounded nonlinearity

are within the same loop. Strictly speaking, this extends the results in [171], where it

has been revealed that clockwise transfer function satisfy the Kalman conjecture, for

time-delayed plants. We show that clockwise transfer functions with any time-delay

also satisfy the Kalman conjecture for particular nominal systems. As a result, first,

a large class of second, and third order systems with no zeros and no resonant poles

satisfies the Kalman conjecture. Generalizing this result is required more efforts, yet

we conjecture that to any clockwise plant G as clockwise properties are increased

when delay is introduced and we have not been able to find any system where the

Kalman conjecture is not satisfied. However, the search of a suitable multiplier be-

comes challenging since irrational multipliers seem to be required. We illustrate

these difficulties with an example. Referring to the previous arguments, under-

standing of this problem has significant relevance in the context of teleoperation or
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neural network.



5 | Multipliers for Bilateral Teleop-

eration

A great deal of effort has been made while analysing bilateral teleoperation in order

to ensure the stability as any unpredicted/unexpected behaviour in the designed

system is not well-appreciated at all, due to the critical applications which these de-

vices are used in. That is why in most design a considerable performance measure,

particularly related to the tactical feedbacks, has been sacrificed to guarantee abso-

lute stability of the bilateral teleoperation where the design is robust against a class

of (mostly passive and LTI) human and environment pair. Therefore, it can be noted

that if one desires to reduce the conservatism within the bilateral teleoperation ar-

chitecture, additional structural information about the human and environment op-

erators should be included.

Here, multiplier approach will be used while analysing stability of the bilat-

eral teleoperation where environment is assumed to be within the class of bounded

monotonic nonlinear operators. Zames-Falb multiplier is used; in this way robust-

ness of the design was increased along side with the performance criterion. It will

be shown that the key element leading to high performance designs is the method-

ology that is being used for the analysis and assumptions related to the perturbation

within the designed interconnection.

This chapter is mainly based on the previous publications given in [186–188]. Let

us start with defining operators that will be depicted as an uncertainty within the

bilateral teleoperation architecture.

116
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5.1 Perturbations in Teleoperation

To begin with, in a teleoperation system, the human is the main source of the en-

ergy as they apply force to stir the master manipulator. Despite some circum-

stances where the operator unintentionally fights against the system’s dynamics and

leads to the overall system into instability1 [59], there is a general acceptance that

the applied force is bounded and does not cause any instability or undesired be-

haviours [189]. In other words, except some circumstances where human operator

acts as a high gain controller leading to the system into instability, it is assumed that,

in general, (particularly in bilateral teleoperation applications) human consciously

does not apply a force causing the overall system to be unstable. Moreover, it is

also assumed that the constant grip of the human arm is equivalent to an injected

mass, damper, and springs into the master manipulator [190], see for instance [191]

and references therein where it has been shown how human hand impedance fits a

mass-damper-spring model, which can be depicted as an LTI passive operator, dur-

ing a manual welding process. Thus, despite being the main source of the energy

it has been accepted that a human arm in the teleoperation system has similar dy-

namics with a passive operator [192, 193] such that Adams and Hannaford stated

in [189] as:

Treating energetic interaction between the human arm and a mechanical device

as passive appears to be a reasonable assumption.

Inherently, it needs to be taken into account that there exist counter statements

about the passivity of the human arm, for instance see [194]. Yet for comparison we

have also assumed that human is an LTI passive operator (like the great majority of

the literature) in the bilateral teleoperation. Based on this assumption, the multiplier

for this type of uncertainty set given in Lemma 3.2 on page 75 will be utilized for

the stability analysis.

On the other hand, as stated previously, the assumptions about the environment

are revisited and it is assumed that the slave manipulator is interacting with a class

of memoryless, monotonic, nonlinear environment. In other words, it is assumed

that the environmental interaction force is a monotonic bounded nonlinearity with
1The phenomenon known as Pilot Induced Oscillation (PIO)
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respect to slave’s speed and that can be rendered as slave is interacting with a vis-

cosity type environment. Recent interest in this sort of nonlinear force feedback has

been also proposed in [39]. For instance, that is a particular case scenario for the

teleoperation systems used for sub-sea explorations. Also, a mechanical damper

with nonlinear constant can be characterized such type of environment. The class

of multiplier that satisfies positivity of this type of nonlinear operators is given in

Lemma 3.3 on page 76 and they will be used in the stability analysis of bilateral

teleoperation along with their parametrizations. As a short note, extra conditions

(assumptions) can be embedded into definition of the environment such as having

LTI mass and spring along with nonlinear damping constant. Subsequently, struc-

tured uncertainty definition can be extended, yet as an initial study we stick only to

the monotonic nonlinearity assumption.

5.2 Teleoperation with Monotonic Nonlinear

Environments

While analysing stability of the bilateral teleoperation we have assumed that human

operator and environment are modelled as LTI passive operator and monotone and

bounded nonlinearity, respectively. Then, we have used parametrization of both

multipliers, λ(ω) and Z( jω) in order to be able to carry out a convex search for the

proper class of multipliers such that existence of them provides information about

the stability condition of the interconnection depicted in Figure 5.1, where nomi-

nal system Y denotes admittance matrix representation of the bilateral teleoperation

containing dynamics of the LTI one-DOF manipulators.

∆h
φe(·)

Y �

-

6

j−

Figure 5.1: Delay free bilateral teleoperation as a classical nominal plant-uncertainty
interconnection, where ∆h and φe depict uncertain human and environment, respec-
tively.
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Remark 5.1. One should also note that, any given delay free bilateral teleoperation archi-

tecture can be defined as a Lure structure given in Figure 5.1 or as a 2-port network given

in Figure 2.1 on page 39, see [195]. Namely, the nominal system in the Lure structure is

simply corresponding the immitance matrix of the network.

