
A VISUAL PIPELINE USING
NETWORKS OF SPIKING NEURONS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2019

By
Garibaldi Pineda Garcı́a

School of Computer Science

Contents

Abstract 13

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 17
1.1 Contributions . 19
1.2 Publications . 20
1.3 Thesis structure . 21
1.4 Summary . 22

2 Spiking neural networks 23
2.1 Neuron models . 23

2.1.1 Hodgkin-Huxley model . 25
2.1.2 Leaky Integrate-and-fire model 26
2.1.3 Izhikevich model . 27

2.2 Synapse models . 28
2.3 Encoding information with spikes 29

2.3.1 Rate code . 29
2.3.2 Temporal codes . 30

2.4 Neural simulation and neuromorphic hardware 31
2.4.1 The SpiNNaker project. 32

2.5 Summary . 35

3 Biological vision 37
3.1 The visual pathway . 37

2

3.2 The eye . 39

3.3 The Lateral Geniculate Nucleus (LGN) 44

3.4 Computational models of the visual cortex 45

3.4.1 Cortical architecture . 46

3.5 Summary . 49

4 Topographic connectivity deployment 50
4.1 Topographic connectivity in the visual pathway 51

4.1.1 Image kernel-based connectivity 51

4.1.2 Cortical connectivity . 53

4.2 Efficient neural network deployment on the SpiNNaker machine . . . 54

4.2.1 Description collection . 55

4.3 Connector expander . 57

4.3.1 Python interface . 57

4.3.2 SpiNNaker executor . 57

4.4 Benchmarks . 58

4.5 Summary . 62

5 Sensing the visual world 63
5.1 Image conversion to spikes . 63

5.1.1 Neuromorphic vision sensor emulation 64

5.1.2 Rank-ordered neuromorphic vision sensor 69

5.2 Visual processing . 75

5.2.1 General image representation 76

5.2.2 Orientation detection . 79

5.2.3 Motion sensing . 82

5.3 Mixing ON-OFF channels . 87

5.4 Activity measurements . 88

5.5 Summary . 90

6 Biologically-plausible supervised learning 92
6.1 Models of synaptic plasticity . 93

6.1.1 Spike-timing-dependent plasticity 95

6.2 Network architecture . 97

6.2.1 Winner-takes-all . 98

6.3 Modulated learning . 99

3

6.3.1 Third-factor rules . 99
6.3.2 Eligibility traces / synapse tagging 101
6.3.3 Use cases . 103

6.4 Voltage-based learning . 111
6.4.1 Filtered voltage change . 112
6.4.2 Plastic behaviour in a soft winner-takes-all circuit 118
6.4.3 Pattern learning . 119
6.4.4 Lateral signals . 123

6.5 Summary . 132

7 Conclusions 134
7.1 Loading networks . 134
7.2 Image acquisition . 135
7.3 Feature extraction . 135
7.4 Plastic networks . 137

7.4.1 Reinforcement learning . 137
7.4.2 Voltage-change-based learning 138
7.4.3 Comparison with traditional ANNs 140

7.5 Future work . 141

A Connector descriptions 155
A.1 Connectors . 155
A.2 Weights and delays . 158
A.3 Synapse types . 158

B Competition of Gaussian receptive fields 159
B.1 Convolution of two 1D Gaussian functions 159
B.2 Convolution of two 2D Gaussian functions 161

C Event-driven reinforcement learning rule 163

D Software repositories 166

This thesis contains 34111 words.

4

List of Tables

4.1 Minimal connectivity description. 56
4.2 Population table entry. 56
4.3 Synaptic row format. 58
4.4 Synaptic connection entry. 58

5.1 Bipolar receptive field parameters. 77
5.2 LIF parameters for static visual processing 78
5.3 Orientation detection parameters. 81
5.4 Rounded average spike counts per direction sensing filters. Speed is in

pixels per frame, at 90 frames per second. 83
5.5 Neuron parameters for motion sensing. 86
5.6 Motion detection effectiveness, true vs false positive percentage for

bouncing ball and using 2-neurotransmitter detector 87
5.7 Average activity measurements through pipeline: MNIST digits. . . . 88
5.8 Activity measurements through pipeline: SciPy images. 89

6.1 IFCurrExp neuron model parameters for credit assignment experiment. 104
6.2 STDP parameters for credit assignment experiment. 105
6.3 Learning parameters for receptive field formation experiment 107
6.4 Gabor filter parameters . 109
6.5 LIF neuron parameters for the DVDT rule 114
6.6 Izhikevich neuron model parameters 115
6.7 Izhikevich LTP and LTD areas for the DVDT rule 118
6.8 LIF parameters – lateral interaction 125
6.9 Parameters for lateral interaction with DVDT rule 125
6.10 Characteristics of φ interaction . 129
6.11 Neuron parameters for pattern learning with φ signal. 130

A.1 Weight and delay generation parameters. 158

5

A.2 Static and plastic synapse generator parameters. 158

6

List of Figures

1.1 Comparison of visual pipelines. 19

2.1 Diagram of the isopotential neuron. 24
2.2 Neuron A can send a message to neuron B through a synapse. 28
2.3 Spike rate encoding. 30
2.4 Different temporal codes . 30
2.5 Rank-order encoding example . 31
2.6 SpiNNaker base component. 33
2.7 Nine SpiNNaker nodes connected as a toroid. 34

3.1 General connectivity of the mammalian visual pathway. 37
3.2 The front and middle stages of the visual pathway 38
3.3 Diagram of cortical cell types, distribution of cells, and external con-

nectivity. 39
3.4 Layered organization in the retina 40
3.5 Receptive field components . 40
3.6 Neuron response to centre-surround receptive fields. 41
3.7 Receptive fields of different size . 42
3.8 Competition between spiking neurons. 42
3.9 HMAX model . 47
3.10 Cartoon of a Convolutional Neural Network. 47
3.11 Cartoon of an HTM Network. 48

4.1 Topographic correspondence in the visual pipeline. 51
4.2 Generated connections using a weight kernel 53
4.3 Cortex-like connectivity generator samples 54
4.4 Generating connectivity on host vs on SpiNNaker 55
4.5 Delay extension blocks. 59
4.6 Parameter generation on SpiNNaker vs. Host 59

7

4.6 Parameter generation on SpiNNaker vs. Host (cont.) 60

4.7 Synaptic matrix generation time comparison 60

4.8 Synaptic matrix generation time comparison (cont.) 61

4.9 Synaptic matrix generation time comparison (cont.) 61

5.1 Comparison of visual sensors. 64

5.2 Default NVS model behaviour. 66

5.3 Behavioural comparison given thresholds on NVS emulator. 67

5.4 Enhancements to basic photoreceptor model. 68

5.5 Comparison of threshold behaviours, fast-changing signal 68

5.6 Comparison of threshold behaviours, slow-changing signal 69

5.7 Response to signals when the NVS includes an adaptive threshold and
history decay . 70

5.8 NVS emulator response to micro-saccadic-like motion 71

5.9 Diagram of a rank-ordered NVS . 71

5.10 First three iterations of rank-order NVS. 73

5.11 Simple attention mechanism. 74

5.12 Spike counts for rank-order NVS with simple attention. 74

5.13 Aspects of visual processing SNN. 75

5.14 Formation of centre-surround receptive fields 78

5.15 Centre-surround response at different scales. 79

5.16 Orientation detection receptive fields. 81

5.17 Orientation filtering results. 82

5.18 Multiple events occurred in sensed areas in a sequence. 83

5.19 Structured connectivity for motion detection. 84

5.20 Motion sensing neuron dynamics. 85

5.21 Network used to test motion sensing neurons 85

5.22 Output of motion sensing circuit . 86

5.23 Cross-channel redundancy removal 87

5.24 Input vs output spikes . 90

6.1 STDP experimental data and curves 97

6.2 Winner-Takes-All network . 98

6.3 Cartoon of third factor interaction on plasticity. 99

6.4 Eligibility trace. 101

6.5 Credit assignment experiment network. 104

8

6.6 Behaviour of the network in the credit assignment experiment. 105

6.7 a) Distance-dependent network to learn regions of MNIST digits. . . . 106

6.8 Sum of weights for neurons with the same class per channel 107

6.9 Hand-picked weight averages . 108

6.10 Gabor filters for V1-like filtering. 109

6.11 Competition among different feature detectors. 109

6.12 Results of feature detection stage . 110

6.13 Full pipeline for the digit classifier. 110

6.14 Confusion matrices for rate and time criteria. 111

6.15 Example of weight evolution through training. 111

6.16 LIF neuron - DC response. 113

6.17 Samples of internal state of neuron 114

6.18 Average weight change near post-synaptic spikes. 115

6.19 Izhikevich neuron model behaviour 116

6.20 DVDT experiments with Izhikevich neurons 116

6.21 Results of the experiments for the DVDT rule as implemented in the
SpiNNaker machine. 117

6.22 Simple WTA network . 119

6.23 Activity for the STDP and DVDT plasticity rules. 120

6.24 Weight change comparison for plasticity rules 120

6.25 SWTA network with visual pattern as input 121

6.26 Weight changes after alternating pattern simulation 121

6.27 Activity during the alternating pattern input to SWTA circuit simulation 122

6.28 Zoom to activity of alternating pattern input to WTA circuit simulation 122

6.29 Effect of lateral signal to weight change 124

6.30 Effects of lateral inputs to WTA network 125

6.31 Weight change for network without lateral interaction 126

6.32 Activity of network for student and teacher networks. 126

6.33 Activity of network for student and teacher networks 127

6.34 Changes to synaptic efficacy for WTA network with lateral interaction 127

6.35 Reaction of input current and membrane voltage to lateral current . . 128

6.36 Simple φ experiment setup . 129

6.37 Weights at start and end of training using an φ signal 131

6.38 Weight evolution during training with φ signal. 131

6.39 Spike activity after training with φ signal. 132

9

7.1 Data retrieval with 1D vs 2D populations 141

10

Acronyms

AE Auto-Encoders.

AMPA Excitatory neurotransmitter whose effect is brief.

ANN Artificial neural network.

API Applications programming interface.

CNN Convolutional neural network.

CPU Central processing unit.

CRC Cyclic redundancy check.

DA Dopamine; modulatory neurotransmitter which is associated with reinforcement
learning.

DVDT Voltage-change plasticity rule.

GABAB Inhibitory neurotransmitter whose effect is long-lasting.

GANs Generative adversarial networks.

GPU Graphics processing unit.

HH Hodgkin-Huxley neuron model.

LGN Lateral geniculate nucleus, part of the visual region in the thalamus.

LIF Leaky Integrate-and-Fire neuron model.

LTD Long-term depression, negative change done to synaptic efficacy..

11

LTP Long-term potentiation, positive change done to synaptic efficacy..

MDU Motion detection units.

MNIST MNIST database of handwritten digits, a subset of the original National In-
stitute of Standards and Technology (NIST) dataset.

NMDA Excitatory neurotransmitter whose effect lasts a long time and requires the
membrane potential to be at a certain level to be effective.

NVS Neuromorphic vision sensor.

RBM Restricted Boltzmann machine.

SAC Starburst amacrine cell.

SDR Sparse distributed representation.

SDRAM Synchronous dynamic random access memory.

SNN Spiking neural network.

SST SpiNNaker software tool-chain.

STDP Spike-timing-dependent plasticity.

SVD Singular value decomposition.

SWTA Soft winner-takes-all, a network circuit in which some neurons’ activity in-
hibits some of their peers.

WTA Winner-takes-all, a network circuit in which a single neuron’s activity inhibits
all its peers.

12

Abstract

A VISUAL PIPELINE USING NETWORKS OF SPIKING NEURONS

Garibaldi Pineda Garcı́a

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2018

Computer vision has seen great advances recently due to artificial neural networks
(ANNs) with multiple hidden layers; in particular, convolutional neural networks (CNNs)
have shown great flexibility in the tasks they are able to perform. These networks are
usually trained in a supervised manner using the back-propagation algorithm.

Spiking neural networks (SNNs) are the third generation of neuron simulation and
have been proven to have better mathematical properties than previous generations.
This approach to simulating biological neurons uses pulses to communicate the state
of the units. The event-driven nature of SNNs imposes challenges for computer vi-
sion tasks. For example, neuromorphic vision sensors generate data when changes
in their field of view are perceived; in contrast, standard cameras send full images.
Furthermore, SNN training methodologies are not as mature as previous generations’
procedures; critically, biologically-plausible supervised learning algorithms are scarce.

In this thesis we explore event-based computer vision using spiking neurons as
computation units; the main goal is to build a fully-spiking visual pipeline. Firstly,
we develop methods to transform standard images into spike representations. We then
process the generated spike trains to extract salient features using biological princi-
ples. Finally, supervised learning algorithms for SNNs are developed and applied in a
computer vision context.

13

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

14

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

15

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

The experience I had towards obtaining a doctoral degree has been mentally stimulat-
ing and challenging. I wholeheartedly express my gratitude to my supervisor Professor
Steve Furber for his patience and the interesting discussions as, without them, this the-
sis would not have been attainable.

I want to thank the people of México whose contributions allowed the National
Council for Science and Technology (CONACyT) to sponsor my PhD studies.

I would like to show my deepest appreciation to my colleagues John V. Woods,
Simon Davidson, Michael Hopkins, Luis Plana and Jim Garside for the diverse topics
we had the chance to discuss. Their knowledge has nurtured my understanding of
a broad range of topics. My eternal gratitude goes to James Knight, Alan Stokes,
Andrew Rowley and Oliver Rhodes for their help in disentangling my view of the
SpiNNaker software stack. Many thanks to my lab partners Qian Liu, Petruţ Bogdan,
Mantas Mikaitis, Robert James, Patrick Camilleri and James Knight for the talks and
collaborations which made my research possible.

The path towards the PhD would have not been bearable without the presence of
my friends. I would like to thank Qian Liu, Mireya Paredes López, Valentina Ramı́rez
Paredes, Thanos Stratikopoulos, Crefeda Rodrigues, Petruţ Bogdan, Mantas Mikaitis,
Robert James, Patrick Camilleri, James Knight, Nuno Miguel Nobre, Gengting Liu
and Raúl Garcı́a for all the joy you brought to my life.

I want to thank my family for their love, support and encouragement towards this
goal. My parents and siblings have shown great understanding and acceptance of my
quirks; for this I am forever grateful. My nephews and nieces have given me great
moments of happiness and joy which lift my mood immediately. I specially want to
express my love and gratitude to my wife whose company, love and care have kept me
going through this journey. This degree is partly hers.

16

Chapter 1

Introduction

Vision is the primary sense for many modern human activities, from driving to read-
ing. In fact, humans have even modified the environment for rapid visual information
acquisition by, for example, adding white strips to designate safe street-crossing areas
or land-slide sign posts near some mountains. Given this existing infrastructure allow-
ing rich interaction with the world it would be convenient to have a machine which
could make use of it for tasks such as navigation. Research on emulating the human
visual system has been ongoing since around the 1960s [Szeliski, 2010]. To this day,
computer vision systems have come close to human performance in specific tasks, but
general-purpose artificial vision remains an open question. Some visual tasks from
static input are object detection, recognition, localization and identification; whether
the object is present, what and where in the image it is, and what instance of the cat-
egory it is (e.g. a human in the animal category). These usually require modelling a
function which maps from raw pixel data to required information (e.g. categories).

Recent advances in computer vision base their success on Artificial Neural Net-
works (ANNs), particularly Convolutional Neural Networks (CNNs) [Goodfellow et al.,
2016]. This is mainly due to the continuing increase in computational resources and
training data; for example digit-recognition networks can be trained in hours while
crunching through 60,000 labelled samples. These models are typically trained and
executed on Graphic Processing Units (GPU); while the parallel nature of GPUs al-
lows them to accelerate computations, the hardware is not fully compatible with neural
networks, thus energy efficiency is low.

A hardware platform which supports biological neural network architectures should
allow us to execute ANNs –and vision tasks– in an energy-efficient way. SpiNNaker
is a system specifically constructed to simulate Spiking Neural Networks (SNNs); it

17

18 CHAPTER 1. INTRODUCTION

uses multiple low-power ARM cores arranged in chips with shared memory, every
chip can connect to 6 neighbours and communication is asynchronous [Furber et al.,
2013]. Using standard Central Processing Units (CPUs) as computing units provides
an excellent platform for research as it is possible to program different neuron, synapse
and plasticity models. Since the SpiNNaker machine is also a low-power device, it is
suitable for mobile applications such as robots.

Computer vision relies on static images (or sequences of them) which is very dif-
ferent from biological vision where sensors emit fewer signals, mainly of changes
occurring in the environment. Researchers have shown that collecting statistics on
event-based sensors, which are similar to biological sensors, can lead to full visual
reconstruction [Kim et al., 2016]. Something similar may be happening in the human
cortex where plasticity could be forming a model of the world which is perceived as
a static image. Given that mammalian vision is still superior to its machine counter-
part, we can use it as an inspiration to develop a pipeline which can solve many vision
tasks. The components of the visual pipeline in mammals are: eyes (sensors), thala-
mus (flow control/attention) and cortex (modelling) [Hubel et al., 1995]. Each of these
components has been specialized through evolution; moreover, each can be thought of
as an independent brain, thus simulating them is a complex task. Cells in the retina,
the neural structure in the eye, communicate through local voltage gradients and, at the
output, ganglion cells emit impulses known as spikes. In the thalamus and cortex most
communication is done through spikes and computation is thought to be local and a
function of these signals.

