61 research outputs found

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Learning in large-scale spiking neural networks

    Get PDF
    Learning is central to the exploration of intelligence. Psychology and machine learning provide high-level explanations of how rational agents learn. Neuroscience provides low-level descriptions of how the brain changes as a result of learning. This thesis attempts to bridge the gap between these two levels of description by solving problems using machine learning ideas, implemented in biologically plausible spiking neural networks with experimentally supported learning rules. We present three novel neural models that contribute to the understanding of how the brain might solve the three main problems posed by machine learning: supervised learning, in which the rational agent has a fine-grained feedback signal, reinforcement learning, in which the agent gets sparse feedback, and unsupervised learning, in which the agents has no explicit environmental feedback. In supervised learning, we argue that previous models of supervised learning in spiking neural networks solve a problem that is less general than the supervised learning problem posed by machine learning. We use an existing learning rule to solve the general supervised learning problem with a spiking neural network. We show that the learning rule can be mapped onto the well-known backpropagation rule used in artificial neural networks. In reinforcement learning, we augment an existing model of the basal ganglia to implement a simple actor-critic model that has a direct mapping to brain areas. The model is used to recreate behavioural and neural results from an experimental study of rats performing a simple reinforcement learning task. In unsupervised learning, we show that the BCM rule, a common learning rule used in unsupervised learning with rate-based neurons, can be adapted to a spiking neural network. We recreate the effects of STDP, a learning rule with strict time dependencies, using BCM, which does not explicitly remember the times of previous spikes. The simulations suggest that BCM is a more general rule than STDP. Finally, we propose a novel learning rule that can be used in all three of these simulations. The existence of such a rule suggests that the three types of learning examined separately in machine learning may not be implemented with separate processes in the brain

    A survey of DA techniques for PLD and FPGA based systems

    Full text link
    Programmable logic devices (PLDs) are gaining in acceptance, of late, for designing systems of all complexities ranging from glue logic to special purpose parallel machines. Higher densities and integration levels are made possible by the new breed of complex PLDs and FPGAs. The added complexities of these devices make automatic computer aided tools indispensable for achieving good performance and a high usable gate-count. In this article, we attempt to present in an unified manner, the different tools and their underlying algorithms using an example of a vending machine controller as an illustrative example. Topics covered include logic synthesis for PLDs and FPGAs along with an in-depth survey of important technology mapping, partitioning and place and route algorithms for different FPGA architectures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31206/1/0000108.pd

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Submicron Systems Architecture Project: Semiannual Technical Report