Corollary 5.1. Consider the negative feedback interconnection between admittance matrix

Y and structured uncertainty block (b) in Figure 3.8 on page 86, i.e. Figure 5.1. Let us

consider the following minimal state space representation: Ψb( jω) 0

0 Ψb( jω)

 −Y ( jω)

I

∼
 Ab Bb

Cb Db

 .
where Ψb has been defined in (3.30). Assume that the interconnection between Y and

τ∆ is well posed for τ ∈ [0,1]. Then, interconnection in Figure 5.1 is absolutely stable if

there exist symmetric matrices Pb and Kb, where Kb has the form as in (3.30), such that

(?)∗Kb

[
Ψb( jω) 0

0 Ψb( jω)

]
∈ΠΠΠb, and following LMI holds A>b Pb +PbAb PbBb

B>b Pb 0

+[ Cb Db

]>
Kb

[
Cb Db

]
≤ 0. (5.1)

Proof. If constraint (3.23) is satisfied with LMI (3.27), and LMI (3.31) hold, then there

exists a multiplier class such that structured uncertainty satisfies IQC defined by

Π( jω) ∈ΠΠΠb, see Lemma 3.8 on page 88. Finally, with KYP Lemma LMI (5.1) implies

that,  −Y ( jω)

I

∗Π( jω)

 −Y ( jω)

I

≤−εI, ∀ω ∈R, (5.2)

is satisfied for some ε > 0, where Y ( jω) is admittance transfer function matrix of the

designed teleoperation system.

Remark 5.2. In [29] it has been stated that nominal system, Y , needs to be perturbed because

the inequalities (5.2) cannot be satisfied when ω→ ∞, as the plant is strictly proper. Here

we use the same approach as [29]; using Y +ζI, with ζ = 10−4, instead of Y . This constant

is interpreted as having uncertainties within the sector (0, ζ−1).

Additionally, it can be noted that the aforementioned corollary based on the

stability of the undelayed bilateral teleoperation, yet delay is an inevitable phe-
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nomenon if master and slave manipulators are placed at different locations. Sub-

sequently, to analyse absolute stability of the time delayed bilateral teleoperation,

multipliers for passive, Zames-Falb, and time delay are required. Therefore, the ex-

istence of any multipliers within the suitable class as in Definition 3.12 on page 88

needs to be searched. Overall, the system is transformed into the interconnection of

Ȳ and uncertainty block (c) in Figure 3.8 on page 86, where Ȳ ( jω) is a transformation

of the admittance matrix, correspondingly whole time delayed bilateral teleopera-

tion is reconstructed as system illustrated in Figure 5.2.

∆h
φe(·)

∆d1

∆d2

�

-

Ȳ

6

j−

Figure 5.2: Time delayed bilateral teleoperation as Ȳ - ∆ interconnection, where hu-
man and environment are defined with ∆h and φe, respectively, and latencies be-
tween manipulators are characterized as ∆di = e−sTdi−1, i = (1,2).

Corollary 5.2. Consider feedback interconnection between Ȳ and uncertainty block (c) in

Figure 3.8 on page 86. Let us consider the following minimal state space representation:

Ψc( jω)

 Ȳ ( jω)

I

∼
 Ac Bc

Cc Dc

 ,
where Ψc has been defined in (3.32). Assume that feedback interconnection between Ȳ and

τ∆ is well posed for τ ∈ [0,1]. Then, the feedback between Ȳ and diag(∆h,φe,∆d1,∆d2) in

Figure 5.2 is stable if there exist symmetric matrices Pc and K̄; where K̄ is given in (3.32),

such that Ψ∗c( jω)K̄Ψc( jω) ∈ΠΠΠc and subsequent LMI holds A>c Pc +PcAc PcBc

B>c Pc 0

+[ Cc Dc

]>
K̄
[

Cc Dc

]
≤ 0 (5.3)

Proof. If constraint (3.23) is satisfied with LMI (3.27), and LMIs (3.28), (3.29), (3.31)

hold, then there exists a multiplier class such that structured uncertainty satisfies
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IQC defined by Π( jω) ∈ΠΠΠc, see Lemma 3.9 on page 88. In the end, based on the

KYP Lemma, LMI (5.3) implies that Ȳ ( jω)

I

∗Ψ∗c( jω)K̄Ψc( jω)

 Ȳ ( jω)

I

≤−εI, ∀ω ∈R,

is satisfied for some ε > 0 and with IQC theorem it can be concluded that depicted

interconnection in Figure 5.2 is stable.

5.3 Numerical and Experimental Case Studies

In this section, aforementioned methodologies are numerically and experimentally

evaluated and absolute stabilities of the systems are tested against predefined class

of uncertainties. Experimental evaluations are carried out with one-DOF Omni ma-

nipulators. For delay free and constant time delay scenarios two Omnis are used

in the same laboratory, yet for variable time delay case the test carried out between

two distant laboratories located in the Universities of Manchester (UK) and Vigo

(Spain).

The analyses of bilateral teleoperation firstly are based on the two-channel position-

force control architecture where master and slave are one-DOF rigid robotic manip-

ulators, yet later on the design is extended to three-channel architecture. For the

initial analyses, where the two-channel architecture is considered as in Figure 5.3,

the system’s equation of motion is

vm = Ym(Fh + τm), vs = Ys(τs−Fe),

where Ym(s) = (sMm +Bm)
−1 and Ys(s) = (sMs +Bs)

−1 are admittances of the manip-

ulators with simple mass (Mm,Ms) and damper (Bm,Bs), then τm and τs are forces

generated by the controllers, Fh and Fe are applied human and environmental con-

tact forces, respectively. Due to the rigid body, it is assumed that velocities of the

manipulators are equal to velocity of the operator and environment such that vm = vh

and vs = ve. So that controllers’ forces are given by

τm =−K f Fe, (5.4)

τs =Cs(µxm− xs), (5.5)
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where Cs is controller at the slave side and it is used for motion tracking, K f and µ

are environmental interaction force and position scaling factors, respectively, xm and

xs are positions of the manipulators, see Figure 5.3 for a graphical illustration.

Master

�
vm

−
−

Fh ? -

6

ee --
F∗h Pm - - -

6−
−e Fe

Slave Cont.

µ

K f

Cs
xm

�

? -e-
Env. �

vs

Slave

Ps
xs

∆h

Figure 5.3: Delay free two-channel position-force bilateral teleoperation control ar-
chitecture, Pi(s) = Yi(s)/s for i = m,s.