Visual processing using event-based sensors is a relatively new field and perform-
ing the required computation with spiking neurons imposes additional challenges. The
work presented here aims to explore the requirements and possibilities of a biologically-
inspired, fully-spiking visual processing pipeline. In mammals, nature has run an ex-
periment to make robust and energy-efficient vision organs. We will extract principles
from these and use them to generate visual pipeline components.

In this thesis we explore event-based computer vision and make use of biological
principles to develop a vision pipeline making use only of SNNs. Using the SpiN-
Naker machine for this purpose imposes challenges; this work will address these de-
mands. We will build a biologically-plausible, SNN-based computer vision pipeline
(Figure 1.1) and evaluate it at each stage. For example, when converting images or
video to spike representations we compare the activities of pixels. Another example
is that, at the second stage of the pipeline, we measure the accuracy of the responses

1.1. CONTRIBUTIONS 19

Generic visual pipeline

Image
acquisition

Feautre
extraction

Model
building

Image-to-spike
conversion

Multi-scale,
orientation &

motion

Supervised
learning

algorithms

Proposed spiking visual pipeline

Figure 1.1: Comparison of visual pipelines.

from direction selective circuits.

Contributions

The main contributions of this Thesis are:

◦ Image to spike representation conversion. A large collection of visual data has
been acquired by the traditional computer vision community. A way to make use
of these resources for SNN research is to convert them into a spiking represen-
tation using software techniques; this has the additional benefit of establishing a
way to compare standard computer vision techniques with their spiking networks
equivalents. We present various methods to convert static images and video into
spiking representations.

◦ Visual processing building blocks and efficient deployment. State of the art
visual systems extract features from raw images. We develop spiking versions of
edge and oriented bar detection, multi-scale representation, and motion sensing
algorithms. We present a methodology for increasing the speed at which neural
networks with distance-dependent connectivity are sent to the SpiNNaker ma-
chine. This methodology can be used to quickly deploy the networks used for
feature extraction.

◦ Supervised learning algorithms for spiking neural networks. To collect the
statistics of incoming stimuli, neural networks modify their synaptic weights.
This is done based on plasticity rules; we demonstrate voltage-based and modu-
lated spike-timing-based rules.

20 CHAPTER 1. INTRODUCTION

Publications

Most of the work which led to the content of this Thesis has been published in the
following articles:

◦ Benchmarking Spike-Based Visual Recognition: A Dataset and Evalua-
tion [Liu et al., 2016]. Liu, Q., Pineda Garcı́a, G., Stromatias, E., Serrano-

Gotarredona, T., and Furber, S. B. (2016). Frontiers in Neuroscience. In this pa-
per we propose multiple algorithms to convert standard image datasets into spik-
ing representations. The techniques presented are the following: rate-based Pois-
son spike generation, rank order encoding, and recorded output from a silicon
retina with both flashing and oscillating input stimuli. An evaluation method-
ology is also shown to establish fair comparison of model and hardware perfor-
mance. Finally, different network architectures are evaluated using rate-based
input and the proposed methodology. The author contributed to this paper by
implementing the Rank-order encoding and writing about it; additionally, we
performed general repository management.

◦ PyDVS: An extensible, real-time Dynamic Vision Sensor emulator using off-
the-shelf hardware [Pineda Garcı́a et al., 2016]. Pineda Garcı́a, G., Camilleri,

P., Liu, Q., and Furber, S. (2016). 2016 IEEE Symposium Series on Compu-

tational Intelligence (SSCI), pages 1–7. Neuromorphic Vision Sensors (NVSs)
have excellent technical capabilities, though they remain scarce and relatively
expensive. We propose a system inspired by the behaviour of an NVS but using
a conventional digital camera as a sensor and a PC to encode the images. While
our primary goal is to provide spiking neural networks with a live, real-time
input, we have also been successful in transcoding well established image and
video databases into spike train representations. The contribution of the author
in this paper was the development of an NVS emulator and writing about it.

◦ Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic Sys-
tem [Mikaitis et al., 2018]. Mikaitis, M., Pineda Garcı́a, G., Knight, J. C., and

Furber, S. B. (2018). Frontiers in Neuroscience. SpiNNaker is an excellent
tool for investigating multiple aspects of SNNs, among them synaptic plastic-
ity which is thought to be a key mechanism behind learning. Standard Spike-
Timing-Dependent Plasticity (STDP) rules have already been implemented on
SpiNNaker. Unfortunately, STDP is an unsupervised learning mechanism, so

1.3. THESIS STRUCTURE 21

reinforcement signals require modification of the rule. To do so, we add a third
factor to the plasticity algorithm which modulates weight changes. This paper
shows the implementation of dopaminergic interaction with STDP on the SpiN-
Naker system and demonstrates it with a Pavlovian conditioning experiment. In
this paper, the author’s contribution was the conditioning experiment as well as
optimizations to the SpiNNaker implementation which allowed the experiment
to execute in real time using large populations (greater than a thousand neurons).

◦ Spiking neural networks for computer vision [Hopkins et al., 2018]. Hopkins,

M., Pineda Garcı́a, G., Bogdan, P. A., and Furber, S. B. (2018). Interface Focus

of the Royal Society. In this paper we demonstrate the use of SNNs for computer
vision using event-based processing on the SpiNNaker machine. Among other
networks we show the conversion of NVS input to a multi-scale representation
for spike count reduction. Making use of the flexibility offered by SpiNNaker
we develop a spike-based motion detection network. Additionally, we explore
structural synaptic plasticity as a mechanism to learn input statistics. The au-
thor contributed to this work with the multi-scale representation network and the
motion sensing neural network.

Thesis structure

Chapter 2 provides an introduction to artificial neural networks and, particularly, to
spiking neuron and synapse models, some of which will be used in later chapters.
Additionally, we provide an overview of neuromorphic hardware. Since most of the
experiments in this thesis were run on the SpiNNaker machine (except for the image
acquisition section), we give special attention to a review of the SpiNNaker machine.

Chapter 3 provides an overview of vision in mammals, from which we obtain in-
spiration to develop the networks presented in this document. The image processing
section of the pipeline follows connectivity found in the mammalian retina; while the
model-building stage has closer resemblance to computational models of the cerebral
cortex.

Most models of visual processing make use of distance-dependent connectivity;
crucially, convolutional networks repeat weights and load times can be greatly in-
creased. In Chapter 4 we present a solution to efficiently upload networks with this
characteristic to the SpiNNaker machine.

22 CHAPTER 1. INTRODUCTION

Chapter 5 presents visual processing networks inspired by retinal and thalamic cir-
cuitry. The connectivity required by these networks can be efficiently loaded to the
SpiNNaker machine via the optimizations presented in Chapter 4. These networks
perform standard computer vision operations such as image filtering, multi-scale rep-
resentation and motion detection.

In addition to these vision operations we would like to have a system which learns
the statistics of its inputs. To learn, plasticity algorithms are required to adjust the
weights in an SNN; supervised versions of these procedures are studied in Chapter 6.
Finally, a summary of the research and suggestions for future work are presented in
Chapter 7.

Summary

A general description of the research presented in this thesis was given in this Chapter,
along with concrete contributions, publications and short description of its structure.
The following Chapter provides a review of spiking neural network basic components:
neurons and synapses. We will also give an overview of the SpiNNaker machine, a
custom hardware platform to simulate SNNs using standard digital processors.

Chapter 2

Spiking neural networks

In this Chapter we present background knowledge on artificial neural networks which
are the computing elements for most simulations presented in this Thesis. We also
provide a review of the SpiNNaker massively-parallel machine designed to simulate
spiking neural networks (SNNs) efficiently. Research on artificial neural networks has
focused on an abstraction of biological neurons where units transmit continuous values
which are thought to represent the rate of activity of biological neurons. Spiking neural
networks behave closer to their biological counterparts than conventional ANNs and
are considered the state of the art. Simulating SNNs on electronic hardware can be
efficient and, sometimes, execute tasks at faster than real-time speed. In particular, ex-
perimenting with network architectures, neural behaviour and learning algorithms can
be easier on programmable digital hardware than a static –or configurable– hardware
simulators.

Neuron models

Mathematical models for a neuron’s membrane potential behaviour started appearing
in the first half of the 20th century [Brunel and Van Rossum, 2007]. They range from
extremely detailed ones that consist of several differential equations to simple ones
with just one or two; and they all model the electrical properties of nerve cells. A
particular group of models describes the neuron as an equipotential sphere, that is, all
its surface has the same electrical potential (Figure 2.1) [Dayan and Abbott, 2001].

Since the neuron is modelled as a sphere, the membrane capacitance Cm and resis-

tance Rm are specified in relation to its area A.

23

24 CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.1: Diagram of the isopotential neuron. Adapted from Dayan and Abbott
[2001].

Rm = rm/A (2.1)

Cm = cmA (2.2)

where rm and cm are the resistance and capacitance per unit area, respectively. Their
values are rm ≈ 1MΩmm2 and cm ≈ 10nF/mm2. The basic relations of the electrical
properties of the membrane shown in Figure 2.1 are as follows:

V = IeRm , (2.3)

Q =CmV , (2.4)

Cm
dV
dt

=
dQ
dt

. (2.5)

When the membrane’s potential (V) changes, it does so according to Eq. 2.3. Vari-
able Q is the membrane’s electrical charge which is proportional to the product of its
voltage and capacitance, as seen in Eq. 2.4. Currents originated by ion channels are
approximated to a linear behaviour, and can be modelled using Ohm’s law

ix = gx(V −Ex) (2.6)

where Ex is the reverse potential due to ion exchange in channel x and gx is the per unit
area conductance of the channel. The total membrane current due to channels (per unit

2.1. NEURON MODELS 25

area; im) will be
im = ∑

x
ix = ∑

x
gx(V −Ex) (2.7)

To obtain the total membrane current (Im) due to ion channels, Eq. 2.7 has to be
multiplied by the total area A.

Im = imA (2.8)

The right hand side of Eq. 2.5 is the total current in the membrane. Since we
are adding an external current Ie of opposite direction to Im, the total current in the
membrane is

IT = Ie− Im (2.9)

Combining equations 2.5 and 2.9 with the fact that i = dQ/dt, gives the basic
equation used by most single-compartment models [Dayan and Abbott, 2001].

Cm
dV
dt

= Ie− Im (2.10)

cm
dV
dt

=
Ie

A
− im (2.11)

Hodgkin-Huxley model

In 1952, Hodgkin and Huxley published a paper that reflected their ground-breaking
experimental work on the axon of the squid [Hodgkin and Huxley, 1952]. They found
that the currents in the membrane are mainly due to changes in the concentration of
three ions: potassium (K+), sodium (Na+) and chlorine (Cl−). The first two are re-
lated to voltage dependent conductance and the last to a leakage current. Under these
considerations [Izhikevich, 2007a], Eq. 2.10 becomes:

Cm
dV
dt

= Ie−gKn4(V −EK)−gNam3h(V −ENa)−gL(V −EL) (2.12)

the functions n, m and h have the following behaviour

dn
dt

= αn(V)(1−n)−βn(V)n , (2.13)

dm
dt

= αm(V)(1−m)−βm(V)m , (2.14)

dh
dt

= αh(V)(1−h)−βh(V)h ; (2.15)

26 CHAPTER 2. SPIKING NEURAL NETWORKS

these represent the activation and inactivation dynamics of the potassium, sodium and
chlorine channels, respectively.

The behaviour of αx and βx in Equations 2.13, 2.14 and 2.15 is given by:

αn(V) = 0.01 10−V
exp(10−V)/10−1

, βn(V) = 0.125exp−V/80 ,

αm(V) = 0.1 25−V
exp(25−V)/10−1

, βm(V) = 4exp−V/18 ,

αh(V) = 0.07exp−V/20 , βh(V) = 1
exp(30−V)/10+1

,

(2.16)

these functions represent how channels change from an open and closed state and are
characterized to have a resting membrane potential (V) at 0mV. Per channel potentials
at equilibrium state are:

EK =−12mV, ENa = 120mV and EL = 10.6mV . (2.17)

Finally, the maximum conductance values are commonly set to

gK = 36mS/cm2, gNa = 120mS/cm2 and gL = 0.4mS/cm2 . (2.18)

The Hodgkin-Huxley (HH) model is one of the most detailed so far; it has served as the
inspiration and foundation of many studies. This model is computationally expensive,
so digital hardware to simulate it in real-time would require high energy consumption.

Leaky Integrate-and-fire model

The Leaky Integrate-and-Fire (LIF) model is one of the oldest neuron models, but is
still used due to its simplicity and low computational cost. In the passive integrate-

and-fire all the membrane conductances are modelled by a single term GL.

Cm
dV
dt

= Ie−GL (V −EL) (2.19)

Cm
dV
dt

= Ie−GLV +GLEL (2.20)

EL is the reversal potential of the neuron and the rightmost term (GLEL) is also known
as the leak current which pushes the membrane potential to the reversal value. If

2.1. NEURON MODELS 27

Eq. 2.20 is multiplied by the membrane resistance Rm, we obtain

τm
dV
dt

= RmIe−V +EL (2.21)

where τm is called the membrane time constant and can be interpreted as the rate at
which the neuron moves towards its resting state. Integrating Eq. 2.21 results in an
expression for the voltage behaviour under non-spiking conditions.

V (t) = EL +RmIe +(V (0)−EL−RmIe)e−t/τm (2.22)

Spiking behaviour is added artificially once V (t) reaches a certain threshold, afterwards
it is reset back to V (0). This is also set to a special value (Vreset), usually lower than
the resting potential, in most SNN simulations.

Since it is simpler to characterize the LIF model we will use this to develop the
networks which do visual processing found in Chapter 5.

Izhikevich model

The dynamics of the Hodgkin-Huxley model were studied using bifurcation diagrams
and approximated by FitzHugh [1961]. Using similar ideas and techniques, Izhikevich
developed what he named the simple model of spiking neurons [Izhikevich, 2003].
This model emulates the dynamics of the membrane voltage in the sub-threshold area
and it consists of a pair of equations:

dv
dt

= 0.04v2 +5v+140−u− I (2.23)

du
dt

= a(bv−u) (2.24)

where v represents the membrane voltage and u a negative feedback to v. The rising
part of the spiking behaviour is produced by the equations, though an artificial voltage
reset is needed afterwards. When variable v reaches 30mV or more, variables v and u

are set as follows:

v = c , (2.25)

u = u+d . (2.26)

28 CHAPTER 2. SPIKING NEURAL NETWORKS

Pre-synaptic
neuron

Post-synaptic
neuron

A B
Synapse

Axon Dendrite

Figure 2.2: Neuron A can send a message to neuron B through a synapse.

where parameters a, b, c and d are dimensionless. Changes in the values of the param-
eters result in different neuron responses [Izhikevich, 2007a]. Izhikevich’s model is
a better approximation to the HH model, when compared to the LIF model described
above, and the computational cost is reasonably low [Izhikevich, 2004]. It is the dy-
namics of this neuron model which incited us to use this model to test the voltage
change-based rule presented in Chapter 6.

Synapse models

As we have described, information processing elements in the nervous system are
known as neurons, which are cells that posses branch-like structures (axons and den-
drites) enabling fast and long-distance communication, when compared to other cell
types in the body. To communicate to other neurons, signals need to traverse the axon
of a source neuron (A in Figure 2.2), then cross a channel known as a synapse (middle
of Figure 2.2), and, finally travel through the dendritic tree in the target neuron (B in
Figure 2.2) to reach its body (soma).

We take special interest in the current produced by the reception of different neu-
rotransmitters in the post-synaptic neuron [Gerstner et al., 2014]. This way, the total
input current to a (post) neuron is given by the sum of the currents provided by these
channels,

Iin =
Npre

∑
i

Ii,post . (2.27)

There are a couple of ways to model synapse behaviour, the simplest is to equate

2.3. ENCODING INFORMATION WITH SPIKES 29

synaptic efficacy (wpre,post) and the current a spike will provide to the destination neu-
ron:

Ipre,post(t) = wpre,postgpre,post(t) (2.28)

where the function gpre,post(t) can generate shapes for the post-synaptic current (e.g.
delta, exponential, multi-exponential).

The second method to simulate synapse behaviour is to model the conductance of
ion channels

Ipre,post(t) = wpre,postgpre,post(t)(u(t)−Esyn) . (2.29)

Similarly to the previous case gpre,post(t) serves as a current-shaping function, u(t)

is the membrane potential and Esyn is the synaptic reversal potential. The interaction
between the two last quantities is the main difference, it can be seen as a saturation
mechanism for input currents.

Encoding information with spikes

Neurons in the mammalian brain use voltage pulses (spikes) to communicate with each
others. It’s thought that these spikes encode information, though the encoding is still
unknown. There are many hypotheses of how neurons encode information in spike
trains, we will explain the two main ones: rate and temporal encodings [Dayan and
Abbott, 2001; Gollisch, 2009].

Rate code

Spike-rate encoding, in its simplest case, represents information with the number of
action potentials that a neuron generate in a time interval. It is one of the earliest
attempts to explain neural encoding and gives a nice transition from traditional artificial
neural networks to spiking ones. Furthermore, there is evidence that neurons in direct
contact with sensory or motor organs encode information in this way (i.e. the stronger
a muscle is flexed, the higher the rate of spikes generated by neurons near muscular
tissue) [Brunel and Van Rossum, 2007].

Given a time period T and a spike resolution of ts, we can encode, at most, nv =

bT/tsc values. In this way we discard any temporal information embedded, no matter

30 CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.3: Spike rate example, all 10 examples encode the same value for they all
have a 1 spike per 10ms window.

when the spike was received the encoded value will still be the same. Figure 2.3 shows
the case of a 100Hz signal observed in a 10ms window.