    Get PDF
    No abstract available

    Low-cost and efficient fault detection and diagnosis schemes for modern cores

    Get PDF
    Continuous improvements in transistor scaling together with microarchitectural advances have made possible the widespread adoption of high-performance processors across all market segments. However, the growing reliability threats induced by technology scaling and by the complexity of designs are challenging the production of cheap yet robust systems. Soft error trends are haunting, especially for combinational logic, and parity and ECC codes are therefore becoming insufficient as combinational logic turns into the dominant source of soft errors. Furthermore, experts are warning about the need to also address intermittent and permanent faults during processor runtime, as increasing temperatures and device variations will accelerate inherent aging phenomena. These challenges specially threaten the commodity segments, which impose requirements that existing fault tolerance mechanisms cannot offer. Current techniques based on redundant execution were devised in a time when high penalties were assumed for the sake of high reliability levels. Novel light-weight techniques are therefore needed to enable fault protection in the mass market segments. The complexity of designs is making post-silicon validation extremely expensive. Validation costs exceed design costs, and the number of discovered bugs is growing, both during validation and once products hit the market. Fault localization and diagnosis are the biggest bottlenecks, magnified by huge detection latencies, limited internal observability, and costly server farms to generate test outputs. This thesis explores two directions to address some of the critical challenges introduced by unreliable technologies and by the limitations of current validation approaches. We first explore mechanisms for comprehensively detecting multiple sources of failures in modern processors during their lifetime (including transient, intermittent, permanent and also design bugs). Our solutions embrace a paradigm where fault tolerance is built based on exploiting high-level microarchitectural invariants that are reusable across designs, rather than relying on re-execution or ad-hoc block-level protection. To do so, we decompose the basic functionalities of processors into high-level tasks and propose three novel runtime verification solutions that combined enable global error detection: a computation/register dataflow checker, a memory dataflow checker, and a control flow checker. The techniques use the concept of end-to-end signatures and allow designers to adjust the fault coverage to their needs, by trading-off area, power and performance. Our fault injection studies reveal that our methods provide high coverage levels while causing significantly lower performance, power and area costs than existing techniques. Then, this thesis extends the applicability of the proposed error detection schemes to the validation phases. We present a fault localization and diagnosis solution for the memory dataflow by combining our error detection mechanism, a new low-cost logging mechanism and a diagnosis program. Selected internal activity is continuously traced and kept in a memory-resident log whose capacity can be expanded to suite validation needs. The solution can catch undiscovered bugs, reducing the dependence on simulation farms that compute golden outputs. Upon error detection, the diagnosis algorithm analyzes the log to automatically locate the bug, and also to determine its root cause. Our evaluations show that very high localization coverage and diagnosis accuracy can be obtained at very low performance and area costs. The net result is a simplification of current debugging practices, which are extremely manual, time consuming and cumbersome. Altogether, the integrated solutions proposed in this thesis capacitate the industry to deliver more reliable and correct processors as technology evolves into more complex designs and more vulnerable transistors.El continuo escalado de los transistores junto con los avances microarquitectónicos han posibilitado la presencia de potentes procesadores en todos los segmentos de mercado. Sin embargo, varios problemas de fiabilidad están desafiando la producción de sistemas robustos. Las predicciones de "soft errors" son inquietantes, especialmente para la lógica combinacional: soluciones como ECC o paridad se están volviendo insuficientes a medida que dicha lógica se convierte en la fuente predominante de soft errors. Además, los expertos están alertando acerca de la necesidad de detectar otras fuentes de fallos (causantes de errores permanentes e intermitentes) durante el tiempo de vida de los procesadores. Los segmentos "commodity" son los más vulnerables, ya que imponen unos requisitos que las técnicas actuales de fiabilidad no ofrecen. Estas soluciones (generalmente basadas en re-ejecución) fueron ideadas en un tiempo en el que con tal de alcanzar altos nivel de fiabilidad se asumían grandes costes. Son por tanto necesarias nuevas técnicas que permitan la protección contra fallos en los segmentos más populares. La complejidad de los diseños está encareciendo la validación "post-silicon". Su coste excede el de diseño, y el número de errores descubiertos está aumentando durante la validación y ya en manos de los clientes. La localización y el diagnóstico de errores son los mayores problemas, empeorados por las altas latencias en la manifestación de errores, por la poca observabilidad interna y por el coste de generar las señales esperadas. Esta tesis explora dos direcciones para tratar algunos de los retos causados por la creciente vulnerabilidad hardware y por las limitaciones de los enfoques de validación. Primero exploramos mecanismos para detectar múltiples fuentes de fallos durante el tiempo de vida de los procesadores (errores transitorios, intermitentes, permanentes y de diseño). Nuestras soluciones son de un paradigma donde la fiabilidad se construye explotando invariantes microarquitectónicos genéricos, en lugar de basarse en re-ejecución o en protección ad-hoc. Para ello descomponemos las funcionalidades básicas de un procesador y proponemos tres soluciones de `runtime verification' que combinadas permiten una detección de errores a nivel global. Estas tres soluciones son: un verificador de flujo de datos de registro y de computación, un verificador de flujo de datos de memoria y un verificador de flujo de control. Nuestras técnicas usan el concepto de firmas y permiten a los diseñadores ajustar los niveles de protección a sus necesidades, mediante compensaciones en área, consumo energético y rendimiento. Nuestros estudios de inyección de errores revelan que los métodos propuestos obtienen altos niveles de protección, a la vez que causan menos costes que las soluciones existentes. A continuación, esta tesis explora la aplicabilidad de estos esquemas a las fases de validación. Proponemos una solución de localización y diagnóstico de errores para el flujo de datos de memoria que combina nuestro mecanismo de detección de errores, junto con un mecanismo de logging de bajo coste y un programa de diagnóstico. Cierta actividad interna es continuamente registrada en una zona de memoria cuya capacidad puede ser expandida para satisfacer las necesidades de validación. La solución permite descubrir bugs, reduciendo la necesidad de calcular los resultados esperados. Al detectar un error, el algoritmo de diagnóstico analiza el registro para automáticamente localizar el bug y determinar su causa. Nuestros estudios muestran un alto grado de localización y de precisión de diagnóstico a un coste muy bajo de rendimiento y área. El resultado es una simplificación de las prácticas actuales de depuración, que son enormemente manuales, incómodas y largas. En conjunto, las soluciones de esta tesis capacitan a la industria a producir procesadores más fiables, a medida que la tecnología evoluciona hacia diseños más complejos y más vulnerables