Based on the architecture illustrated in Figure 5.3, different types of slave con-

trollers (Cs) can be implemented, yet it is generally designed as a Proportional-

Derivative (PD) type controller such that Cs(s) = Kp +Kvs [45, 46]. Also, P controller

has been implemented, yet extra damping parameter was inserted to certify the sta-

bility

τs = Kp(µxm− xs)−Kvvs. (5.6)

The values of the system’s parameters, which are going to be used in the analyses,

are given in Table 5.1 [196]. The parameters appertain to linearised one-DOF Phan-

tom Omni haptic manipulator, which was used in the experiments, and parameters

of the controller are acquired with Internal Model Control (IMC) principles [197];

see Figure 5.4 for outputs comparison between the given model and the Phantom

Omni robot based on a predetermined trajectory.

Model Controller
Mm = 0.001kg Ms = 0.001kg Kp = 10N/m
Bm = 0.02N s/m Bs = 0.02N s/m Kv = 0.18N s/m

Table 5.1: Values of the system’s parameters.

Network representation of the system can be any of the immitance matrices;

impedance, admittance or hybrid [58], in our analyses admittance matrix is going

to be used. In two-channel architecture initially two types of control algorithms are

going to be tested with delayed and delay free bilateral teleoperation systems.



CHAPTER 5. MULTIPLIERS FOR BILATERAL TELEOPERATION 123

0 2 4 6 8 10 12 14

−0.5

0

0.5

Time (sec)

J
oi
n
t
A
n
gl
e
(r
a
d
)

Experimental Data
Model Output

Figure 5.4: Time response comparison between model and the Omni manipulator
on a predefined trajectory; model fit is 96.71%.

5.3.1 Delay Free Case

In some circumstances, master and slave manipulators are located close to one an-

other, for instance a robotic surgery where patient and surgeon are in the same room.

Based on that, initially we assumed that there is no latency in the communication

medium. Then, let Ym and Ys be admittance of the manipulators, the admittance ma-

trix representation of damping injected, controlled with (5.4) and (5.6), P-F controller

(illustrated in Figure 5.3) can be derived with the subsequent equalities

Vm(s) = Ym(Fh−K f Fe), (5.7)

Vs(s) =
YsCsYmµ
s+YsCs

Fh−
YsCsµYmK f + sYs

s+YsCs
Fe, (5.8)

where Cs = Kp, Vm and Vs are laplace transform of the velocity signals of the mas-

ter and slave manipulators, respectively. After substituting the slave controller as a

proportional contoller gain Kp and admittance of the slave as Ys = (sMs +Bs +Kv)−1

(damping injected), the admittance matrix representation of the depicted P-F con-

troller can be defined as follows Vm(s)

−Vs(s)

=

 Ym −K fYm

−KpµYmPp (KpµYmK f + s)Pp


︸ ︷︷ ︸

YP(s)

 Fh

Fe

 , (5.9)

where Pp(s) = (s2Ms + s(Bs +Kv)+Kp)
−1. The system controlled with (5.4) and (5.5)

will be called as PD-F architecture, in a similar manner admittance matrix represen-

taion of the PD-F architecture can be derived by defining the slave controller in (5.8)
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as Cs(s) = Kp + sKv. Then, its admittance matrix representation becomes slightly dif-

ferent such that

YPD(s) =

 Ym −K fYm

−µ(sKv +Kp)YmPp Z22YmPp

 , (5.10)

where Z22(s) = s2Mm + s(Bm + µK f Kv)+ µK f Kp. These admittance matrices are used

within FDI, such as in (5.2). As previously mentioned, stability is necessary but not

the only criterion that needs to be considered while designing the bilateral teleoper-

ation system.

Controller
P-F Architecture PD-F Architecture

Passivity 0.399 –
With symmetric poles 0.645 0.418
With asymmetric poles 0.809 0.622

Table 5.2: Maximum obtainable transparency indexes (K f µ) with different tech-
niques/multipliers and controllers at slave side.

Firstly, the absolute stability of the P-F control architecture was analysed. In the

first stage Llewellyn’s stability criterion, which is given in Theorem 2.1 on page 43,

was used under LTI passive operators assumption for both human and environment

with the parameters given in Table 5.1, and the admittance matrix given in (5.9). For

the analysis, we choose the frequency range to be as 0 rad/s to 1×106 rad/s where

the maximum achievable transparency index is searched without destroying passiv-

ity of the two-port network via bisection algorithm. It was concluded that with this

hypothesis maximum achievable K f µ value is approximately 0.399 so that admit-

tance matrix is on the boundary of the positive realness and stability index remains

positive, see Figure 5.5. If the environment is also monotone and bounded, less con-

servative results were obtained with Zames-Falb multipliers by using Corollary 5.1;

results are given in Table 5.2. If we use symmetric poles, we obtain 0.645, whereas

the result reaches 0.809 when asymmetric poles are considered.

Secondly, we have analysed stability of the two-channel bilateral teleoperation

with PD-F controller architecture whose admittance matrix is defined in (5.10). As

it is highlighted in [196] it is not possible to fulfil Llewellyn’s stability criteria with

this controller unless Ms = 0. Namely the admittance matrix is not positive real,

so it cannot be ensured whether the design is absolutely stable or not with the pa-

rameters given in Table 5.1, when both human and environment are assumed to
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Figure 5.5: Llewellyn’s stability index n(ω) remains positive over a range of frequen-
cies when maximum obtainable K f µ = 0.399 within the P-F architecture.

be passive LTI systems. However, with the novel assumption on the environment,

the use of Zames-Falb multipliers in Corollary 5.1 allows us to conclude that PD-F

controller architecture is absolutely stable and maximum achievable transparency

index is 0.418. Similarly, the transparency index can be improved by using asym-

metric poles, reaching 0.622. These results are obtained with parameters given in

Table 5.3.

P-F Architecture PD-F Architecture
Λh Λe Λh Λe

Order (n) 5 6 6 5 6 6
Pole (−α) -110 -75 -500 & -0.1 -110 -380 -400 & -0.01

Table 5.3: Parameters of the basis functions for stability analyses of bilateral teleop-
eration.