Emitting a spike can be considered costly energy-wise, so using rate coding every-
where in the brain would require high energy, but the brain is rated at approximately 20
watts. Moreover, neurons would have to wait until sufficient events are received to dis-
tinguish between rates; this would “slow-down” reaction times and be a disadvantage
from a survival point of view.

Temporal codes

In temporal encoding the precise time a spike is emitted reflects the input value; this
translates into a larger representation capacity [VanRullen et al., 2005]. Although the
precise time is a popular hypothesis, it is unlikely that temporal precision is part of neu-
ral computation, at least on a millisecond scale. The term temporal code encompasses
different encoding techniques, some of which are briefly introduced bellow.

Time-to-first-spike. Information is encoded in the time it takes a neuron to spike after
a certain temporal barrier is set (Figure 2.4a). The value is usually greater if the
time between the barrier and spike is shorter.

(a) Time-to-first-spike (b) Synchrony (c) Phase

Figure 2.4: Different temporal codes

2.4. NEURAL SIMULATION AND NEUROMORPHIC HARDWARE 31

Figure 2.5: Rank-order encoding example. Since all the examples have neurons firing
in the same order, they all encode the same value.

Synchrony. Whenever neurons fire at the same time, they should be classified to-
gether. A value would be represented by different combinations of neurons firing
at the same time (Figure 2.4b).

Phase. The values are encoded in the phase of the spikes with respect to a background
oscillating signal or rhythm (Figure 2.4c). This is similar to the time-to-first-
spike encoding, but values can also be modulated by the background signal.

Rank-order. The temporal order of the spikes, and not their emission time, is what
determines the value. Notice that it is also necessary to have a temporal reference
as with the time-to-first-spike approach.

An issue that has been noted on rank-order encoded information is the fact that
spike trains that are notably different (Figure 2.5) are interpreted as the same
value. This might be corrected by changing the metrics used to determine the
uniqueness of a spike train set [Cessac et al., 2010]. On the other hand, this same
issue could be seen as a robust way of encoding information.

Neural simulation and neuromorphic hardware

While computers have reached great processing power, they require high energy con-
sumption to achieve it. Furthermore, achieving human-level performance in certain
tasks (e.g. pattern recognition, inference, puzzles) has pushed the use of Graphic Pro-
cessing Units (GPUs) as parallel, general-purpose processors to train neural networks.
Although GPUs are now considered highly parallel computing platforms and could be
seen as a natural fit for neural networks, their data communication strategies are of
a different nature. These processing units were built to deal with streaming data in
parallel, particularly single pixels or vertices loaded from contiguous regions in mem-
ory. Neural networks, in contrast, require non-contiguous data; thus the efficiency is

32 CHAPTER 2. SPIKING NEURAL NETWORKS

usually lower than expected. Moreover, GPUs consume large amounts of energy with
high performance versions utilizing hundreds of watts [Wikipedia, 2017a,b].

In comparison, human brains are estimated to consume about 20 watts while per-
forming learning and inference simultaneously. Emulating biological computation cir-
cuitry could result in energy-efficient and near human-level performing systems. The
term neuromorphic (i.e. that resembles neural form) is attributed to Mead and Ismail,
probably coined as they worked on the implementation of silicon retinas [Mead and
Ismail, 2012; Mead and Mahowald, 1988]. The main requirements for hardware to be
considered neuromorphic are: low power consumption, real-time functionality, scal-
ability and fault tolerance. Further work on neuromorphic sensors has led to silicon
retinas, cochleas and visual motion sensors, to name a few [Liu and Delbruck, 2010].
While sensory input is of utmost importance for every system, a platform to make use
of these sensors for AI tasks is still an open research problem.

Neuromorphic hardware platforms which combine the knowledge acquired from
neuroscience and artificial neural networks research have recently been developed;
they may be classified based on the type of hardware/software combination used. Hard-
ware neurons are analogue circuits that behave like a mathematical model of a neuron;
software neurons simulate the model using a general digital processor. Similar distinc-
tions can be made for synapses, axonal and dendritic trees [Liu et al., 2016; Misra and
Saha, 2010].

The SpiNNaker project.

The SpiNNaker project aims is to build a massively-parallel, bio-inspired, neuromor-
phic computing platform; the largest machine will contain ∼1 million CPU cores and
will be able to simulate ∼1 billion neurons in real time. As for any multi-core system,
communication between cores is fundamental; the SpiNNaker chip has been designed
to implement spiking neural networks efficiently, thus networking is specialized (but
not limited) to transmit spikes. There are currently two board models the Spinn-3,
which hosts 4 SpiNNaker chips, and the Spinn-5 that houses 48 nodes. These boards
are also known as 102 and 103 machines, respectively. Larger systems are built using
Spinn-5 boards as the basic construction block:

104 machine. A desktop frame that has 12 Spinn-5 boards, which translates into
∼10,000 ARM cores.

2.4. NEURAL SIMULATION AND NEUROMORPHIC HARDWARE 33

(a) (b)

Figure 2.6: SpiNNaker base component. a) SpiNNaker chip die. b) Stitch-bonded
SDRAM on top of the SpiNNaker chip.

105 machine. A server-like machine built using five card frames, each with 24 Spinn-
5 boards in them. They will all be allocated in a rack cabinet, this machine has
∼100,000 cores in it.

106 machine. The largest machine is still work in progress and will be composed of
10 racks, each with similar capacities to the 105 machine (∼1,000,000 cores).

SpiNNaker chip overview

SpiNNaker chips contain 18 ARM968 cores, each with tightly-coupled program and
data memory. Each core has a Communication Network-on-Chip (C-NoC) interface
that, with the help of an in-die network router, allows inter- and intra-chip communi-
cations (Figure 2.6a). On top of the chip lies 128 MBytes of Synchronous Dynamic
Random Access Memory (SDRAM) whose die is stitch-bonded to the chip for faster
access (Figure 2.6b).

One of the cores acts as a system controller and, typically, 16 cores will run user
applications. Any processor in a chip will have access to four memory spaces. Instruc-
tion and Data memories are local-only spaces (i.e. per-core memory) and composed of
a 32- and a 64-KByte tightly-coupled blocks of memory, respectively. There are also a

34 CHAPTER 2. SPIKING NEURAL NETWORKS

SpiNNaker Chip

SDRAM

0,1 1,1 2,1

0,2 1,2 2,2

0,0 1,0 2,0

Figure 2.7: Nine SpiNNaker nodes connected as a toroid.

32 KByte block of on-chip Static RAM (SRAM) and the 128 MByte off-die SDRAM,
both of which are node-local (i.e. seen by all cores in the chip). The cores are able to
access the SDRAM and SRAM using the System Network-on-Chip (S-NoC) and no
inter-chip memory coherence mechanisms are present [Furber et al., 2013]. SDRAM
is commonly used for large data structures such as the synaptic weight matrices, while
the SRAM is used for core-to-core message passing.

Communications

One of the notable aspects of the SpiNNaker system is the flexibility of its network-
ing infrastructure. Communication in the global scale is asynchronous and locally
synchronous. There are six direct links from any source node to its neighbours; this
provides sufficient connections to form an efficient network that may be configured to
form a toroid (Figure 2.7) on a 2D circuit board.

Packets are the only way a SpiNNaker chip can communicate with another; a core
sends a packet to the local router where it is forwarded to one or more targets. If the
target is in the same node, the router will deliver it directly; otherwise, the router sends
the packet to an adjacent node whose router will decide the appropriate move. Packets
are either 40- or 72-bits long, consisting of a control byte and one or two 32-bit words.

2.4. NEURAL SIMULATION AND NEUROMORPHIC HARDWARE 35

There are four packet types, each of which is routed differently by the router. Near-

est neighbour (NN) and point-to-point (P2P) packets may be generated by any core,
but will only reach the monitor core on the target node. NN packets are mainly used
for boot and recovery and P2P for code distribution and system control. Fixed route

(FR) packets may be emitted by any core and sent to any other core, though the route
may not be changed once an application is running. This packet type is generally used
for debugging purposes. The multicast (MC) packet also permits core-to-core trans-
mission, so user applications use this type to transmit data. If the packet has multiple
targets, a router along the way will duplicate it and fork the route. This is a highly de-
sired feature for neural applications, since one neuron’s axon may connect to multiple
neurons’ dendrites [Patterson et al., 2012]. MC packets are formed using address-event
representation (AER), so they posses a time stamp and a full source address (node,
core, and neuron identifications).

Communication to the outside world is done through 100 Mbit/s Ethernet, Gen-
eral Purpose Input/Output (GPIO) lines and through Field-Programmable Gate Arrays
(FPGAs, on the 48-node boards).

Programming modes

Since neurons are thought to react as spikes arrive at their dendrites, SpiNNaker chips
support event-based computation triggered by specialized interrupt hardware. There
are, primarily, two choices while trying to program SpiNNaker.

The first is through the Spin1 applications programming interface (API) following
an event-driven model. In this way applications need specify only what functions
to execute when an event occurs. Events include multicast packet reception, direct
memory access (DMA) completion, timer ticks, SpiNNaker datagram protocol packet
arrival, and custom user events. Using this type of programming allows developers to
create any application and not only neural network simulations [Project, 2018].

The second is to use the neural network interface PyNN [Davison et al., 2009],
which provides a common front-end to different simulators (e.g. NEST, Brian, sPyN-
Naker). Since the descriptions are stated using the Python programming language and
because it is a high level description, the learning curve for this approach is moder-
ate [Project, 2018]. SpiNNaker’s PyNN interface is built on top of the Spin1 API, and
it launches applications on the system to perform the computations that have been re-
quested in the PyNN script. A common PyNN application would set-up the simulator
parameters, describe neural populations, establish the appropriate projections and start

36 CHAPTER 2. SPIKING NEURAL NETWORKS

the simulation. The sPyNNaker team has added modules for real-time interaction with
PyNN scripts and facilities for adding new neural and synaptic models.

Summary

This chapter reviewed spiking neuron models of varying levels of accuracy; a real-
time simulation will likely benefit from less complex models since they require fewer
computational resources. Spiking neural networks are more flexible than traditional ar-
tificial neurons, in particular the temporal dynamics can easily be configured and used
for time-varying inputs. Furthermore, if information is represented using temporal
encoding, these dynamics should help produce a more efficient system.

An introduction was also given to neuromorphic hardware which takes inspiration
from biology to reduce power consumption; the SpiNNaker case was further described.
The SpiNNaker machine can be seen as a software-based neural simulator, it is flexible
both in terms of model simulation and network architecture. The main trade-off is that
although it is suitable for experimentation, it may not be as power-friendly as hardware-
based solutions.

The next chapter reviews the general structure of the visual pathway and describes
different models for each stage.

Chapter 3

Biological vision

Mammals sense the world in many ways; among humans vision is used for daily tasks
ranging from survival skills (e.g. feeding, defence) to contemporary needs such as
crossing streets, reading, watching films, etc. The machinery behind this rich be-
haviour, the nervous system, is complex and simulating/emulating such a system on
digital computers and in real time is a difficult task. Taking inspiration from biology
has proven to be a good way to produce energy-efficient, real-time visual systems;
to this end we need to study the visual pathway and its components. The principles
described in this chapter have been adopted to develop the networks presented in Chap-
ters 5 and 6.

The visual pathway

The sensory and processing elements responsible for vision are usually known as the
visual pathway. They comprise the eye, the lateral geniculate nucleus (LGN) and
multiple zones of the cortex (Figure 3.1).

Eye LGN Cortex

Figure 3.1: General connectivity of the mammalian visual pathway.

At the front-end of the visual pathway the eyes sense light and pre-process the
image of the world. Inside each eye there is a wall of neurons known as the retina

(Fig. 3.2a) which is dedicated to converting light into events representing the state of
the visual world. Interestingly, most of these events are generated when noticeable

37

38 CHAPTER 3. BIOLOGICAL VISION

(a) (b)

Figure 3.2: The front and middle stages of the visual pathway: a) The eye and its main
components; b) Rewiring towards LGN assigns the right and left fields of view to a
corresponding region of LGN.

changes are perceived. At the back of the retina, photoreceptors convert light into
electrical signals which are then processed by a combination of neuron types (bipolar,
amacrine and ganglion) to represent the image in the eye at multiple resolutions and to
extract features (edges, motion).

The function of the Lateral Geniculate Nucleus is still an active field of research.
From anatomy we know axons coming from the left and right eye are sorted before
LGN (Figure 3.2b); while relay cells in LGN also sort and retransmit signals from the
eye to the cortex [Hubel et al., 1995]. New research shows LGN is responsible for
arbitrating signal transmission from the eye to the visual cortex, and that this part of
the brain also receives feedback from the cortex; in fact there are more axons reaching
the LGN from the cortical regions than the retina. Brainstem input to the LGN ac-
counts for about 30% of incoming connections, which may also play a role in attention
mechanisms [Ghodrati et al., 2017].

About 19% of the neurons in the brain are located inside the cortex which amounts
to 80% of the brain’s mass; this thin sheet of about 1100 cm2 area and a 2 to 4mm thick-
ness is responsible for the high-level cognitive tasks humans can perform [Herculano-
Houzel, 2009; Thompson, 2000]. The fact that the cortex is thoroughly wrinkled ac-
commodates a larger area sheet, and thus more neurons, to fit in the same volume.
Moreover, regions which have a role in vision occupy around 30% of the cortex.

Cell distribution in the cortex seems to follow a pattern, as shown in Figure 3.3a.
In a cross section, layers can be observed which are thought to have special functions,
in particular we can classify layers by the direction of information flow (Figure 3.3b):
the feed-forward path includes layer 4 which receives input from lower regions of

3.2. THE EYE 39

(a)

Cortical Unit
(higher)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Cortical Unit
(lower)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

(b)

Figure 3.3: Diagram of cortical cell types, distribution of cells, and external connec-
tivity. a) Cortical column layers using different staining methods (Golgi, Nissl and
Weigert) [Brodal, 1981; Kandel et al., 2000]. b) Intra- and inter-columnar connectiv-
ity.

the brain, and layers 2 and 3 whose outputs go to higher cortical areas [Hubel et al.,
1995; Thompson, 2000]. On the feed-back path layer 5 takes input from the output
layers and sends axons to layer 6, which in turn connects to layers 1, 2 and 3 in lower
brain regions. Connectivity seems to be mostly distance dependent which leads to
specialization of small regions known as cortical micro-columns, these are thought to
be the basic building block of cortical function.

The eye

The retina is a complex sensory organ dedicated to encode visual information from the
world into spikes. It has a layered structure (Figure 3.4); three of these layers con-
tain neuron bodies, while two more have axons and dendrites. Light passes through
the retina and is captured by photoreceptors to get transformed into electrical signals.
There are two classes of photoreceptor: rods sense mostly achromatic illumination
while cones have colour-selective response. Photoreceptors transduce light into a sin-
gle type of neurotransmitter (glutamate), which, in turn, either excites or inhibits bipo-
lar cells. This gives rise to two different channels for visual information transmission:
the OFF channel which encodes decrement in illumination; while the activity of the
ON channel reflects luminance increments [Hubel et al., 1995].

The next neurons in the retina are called horizontal cells and are thought to handle

40 CHAPTER 3. BIOLOGICAL VISION

Figure 3.4: Layered organization in the retina

(a) (b)

Figure 3.5: Receptive field components: a) the sensory region which provides input to
a neuron; b) in some instances the “shape” of the region is also important.

gain control in neighbouring photoreceptors, this would allow perception of approxi-
mately the same local contrast even when global illumination conditions have changed
(e.g. being able to read in low-light conditions)[Masland, 2012]. Researchers have
theorized that bipolar, amacrine and ganglion cells apply a series of transformations
so that a more efficient representation is sent out to the brain through the spiking be-
haviour of ganglion cells.

Each ganglion cell has a particular set of photoreceptors which, indirectly, feed its
inputs (Figure 3.5). This set, or the input activity pattern, is known as the neuron’s
receptive field (RF).

In 1953, Kuffler analysed the retina as a black box; a stimulus was presented to
the eye and retinal ganglion cells’ axon responses were recorded. The conclusion was

3.2. THE EYE 41

Input

Behaviour

OFF centre
ON surround

ON centre
OFF surround

Figure 3.6: Neuron response to centre-surround receptive fields. When the whole
receptive field is stimulated, no response is expected. If the input matches the centre-
surround shape, then it will have the highest response. If it is partially stimulated, then
the neuron will have a low response and will probably be inhibited by other neurons’
activity.

that the receptive fields of ganglion cells are organized with a centre-surround motif
(left of Figure 3.6)[Kuffler, 1953]. In essence the ganglion cell shows a high firing rate
when there is activity in its receptive field’s centre but almost none in the surrounding
areas. This can reduce the activity sent out of the retina, for example an evenly lit
object would only trigger some ganglion cells, particularly on its edges.

New activity recording and anatomical data acquisition methods have shown spe-
cific responses from retinal neurons prior to ganglion cells; this has lead to the pro-
posal that bipolar neurons are prime computational units in the retina. It has been
shown that bipolar cells have peculiar connectivity patterns in their input so that some
respond to oriented bars or colour patches, in addition to typical centre-surround be-
haviour [Euler et al., 2014]. A combination of bipolar, motion sensitive neurons (star-
burst amacrine cells, SAC), and ganglion cells allow for direction selective response
in the retina [Borst and Euler, 2011]. Figure 3.7b shows a cartoon of how having a
variety of receptive field sizes (white circles) could lead to sending fewer spikes (four,
one per RF) when compared to a uniform size sampling. The latter is illustrated as
wave-filled circles in Figure 3.7a, where a total of 10 neurons are required to encode
the input pattern.

