1,046 research outputs found

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort

    A stochastic optimal feedforward and feedback control methodology for superagility

    Get PDF
    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Lyapunov-based Control Design For Uncertain Mimo Systems

    Get PDF
    In this dissertation. we document the progress in the control design for a class of MIMO nonlinear uncertain system from five papers. In the first part, we address the problem of adaptive control design for a class of multi-input multi-output (MIMO) nonlinear systems. A Lypaunov based singularity free control law, which compensates for parametric uncertainty in both the drift vector and the input gain matrix, is proposed under the mild assumption that the signs of the leading minors of the control input gain matrix are known. Lyapunov analysis shows global uniform ultimate boundedness (GUUB) result for the tracking error under full state feedback (FSFB). Under the restriction that only the output vector is available for measurement, an output feedback (OFB) controller is designed based on a standard high gain observer (HGO) stability under OFB is fostered by the uniformity of the FSFB solution. Simulation results for both FSFB and OFB controllers demonstrate the efcacy of the MIMO control design in the classical 2-DOF robot manipulator model. In the second part, an adaptive feedback control is designed for a class of MIMO nonlinear systems containing parametric uncertainty in both the drift vector and the input gain matrix, which is assumed to be full-rank and non-symmetric in general. Based on an SDU decomposition of the gain matrix, a singularity-free adaptive tracking control law is proposed that is shown to be globally asymptotically stable (GAS) under full-state feedback. iii Output feedback results are facilitated via the use of a high-gain observer (HGO). Under output feedback control, ultimate boundedness of the error signals is obtained the size of the bound is related to the size of the uncertainty in the parameters. An explicit upper bound is also provided on the size of the HGO gain constant. In third part, a class of aeroelastic systems with an unmodeled nonlinearity and external disturbance is considered. By using leading- and trailing-edge control surface actuations, a full-state feedforward/feedback controller is designed to suppress the aeroelastic vibrations of a nonlinear wing section subject to external disturbance. The full-state feedback control yields a uniformly ultimately bounded result for two-axis vibration suppression. With the restriction that only pitching and plunging displacements are measurable while their rates are not, a high-gain observer is used to modify the full-state feedback control design to an output feedback design. Simulation results demonstrate the ef cacy of the multi-input multioutput control toward suppressing aeroelastic vibration and limit cycle oscillations occurring in pre and post utter velocity regimes when the system is subjected to a variety of external disturbance signals. Comparisons are drawn with a previously designed adaptive multi-input multi-output controller. In the fourth part, a continuous robust feedback control is designed for a class of high-order multi-input multi-output (MIMO) nonlinear systems with two degrees of freedom containing unstructured nonlinear uncertainties in the drift vector and parametric uncertainties in the high frequency gain matrix, which is allowed to be non-symmetric in general. Given some mild assumptions on the system model, a singularity-free continuous robust tracking coniv trol law is designed that is shown to be semi-globally asymptotically stable under full-state feedback through a Lyapunov stability analysis. The performance of the proposed algorithm have been verified on a two-link robot manipulator model and 2-DOF aeroelastic model

    Additive-Decomposition-Based Output Feedback Tracking Control for Systems with Measurable Nonlinearities and Unknown Disturbances

    Full text link
    In this paper, a new control scheme, called as additive-decomposition-based tracking control, is proposed to solve the output feedback tracking problem for a class of systems with measurable nonlinearities and unknown disturbances. By the additive decomposition, the output feedback tracking task for the considered nonlinear system is decomposed into three independent subtasks: a pure tracking subtask for a linear time invariant (LTI) system, a pure rejection subtask for another LTI system and a stabilization subtask for a nonlinear system. By benefiting from the decomposition, the proposed additive-decomposition-based tracking control scheme i) can give a potential way to avoid conflict among tracking performance, rejection performance and robustness, and ii) can mix both design in time domain and frequency domain for one controller design. To demonstrate the effectiveness, the output feedback tracking problem for a single-link robot arm subject to a sinusoidal or a general disturbance is solved respectively, where the transfer function method for tracking and rejection and backstepping method for stabilization are applied together to the design.Comment: 23 pages, 6 figure

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Robust Perfect Adaptation in Biomolecular Reaction Networks

    Get PDF
    For control in biomolecular systems, the most basic objective of maintaining a small error in a target variable, say the expression level of some protein, is often difficult due to the presence of both large uncertainty of every type and intrinsic limitations on the controller's implementation. This paper explores the limits of biochemically plausible controller design for the problem of robust perfect adaptation (RPA), biologists' term for robust steady state tracking. It is well-known that for a large class of nonlinear systems, a system has RPA iff it has integral feedback control (IFC), which has been used extensively in real control systems to achieve RPA. However, we show that due to intrinsic physical limitations on the dynamics of chemical reaction networks (CRNs), cells cannot implement IFC directly in the concentration of a chemical species. This contrasts with electronic implementations, particularly digital, where it is trivial to implement IFC directly in a single state. Therefore, biomolecular systems have to achieve RPA by encoding the integral control variable into the network architecture of a CRN. We describe a general framework to implement RPA in CRNs and show that well-known network motifs that achieve RPA, such as (negative) integral feedback (IFB) and incoherent feedforward (IFF), are examples of such implementations. We also develop methods to designing integral feedback variables for unknown plants. This standard control notion is surprisingly nontrivial and relatively unstudied in biomolecular control. The methods developed here connect different existing fields and approaches on the problem of biomolecular control, and hold promise for systematic chemical reaction controller synthesis as well as analysis

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation
    • …
    corecore