5.3.2 Time Delayed Case

Admittance matrix representations of architectures are need to be redefined if there

exists time delay in the communication medium. For instance, with a constant de-

lay dynamics of the P-F architecture proposed in (5.7) and (5.8) are modified (the

transmission delay is embedded) as follows

Vm(s) = Ym(Fh−K f e−sTd Fe), (5.11)

Vs(s) =
YsCsYme−sTd µ

s+YsCs
Fh−

YsCsµYme−2sTd K f + sYs

s+YsCs
Fe, (5.12)
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where Td defines one way communication time delay between the master and slave

manipulators. For simplicity, initially it was assumed that delay duration, Td is equal

in both direction. In a similar manner, one can substitute the slave controller as

Cs = Kp and admittance of the slave as Ys = (sMs +Bs +Kv)−1 (damping injected),

then the overall architecture’s admittance matrix can be defined as follows Vm(s)

−Vs(s)

=

 Ym −K fYme−sTd

−KpµYmPpe−sTd (KpµYmK f e−2sTd + s)Pp


︸ ︷︷ ︸

YPd(s)

 Fh

Fe

 ,

where Pp(s) = (s2Ms+s(Bs+Kv)+Kp)
−1. Then, based on the given equations in (5.11)

and (5.12) the communication delay can be pulled out from the admittance matrix

to treat as a perturbation
Vm(s)

−Vs(s)

y1(s)

y2(s)

=


Ym 0 −Ym 0

0 sYs
s+YsCs

0 YsCs
s+YsCs

0 K f 0 0

−µYm 0 µYm 0


︸ ︷︷ ︸

Yd(s)


Fh

Fe

u1

u2

 ,

where y1 = K f Fe, y2 = −µYmFh + µYmK f e−sTd Fe, ui = e−sTd yi for i = 1,2, and Yd(s) is

interconnected with structured uncertainty block, ∆ = diag(∆h,φe,e−sTd ,e−sTd). In

order to get the interconnection as illustrated in Figure 5.2, due to the feed-forward

inclusion in the delay channels, initially, positive feedbacks are included to the last

two ports of the transfer function matrix, then last two channels of Yd need to be

multiplied with negative sign, in that way Yd is transformed to Ȳ , see Figure 5.6 for

a graphical illustration of the mentioned loop transformation.

Initial studies have shown that having light and fast manipulators does largely

degrade the stability margin when there exists time delay in the communication

medium. With the mass and damping values given in Table 5.1, performance index

leads to small values so the scaled force signal might not be perceivable by human

being. In order to obtain reasonable performance indexes in delayed teleoperation,

additional damping has virtually been injected into the master manipulator. Thus

Bm = 0.2N s/m is used in the following analyses parameters. Test with several delay

duration, Tdmax ∈ [0.01,0.1]s, was carried out with bisection algorithm and maximum

performance indexes for both types of controllers used for two-channel control de-
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Figure 5.6: Delay encapsulation in time delayed bilateral teleoperation architecture
depicted as Lure interconnection.

sign are shown in Figure 5.7. Basis function parameters in Table 5.3 were used with

Corollary 5.2. For Zames-Falb multiplier the selection of the poles is very important,

but for the delay we can reach same results with different poles.

For variable time delay, on the other hand, we have analysed characteristic of

the Internet communication medium between two laboratories2. While transmit-

ting the User Datagram Protocol (UDP) packets, each packet was composed of time

stamps such that the delay could be measured in terms of the round trip communi-

cation time delay. Then, it was also observed that one way maximum transmission

delay is approximately 28msec and variation of the delay is less than 0.45, Ṫd ≤ 0.45

(with a transmission rate of 1000 packets per second), see [198], where the same net-

work was used for a different experiment, as well. Based on these features bisection

algorithm was carried out for searching maximum performance indexes and it was

stated that with P-F controller µK f = 0.0744 and with PD-F architecture µK f = 0.0261,

when n= 5 in both controllers while using multipliers given in (3.3), (3.7), and (3.15)

for uncertain operators human, environment, and time delay, respectively. As a re-

sult, these performance indexes are going to be used in the experimental evalua-

tions.

5.3.3 Experimental Evaluation with Two-Channel Architecture

Experimental evaluation of the numerical results has been carried out with Phan-

tom Omni haptic manipulators which have six-DOF (3-actuated and 3-non actu-
2The communication network used in the experiment belongs to the GÉANT pan-European re-

search and education network.
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Figure 5.7: Transparency index reduction against maximum delay duration in the
communication medium.

ated joints), see Figure 5.8. As analyses are not based on multi-DOF, only one-DOF

has been used while moving first joint and blocking/immobilizing the remaining.

Omni manipulators have only position sensors so master’s and slave’s positions

are sensed in radians with sensor located at the first joints, yet human and envi-

ronmental forces are simulated with pre-designed passive and nonlinear operators,

respectively.

Figure 5.8: Experimental setup with Phantom Omni manipulators (Image taken
from [199])

Delay-free and constant time delay scenarios were carried out in the same lab-

oratory while Omni manipulators are connected to a computer, where controllers

are embedded into the Matlab/Simulink environment3, through IEEE 1394 Fire-

Wire cables and constant time delays are virtually injected to the communication
3Applied at 1.000Hz; the maximum value supported by the Omni manipulator
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medium. Variable time delay case, however, was carried out in two different lab-

oratories; master and slave were located in the universities of Manchester (UK)

and Vigo (Spain), respectively. Internet, inevitably, was used as a communication

medium and the data (position and force) were carried out with UDP4 packets. To

be consistent in all cases, end effector of the master was aimed to follow conical

shape trajectory (the same as in simulations), meanwhile monotonic nonlinear type

environmental force; Fe(vs) = k arctan(vs),k > 0, was acting on the slave. Velocity

signals can be numerically determined from position signals via a simple first or-

der compensator H(s) = Ns
s+N with a positive filter coefficient, N > 0. Yet due to the

sensor noises within the position signals using such filter causes high spikes in the

determined velocities. One can use suchlike signals throughout the architecture, but

this causes high frequency vibrations within the manipulators. Thus, we have de-

rived velocity signals by using second order low pass filters with cut-off frequency

and damping ratio are equivalent to 250 rad/s and 4, respectively. Reference sig-

nal for the first joint and master-slave manipulators’ behaviours under the designed

controllers can be seen in Figure 5.9.
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Figure 5.9: First joints’ positions and reference signal; experiment between Manch-
ester and Vigo.