Since energy is a scarce resource for animals it makes sense that sensors would aim
to produce an efficient encoding of their inputs which reduces the number of active out-
put neurons [Field, 1994; Thorpe et al., 2001]. Furthermore, has been shown that most

42 CHAPTER 3. BIOLOGICAL VISION

(a) (b)

Figure 3.7: Receptive fields of different size: a) uniform size sampling – 10 neurons
would be required; b) multiple size sampling – 4 neurons required.

of the energy consumed by in the SpiNNaker machine is used in the computation of
synapses Stromatias et al. [2013]. Scientists have proposed that ganglion cells with
overlapping receptive fields compete to reduce spike emission and, thus, energy con-
sumption [Bhattacharya and Furber, 2010]. Furthermore, by performing competition,
only the ganglion cell which best describes the image patch should fire. An additional
benefit of competing neurons is that, if ganglion cells’ receptive fields encode similar
information, redundancy is reduced while maintaining encoding robustness.

A way to implement competition is using feed-forward inhibition with the help
of inhibitory inter-neurons [Thorpe et al., 2001]. Figure 3.8 shows an example of
competition. We assume the receptive field of a couple of ganglion neurons receive
a diagonal line. One of the bipolar cells (blue, top-left) has input connections whose
spatial pattern matches the input while the other (blue, bottom-left) has an orthogonal
one (squares on the left of bipolar neurons). This will lead to high activity1 in the
top bipolar, in turn it will make its paired inhibitory inter-neuron become active. By
crossing the targets of inter-neurons, the competition mechanism is formed; in the
example, the top ganglion wins and the bottom one is inhibited.

A basic model for retinal function is a single scale, centre-surround (via image
convolution) operation. This is usually expressed as a Laplacian of Gaussian (LoG)
filter, which is commonly carried out by applying Gaussian smoothing followed by the
Laplacian operation.

LoG(x,y) = − 1
πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2 (3.1)

1Illustrated here as events, though in the retina this computation is carried via voltage differences.

3.2. THE EYE 43

tc

t

t

1

2
Inhibitory

Excitatory

Figure 3.8: Competition between ganglions cells (green–right) executed using feed-
forward inhibition through inter-neurons (red–middle), which are driven by activity
coming from bipolar neurons (blue–left). Vertical bars indicate incoming activity to
neurons. Output for the lower ganglion is reduced –even stopped– after tc since a large
inhibitory burst just arrived.

As observed in mammalian eyes at the ganglion level, when the input image is uni-

form, most of the output will be zeros; with the exception of edges. This model is used
throughout the multi-scale network presented in Section 5.2.

Van Rullen and Thorpe extend this basic model to multiple scales of centre-surround
receptive fields corresponding to ganglion cells of different classes (8 pairs of ON- and
OFF-centre) [Van Rullen and Thorpe, 2001]. Instead of an LoG operation, they ap-
proximate the centre-surround filter via Difference of Gaussian (DoG).

gc(x,y) =
1√

2πσ2
c

e
− x2+y2

2σ2c (3.2)

gs(x,y) =
1√

2πσ2
s

e
− x2+y2

2σ2
s (3.3)

DoG(x,y) = −+gc(x,y)+−gs(x,y) (3.4)

Computing the spike times for each neuron in all scales makes use of Matching Pur-

suit [Durka, 2007] algorithm; the final representation is a rank-order code.

Using a similar approach, Bhattacharya and Furber created an algorithm to gen-
erate a sparse, rank-ordered spike representation of images [Bhattacharya and Furber,
2010]. This algorithm adopts the biological principle of competition and makes use of
2 ON- and 2 OFF-centre, each with a different size of receptive field. Even though this
reduces the number of simulated cells, most of the image information is present with
only 10% of the computed spikes. The output of this encoding is a sparse-distributed
representation of the input, plus the order of the firings is the sole requirement to de-
code the image as it reflects how fit a ganglion cell is to encode a region of the image.

44 CHAPTER 3. BIOLOGICAL VISION

The team behind the Virtual Retina created a model which mimics both the cellular
measurements and functional capabilities of retinal circuitry [Wohrer and Kornprobst,
2009]. Since it is a highly detailed simulation, it requires large computational resources
– 100,000 neurons run at about 1/100 of real time. Among other results this model
allows for contrast gain control, spatial centre-surround filtering, temporal band-pass
filtering, and foveated encoding.

Linear-nonlinear (LN) models have also been used to describe functional aspects
of retinal ganglion cells, the principal characteristic of this family is the use of a linear
combination of the receptive field activity which, in turn, is the input to a non-linear
function; additionally, the firing behaviour of ganglion cells is stochastic [Karklin and
Simoncelli, 2011; Pillow et al., 2005; Schwartz and Rieke, 2011]. These models have
also successfully replicated cortical cell responses and been linked to efficient coding
principles, though these studies do not explicitly produce a sparse representation.

A deep convolutional neural network (CNN) was trained to replicate the behaviour
of a salamander retina [McIntosh et al., 2016]. The authors recorded ganglion cells
when the retina was presented with natural images, subsequently they took measure-
ments to train a 3-layered CNN. While the network matches the behaviour of the
recorded ganglion cells, it is unclear whether these are representative of the full retina
and the function of each cell type is still an open question.

We believe the retina is compressing the image with an over-complete set of basis
vectors and sending this representation to the next stage where it can be processed and
learned. In summary we can consider the retina as a feature-extracting computer; these
features can be sent to later stages through spikes which should carry sufficient salient
information for the cortex to adjust its perception of the visual world.

The Lateral Geniculate Nucleus (LGN)

Retinal axons carry visual information to the cerebral cortex, but before arriving at their
final destination they reach a brain region known as the Thalamus; which is responsible
for transferring signals from sensory organs into the cortex. Another function of the
thalamus is to modulate information flow to and from the cortex; this could imply that
signals from one cortical area could alter the behaviour of other areas [Sherman, 2006].

Since the Lateral Geniculate Nucleus (LGN) is part of the Thalamus it shares sim-
ilar functions; in fact most research assumes it to be a simple relay station for signals
coming from the retina. However, studies show that around 50% of the incoming

3.4. COMPUTATIONAL MODELS OF THE VISUAL CORTEX 45

connections to LGN originate in the cortex, this indicates it is not just a relay but a
modulator. Perhaps it could be a crucial factor for attention mechanisms observed in
mammals. In the work presented in this Thesis we use connectivity principles from the
LGN to reduce the number of spikes which would get sent to the plastic regions of our
networks. The reduction is done, again, via competition where signals coming from
the ON and OFF retinal channels inhibit each other if they represent similar inputs.

Similar to the organization in the retina, the LGN has separate regions for differ-
ent scales of receptive fields comprising six “main” layers; two low- and four high-
resolution versions of the image. In addition to these layers, the LGN has inter-layers
which receive other image representations; scientists suggest these include motion,
orientation and colour information measured at the retina [Hubel et al., 1995]. Fur-
thermore, projections from both eyes reach the LGN in alternating layers, perhaps this
organ is also responsible for a rough image registration mechanism.

Usually, LGN modelling is omitted from biologically-plausible visual pipelines as
we do not require relays in computational versions of the visual pathway.

Funke et al. proposed different connectivity patterns for incoming retinal projec-
tions which may explain orientation preference in V1, the beginning of the visual cor-
tex [Funke et al., 2002].

Sterling follows recent studies on LGN synapses to model a “quasi-secure” synapse,
which promotes energy reduction, since the main result is fewer spikes emitted while
information per event is incremented [Sterling, 2015]. Furthermore, the author sug-
gests LGN is quite likely to be responsible for preparing neuronal groups to reduce
long axons towards V1.

The LGN was modelled as a neurons with a set of Difference of Gaussian (DoG)
receptive fields by Azzopardi and Petkov, the output of these filters are presented to a
set of cortical simple cells. The main result from this is it achieves closer reconstruction
of contour shapes than the ones obtained from using Gabor filters as receptive fields
for simple cells [Azzopardi and Petkov, 2012]. The authors, however, do not consider
image processing at the retinal level.

Computational models of the visual cortex

Much notable work in neuroscience has been driven by the study of visual areas of the
cortex. In early studies researchers identified areas in the brain whose activity corre-
lated with visual stimuli, these areas are known as the visual cortex. In 1963 Hubel

46 CHAPTER 3. BIOLOGICAL VISION

and Wiesel discovered the basis for most models of the visual cortex; they established
a hierarchy of regions, a columnar organization of these regions in which every col-
umn has a higher reaction to a particular input. Within columns, they noted a particular
connectivity pattern and established the concept of simple and complex cells. Simple
cells receive the direct input from a previous region (either cortical or thalamic), while
complex cells receive input only from simple cells.

Cortical architecture

While the simple/complex concept is still applied, it is not considered entirely correct
as recent statistics on neural connectivity show that simple cells receive the majority of
their input from previous regions but not exclusively; a similar correction is required
for complex cells [Funke et al., 2002].

Fukushima developed the Neocognitron, one of the first neural networks to model
the visual pathway [Fukushima, 1988]. The units in the network receive and output
non-negative (rectified) analogue values; the input to the network is a simple receptor
layer. This model has a hierarchical organization, layers after the input are composed
of simple and complex cells. Features are learned and, later, extracted by simple cells;
the role of complex cells is to introduce some translation invariance and provide the
output for the current layer. Input connectivity is distance dependent, thus simple
cells are exposed to only a portion of the previous layer. Weight updates are Hebbian
inspired as they depend on local information only, though the network requires layer-
wise training.

The architecture of the HMAX model was inspired by studies done on the visual
cortex. It consists of two layers of alternating simple and complex cells; the former
sample their input from previous layers and the latter do a MAX operation on the
output of simple cells [Riesenhuber and Poggio, 1999; Serre et al., 2005]. At the top
of the network a classifier is added to simulate the Infero-Temporal (IT) portion of
the visual cortex. In the most recent version of the algorithm, there is some learning
done in the simple cells of the second layer, but training is done off-line by sampling
different corner-like patterns from the dataset.

In the first layer simple cells are tuned to oriented bars (S1 in Fig. 3.9) while at the
second layer, cells respond more strongly to complex features (e.g. corners, crosses,
longer lines). Complex cells in each layer provide invariance to small translations
and rotations. This model has been successful in replicating some of the feed-forward
behaviour of the visual pathway, though it does not include any lateral or feed-back

3.4. COMPUTATIONAL MODELS OF THE VISUAL CORTEX 47

paths.

Figure 3.9: HMAX modela
aFrom http://maxlab.neuro.georgetown.edu/images/hmax

LeCun et al. devised an artificial neural network based on the connectivity of the
visual cortex described by Hubel and Wiesel. In this model simple cells perform a
convolution of the inputs while complex cells do a pooling operation [LeCun et al.,
1995], this is not far from the HMAX network architecture though training of weights
is applied throughout the entire network. Weights for simple cell stages are stored
as convolution kernels, this brings layer-wise weight sharing and, most importantly,
parameter reduction. As in the HMAX model, pooling provides certain invariance to
local translation.

Training is done through the Back-Propagation algorithm [LeCun et al., 1989],
which uses the chain rule to propagate the error measured in the output layer (right-
most in Fig. 3.10) to intermediate layers. In this way convolution kernels get adjusted
to better fit the statistics of the presented dataset. It is unlikely that in biology this al-
gorithm is doing synaptic plasticity, since it requires high precision error propagation.

In 2003, Behnke presented a model, the Neural Abstraction Pyramid (NAP), which
presents invariance to multiple image transformations [Behnke, 2003], as is believed
to happen in the visual cortex. Similarly to HMAX, the NAP divides each layer into
simple and complex cells; the former neurons receive and integrate inputs, meanwhile
complex units output the computation results. The addition of feed-back and lateral

48 CHAPTER 3. BIOLOGICAL VISION

Figure 3.10: Cartoon of a Convolutional Neural Network.

signals allow the network to spread higher layer representations into lower layers, the
abstraction grows as layer depth increases. Lateral projections enable correlations be-
tween large areas to be taken into account in the learning process.

The Hierarchical Temporal Memory (HTM) model is also based on the architec-
ture of the visual cortex. It is similar to other models in that there is topographical
correspondence in receptive fields and as the hierarchy level increases concepts get
more abstract. Ahmad and Hawkins take another concept from biology as inputs get
changed into sparse, distributed representations which provide robustness and gener-
alization properties [Ahmad and Hawkins, 2015].

Another distinct characteristic of HTM is the use of time as a supervisor [Hawkins
and George, 2006] so that the output from each layer is affected not only by spatial
information but also by previous inputs. An HTM network (Figure 3.11) is composed
of cells, which are packed into columns; collections of columns are known as regions
which have the same receptive fields, and many regions form layers. The main data
paths are the feed-forward, carrying current input signals to higher layers, and the
feed-back which brings predictions to lower layers; lateral connectivity also carries
predictions to the same layer cells.

An interesting property is that, as we go up the hierarchy, temporal information
changes more slowly than in previous layers (left of Figure 3.11). At the lowest layer,
columns sense small areas, with simple and fast-changing patterns; at the top, each
column should sense a wide receptive field, with complex and slow-changing patterns.
Statistics on the input is captured by the formation of synapses between cells; to form
a synapse an active source cell needs to send a signal to a target column. If there is a
cell in an active or predictive state, a synapse is formed or strengthened, otherwise it
gets weakened.

3.5. SUMMARY 49

Figure 3.11: Cartoon of an HTM Network.

Summary

One of the principles of neural processing seems to be information per signal maxi-
mization, this could ensure energy reduction.

Heavy pre-processing of input data is prevalent in sensory organs; for example, the
cochlea in the ears transforms sounds to a frequency representation. Something similar
occurs for the retina where different sizes of receptive fields transform the input into a
spatial-frequency representation.

Neurons in V1 area of the cortex have been shown to respond to contours even un-
der occlusion. Hierarchical processing is a common motif through the cortex, distance
dependence also seems prevalent (regions of visual or tactile input or frequency in au-
dio). A hierarchy of processing elements allows for more flexible function modelling
while maintaining element count relatively low.

This connectivity is sparse and localized, thus some optimizations can be used in
the SpiNNaker Toolchain. In the next chapter a network expander is presented which is
executed on SpiNNaker cores (as opposed to on-host) which improves network loading
times.

Chapter 4

Topographic connectivity deployment

Particular zones in the brain seem to be responsible for the movement of different
muscles; moreover, nearby activity in the cortex incited muscle movement in close
by regions [Gross, 2007]. In the case of vision, signals coming from the eyes reach
zones in the back region of the brain; these zones are organized in a topographic, hi-
erarchical fashion [Hubel and Wiesel, 1963]. We also follow such organization so that
neurons in our networks are connected to its inputs with a distance dependence. Using
specialized hardware to simulate realistic neural circuits typically requires uploading
a network model; this process, if not optimized, could take longer than the simula-
tion itself. Furthermore, some of the networks in Chapter 5 have been modelled as
convolutional layers (with repeated weights) whose loading onto SpiNNaker can be
heavily optimized. The conventional way to upload a network can be summarized in
two steps: first, generate an explicit representation on the host machine (a list of each
synapse present in the network) and, second, send it to SpiNNaker. Instead of this
procedure, we send a high-level description of the connectivity (e.g. distance depen-
dence or connection probability) to the SpiNNaker machine which, in turn, generates
the explicit connectivity. The goal of this chapter is to produce a set of algorithms
which run on the SpiNNaker machine and generate biologically inspired (distance-
dependent, image kernel) neural network connectivity. By reducing the amount of
data transferred we achieve faster loading times; however, in some cases, the capabil-
ities of the SpiNNaker cores proves to be a speed limitation. Details of the efficient
connectivity deployment method are described in this chapter.

50

4.1. TOPOGRAPHIC CONNECTIVITY IN THE VISUAL PATHWAY 51

Figure 4.1: Regions which sense a particular area of the visual field tend to be located
together.

Topographic connectivity in the visual pathway

The topographic correspondence between the visual field and cellular location in the
visual pathway is known as retinotopy (Fig. 4.1). There is evidence that later regions
in the visual pathway retain topographic connectivity (although abstraction increases)
[Fox et al., 1987; Grill-Spector and Malach, 2004]. Measurements taken using modern
recording techniques of brain activity (e.g. Functional Magnetic Resonance Imag-
ing [fMRI], tomography) have allowed researchers to confirm this spatial relation-
ship [Tootell and Hadjikhani, 2001].

Topographic connectivity can be achieved through distance dependence; if we
assign two-dimensional (2D) coordinates to each pre- and post-synaptic neuron, a
synapse can be formed only if the distance between neurons is smaller than a cer-
tain value. For static networks it is useful to express weights and delays in the form
of matrices, or kernels. To simulate the different functions of the proposed retina and
LGN models (Chap. 5) we require to generate static, distance-dependent connectivity.
To deploy these networks, we created a kernel-based connector for the PyNN [Davison
et al., 2009] spiking neural network description language. In the case of the cortical
model, the required connectivity is dependent on both distance and probability, which
are present in PyNN but as separate entities; thus we created a “Cortical” connector to
combine these dependencies.

Image kernel-based connectivity

High-level descriptions of networks are decomposed into SpiNNaker-compatible graphs.
To generate proper connectivity we have to filter which nodes of the graph should be
connected. In general, it is a process of trimming-down the edges of an All-To-All
connectivity into a specialized type.