    Hierarchical reinforcement learning in a biologically plausible neural architecture

    Get PDF
    Humans and other animals have an impressive ability to quickly adapt to unfamiliar environments, with only minimal feedback. Computational models have been able to provide intriguing insight into these processes, by making connections between abstract computational theories of reinforcement learning (RL) and neurophysiological data. However, the ability of these models falls well below the level of real neural systems, thus it is clear that there are important aspects of the neural computation not being captured by our models. In this work we explore how new developments from the computational study of RL can be expanded to the realm of neural modelling. Specifically, we examine the field of hierarchical reinforcement learning (HRL), which extends RL by dividing the RL process into a hierarchy of actions, where higher level decisions guide the choices made at lower levels. The advantages of HRL have been demonstrated from a computational perspective, but HRL has never been implemented in a neural model. Thus it is unclear whether HRL is a purely abstract theory, or whether it could help explain the RL ability of real brains. Here we show that all the major components of HRL can be implemented in an integrated, biologically plausible neural model. The core of this system is a model of ``flat'' RL that implements the processing of a single layer. This includes computing action values given the current state, selecting an output action based on those values, computing a temporal difference error based on the result of that action, and using that error to update the action values. We then show how the design of this system allows multiple layers to be combined hierarchically, where inputs are received from higher layers and outputs delivered to lower layers. We also provide a detailed neuroanatomical mapping, showing how the components of the model fit within known neuroanatomical structures. We demonstrate the performance of the model in a range of different environments, in order to emphasize the aim of understanding the brain's general, flexible reinforcement learning ability. These results show that the model compares well to previous modelling work and demonstrates improved performance as a result of its hierarchical ability. We also show that the model's output is consistent with available data on human hierarchical RL. Thus we believe that this work, as the first biologically plausible neural model of HRL, brings us closer to understanding the full range of RL processing in real neural systems. We conclude with a discussion of the design decisions made throughout the course of this work, as well as some of the most important avenues for the model's future development. Two of the most critical of these are the incorporation of model-based reasoning and the autonomous development of hierarchical structure, both of which are important aspects of the full HRL process that are absent in the current model. We also discuss some of the predictions that arise from this model, and how they might be tested experimentally.4 month

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn übertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und Anpassungsfähigkeit. Diese Aspekte sind auch für neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befähigen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchführt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. Tatsächlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die über Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stützen. Zusätzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich über Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchführen. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma für die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer Plastizität. Synaptische Plastizitätsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, während sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden üblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten Einschränkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen Vorwärts- und Rückwärtsphasen. Darüber hinaus verhindern Gedächtnisbeschränkungen, dass die Geschichte der neuronalen Aktivität im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen für diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprünglich zur Steuerung des Körpers. Die Robotik stellt also den künstlichen Körper für das künstliche Gehirn zur Verfügung. Auf der einen Seite trägt diese Arbeit zu den gegenwärtigen Bemühungen um das Verständnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, ähnlich dem, was dem biologischen Gehirn widerfährt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgeführt. Zunächst werden vielversprechende synaptische Plastizitätsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller Repräsentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der Lichtintensität entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und für neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen räumlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen Plastizität, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln übertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische Plastizitätsregel namens "Deep Continuous Local Learning" eingeführt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde während eines Aufenthalts an der Universität von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen Repräsentationen auf motorische Befehle abgebildet werden. Drei Ansätze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese Ansätze, welche als synaptische Plastizitätsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den Plastizitätsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht
    corecore