Slave needs to mimic the behaviour of the master manipulator in exchange for

being able to complete challenging tasks in an high quality manner. In order to

evaluate this we have tested the designed two control architectures, P-F and PD-F,

with the maximum achievable transparency indexes. It is remarked that P-F archi-

tecture’s position error is approximately 1.5 times higher than the PD-F architec-
4User Datagram Protocol (UDP) is one of the main internet communication protocols
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ture’s in all scenarios, see Figure 5.10. That concludes more complex controllers

give better performance specifications; less transparency index yet higher position

tracking features. Present stability analyses, however, are restricting us to design

systems controlled by these controllers. Therefore, more powerful and less conser-

vative stability analyses methods need to be used to analyse bilateral teleoperation

and evaluate control algorithms that can be implemented.
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Figure 5.10: Position mismatches between master and slave: Top is delay free case,
middle is simulated constant delay (Tdmax = 28msec) between manipulators, and bot-
tom is the experiment taken between Manchester and Vigo.

Figure 5.11 shows that the improvement in the position tracking is not due to

a reduction in the transparency, as PD-F architecture provides similar force mis-

matches as the P-F architecture under delay in the communication. As a result,

Figures 5.10 and 5.11 demonstrate the benefit of the current analysis within the two-

channel control architecture.
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Figure 5.11: Difference between the actual and transmitted (to master side) environ-
mental interaction forces: Top is delay free case, middle is simulated constant delay
(in one way Tdmax = 28msec) between manipulators, and bottom is the experiment
taken between Manchester and Vigo.

5.3.4 Enhanced to Three-Channel Architecture

In two-channel position-force architecture we have shown that having PD controller

at the slave side increases the performance specifications of the design once Zames-

Falb multiplier is used for nonlinear environment. In this section, we extend our

previous studies to the three-channel (3C) architecture. Further analyses were car-

ried out to compare 3C Position-Force Force (P-FF) with 2C P-F architecture while

both designs have PD-controllers at slave sides. Then, Phantom Omni manipulators

were used for the experimental validations. It is observed that performance spec-

ifications of the proposed 3C is superior to 2C architecture when master and slave
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manipulators have similar dynamics [200].
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Figure 5.12: Three-channel PD-FF bilateral teleoperation control architecture. Inter-
connection will be transformed to a two-channel PD-F architecture by substituting
κ = 0 (Pi(s) = Yi(s)/s for i = m,s.).

In 3C case system’s equation of motion is slightly different from the two-channel

case as

vm = Ym(Fh + τm), vs = Ys(τs−Fe +κFh), (5.13)

where κ which is either 0 or 1 that specifies the control structure: κ = 1 implies the

existence of the extra channel that transmit Fh to the slave side, see Figure 5.12 for

block diagram representation of the proposed control architecture. Controller force

at human side is given in (5.4) and the one at the slave side is a slight modification

of (5.5) where it is assumed that µ = 1 such that

τs =Cs(xm− xs). (5.14)

As stated previously, different types of controller (Cs) can be implemented at the

slave side within the same architecture. Eligibility of the PD over single P controller

has been stated previously, so herein a PD-controller such Cs(s) = Kp +Kvs is going

to be designed for both architectures. In this case, we assume that there is no latency

in the communication channel. And let Ym(s) = (Mms+Bm)−1, Ys(s) = (sMs +(Bs +

Kv))
−1 (damping injected), and κ = 0 in (5.13), equation of the motion of the PD-F

architecture, which is controlled with (5.4) and (5.5), can be defined subsequently

Vm(s) = Ym(Fh−K f Fe),

Vs(s) =
YsCsYm

s+YsCs
Fh−

YsCsYmK f + sYs

s+YsCs
Fe.
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Then, admittance matrix representation of the depicted PD-F architecture is given

as follows  Vm(s)

−Vs(s)

=

 Ym −K fYm

−YsCsYm
s+YsCs

sYs+YsCsK f Ym
s+YsCs


︸ ︷︷ ︸

YPDF (s)

 Fh

Fe

 .
The system with κ = 1 in (5.13) will be called as PD-FF architecture, and its admit-

tance matrix representation is slightly different such that

YPDFF(s) =

 Ym −K fYm

− sYs+YsCsYm
s+YsCs

sYs+YsCsK f Ym
s+YsCs

 . (5.15)

These admittance matrices were used in FDI, (5.2), and it was converted to an equiv-

alent LMI, (5.1), hereby stability analysis was transformed to a convex optimization

search for suitable multipliers.

In a similar fashion bisection algorithm was used while searching existence of

the suitable multipliers with maximum K f value; the maximum achievable values

are proposed in Table 5.4.

Controller
PD-F Architecture PD-FF Architecture

0.5265 0.8242

Table 5.4: Maximum obtainable K f values for different control architectures.

Based on the obtained maximum K f values, validation of the architectures were

carried out; initially with simulations by using parameters given in Tables 5.1 and 5.4

and later with experiments. As a result, it was observed that position error between

master and slave is minimized with PD-FF architecture, see Figure 5.13. Synchroni-

sation between two manipulators is enhanced with the additional feedforward force

channel because having similar manipulators’ dynamics lead to identical parame-

ters in the first column of admittance matrix YPDFF(s) in (5.15).

Experimental results also support the same argument with the simulations, namely

position error obtained with PD-FF is half of the error that we get with PD-F archi-

tecture, the results are illustrated in Figure 5.14. In the same manner, difference

between the actual environmental and transmitted (to human operator) forces is

reduced with PD-FF architecture compare with PD-F, see Figure 5.15.

To sum up, this methodology enables us to use controllers such as simple PD,

that disturb passivity of the network representation yet improve position tracking
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Figure 5.13: Position error between master and slave manipulators in simulation.
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Figure 5.14: Position error between master and slave, experiment with 2 Omni ma-
nipulators within the same lab.

significantly. All theory based arguments were validated with experiments using

similar manipulators that show superior performance of 3C over 2C. It should be

noted that, we do not claim that the proposed methodology transcends general pas-

sivity approach in all aspects, indeed there are still some open questions to answer.

For instance, in the aforementioned experimental analyses designed controllers are

embedded into digital computers so that continuous data is discretized without re-

ferring to the detrimental effect of the discretization error, yet needless to say that

more rigorous effort is required which is out of the scope of this study.
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Figure 5.15: Mismatch between actual environmental interaction force and the force
transmitted to human operator side.