52 CHAPTER 4. TOPOGRAPHIC CONNECTIVITY DEPLOYMENT

For ths notis image kernel-based connectivity we assume both pre- and post-synaptic
populations are 2-dimensional (2D) grids and indices are row-major mapped. Trans-
formations between 2D and 1D representations are done by the following equations:

index = (row×width)+ column ,

row = bindex/widthc ,

column = index mod width ;

(4.1)

where width is the width of the 2D grid and u mod v is the remainder of the division
of u by v.

We may want to connect two populations which are themselves output to kernel-
based inputs. Spatial sampling is not necessarily done one-to-one, thus we require
sufficient information to transform both populations into a common space. Transform-
ing original coordinates (both rows and columns) to and from sub-sampled ones:

sampled =

⌊
original−o f f set−1

step

⌋
+1 ,

original = o f f set +(sampled× step) ;
(4.2)

where o f f set is the distance from the origin and step is the spatial sampling frequency
(stride) the connector uses.

Once the coordinates of neurons are transformed into a common space, we can
measure the distance between them and discard those which are too far away. Since
we make use of a convolution kernel of known dimension the weights for these con-
nections are set by the kernel, we discard synapses from a pre-synaptic neuron if the
latter is outside the rectangle defined by

Karea =

[(
rowpost−

kernelheight

2
, columnpost−

kernelwidth

2

)
;(

rowpost +
kernelheight

2
, columnpost +

kernelwidth

2

)] (4.3)

Figure 4.2 shows the connectivity generated between source and target populations.
The source represents a 2D grid of 6 rows and 8 columns, while the target has 3 rows
and 4 columns. The weight kernel has a width and height of 5 pixels, the offset and
sampling rate are set to 2 pixels.

4.1. TOPOGRAPHIC CONNECTIVITY IN THE VISUAL PATHWAY 53

Figure 4.2: Generated connections using a weight kernel. Each rectangle represents
a post-synaptic neuron from a population with 12 neurons (a 4× 3 resolution). Pre-
synaptic neurons are represented as a pixel in each of the rectangles; the pre-synaptic
population represents an image of a 8× 6 resolution. The weight kernel used had a
5×5 which is shown as non-black pixels in each rectangle.

Cortical connectivity

Our cortical connector is similar to the Kernel-based one except that, even if the pre-
synaptic neuron lies within the sampling area of the post-synaptic one, we randomly
choose whether to generate a connection or not, and do so using fixed, uniform proba-
bility. Although we still use a row-major mapping for population indices, each coordi-
nate in the 2D grids can hold multiple neurons (sub-population). This leads to a small
change to the set of equations 4.1, for which we need to define a total width to take
into account these sub-populations:

widthtotal = width∗Npz , (4.4)

where Npz is the number of neurons sharing the same coordinate.

index = row×widthtotal + column×Npz + indexsub

row = bindex/widthtotalc

column =
⌊
(index mod widthtotal)/Npz

⌋
indexsub = index− (row×widthtotal + column×Npz)

(4.5)

If the distance between pre and post neurons is shorter than the designated radius
(i.e. sampling zone; white regions in Fig.4.3a), we generate a random sample to decide
whether a synapse should be formed between the neurons.

54 CHAPTER 4. TOPOGRAPHIC CONNECTIVITY DEPLOYMENT

(a) (b)

Figure 4.3: Cortical connector. a) Sampling region per target neuron, each square
is a post-synaptic sub-population. White circles are the pre neurons which are taken
into consideration to generate synapses. b) Generated connections, zoomed at top-left,
typical cortical connection probability is 10%. Every square represents a post neuron,
every white dot a connection with a pre neuron.

Figure 4.3b show connections generated between the pre- and post-synaptic neu-
rons. Each rectangle represents a post-synaptic neuron and generated connection are
depicted as a white dots. These dots also represent the position of the pre-synaptic
neuron.

Efficient neural network deployment on the SpiNNaker
machine

While these new connectors do not produce dense matrices, when the input size in-
creases, the time taken to load the network can be comparable to, or even larger than,
simulation time. The main reason for this is that the current SpiNNaker software
tool-chain (SST) requires connectivity matrices to be transferred as fully detailed lists,
where each item must contain: source neuron id, target neuron id, weight and delay.
To reduce the time to load, we can change from an explicit to a high-level representa-
tion. In the following sections we describe a neural network expansion system for the
SpiNNaker machine.

There are two main components to the problem of network-loading times (Fig-
ure 4.4a): first, the computation of network connectivity matrices has to be done seri-
ally on host; and second, these matrices have to be transferred without compression.

4.2. EFFICIENT NEURAL NETWORK DEPLOYMENT ON THE SPINNAKER MACHINE55

(a) (b)

Figure 4.4: Generating connectivity on host vs on SpiNNaker

The time-to-load problem can be diminished by transferring high-level descrip-
tions of the connectivity, instead of the full connectivity matrices, and expanding these
descriptions into connectivity matrices in parallel on SpiNNaker (Figure 4.4b). To
implement this we modified the SST in three aspects:

◦ The SST was altered to collect connectivity descriptions and prevent on-host
expansion,

◦ A Python interface was built to control execution of SpiNNaker binaries, and

◦ Code for SpiNNaker was developed to receive and expand descriptions.

Description collection

The SST takes a spiking neural network described by neuron Populations which are
connected through Projections. Each Projection, in turn, contains a description of
the connectivity through a Connector1. The SST contains a Synaptic Manager2,3 ob-
ject whose purpose is to take Connector’s descriptions and transform them into many
<pre-, post-synaptic index, weight, delay> tuples.

Since we are going to generate weights and delays on SpiNNaker, the main changes
were applied to the Synaptic Manager object, to prevent the SST generating connectiv-
ity matrices if Connector objects allow on-SpiNNaker expansion. In the definition for
this object, we later collect minimal descriptions for Connector objects as described in
Table 4.1

Since we want to reduce the amount of data transferred, Names are changed from
pure text (ASCII) into a cyclic redundancy check (CRC) hash [Koopman, 2002]. Ad-
ditionally, some of the required parameters are compacted to the minimum functional
size, e.g. boolean values are represented by 8-bit variables.

1/path/to/sPyNNaker/spynnaker/pyNN/models/neural projections/connectors
2https://github.com/chanokin/sPyNNaker
3/path/to/sPyNNaker/spynnaker/pyNN/models/neuron/synaptic manager.py

56 CHAPTER 4. TOPOGRAPHIC CONNECTIVITY DEPLOYMENT

Table 4.1: Minimal connectivity description.

Data Required information Requirement example

Source vertex Portion of the source neuron population start and count

Target vertex Portion of the target neuron population start and count

Connector type Name and requirements probability of connection

Weight type Name and requirements values range

Delay type Name and requirements constant value

Synapse type Name and requirements plasticity parameters

Additionally we require to compute matrix sizes and generate a data structure,
called population table, to map pre-synaptic (source) population <key, mask> pairs
to synaptic matrices memory addresses. We store address starts, row lengths, source
key, source mask and synapse types (excitatory, inhibitory, modulatory, etc.) in simple
lists. Each entry in these arrays corresponds to a pre-synaptic population key and mask
which allows us to track where a connector expander should start writing data.

Table 4.2 shows the information contained in a population table entry. To match
population table entries we traverse each row from which we extract the key and mask
elements and match them to the address start information. Once this data is collected,
it is sent to SpiNNaker so that it can generate connectivity information on its own.

Table 4.2: Population table entry.

Name Description

Key Pre-synaptic population identifier

Mask Pre-synaptic neuron filter

Start Offset to retrieve data from matrices address array

Count Number of entries in the matrices address array

4.3. CONNECTOR EXPANDER 57

Connector expander

Python interface

The SpiNNaker-based connector expansion must be controlled from the Host, so that
we know when it starts, finishes and if it runs into problems. For this purpose we de-
veloped a Python interface4,5 whose main functions are to search for cores which will
simulate target populations and upload to SpiNNaker the expansion executor. If the
connectivity includes delays greater than the ones supported by default (16 simulation
time steps), we upload another binary to the appropriate delay extension cores. This
Python launcher gets called by the main SST Python interface6 after the connectivity
descriptions have been uploaded to SpiNNaker.

SpiNNaker executor

For the connector expansion to be executed, we created an application which is respon-
sible for generating source/target neuron id pairs, weights and delay values. For each
source neuron id we create a synaptic row as described in Table 4.3.

Each entry can be of one of two types: static, stored in 32-bit entries, its data
does not change and whose format is described in Table 4.4; or plastic, where weights
change but control data does not (unless structural plasticity is present [Bogdan et al.,
2018]) and its format is similar to the static entry, except weights and control are split
into two separate regions. A “plastic-static” region is identical to the lower 16 bits of a
static entry where we specify target neuron id, synapse function (excitatory, inhibitory,
etc.) and delay. The second region can be composed of one or more 16-bit variables,
one of which must be the weight.

When the on-SpiNNaker expander detects larger-than-standard delays in connec-
tivity entries, it sends a delay/target-id pair to delay extension cores. These pairs are
processed and added to a record of which target neurons will require a delayed relay.
The record is a collection of a bit-arrays, in this case arrays of multiple 32-bit words
whose bits have a particular meaning. In this case, the bit position is equal to the pre-
synaptic neuron id and its value tells us whether this neuron is expected to be delayed
a certain amount of simulation time.

4https://github.com/chanokin/SpiNNFrontEndCommon
5/path/to/SpiNNFrontEndCommon/spinn front end common/connection builder
6/path/to/SpiNNFrontEndCommon/spinn front end common/interface/abstract spinnaker base.py

58 CHAPTER 4. TOPOGRAPHIC CONNECTIVITY DEPLOYMENT

Table 4.3: Synaptic row format.

Row Contents

-1 number of indirect elements (30 bits) | tag (2 bits)

0 number of plastic elements (N)

h plastic headers (could be empty)

1 second plastic weight | first plastic weight (16 bits)
...

...

N = dn/2e+h last plastic row | penultimate plastic row

N +1 number of fixed elements (F)

N +2 plastic control elements (P)

N +3 / F1 first fixed entry
...

...

N +F +2 / FF last fixed row

N +F +3 / P1,2 second plastic control | first plastic control (16 bits)

N +F + dP/2e+2 / PP−1,P last plastic control | penultimate plastic control

Table 4.4: Synaptic connection entry.

Weight Delay Type Target

Bit width 16 4 x 8

Each bit-array in the record is known as a delay block and will be assigned a tem-
poral delay range of multiples of the maximum standard delay (Figure 4.5), and so
the spike will be kept in the relay until the appropriate delay has passed. Since stan-
dard delays are applied at the target population, there is no need for higher temporal
resolution per block.

Benchmarks

To test parameter generation we used the values of synaptic weights, for which we
used constant and probabilistic generators; Figure 4.6 shows histograms of the created
values on SpiNNaker (left, green) and on Host (right, blue). In each experiment we
created a neural network consisting of single source and target populations with 5000
neurons each. We connected them through a one-to-one connection which gives us

4.4. BENCHMARKS 59

Delay block 0 17 to 32 ms

Delay block 1 33 to 64 ms

Delay block m (m+1)16 +1 to (m+2)16 ms

...

Pre-synaptic
neuron delay slots

0 1 2 ...

n...

Delayed Not delayed Not used

Figure 4.5: Delay extension blocks.

5000 samples for the generated parameter (weights). For each of the available param-
eter generators we ran simulations with generation on Host and on SpiNNaker. The
number and value for weights created by the constant (Fig. 4.6a) and probabilistic gen-
erators (Figures 4.6b, c, and d) have similar distributions in all cases. In the case of
the constant generation the target value was 7. For the uniform generation the range
was chosen to go from 0 (inclusive) to 7 (exclusive). The mean and standard deviation
where 7 and 1, respectively, for the normal distribution generator. The exponential
distribution was generated with the parameter λ = 0.1.

(a) Constant (b) Uniform

Figure 4.6: Parameter generation on SpiNNaker vs. Host

The main bottleneck with Host-generated connectivity was transfer time. To test if
any load-time reduction was achieved using on-SpiNNaker generation, we measured
and compared the time it takes to run a short simulation (10ms). For these experiments
we set source and target populations of different sizes (8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1300, 1400, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
10000), with static constant weight values, and increasing delay values (1, 17, 33); we
measured the total execution time of each experiment and averaged over combinations
for each population size.

60 CHAPTER 4. TOPOGRAPHIC CONNECTIVITY DEPLOYMENT

(c) Normal (d) Exponential

Figure 4.6: Parameter generation on SpiNNaker vs. Host (cont.)

In Figure 4.7a we observe that for the one-to-one connectivity the growth in both
cases is linear, though the rate for on-SpiNNaker expansion time is lower. We did a
similar test for the Kernel-based connector, where the sizes of both source and target
populations changed from (10, 8) to (160, 128), at each step we multiply dimensions
by 2. Similarly, the growth rate in the case of expanding the network on SpiNNaker is
much smaller.

SpiNNaker Host

Ti
m

e
 (

s)

Population size

0 2000 4000 6000 10000

10

20

30

40

8000

50

60

70

(a) One-to-one

SpiNNaker Host

Ti
m

e
 (

s)

Population size

0 5000 10000 15000 20000

0

200

400

600

800

(b) Kernel-based

Figure 4.7: Synaptic matrix generation time comparison

For the all-to-all connector case, we stopped testing at 1500 neurons per population
since weights started saturating on-host RAM plus transferring weights took multiple
hours. To estimate loading times for higher population sizes (dashed portion of the
blue curve in Figure 4.8b), we did polynomial curve fitting (Figure 4.8a) which re-
sulted in a quadratic fit. Figure 4.8b shows a simulation time reduction for each real
comparison (populations with 1500 or less neurons); furthermore, it shows dramatic

4.4. BENCHMARKS 61

Population size

Ti
m

e
(s

)

0

50

100

150

0 500 1000 1500

Host Quadratic fit R² = 1

(a) All-to-all curve fit

SpiNNaker Host

Ti
m

e
 (

s)

Population size

0 1000 2000 3000 4000

0

500

1000

1500

5000

(b) All-to-all

Figure 4.8: Synaptic matrix generation time comparison (cont.)

Population size

Ti
m

e
(s

)

0

10
0

20
0

30
0

40
0

50
0

0 1000 2000 3000 4000

Host Quadratic fit R² = 0.998

(a) Fixed-probability curve fit

SpiNNaker Host
Ti

m
e
 (

s)

0

1000

2000

3000

4000

Population size

0 2000 4000 6000 8000 10000

(b) Fixed-probability

Figure 4.9: Synaptic matrix generation time comparison (cont.)

speed increment for the (estimated) large populations when compared with the on-
SpiNNaker network expansion.

The last standard connector we tested is the fixed-probability one. Similarly to
the all-to-all case we were unable to test for more than 4000 neurons per population
when connectivity was generated on host. We performed curve fitting for the host-
based experiments which results in a quadratic polynomial as shown in Figure 4.8a. In
Figure 4.9b we see less performance gain than the all-to-all case, most likely due to
the slow random number generation on SpiNNaker and low connection probability (10
%).

A test for the Cortical connector was not performed since it is similar to the Kernel
connector, this is each post-synaptic neuron connects to a fixed number of pre-synaptic
neurons. The main difference would be that the SpiNNaker random number generator
would slow down the generation.

62 CHAPTER 4. TOPOGRAPHIC CONNECTIVITY DEPLOYMENT

Summary

We have shown how changing an explicit representation into a high-level description
can be used as an efficient method to upload statistics-based neural connectivity. In
small networks we deliver a comparable load time, though on-Host generation can
still be faster. For large networks, the difference can be perceived as waiting minutes
instead of hours. Expansion of kernel-based connectors is an important step towards
using spiking convolutional networks on SpiNNaker.

In the next chapter input pre-processing networks are discussed; these make exten-
sive usage of the connector expander and the custom connectors developed

Chapter 5

Sensing the visual world

Any visual system requires an input sensor, in this Chapter we present a couple meth-
ods in which we can transform images (or video) into spiking representations. Tradi-
tionally computer vision has used frame-based sensors which capture light for a fixed
period and store it. While this approach works for full image reproduction, it may not
be the only (or optimal) way to provide input to computer vision algorithms.

In nature, organisms have to optimize resources; an important aspect is to trans-
mit information from sensors using as few signals as possible, usually through cells
called ganglions [Field, 1994; Rao and Ballard, 1999; Srinivasan et al., 1982]. This
chapter will present networks inspired by biological retinas which further reduce spike
counts by changing the image representation. Furthermore, we demonstrate a spiking
version of the Reichardt motion detector [Borst and Euler, 2011] and oriented bar de-
tection networks. These networks could serve as building blocks for a computer vision
pipeline and have served as the basis of some networks presented in Chapter 6.

Image conversion to spikes

The simplest way to transform traditional images is to assume that a sensor does
nothing but sense light, converts it to spikes and transmits these signals to the visual
pipeline. This can be achieved by simply grabbing every pixel of an image and encod-
ing its value into spike rate (e.g. 0 to 255Hz). A common way in the field is to use
rate code (Section 2.3.1) using Poisson processes [Liu et al., 2016]. Since the range
of the spike rate can be arbitrarily chosen, this conversion may have high bandwidth
requirements.

63

64 CHAPTER 5. SENSING THE VISUAL WORLD

(a)
t

t

lo
g
I

threshold

(b)

Figure 5.1: Comparison of visual sensors: a) Camera photoreceptor behaviour; light
is accumulated for a fixed time period, the value is sent out of the sensor for further
processing. Finally the pixel’s value is reset. b) Neuromorphic vision sensor photore-
ceptor behaviour. The sensor emits events whenever the log light intensity changes
above a certain threshold.

Neuromorphic vision sensor emulation

It is commonly thought that eyes work as cameras; there are however several dif-
ferences, most significantly, that ganglion cells activate when they sense a sufficient
change in brightness. This differs significantly from traditional image sensors compo-
sition since pixels in digital cameras accumulate light for a fixed period of time and
then output values in what is known as a frame (Figure 5.1a); if the camera is shooting
video, this process is repeated at a fixed rate.

Computer vision researchers have traditionally used conventional cameras whose
frames require updating regardless of changes in the scene; furthermore, most tech-
niques require processing this full image which is energy expensive. Neuromorphic
Vision Sensors (NVSs) [Berner et al., 2013; Mead and Mahowald, 1988; Pardo et al.,
2015; Serrano-Gotarredona and Linares-Barranco, 2013] adopt principles from biol-
ogy to reduce energy consumption while keeping fast response times and great dy-
namic range. Their pixels accumulate light, if the change in the log-light-intensity
is greater than a threshold they emit an event (shown as triangles at the top of Fig-
ure 5.1b). Since events are driven by changes in the scene, if the latter remains static,
no events are generated. This is closely related to how the neural circuitry in the eye
works although, in biology, multiple receptive field sizes reduce output rate.

Extensive work has been done to generate multiple computer vision datasets (e.g.

5.1. IMAGE CONVERSION TO SPIKES 65

MNIST, CIFAR, YouTube8m) [Abu-El-Haija et al., 2016; Krizhevsky et al., 2014; Le-
Cun et al., 2010]. Since SpiNNaker’s “native” language is spikes, we were interested in
converting such well known databases into an event-based representation, but without
passing through a noisy channel (i.e. computer screen to NVS). Moreover, by control-
ling the conversion process we are able to introduce deterministic motion (similar to
micro-saccades), noise and customize the output encoding.

To utilize these large group of datasets and to approximate how mammals perceive
imagery we propose to convert images (or video) into a spike representation. Our
conversion mechanism [Pineda Garcı́a et al., 2016] works by functionally emulating a
hardware NVS, the main difference is that, in our software, discrete sampling steps are
used. We assume images are measurements of initial stages of eye circuitry which can
then be compared to a reference value to decide if an output signal would be emitted.
The basic approach involves computing the difference D between the input image I

and the reference level matrix R (Eq. 5.1), then compute an update mask matrix M as
shown in Equation 5.2.

Dt = It−Rt−1 (5.1)

Mt = f (Dt ,H) =

0 |dt,i, j|< ht,i, j

1 |dt,i, j| ≥ ht,i, j

(5.2)

Rt = Rt−1 +Mt�Dt ; (5.3)

where R is initialized to zero (R0 = 0) and H is a per-pixel threshold matrix. In Equa-
tion 5.2 dt,i, j stands for the value of the difference between input and reference for
pixel < i, j > at time t; in the same equation ht,i, j means the state of the (adaptive)
threshold for pixel < i, j > at time t. Finally, the reference level can be updated with
‘valid’ differences, Mt � Dt (Equation 5.3, Figure 5.2a), where the � operator indi-
cates element-wise multiplication.

We compared the NVS emulator, using different thresholds, to the behaviour of
hardware reported by Serrano-Gotarredona and Linares-Barranco [Serrano-Gotarredona
and Linares-Barranco, 2013]. As the baseline for this experiment we recorded the ac-
tivity coming from the NVS when exposed to a translating black-and-white image. At
the same time, we pointed a digital camera (PS3-Eye [Sony Corp.]) to the same screen
and passed its output to the NVS emulator. Finally, we generated a sequence which
corresponded to the translating image, a virtual camera, and provided this to the NVS
emulator. These measurements were repeated for the NVS emulator with different

66 CHAPTER 5. SENSING THE VISUAL WORLD

(a)

0 20 40 60 80 100
Frames

2.7

2.8

2.9

3.0

3.1

3.2

3.3

S
ig

n
a
l
le

v
e
l

Signal Reference Spike Pos Spike Pos

(b)

Figure 5.2: Default NVS model behaviour: a) When the difference between the current
pixel value and its corresponding reference is larger than a threshold, an event (spike)
is generated. b) Photoreceptor model. Whenever the reference (magenta-dashed) and
signal (blue-continuous) are separated by at least a threshold (5% ≈ 0.16) a spike is
produced (green-up and red-down triangles).

threshold values (5, 10 and 20 % of the brightness scale).

We counted generated events per frame period (∼16ms) for each experiment and
normalized them. Figure 5.3a shows the behaviour when the threshold was set at 5%
(12/255 brightness). The hardware NVS and the virtual-camera exhibit peaks and
valleys which correspond to the image being on the screen and off, respectively. The
digital camera shows spikes of activity, these are a product of the automatic gain and
white balance mechanisms.

These spikes diminish as we increase the threshold value (Figure 5.3b) and, finally,
disappear when the threshold reaches 20% (Figure 5.3b). This is not an optimal way
to reduce the activity peaks (Figure 5.3), as we are basically making the algorithm less
sensitive and it is losing information. An alternative may be to use adaptive thresholds
to reduce spike counts when these large bursts of light are perceived.

We want to make the emulator to have some resilience to noisy pixels or dropped
spikes; to achieve this we enhanced it with biologically-plausibility in mind (Fig-
ure 5.4a). Firstly, we switched the receiver model from a perfect one (i.e. never drop-
ping an output spike) to a receiver which takes into account possible spike drops. If
we think of the NVS emulator as an emitter and further stages in the visual pathway
as receivers, it is desirable to think of an unreliable transmission line and to model this
aspect the receiver model was changed to a ‘forgetful’ one. Since the reference value
is constantly being diminished the same input level will still generate events in this

5.1. IMAGE CONVERSION TO SPIKES 67

0 50 100 150 200 250 300
Frame index (at 60 FPS)

0.0

0.2

0.4

0.6

0.8

1.0

E
v
e
n
t

co
u
n
t

NVS Cam VCam

(a)

0 50 100 150 200 250 300
Frame index (at 60 FPS)

0.0

0.2

0.4

0.6

0.8

1.0

E
v
e
n
t

co
u
n
t

NVS Cam VCam

(b)

0 50 100 150 200 250 300
Frame index (at 60 FPS)

0.0

0.2

0.4

0.6

0.8

1.0
E
v
e
n
t

co
u
n
t

NVS

PS3 Eye

Virtual

(c)

Figure 5.3: Behavioural comparison given thresholds on NVS emulator. Different
thresholds were used a) 5%, b) 10%, c) 20%; in every plot blue-dashed, green and red
lines indicate hardware NVS, digital camera + emulator, virtual camera + emulator,
respectively

way; if some events are lost in the transmission line, the receiver would still be able to
recover to a correct value after some time, Equation 5.3 will be changed to

Rt+1 = w f Rt +Mt�Dt , (5.4)

where 0 ≤ w f ≤ 1 is the rate at which the reference level value approximates to its
default value; we can observe the behaviour of the system given a step input in Fig-
ure 5.4b.

Adapting the emulator’s behaviour to the input signal rate of change would allow it
to gain sensitivity and detect slow-changing input. Additionally, it could diminish the
output rate when the input signal constantly alternates between high and low values
(e.g. noise, a faulty pixel). We require to change the constant threshold matrix H into
a spike-dependent value,

68 CHAPTER 5. SENSING THE VISUAL WORLD

(a)

0 20 40 60 80 100
Frames

0.80

0.85

0.90

0.95

1.00

1.05

1.10

S
ig

n
a
l
le

v
e
l

Signal Reference Spike Pos

(b)

Figure 5.4: Enhancements to basic photoreceptor model. a) Enhanced NVS model
diagram. Threshold, spike post-processing and a noisy receiver model where added to
the basic model. b) Reference level behaviour to step input, when the threshold equals
5%≈ 0.05 and decay rate w f = 0.99 .

Ht+1 = Ht�g(Dt ,Ht) (5.5)

g(Dt) =

wdown |Dt,i, j|< Ht,i, j

wup |Dt,i, j| ≥ Ht,i, j

, (5.6)

where {wdown ∈ R | 0 < wdown < 1} and {wup ∈ R | wup > 1}.
We demonstrate the adaptation to fast-changing signals first; in Figure 5.5b we

observe how the basic NVS emulator (i.e. constant threshold and non-decaying refer-
ence) behaves, in this particular case most changes in the signal will elicit an event;
this could lead to many spikes being generated (Fig. 5.5a).

Another benefit of having an adaptive threshold is being able to sense slow-changing
signals, Figure 5.6 shows such a signal. On the left we see a static threshold response;
assuming the reference level is initially equal to signal, no events occur since the dif-
ference between time steps is never larger than the threshold.

We can observe the benefits of having an adaptive (decreasing) threshold in Fig-
ure 5.6b. As the simulation progresses the threshold value drifts towards zero (or a
minimum value); this opens the possibility for smaller changes to trigger an event
which, in turn, increases the threshold again.

Finally, we test all the components of the NVS emulator model together (Fig. 5.7),
by decaying the reference value and adapting the threshold. In Figure 5.7a we observe
the system’s response to a step input; the emulator will initially spike fast to catch up

5.1. IMAGE CONVERSION TO SPIKES 69

0 10 20 30 40 50
Frames

0.0

0.2

0.4

0.6

0.8

S
ig

n
a
l
le

v
e
l

Spike count = 32

Signal Reference Spike Pos Spike Neg Threshold

(a)

0 10 20 30 40 50
Frames

0.0

0.2

0.4

0.6

0.8

S
ig

n
a
l
le

v
e
l

Spike count = 10

Signal Reference Spike Pos Spike Neg Threshold

(b)

Figure 5.5: Comparison of threshold behaviours, fast-changing signal. Blue-solid line
depicts the input signal; magenta-dashed line represents the NVS emulator reference
value; the orange-dotted line at the bottom of the plot is the threshold value.

0 10 20 30 40 50
Frames

0.00

0.05

0.10

0.15

0.20

0.25

S
ig

n
a
l
le

v
e
l

Signal Reference Spike Pos Threshold

(a)

0 10 20 30 40 50
Frames

0.00

0.05

0.10

0.15

0.20

0.25

S
ig

n
a
l
le

v
e
l

Signal Reference Spike Pos Threshold

(b)

Figure 5.6: Comparison of threshold behaviours, slow-changing signal. Blue-solid line
depicts the input signal; magenta-dashed line represents the NVS emulator reference
value; the orange-dotted line at the bottom of the plot is the threshold value.

with the input signal value until achieves an almost periodic output balanced by the rate
at which it forgets its history and threshold adaptation. We now evaluate the response
to noisy signals, when the noise is not large enough to cause spikes in every frame
(Fig. 5.7b) the emulator behaves in a similar way to how it reacts to the step function;
this means that by adapting the threshold the photoreceptor mostly ignores this noise
while still generating spikes even if the average value does not change.

If we add noise which can cause spikes, the NVS emulator will respond mostly to
large changes and ignore low-power noise. By adapting the threshold and decaying the
reference level, we can filter out noisy sources while making sure a receiver could still
recover from loss of communication.

70 CHAPTER 5. SENSING THE VISUAL WORLD

0 10 20 30 40 50
Frames

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ig

n
a
l
le

v
e
l

Spike count = 9

Signal Reference Threshold Spike Pos

(a)

0 10 20 30 40 50
Frames

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ig

n
a
l
le

v
e
l

Spike count = 8

Signal Reference Threshold Spike Pos

(b)

0 10 20 30 40 50
Frames

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
ig

n
a
l
le

v
e
l

Spike count = 9

Signal Reference Threshold Spike Pos Spike Neg

(c)

Figure 5.7: Response to signals when the NVS includes an adaptive threshold and
history decay. Blue-solid line depicts the input signal; magenta-dashed line represents
the NVS emulator reference value; the orange-dotted line at the bottom of the plot is
the threshold value. a) Step function; b) small and fast changes; and c) large and fast
changes.

.

Rank-ordered neuromorphic vision sensor

Evidence that different receptive field sizes are present in retinal ganglion cells has
been known for decades [Hammond, 1974]. The previous NVS-based image encoder
can be thought of as an eye model which takes into account ganglion cells with a
single-size, high-resolution receptive field. This implies that a single version of the
visual field is being captured, this could result in an unstable representation. Adding
different receptive field sizes adds multiple scale representations of the same input,
which can both stabilize the representation and may be used for different tasks, such
as answering the questions what are we seeing and where is it in the field of view.

Furthermore, researchers have theorized that the cortex uses sparse, distributed
representations (SDRs) to store and transmit information due to their capacity, respon-
siveness to similar inputs and robustness to noise [Field, 1994; George and Hawkins,

5.1. IMAGE CONVERSION TO SPIKES 71

(a) (b) (c) (d)

Figure 5.8: Moving a scaled-up MNIST digit (from 28×28 to 256×256), and simu-
lating a micro-saccadic movement (1 pixel per frame) at 90 frames per second. In cyan
are pixels representing a brightness increment and magenta the ones for decrements.

2009; Kanerva, 1988]. To produce this representation the encoder would require to
reduce redundant activity from cells which share receptive field regions and change of
basis vectors from a single pixel to patches. If the basis vectors for the transformation
are not orthogonal, reducing redundancy has the effect of pushing orthogonality to the
new representation. A sensory encoder which transforms it’s input to an SDR would
be able to feed cortical regions with its “native” language.

We can achieve such a sparse visual sensor by changing the simple encoder in
our NVS emulator to a rank-order one and adding an appropriate decoder (Figure 5.9).
The rank-order encoding we have used here was developed by Bhattacharya and Furber
[2010] and it uses four different sizes of centre-surround receptive fields. To simulate
the cells with these receptive fields we perform a convolution on the input image with
an image kernel The weights of the kernel are computed using a difference of Gaus-
sians centred at the middle of the image and normalized so that it sums to zero and
its auto-correlation equals to one. After the convolutions, we interpret each pixel as
a neuron and their value as the order in which they would spike; each time a neuron
spikes it reduces the value (order) neighbouring neurons. The algorithm stops when a
required number of neurons have spiked, typically, around 10% of them.

To test whether we obtain a reduction in the number of spikes using such rear-
rangement of the NVS emulator we use a more complex (richer in textures) image to
which we apply a simulation of micro-saccades. We define a micro-saccade as a ran-
dom translation of at most 1 pixel in each direction (both horizontal and vertical) and
we perform one micro-saccade per frame. After each micro-saccade we do a step of
the rank-order NVS emulator and we send out 5% of the possible spikes.

Figure 5.10 shows the evolution of rank-order NVS: the left column depicts the
current reference which is also the reconstruction the decoder block in Figure 5.9; the

72 CHAPTER 5. SENSING THE VISUAL WORLD

-

REF

DIFF >

threshold

Output
spikes

receiver
model

IMG Rank-Order
encoder

Rank-Order
decoder

Figure 5.9: Diagram of a rank-order neuromorphic vision sensor. It includes a complex
spike encoder for the reference, input difference and an appropriate decoder.

central column shows the difference between the reference frame and the current input;
finally, the right column displays raster plots of outgoing (from ganglions) spikes. In
each raster plot we organized neuron ids according to their receptive field size, this
way bottom to top (1 to 4) show decreasing resolution.

In the first row of Figure 5.10a the reference for the rank-order NVS model is at its
default level, thus most pixels will be “active” after the difference operation. Using the
rank-order encoding we can appreciate that most activity is in two of the scales (2nd
and 4th), the topmost corresponds to lowest resolution. After the first frame we can
obtain a fairly good reconstruction, in particular of broad shapes, as seen in the middle
row (Figure 5.10b) Sending the second batch of spikes further refines the reference, we
now see the output transition from having the most activity in the low spatial frequency
ganglions (layer 4) to the ones with the smallest receptive field (layer 1). Since the
total number of output pixels is around 3 times the ones in the input image and we
are sending 5% of that count in the output, we are constantly sending around 1.5% of
the total input pixel count. This is reducing the number of spikes while increasing the
information per spike and, by changing the image representation we could gain some
robustness to small transformations (e.g. translation, rotation, scaling) in the input.

Event count dynamics

A more realistic environment to test how much reduction in spike counts would involve
larger translations than a micro-saccade. We now assume there are two types of eye
movements (implemented here as image translations): micro-saccades which have a
small magnitude (≤ 1 pixel) and full saccades whose magnitude is usually much larger
than a micro-saccade (tens of pixels). As in the previous section micro-saccades are

5.1. IMAGE CONVERSION TO SPIKES 73

Reference Difference Spike output

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
Time

1

2

3

4

G
a
n
g
lio

n
 t

y
p
e

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

5250 5300 5350 5400 5450
Time

1

2

3

4

G
a
n
g
lio

n
 t

y
p
e

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

10500 10550 10600 10650 10700
Time

1

2

3

4

G
a
n
g
lio

n
 t

y
p
e

(c)

Figure 5.10: First three iterations of rank-order NVS. The left column shows the refer-
ence frame, the middle shows the difference between input and reference frames, and
the rightmost column shows the raster plots of 5% spikes. In each raster plot spikes are
ordered according to ganglion type of decreasing resolution as we go up in the plot.

generated at random and translate the image by, at most, 1 pixel; additionally, micro-
saccades are applied to each frame unless a full saccade replaces it. The magnitude
and direction of a full saccade are computed by subtracting the pixel with the largest
difference (Eq. 5.1) and the centre of the image. The occurrence of full saccades is
determined by probability,

p(saccade)t =

pmin if saccade happened at t−1

min(1,wup× p(saccade)t−1) otherwise
(5.7)

where wup is a real number larger than one and it is used to increase the probability
every frame; pmin is a constant which states the minimum probability. Every frame we

74 CHAPTER 5. SENSING THE VISUAL WORLD

Start

(a)

0 10 20 30 40 50 60
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

S
a
cc

a
d
e
 p

ro
b
a
b
ili

ty

(b)

Figure 5.11: Simple attention mechanism. a) sequence of saccades. b) saccade proba-
bilities

sample a random value from a uniform distribution in the range [0, 1), if this value is
lower than the saccade probability we randomly choose one of the five largest changes
in the difference frame. In this experiment the values for saccade generation where
wup = 1.5 and pmin = 0.01; we send 10% of the generated spikes; and the forgetting
rate of the NVS emulator reference is w f = 0.95. Figure 5.11a shows the sequence of
saccades simulated over the first 70 frames of a simulation and Figure 5.11b depicts
the evolution of the probability of a saccade.