6 | Conclusions and Future Work

In this modest study, our aim was to illustrate usefulness of a theoretical frame-

work that could be used for the analysis of systems consisting a class of nonlinear-

ity, yet absolute stability of the bilateral teleoperation has been our main concern.

The path that we have followed bring us to define classes of multipliers and their

parametrizations such that stability of the systems, that varies from teleoperation

to the neural networks, containing particular class of uncertainties/nonlinearities is

simply transformed to a tractable search for a multiplier within the proposed classes.

For this reason, in order to have a solid comparison initially stability of the sys-

tems that contain saturation type nonlinearity along with time delay was analysed

based on the IQC framework and multiplier approach, also validity of the proposed

method was compared with prevalent techniques. Among the other things, it was

observed that particular neural networks can be expressed as delayed Lur’e inter-

connection so that their stability analysis can be carried out with a similar fashion.

Based on the achieved numerical results, it can be stated that multiplier approach

is compatible with the widely used methodologies such as Lyapunov technique

while analysing stability of the systems containing time delay and saturation, in-

cluding neural networks, in fact it outperforms in particular circumstances such as

when there exists constant time delay or when asymmetric Zames-Falb multiplier is

searched.

For completeness Quadratic Separation (QS) approach, that has been mainly

used for reducing conservatism in the analysis of time delayed systems, was dis-

cussed in the appendix and the relationship (equivalence) between IQC technique

and QS approach was illuminated.

On the contrary, while carrying out the analyses and comparing the obtained re-

sults with current state of the literature we have used the well-known Nyquist crite-

136
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ria as a benchmark1 that inherently leaded us to Kalman and Aizerman conjectures.

We have shown that there exists little interest and still there are more works need to

be carried out parallel to these conjectures when latency occurs along with bounded

nonlinearity within the prospective interconnection. Nevertheless, we provide a

graphically intuitive solution such that absolute stability of the nonlinear systems

with time delay can be determined only with linear stability conditions based on a

particular class of delay free nominal system within the interconnection. Thus, one

can show that there exists a class of multiplier for a slope bound equivalent to the

Nyquist value without constructing the suitable multiplier.

If we return to stability of the teleoperation, in the first instance absolute stability

of the delay free bilateral teleoperation was analysed by using IQC framework and

Zames-Falb multipliers via transforming the overall interconnection into the Lur’e

structure. For comparison, definition about the uncertainty caused by human arm

was not changed: human arm was assumed as an LTI passive operator. On the other

hand, definition about environment’s linearity was being questioned and redefined

because majority of the objects’ physical contact forces show non-linear phenom-

ena. Therefore, in our analyses we considered the environment as memoryless,

monotone, bounded, and nonlinear operator. In order to obtain an analytical ad-

vantage from this assumption, we have searched for Zames-Falb multipliers which

are the widest available class of multipliers. Also, Zames-Falb multiplier is able to

’re-gain’ passivity of the network so that there is no need to pre-design controllers

in a way that network is critically passive.

Furthermore, stability of the two-channel position-force bilateral teleoperation

with PD controller (at slave side) was validated without any additional restrictions.

Then, analyses were broadened to the bilateral teleoperation architectures that ac-

commodate constant or time variable latencies within the communication medium.

Afterwards, an experimental set-up was constructed between Manchester (UK) and

Vigo (Spain) Universities so that proposed analyses were experimentally evaluated

with two Phantom Omni manipulators located at two remote laboratories. As a final

effort, analyses are extended to the three-channel architecture; preliminary experi-

mental results show predominance of the extended design when two manipulators

have similar dynamics.
1By replacing the slope restricted nonlinearity with a linear gain



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 138

Based on the aforementioned numerical and experimental results we can clearly

conclude that the more ’realistically’ we define the unknown elements within the

bilateral teleoperation interconnection the better performance criteria are going to

be. Yet, slightly avoiding from straightforward assumptions requires more com-

plex tools for the analyses and naturally that demands more computational power.

Despite these requirements, reductions on the conservatism particularly in bilateral

teleoperation promote the methodology that we have proposed and adopted. Still

more effort must be expended in order to answer some currently open questions

leading to physically realizable and also high performance bilateral teleoperations.

One of them might be finding a way to analyse stability of the bilateral teleopera-

tion consisting nonlinear high-DOF manipulators based on this methodology. And

another one could be extending definition of the human operator or including their

perception into the synthesises. Despite its complexity and difficulty assumption

on the human operator needs to be relaxed even though that might be beyond the

scope of control engineering, it is a challenge that researchers in the relevant field

needs to face. The gap in that section comes to the light with controversia of the

passivity assumption. Also, we have not proposed a complete solution for the prob-

lem caused by the time delay including the human operator. Strictly speaking, that

problem can be divided into two different categories; operator point of view and

stability point of view which we have considered the most in this study. Yet, human

sensory system is not capable of sensing every single delay in a mechanism, that is

why a cell phone talk seems to be continuous for us even though the transmission

is not. Also, carrying a distance task via teleoperation with a certain transmission

delay is not practically feasible from the operator point of view. But, a clear majority

of the previous studies (including the one proposed here) have been only focused

on the stability point of view as delay might jeopardize the absolute stability.

Therefore, future research direction can be diverted in a way that we can answer

or might solve these highlighted problems also can insert human sensation into the

design stage of the bilateral teleoperation.



A | Appendix

A.1 Minimal State Space Realization of Basis Function

In the spirit of [133,134,137] minimal state space representation of the basis function

Λα( jω) is defined as

Λα ∼

 AΛα BΛα

CΛα DΛα

=



−α 0 · · · · · · 0 1

1 . . . . . . . . . ... 0

0 . . . . . . . . . ...
...

... . . . . . . . . . 0
...

0 · · · 0 1 −α 0

0 · · · · · · · · · 0 1

1 0 · · · · · · 0 0

0 . . . . . . . . . ...
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
...

0 · · · · · · 0 1 0



,

and other basis functions’, Λ( jω),D( jω), etc., state space parameters can be defined

similarly.

A.2 Quadratic Separation Approach

Quadratic Separation is another methodology that is being implemented while

analysing stability of the time delayed systems [201–205]. Additionally, it has also

been considered for analysing systems subject to bounded nonlinearities and time

delays [146]. Therefore, in this section initially detailed analysis, synthesis, and

discussion related to the Quadratic Separation technique will be proposed. Then,
139



APPENDIX A. APPENDIX 140

similarities between QS and IQC approaches are going to be investigated so that the

relationship (if exists) between these two methodologies will be brought to the light.