An interesting result of the experiment comes from analysing the number of spikes
produced by each ganglion type (i.e. resolution), which is shown in Figure 5.12. At
the beginning of the simulation most spikes come from the three lowest resolutions,
led by ganglions with the largest receptive field (type 4); this likely happens due to
the empty reference frame. After each saccade, the two middle resolutions have higher
spike counts but decay while the lowest and highest resolution ganglions’ rate increase.
This is due to a better fit of middle resolution kernels to non-zero-valued pixels in the
difference frame after a saccade.

Another nice property is that the number of spikes which represent high resolu-
tion steadily increase after the saccade and maintain activity. Since we are constantly
moving the image and these changes are generally caused by edges, it is natural that
these will activate small receptive fields. The lowest resolution ganglion type seems
to follow a similar behaviour as the highest resolution one, this may be happening to
maintain global luminosity in the image. These activity patterns and the fact that only
5 to 10% spikes are required for a good reconstruction indicate that it could be plausi-
ble to substitute a single-scale NVS by a multi-scaled one without incurring in much

5.2. VISUAL PROCESSING 75

bandwidth overhead.

Visual processing

The visual processing networks presented in this section take inspiration from the cir-
cuitry found in the mammalian eyes and are designed to use an NVS as an input. As
such, we use a similar, common motif: bipolar cells (B) sample the input (P) with
different image kernels and activate corresponding ganglion cells (G). Bipolar output
also feeds accompanying amacrine cells (A) which, in turn, inhibit activation of neigh-
bouring ganglion cells (Figure 5.13a). We chose to use the output of an NVS as it has
an embedded ON–OFF channel separation plus it is already in SpiNNaker’s “native”
language.

In short, Bipolar cells detect features in the image, so their activity represents an
image patch. As the features we detect are usually not orthogonal we require a mech-
anism to reduce redundancy in the image representation. We use amacrine cells, since
they are of the inhibitory type and are fed by bipolars, to prevent spikes from ganglion
cells whose activity represents a similar feature (i.e. image patches). As bipolars sam-
ple the input with an image kernel, we can compute how similar is the information
which ganglions carry by calculating the cross-correlation of the input kernels. We
maintain this connectivity motif on the different visual processing sub-systems.

General image representation

Inspired by the model described in Section 5.1.2, we propose a network for image
representation based on different sizes of Gaussian receptive fields for bipolar cells
and lateral competition on ganglion cells. We define different populations which scan

0 10 20 30 40 50 60
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

sp
ik

e
 c

o
u
n
t

Type 1
Highest

Type 2
High

Type 3
Low

Type 4
Lowest

Figure 5.12: Spike counts for rank-order NVS with simple attention.

76 CHAPTER 5. SENSING THE VISUAL WORLD

(a) Main connectivity motif diagram. (b) Bipolar cells samples the image at dif-
ferent scales.

Figure 5.13: Aspects of visual processing SNN. Green lines indicate excitatory con-
nections, red ones are inhibitory. Rhombus (green and red) indicate kernel-based con-
nectivity. Bipolar cells sample NVS emulator spikes through a weight kernel, each
bipolar excites a ganglion (output) and an amacrine (inhibitory inter-neuron). The lat-
ter inhibit neighbouring ganglions to reduce redundant activity.

the full input image with using weight (image) kernels whose values are proportional
to 2D Gaussian functions; each neuron in a population shares the same input weights.
Additionally, each population scans the input with strides proportional to the size of
the weight kernel; for example, a kernel of width 11 produces the stride would be
3. These connectivity characteristics essentially reduce the scale of the input image.
Since we have many populations using different weight kernels and strides, we end
up with a multi-scale representation of the input image. This network can be thought
of as an approximation to a matching pursuit algorithm (MPA) [Durka, 2007]. An
MPA will take a set of over-complete basis to represent a signal via a compressed,
sparse vector. In this case, the dictionary or basis are the bipolar input kernels and
the spikes from ganglion cells represent the compressed vector. The reason this is
not exactly an MPA is that no feedback signal will monitor the reconstruction quality.
Since we require the same network to model different inputs, and its weights are not to
be trained, we have to dynamically modify the interaction between neurons so that the
function approximation property, to a certain extent, still holds.

In biology such compression is thought to arise from competition among neurons;
there is evidence that such mechanism is present among retinal ganglion cells [Cook

5.2. VISUAL PROCESSING 77

and McReynolds, 1998; Portelli et al., 2016]. In our spiking network, competing neu-
rons would send inhibitory signals to neighbours which adjust the input current by a
certain factor,

ITotal = I f f − Ilat ∼ w f f −wlat . (5.8)

The proposed connectivity motif generates centre-surround activity detected in in-

vivo recordings of retinal ganglion cells. Inputs to bipolar cells are distance-dependent,
whose weights are computed using a Gaussian distribution. Each Gaussian is centred
at the bipolar coordinate (µx = xc and µy = yc) projected back into the input space and
have equal standard deviations (σx = σy),

Gi(x,y) =
1

2πσxσy
exp(−[(x−µx)

2/(2σ2
x)+(y−µy)

2/(2σ2
y)]) . (5.9)

To compute the inhibitory weights we calculate the cross-correlation between the two
input Gaussian (G0 and G1) kernels [Bromley, 2017],

G0(x,y)?G1(x,y) = G0(x,y)~G1(x,y) =
1

2π(σ2
0 +σ2

1)
exp−(x

2+y2)/[2(σ2
0+σ2

1)] ,

(5.10)

where ? denotes the cross-correlation and ~ the convolution operator1. Note that if
both deviations (σ0 and σ1) are equal, the new width of the area is

√
2 times the orig-

inal, which would produce centre-surround receptive fields. Figure 5.14 illustrates the
formation of this receptive field; in the top-left we can see the input kernel and the
top-right figure illustrates the lateral inhibition kernel. Figure 5.14c shows that the
subtraction of the input and lateral kernels would result in a centre-surround filter.

We set an experiment to test the behaviour of the centre-surround receptive fields
in a SpiNNaker simulation; in this we use the highest resolution sampling. We con-
verted MNIST digits into a spike-rate representation (Fig. 5.15a; Section 5.1.1) and
feed it to the proposed network with three ganglion cell types which correspond to
their receptive field width (Table 5.1).

To further reduce the likelihood of bipolar cells sampling similar features we chose a
stride (how far apart they are placed) of roughly half of the receptive field diameter.
The neurons in the network for multi-scale image representation use the parameters
shown in Table 5.2

1We can use either since Gaussian functions are even.

78 CHAPTER 5. SENSING THE VISUAL WORLD

3 2 1 0 1 2 3

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(a)

3 2 1 0 1 2 3

0.0015

0.0010

0.0005

0.0000

(b)

5 0 5

0.0000

0.0001

0.0002

0.0003

(c)

Figure 5.14: Formation of centre-surround receptive fields. a) Receptive field for bipo-
lar (input) cells, kernel width = 7, σ = 0.7. b) Cross-correlation of input kernel is the
connectivity weights for amacrine cell. c) By subtracting the cross-correlation kernel
from the input one, we can form a centre-surround receptive field.

We first test the network without lateral competition (Figures 5.15b, c, and d), the
centre-surround mechanism alone reduces spike counts to an average of 4.1% when
compared to the total input spikes. Allowing different ganglion cell types to compete
produces a further reduction in spike output (an average of 3.32%) and, most impor-
tantly, discourages the output representation from containing redundant information.
Furthermore, with this competition we can transform the input from a rate encoding
to a temporal one as the ganglion whose receptive field is a better match to the input

Table 5.1: Bipolar receptive field parameters.

Type Width σ
Stride

(sampling step)

1 3 0.57 1

2 7 0.8655 3

3 15 1.3535 7

5.2. VISUAL PROCESSING 79

will fire first and inhibit neighbouring ganglions. This happens continuously and al-
lows ganglion cells with a receptive field with the current best fit to spike, creating a
sequence of “best-fit” spikes.

(a)

(b) (c) (d) (e) (f) (g)

Figure 5.15: Centre-surround response at different scales. In every image cyan and
magenta pixels indicate activity in the ON and OFF path, respectively. Top row pictures
show 20ms activity in the photoreceptors each, these are the input to the retinal model.
Images in the lower row are obtained by accumulating spikes for 100ms after the filter-
ing stage and at different scales: b and e, c and f, d and g; correspond to a 1:1, 1:9 and
1:49 scales, respectively. Figures b, c and d show the behaviour of the network without
lateral competition; while e, f and g depict the behaviour with lateral inhibition.

Gaussian receptive fields in bipolar cells are just an approximation to the real
weight distribution in the eye, these are most likely expressed in a distance-dependent
connectivity rule in nature, for both bipolar and lateral competition connections. Evo-
lutionary processes must have led this to maximize information while minimizing sig-
nals.

Table 5.2: LIF parameters for static visual processing

Vthresh Vrest Vreset Cm τmem τre f τsyn

Value -55.0 -65.0 -70.0 0.25 10.0 5.0 2.0

Units mV mV mV nF ms ms ms

80 CHAPTER 5. SENSING THE VISUAL WORLD

Orientation detection

A subset of ganglion cells in the retina react predominantly to (moving) bars [Barlow
et al., 1964; Zhang et al., 2012]; furthermore, some neurons throughout the V1 area
of the visual cortex present a similar behaviour [Hubel and Wiesel, 1963]. We present
a network architecture, which follows the same competition principle as the multi-
scale one and whose objective is to detect bars rotated –oriented– at multiple angles.
Different orientations are detected by classes of bipolar cells, their receptive fields are
modelled as Gaussian ellipsoids which we obtain from the general formulation,

Go(~x) =
1

(2π)n/2 |ΣΣΣ|1/2 exp
[
−1

2
~x>ΣΣΣ

−1~x
]
, (5.11)

where |·| is the determinant operator and the dimension of the system is given by
n = 2; similarly,~x and ΣΣΣ are of dimensions 2×1 and 2×2, respectively. Since Σ−1 is
symmetric and positive definite, a singular value decomposition (SVD) is guaranteed,

ΣΣΣ
−1 = R S R−1 . (5.12)

We can interpret R as a 2D rotation matrix [Spruyt, 2017],

R =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 , (5.13)

where θ is the rotation of the ellipsoid with respect to the positive horizontal axis.
Matrix S can be seen as scaling factor [Spruyt, 2017],

S =

 1/s2
x 0

0 1/s2
y

 , (5.14)

plus we can think of sx and sy as the width and height of the ellipsoid, respectively. We
can now reformulate Eq. 5.11 into

Go(~x,sx,sy,θ) =
1

2π

∣∣∣∣(RθSsx,syR−1
θ

)−1
∣∣∣∣1/2 exp

[
−1

1
~x>RθSsx,syR−1

θ
~x
]
, (5.15)

5.2. VISUAL PROCESSING 81

which allows us to produce arbitrary Gaussian ellipsoids. Receptive fields of orientation-
detecting bipolars are defined using the parameters in Table 5.3 and the results are
shown as the top row of Figure 5.16a.

Table 5.3: Orientation detection parameters.

Angle Width Sx Sy Sampling step

0, 45, 90, 135 7 3 0.5 3

0.0000

0.1016

0.2031

0.3047

0.4062

0.5078

0.6094

0.7109

0.8125

0.9141

0.0000

0.1016

0.2031

0.3047

0.4062

0.5078

0.6094

0.7109

0.8125

0.9141

0.0000

0.1016

0.2031

0.3047

0.4062

0.5078

0.6094

0.7109

0.8125

0.9141

0.0000

0.1016

0.2031

0.3047

0.4062

0.5078

0.6094

0.7109

0.8125

0.9141

0.9219

0.8203

0.7188

0.6172

0.5156

0.4141

0.3125

0.2109

0.1094

0.0078

0.9219

0.8203

0.7188

0.6172

0.5156

0.4141

0.3125

0.2109

0.1094

0.0078

0.9219

0.8203

0.7188

0.6172

0.5156

0.4141

0.3125

0.2109

0.1094

0.0078

0.9219

0.8203

0.7188

0.6172

0.5156

0.4141

0.3125

0.2109

0.1094

0.0078

(a) (b)

0.1122

0.0842

0.0561

0.0281

0.0000

0.2031

0.4062

0.6094

0.8125

0.1028

0.0771

0.0514

0.0257

0.0000

0.2031

0.4062

0.6094

0.8125

0.1122

0.0842

0.0561

0.0281

0.0000

0.2031

0.4062

0.6094

0.8125

0.1028

0.0771

0.0514

0.0257

0.0000

0.2031

0.4062

0.6094

0.8125

(c)
Figure 5.16: Orientation detection receptive fields. In all images green pixels are posi-
tive values and red ones are negative. Top shows the receptive field of bipolar neurons
which are to detect oriented bars at four different angles (0, 45, 90 and 135). Auto-
correlation of the bipolars’ receptive fields are depicted in the middle row and the
centre-surround-like receptive fields of ganglion cells constitute the lower row.

Similarly to the general image representation network, there could be redundant
feature detection and reducing these is done through lateral inhibition. As in the pre-
vious network, inhibitory weights are computed by the auto-correlation of bipolar re-
ceptive fields (shown in Figure 5.16b). Since the input kernels are Gaussian, then the
auto-correlations are also Gaussians but with a wider area; so the subtraction of input
and inhibition gives rise to behaviour similar to centre-surround.

We tested orientation detection units (parameters can also be found in Table 5.2) by
presenting a spiking representation of an MNIST digit (Figure 5.17a) to the network
in which different orientation filtering neurons are simulated in parallel. We obtain
higher responses from horizontal filtering neurons as more of the input matches this
orientation; vertical filtering also obtains high responses though in localized regions,
particularly where the orientation of the curves changes. Tilted orientations show better
selectivity, this happens because the discretization of the receptive field renders high
weights in one the diagonals of the kernels.

82 CHAPTER 5. SENSING THE VISUAL WORLD

(a) (b) (c) (d) (e)

Figure 5.17: Orientation filtering results. In every image cyan and magenta pixels
indicate activity in the ON and OFF path, respectively. The leftmost image is a sample
of the input spikes, the rest are the accumulation of spikes throughout the trial. From
left to right, the angle filtering is done at 0, 45, 90 and 135 degrees.

We understand the output of this “sub-network” as a different representation of the
input, the resulting activity could be interpolated to obtain an estimate of intermediate
orientation angles. For instance, if we see the same activity from the 45 and 90 degree
filters, we may have an orientation of 67.5 degrees.

Motion sensing

Early motion sensing in animals allows them to react quickly to moving stimuli; fur-
thermore, there are theories suggesting that motion cues could bring sufficient infor-
mation to enable some invariance in V1 regions of the visual cortex [Földiák, 1991]. In
mammalian retinas, starburst amacrine cells (SAC) react to moving objects and have
a particular connectivity [Borst and Euler, 2011; Euler et al., 2014]. Firstly, instead of
sampling activity directly from photoreceptors, they do so from bipolar cells but still
output to ganglion cells. Another particular connectivity for these cells is that over-
lapping regions of dendritic trees from opposing direction-sensing cells inhibit each
other. It is theorized that increasing delays in dendritic tree regions allow the cell to
sum incoming voltage pulses if most arrive around the same time.

The design for motion detection units (MDUs) relies on the inherent properties
of spiking neurons: line delays, input integration and leakage. Similarly to SACs, the
premise is that if an object is moving, we can detect activation in a set of photoreceptors
at one time and later detect another set; if we delay the output of the first set to coincide
with the arrival of the second, we can assume there was a movement from one region
to the other. Of course, this is a terrible assumption if only two points (pixels) are
sampled as the sequence of detection could have originated from other sources (e.g.
randomly flashing lights).

5.2. VISUAL PROCESSING 83

Figure 5.18: Multiple events occurred in sensed areas in a sequence.

If we add sampling points (Figure 5.18), it becomes less likely that all the spikes
were originated by random events. Nevertheless, motion is detected in small windows
so we can detect only apparent motion, thus movement of full objects would have to
be detected in later stages of the pipeline when more information is assembled.

Table 5.4: Rounded average spike counts per direction sensing filters. Speed is in
pixels per frame, at 90 frames per second.

Direction

Speed East North West South

1/4 11 0 0 0

1/2 13 0 0 1

1 32 1 1 1

To test our motion detectors we simulated movement of objects by translating an
image (an MNIST digit) in the east direction at different speeds (see Table 5.4) and
present it to the highest resolution filter in our general representation network (Sec-
tion 5.2.1). We connect east, west, north and south MDUs to the bipolar cells of the
filter and use centre-surround connectivity on the output of the detectors. At each trial
of the experiment we count the spikes generated by each of the detectors; it can be
seen in Table 5.4 that at each speed, the east MDU spikes the most. We could addi-
tionally tune more input connections to target different speeds so that the same neuron
is sensitive to any motion perceived by the retina.