Shortly, in Quadratic Separation approach the main objective is to combine fun-

damental operators such as time delay and integral within a framework as (possi-

bly) a non-structured block, which depicts complex-valued uncertain matrix gain,

and redefine the overall system like as an interconnection of the constructed block

and rational matrices, see the block diagram proposed in Figure A.1. Once the sys-

tem is expressed with two non-square matrices (E and A ) and proposed as intercon-

nection in Figure A.1 then stability can be investigated with the following theorem.

E(z− z̄) = A w

w− w̄ =

∆

z

z̄?
� �j+

z-

6

-

w

w̄ +j

Figure A.1: General feedback interconnection depicted in quadratic separation ap-
proach.

Definition A.1. Let A∈Rn×n be a matrix, then A⊥ is set of column vectors x∈Rn×1 which

satisfies Ax = 0.

Theorem A.1 (Quadratic Separation [206]). The uncertain feedback system proposed in

Figure A.1 is well-posed if and only if there exist a Hermitian matrix Θ = Θ∗ satisfies the

following inequalities; [
E −A

]⊥∗
Θ
[

E −A
]⊥

> 0, (A.1) I

∆

∗Θ

 I

∆

≤ 0, ∀ ∆∈ ∆∆∆

(A.2)

where A ⊥ is a full rank matrix whose columns span the null space of A .

The term well-posed, here, is different from the terminology that has been used in

the absolute stability such that it implies boundedness.

Definition A.2 (Well-posedness in QS [201]). The feedback system illustrated in Fig-

ure A.1 is said to be well-posed if for all uncertainties and all bounded input vectors, the

internal vectors characterizing the system are unique and bounded.
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Note that the inequalities given in (A.1) and (A.2) can be re-expressed as a special

case of the IQC theorem where the uncertainty holds only the pointwise inequality; A

I

∗Π

 A

I

< 0,

 I

∆

∗Π

 I

∆

≥ 0, ∀ ∆∈ ∆∆∆

if E = I and Π =−Θ.

Kalman-Yakubovich-Popov (KYP) Lemma plays a crucial role to transform infi-

nite dimensional frequency dependent inequality into finite dimensional linear ma-

trix inequality (LMI) which tender tractable solution with semi-definite programs.

But, QS does not require such a transformation as separating dynamics in the first

place leads to a direct final LMI condition as in (A.1).

Generally, in both methodologies a number of inequalities are proposed to define

the overall dynamic elements or the uncertainties. For instance, in QS the integral

term 1/s is expressed with a separator based on the passivity property of the integral

term. For any P > 0,  I
1
s

∗ 0 P

P 0

 I
1
s

≥ 0, (A.3)

holds ∀s ∈ C+, the closed right half-plane. This particular separator allows us to

connect first bridge between QS, Graph theory, and Lyapunov stability analysis. Let

us assume that there exists a descriptor system1 ẋ = Ax that required to be analysed

from the stability point of view. Based on the Lyapunov theory it can be concluded

that the system is stable if there exists any P > 0 such that A>P+PA < 0 holds. Some

conclusion can be derived once the system is transformed into the feedback inter-

connection illustrated in Figure A.2. Then, it is sufficient to check that the following

inequality ensures the stability; A

I

∗ 0 P

P 0

 A

I

< 0,

which is the same condition obtained with Lyapunov technique. Furthermore, based

on graph separation [209,210] the following two inequalities can be used to validate
1A system modelled by differential and algebraic equations, see [207, 208].
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the stability;

∫ T

0

 (w+ w̄)

z

∗ 0 P

P 0

 (w+ w̄)

z

dt ≥ 0,

∫ T

0

 A(z+ z̄)

(z+ z̄)

∗ 0 P

P 0

 A(z+ z̄)

(z+ z̄)

dt <−εI.

(A.4)

A

1
s

-

6

-

w

w̄ +j

z̄?
� �j+

z

Figure A.2: Basic interconnection of a simple descriptor system as QS architecture.

The only condition that satisfies both inequalities in (A.4) simultaneously is the

when internal signals are 0. Therefore, the system is stable if there exist any P > 0

such that conditions in (A.4) hold as the graphs of two blocks are separated. We

must indicate that parameters in (A.4), such as w̄ and z̄, were assumed to be time

dependent signals, yet in QS approach these parameters are assumed to be vectors

in the frequency domain.

Further connections can be illustrated while analysing stability of the time de-

layed system as follows:

ẋ(t) = Ax(t)+Adx(t−Td), (A.5)

where Td is constant time delay which is unknown yet belong to the an interval

Td ∈ [Tdmin,Tdmax]. Initially, the proposed delayed system in (A.5) can be defined

with two different block diagrams as illustrated in Figure A.3.

(a)

A Ad
I 0

1
s

e−sTd-

�

-

�
(sI−A)−1Ad

e−sTd-

(b)
G

�

Figure A.3: Basic interconnection of a system with constant time delay; (a) as a QS
architecture, (b) as a Lure system.
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Separator/multiplier for the delay can basically be expressed with small gain

conditions, as a result final inequalities present stability for the QS and IQC can be

expressed respectively as follows:
A Ad

I 0

I 0

0 I



∗
0 0 P 0

0 Q 0 0

P 0 0 0

0 0 0 −Q




A Ad

I 0

I 0

0 I

< 0, (A.6)

and  (sI−A)−1Ad

I

∗ Q 0

0 −Q

 (sI−A)−1Ad

I

< 0. (A.7)

Based on the KYP lemma inequality in (A.7) can be converted into an LMI as A>P+PA PAd

A>d P 0

+
 Q 0

0 −Q

< 0. (A.8)

These results provide confirmatory evidence that final LMIs obtained with two ap-

proaches; (A.6) and (A.8) are identical. The same conclusion can be derived if delay

is time variable:

ẋ(t) = Ax(t)+Adx(t−Td(t)), (A.9)

where Td(t) is variable time delay such that Td(t) ∈ [0,Tdmax] and |Ṫd(t)| ≤ d < 1. But,

the proposed Theorem A.1 needs to be modified due to time variable delay operator

such that

∆

will be depicted as a linear operator from L2e to L2e instead of complex-

valued matrix gain. Thus, condition given in (A.2) is altered as

〈 I

PT

∆

uT ,Θ

 I

PT

∆

uT

〉
≤ 0, ∀u ∈ L2e,∀T > 0, (A.10)

where inner product 〈 ,〉 can be defined as 〈 f ,g〉= ∫ ∞
0 f ∗(t)g(t)dt and PT is the trun-

cation operator. Then, final LMIs for QS and IQC approaches can be expressed as

below, 
A Ad

I 0

I 0

0 I



∗
0 0 P 0

0 Q 0 0

P 0 0 0

0 0 0 (d−1)Q




A Ad

I 0

I 0

0 I

< 0, (A.11)
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 (sI−A)−1Ad

I

∗ Q 0

0 (d−1)Q

 (sI−A)−1Ad

I

< 0.

Based on the KYP lemma the last inequality can be converted into an LMI as A>P+PA PAd

A>d P 0

+
 Q 0

0 (d−1)Q

< 0, (A.12)

Once the same separator/multiplier is used for defining the uncertainties, as

expected, both methodologies lead to the same final LMI conditions. But, stabil-

ity conditions proposed for the time delayed systems are delay range independent

which leads to conservative results. To reduce the conservatism, in QS approach

∆

block is extended either diagonally or non-diagonally with operators containing in-

formation related to the delay range. In a similar vein in IQC theory, more IQCs are

defined for the perturbation with predefined transfer function that covers the delay

gain over the full frequency range. This is the point where the two approaches are

starting to dissociate.

Let us re-analyse the stability condition given for constant time delay case based

on the mentioned extensions. So, to reduce the conservatism gab caused by the

delay Ariba et al. in [211] proposed an additional operator along with a multiplier

as follows:

δ0(s) =
∫ 0

−Td

esθdθ =
1− e−sTd

s
, Π0 =

 T 2
d 0

0 −1

 , (A.13)

which is the similar operator used by Jun and Safonov in [125]: ∆ = e−sTd−1
sTd

. Then,

system in (A.5) is depicted as the following interconnection.

Ew = A z

1
s

e−sTd

δ0

-

w �

z

Figure A.4: Extended interconnection of constant time delayed system.

In other words, Figure A.3 (a) is extended with the proposed operator. And sub-

sequent equation makes the connection between the interconnection in Figure A.4
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and equation in (A.5);

 I

0


︸ ︷︷ ︸

E


ẋ(t)

x(t)

ẋ(t)

=


A Ad 0

I 0 0

A Ad 0

I −1 −1


︸ ︷︷ ︸

A


x(t)

xd(t)

x(t)− xd(t)

 , (A.14)

where xd(t) = x(t−Td). As a result, stability of the delayed system can be depicted

based on the Theorem A.1 by using multipliers given in (A.3), (A.7), and (A.13)

and given A and E matrices. In a similar fashion more operators can be defined

and included into the expressed interconnection based on the so-called Bessel in-

equality. But, we have to answer the subsequent questions: How does adding extra

operator (related to the uncertainty which is delay in this particular case) reduce

the conservatism gap? Also, what is the function of the last row in A matrix given

in (A.14)? For that purpose, let us explicitly write and analyse right outer factor of

the quadratic term in (A.1) by using full expressions of E and A in (A.14);

x1

x2

x3

x4

x5

x6


=
[

E −A
]⊥
→



I 0 0 −A −Ad 0

0 I 0 −I 0 0

0 0 I −A −Ad 0

0 0 0 −I I I





x1

x2

x3

x4

x5

x6


= 0, (A.15)

where null space vector, X , is equivalent to the combination of the inputs and out-

puts of the structured uncertainty proposed in Figure A.4, so

x1

x2

x3

x4

x5

x6


=



ẋ(t)

x(t)

ẋ(t)

x(t)

xd(t)

x(t)− xd(t)


. (A.16)

It can be concluded that, without considering the last row in A ; it is equivalent to

say that the system is stable if there exists P≤ 0 such that X>PX ≤ 0, holds ∀X which
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implies no constraints on the states and the delay itself. By considering the last

row, however, namely adding property of δ0(s): it can be depicted that the system

is stable if there exists P ≤ 0 and X>PX ≤ 0 holds ∀X : −x4 + x5 + x6 = 0. Including

additional constraint on the states of the system simply reduces the aforementioned

conservatism as restriction solely can be hold with a particular delay term: −x(t)+

x(t−Td)+ x(t)− x(t−Td) = 0. x

xd

> A>P+PA+A>T 2
d A+Q− I A>T 2

d Ad +PAd + I

A>d P+A>d T 2
d A+ I A>d T 2

d Ad−Q− I

 x

xd

≤ 0. (A.17)

Namely, what we imply; stability of the system in (A.5) depicted in Figure A.4

can be ensured if the given quadratic inequality in (A.17) holds. Note that multi-

pliers given in (A.3), (A.7), and (A.13) and equalities in (A.15) and (A.16) are being

used to derive the final condition in (A.17). As a final comment, Jun and Safonov

in [125] concluded that their final LMI condition which was determined for a par-

ticular delay value (T̂d) holds for all delay Td ≤ T̂d as proposed middle matrix in

the quadratic inequality does not change its sign, i.e. always remains negative semi-

defined. Such a remark can be indicated here as well: middle matrix in (A.17) can be

expanded as M1 + T̂ 2
d M>2 M2 ≤ 0, where once the upper bound of the delay holds the

inequality sufficient condition can be proposed that scaling down the delay value

does not affect the sign of the inequality. Thus, once a stability condition is derived

for a particular known delay based on the QS, then one can depict the derived result

as a delay range stability condition for any delay Td ≤ T̂d .

In this effort, QS approach has been briefly proposed, also we have tried to bring

into the light the relationship between QS and IQC methodologies by using non-

complex systems and straightforward multipliers/separators. The consensus view

seems to be listed as;

• Once the similar multipliers/separators are used both QS and IQC approach

lead to the same final LMI condition.

• Relation between QS, Graph theory, Lyapunov analysis, and IQC can be ex-

emplified with uncomplicated systems such as ẋ = Ax.

It needs to be mentioned that the big picture, however, is still missing and it might

be illuminated with extra effort.
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