One problem with the previous model is that multiple activations of the same sam-
pling point (e.g. a faulty, always-changing pixel in a camera) would still elicit a false
motion detection event. To reduce false positives and target different speeds a closer
approximation to the Reichardt detector is required, in which we have two neurotrans-
mitters with different temporal dynamics [Borst and Euler, 2011]. One will be slow,

84 CHAPTER 5. SENSING THE VISUAL WORLD

which can be seen as opening a window in which the post-synaptic neuron can spike.
The second transmitter will have fast dynamics so it will be effective only for a short
time. We added some more structure to the connectivity of the motion sensor, bipo-
lar neurons sense either horizontally or vertically aligned regions of the input image
(blue units in Figure 5.19a) and they have long refractory periods.

A
ct

iv
it

y
 fl

o
w

Horizontal
integration

Vertical motion
detection

1

2

3

v

(a)

1

2

3

V

Delayed
connections

Time

(b)

Figure 5.19: Structured connectivity for motion detection.

Slow neurotransmitters are delivered by delay lines to maximise their effect on
the post-synaptic neuron (green lines in Fig. 5.19b) by the time activity reaches the
sampling zone for the bipolar neuron which will emit the fast neurotransmitter. In the
motion sensing neuron the total of slow and fast inputs are multiplied, the product is
the final input given to the neuron

Itotal = Islow ∗ I f ast ; (5.16)

where Islow and I f ast are the current provided by the slow- and fast-changing neuro-
transmitters, respectively. Finally, the model for the motion-sensitive spiking neuron
is based on the LIF model (Eq. 2.21) and is given by

τm
dV
dt

= RmItotal−V +EL . (5.17)

Figure 5.20 shows the results of giving the preferred and opposite sequence of
events to the motion sensor. Membrane voltage is shown in magenta on the left plots.
Plots on the right show the input to the neuron: blue and green are the fast and slow
neurotransmitters, respectively; red is their multiplication which is the input current
given to the neuron. It takes 500ms for the slow transmitter to decay while the fast one
drops to zero in 10ms.

It can be observed that, for the incorrect sequence (Figure 5.20b), membrane volt-
age is a low-pass version of the total input, but never reaches the threshold since the

5.2. VISUAL PROCESSING 85

0 50 100 150 200
Time (ms)

65

60

55

50

45

40

35

30

M
e
m

b
ra

n
e
 v

o
lt

a
g
e
 (

m
V

)

V membrane

0 50 100 150 200
Time (ms)

0

5

10

15

20

In
p
u
t

le
v
e
ls

Fast Slow Total

0 50 100 150 200
Time (ms)

65

60

55

50

45

40

35

30

M
e
m

b
ra

n
e
 v

o
lt

a
g
e
 (

m
V

)

V membrane

0 50 100 150 200
Time (ms)

0

5

10

15

20

In
p
u
t

le
v
e
ls

Fast Slow Total

(a)

0 50 100 150 200
Time (ms)

65

60

55

50

45

40

35

30

M
e
m

b
ra

n
e
 v

o
lt

a
g
e
 (

m
V

)

V membrane

0 50 100 150 200
Time (ms)

0

5

10

15

20

In
p
u
t

le
v
e
ls

Fast Slow Total

0 50 100 150 200
Time (ms)

65

60

55

50

45

40

35

30

M
e
m

b
ra

n
e
 v

o
lt

a
g
e
 (

m
V

)

V membrane

0 50 100 150 200
Time (ms)

0

5

10

15

20

In
p
u
t

le
v
e
ls

Fast Slow Total

(b)

Figure 5.20: Motion sensing neuron dynamics.

fast input is nearly gone when the slow ones reach the neuron. In the case of the pre-
ferred sequence (Figure 5.20a), both transmitters reach their maximum at the same
time and, since they get multiplied, there is a massive input to the neuron. This results
in a burst of spikes for about 25ms; this is the result of the temporal dynamics of the
neurotransmitters and the lack of a refractory period in the output neuron. If the motion
detector gets configured with a non-zero refractory period, we can control the spiking
behaviour, even to the point of having a single spike per detection.

This model was tested using a bouncing ball simulation (Figure 5.21), the ball was

Animation
NVS

emulator
Bipolar

(sub-sample)
Motion
sensors

Figure 5.21: Network used to test motion sensing neurons

86 CHAPTER 5. SENSING THE VISUAL WORLD

rendered onto a 5×5 pixel image and this was moved in a 64×64 environment. When
the ball reaches a wall it bounces off with a random speed ranging from 1 to 2 pixel-
s/frame in either direction. The sequence of raw images were processed by the NVS
emulator and the resulting spikes were fed into a single-scale image representation cir-
cuit (Section 5.2.1). From this stage we obtain a lower resolution (half the width and
height) version of the input, which helps the motion detector circuit to sense a single
event per frame in its input. The temporal decay constants for the slow and fast inputs
of motion-detecting neurons are τslow = 500ms and τ f ast = 2ms, respectively; neural
parameters can be found in Table 5.5.

Table 5.5: Neuron parameters for motion sensing.

Vthresh Vrest Vreset Cm τmem τre f τ f ast τslow

Sub-sample -55.0 -65.0 -130.0 0.25 1.0 10.0 1.0 –

Motion -55.0 -65.0 -100.0 0.25 10.0 10.0 2.0 500.0

Units mV mV mV nF ms ms ms ms

Note that for the sub-sample population both inhibitory and excitatory synapses
have a temporal constant (τsyn = τ f ast) of 1ms and they do not posses slow synapses.
Figure 5.22 shows the outputs of easterly and westerly motion detection as red-dashed
and green-solid lines, respectively. Ball position is indicated by blue dots in the plot: it
moved towards the north-east for about 500ms, then it bounced off a corner and moved
in a south-westerly direction until∼1250ms; finally, it takes off to the north-east again.

0 500 1000 1500 2000
Time (ms)

50

100

150

200

250

N
e
u
ro

n
 I
d

Input events East detection West detection

Figure 5.22: Output of motion sensing circuit in the horizontal axis of the ON channel.

5.3. MIXING ON-OFF CHANNELS 87

In the first part (0 to ∼1250ms) of the experiment detection is near perfect al-
though there are moments when detectors fail to sense motion. In the last section
(after ∼1250ms) there are multiple false positive detections which can be diminished
by lateral competition of different directions.

While both models detect motion, the first one will require multiple copies of the
same circuit to detect different speeds. The latter one needs fewer copies as the decay
time of the slow neurotransmitter can be used to group multiple speeds. In later stages
of the pipeline, these groups can be evaluated to approximate the real speed of the
visual stimulus.

Table 5.6: Motion detection effectiveness, true vs false positive percentage for bounc-
ing ball and using 2-neurotransmitter detector

Direction Total

East North West South

True Positive 73.94% 66.32% 63.59% 69.14% 68.24%

False Positive 26.06% 33.68% 36.41% 30.86% 31.76%

Mixing ON-OFF channels

Since the previous stage in the pipeline (the retina in biology) has separate channels for
light change direction (increment or decrement), we may have the same information
coming in both. We now take inspiration from the Lateral Geniculate Nucleus (LGN),
which is thought to be a relay station and also a modulator. This stage of the pipeline
corresponds to the relay aspect of the LGN, and aims to remove redundant informa-
tion to reduce energy consumption while preserving the input. Neurons in LGN are
distributed in layers which correspond to classes of retinal ganglion cells. The con-
nectivity motif for these neurons is as follows: they receive excitatory input from one
channel and inhibitory from the opposing one and from neurons in their own layer
(Figure 5.23).

As in every component in the pipeline there is topographic correspondence of neu-
rons from the retina and the LGN. Retinal ganglion cells (Retina(x,y)) will only inhibit
relay cells in the LGN which are in its neighbourhood (LGN(x,y,∆)). This mechanism
would permits the LGN to increase the perceived contrast ratio since the same location
can not be active for both channels.

88 CHAPTER 5. SENSING THE VISUAL WORLD

Inhibitory

Excitatory

Retinal
Ganglion

LGN
Relay

Off channel

On channel

Figure 5.23: Cross-channel redundancy removal

During our tests there is little spike reduction, most likely due to the simple input
image and good filtering from the multi-scale representation network.

Activity measurements

An important benefit of changing the raw pixel representation into a multi-scale model
presented in this thesis is reducing activity, we define this as a measure of how many
units are active out of the total at any given time step.

activity =
active
total

×100% (5.18)

Firstly, the event-based pixels in the NVS emulator are active only when the input
image presents sufficient changes and this highly reduces activity. Furthermore, since
we transformed the input into two channels (ON and OFF) the number of possible ac-
tive units is duplicated. This transformation could reduce activity at least by two: when
all pixels from the original image are active, the NVS would at most sense change in
50% of its sensors, but this comes at the cost of increasing pixel count. Measurements
done with the MNIST digits show an average of 15% pixels in the input image are
active (non-zero); after the NVS emulator an average of 2% neurons show activity per
frame period (a 10ms window).

The filtering stages further reduce the activity and competition between scales push
the active neurons to be the better-representing ones (i.e. large areas are represented
by low resolutions while small regions by higher resolution kernels).

Table 5.7 shows how many active neurons, on average, are present through the
pipeline; Raw pixels refer to non-zero-valued pixels seen in the original image. The
NVS emulator column shows the average number of active neurons when transforming
this technique to convert static images to spike trains; this is due to the nature of the
transformation as only pixels with a large brightness change will be active. When
using a multi-scale representation, we can further reduce the number of active neurons

5.4. ACTIVITY MEASUREMENTS 89

Table 5.7: Average activity measurements through pipeline: MNIST digits.

Raw pixels NVS Multi-scale Cross-channel

Active 151 39 27 23

Total 1024 2048 2264 2264

Activity 14.74% 1.9% 1.19% 1.01%

as each represents an image patch; checking for duplicated signals in ON/OFF channels
did not reduce activity as much as previous stages.

One problem with traditional computer vision is that, even if only 15% of the pixels
are non-zero, we need to perform operations on the whole image (e.g. convolutions).
With event-driven computation this is not the case as only active pixels trigger opera-
tions, thus, reducing energy consumption. For example, the most common operation
in CNNs are convolutions and we are required to perform multiple operations on vi-
sion datasets, such as MNIST. If the initial convolution kernel size is 7×7 pixels and
the input image size is 28x28, the number of multiplications required is about 38K.
Taking the average active pixels for the NVS-representation this is reduced to around
2K multiplications.

Statistics shown in Table 5.7 were computed using the MNIST dataset and activity
measurements are likely to increase for natural images, as they are more complex vi-
sual stimuli. Moreover, MNIST digits are easily represented with three scales of DoG
filters; this number of scales is also unlikely to suffice in the case of natural images.
We tested the same pipeline with images available in the SciPy package [Jones et al.,
01] scaled to a 64×64 pixels resolution; results are presented in Table 5.8.

Table 5.8: Activity measurements through pipeline: SciPy images.

Raw Pixels NVS Multi-scale Cross-channel

Active 3694 828 676 134

Total 4096 8192 9768 9768

Activity 90.19% 10.1% 6.92% 1.38%

90 CHAPTER 5. SENSING THE VISUAL WORLD

4

8

12

16

20

24

28

0
3
6
9
12
15
18
21
24
27

4
2

0
2
4
6
8
10
12

4

8

12

16

20

24

28

0
3
6
9
12
15
18
21
24
27

4
2

0
2
4
6
8
10
12

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0

4

8

12

16

20

24

28

32

0

5

10

15

20

25

30

35

40

45

20

16

12

8

4

0

4

8

12

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0

4

8

12

16

20

24

28

32

0

5

10

15

20

25

30

35

40

45

20

16

12

8

4

0

4

8

12

(a) (b)

Figure 5.24: Input vs output spikes. a) Spikes coming out of the NVS emulator. b)
Reconstruction using the spikes coming out of the multi-scale network.

Since no feedback mechanism is present in our encoder we cannot adjust the ex-
citability of neurons to better reflect the input then some information loss is bound to
happen. This is shown in Figure 5.24, though we can appreciate that main characteris-
tics are still present.

Summary

Biology has invested development in retinas and, as a result, they are complex neu-
ral structures. There must be an advantage that vision pipelines could make use of;
particularly for neuromorphic hardware. We developed methodologies to transform
conventional computer vision datasets into spiking representations. The main advan-
tage is we can reduce the number of pixels which require further computation. In the
case of the rank-ordered NVS emulator we see close to 10% active pixels with respect
to the input image size, which roughly translates to 3.5% of the output pixel being
active.

In our general image representation network we use Gaussian functions as input
kernels, this resembles how bipolar cells sample photoreceptors. Additionally, feed-
forward inhibition signals are sent from bipolar cells to neighbouring ganglion cells. In
this way we can explain the usual model for retinal output, centre-surround receptive
fields; furthermore, we also achieve temporal coding of input images, departing from
the commonly used spike-rate coding. Moreover, by using Gaussian receptive fields,
instead of centre-surround ones, we could reuse some of the bipolar cell output to
combine with other types, such as motion sensing [Pack and Bensmaia, 2015; Roska
and Meister, 2014].

By changing a standard image representation into a multi-scale, orientation and

5.5. SUMMARY 91

motion one, we are increasing its dimensionality. Furthermore, enforcing competition
between scales reduces the activity and the new representation is sparse (typically, for
MNIST digits, 0.04 % are active per time step).

Although our current multi-scale network is purely feed-forward; we believe feed-
back signals could help produce a neural, compressed-sensing algorithm. Inter-plexiform
cells in the retina receive input from amacrine cells and output to horizontal cells.
Since amacrine cells receive input from bipolar cells (or other amacrine), this could
be a biologically-plausible feedback mechanism to implement a full matching pursuit
algorithm.

By slightly adjusting neuron and synapse models we were able to produce mo-
tion detection units which are believed to be key elements in biological vision. This
shows how the temporal capabilities of spiking neurons provide great flexibility when
modelling networks to process spatio-temporal inputs.

While transforming images to event-based representation helps improve energy
efficiency by not having to process the whole image, in the SpiNNaker platform this
is bound to how image-representing populations are mapped and connected. Current
neural population partitioning and placement in SpiNNaker is done as if populations
represent a 1D object. We should have different parameters for 2D or 3D, distance-
dependent, topologically-mapped populations, so that traffic is constrained and post-
neurons can process incoming spikes which correspond to distance limits instead of
everything in a single line.

In the following chapter we explore how to learn the statistics of spiking visual
representations.

Chapter 6

Biologically-plausible supervised
learning

The cortex (neocortex) is the latest evolutionary addition to brain development. It is
thought to be responsible for high-level behaviour such as language, long-term pre-
diction and planning, to name a few. Mammals of different species assign cortical
resources to their primary sensory or actuator organs (e.g. eyes/vision and hands for
hominids, respectively) [Krubitzer and Seelke, 2012].

While the beginning of the visual pathway (up to V1) is thought to be static in adult
mammals, some cortical connections are plastic and therefore give raise to learning.
In extreme cases plasticity can reassign resources, to an extent, when sensory organs
are missing. Furthermore, scientists have successfully made use of the plastic nature
of the cortex to assign vision-like responses through tactile input [Kupers and Ptito,
2004].

The visual cortex creates conceptual abstractions of its input (see Chapter 5) by
means of a hierarchical organization (Chapter 3.4). At the bottom of the hierarchy
neurons respond to lines of different orientations; at the topmost level, populations of
neurons react specifically to a concept (e.g. a face [Quiroga et al., 2005]). How this
behaviour is achieved is still an open question, nonetheless, synaptic plasticity is surely
involved.

In this chapter we develop the final stage of our spiking visual pipeline; to do so, we
explore algorithms which modify synaptic weights in a supervised manner. Firstly, we
demonstrate an implementation of an event-driven model of dopamine modulation on
the conventional STDP learning rule. We then use this implementation to train SNNs
with a dopamine-like signal to direct what a neuron should learn. Secondly, we take

92

6.1. MODELS OF SYNAPTIC PLASTICITY 93

a different approach to synaptic plasticity in SNNs which is still compatible with the
STDP algorithm and is based on the work by Bengio et al. [2015]. Instead of using
pre- and post-synaptic spike times we make use of the change in membrane voltage to
estimate the how much weights should change. We take this last algorithm further and
add an slow-decaying signal to perform supervision in SNNs.

Models of synaptic plasticity

The structure of cortical units is a first step towards solving the problem of a visual
pipeline. For these units to generate the statistics of their inputs, we require a way to
modify the connectivity of the networks. One method to achieve this is to change the
strength, and influence, of synapses; this is usually known as learning. In the artificial
intelligence literature, learning algorithms are typically classified depending on the
required signals to alter synaptic weights:

Supervised learning

In this type of learning algorithm a separate entity -a supervisor- knows to which cat-
egory the current sample from the input data belongs. In ANNs, a disparity between
the category specified by the supervisor and the one produced by the network provides
the error signal for algorithms such as back-propagation to drift the model towards the
correct one. These algorithms are usually biologically implausible since, for exam-
ple, neurons require non-local information to perform weight updates Whittington and
Bogacz [2019].

A simple way to achieve supervised learning in SNNs is to initialize weights to
such a small value that post-synaptic neurons will not spike, even if all of their inputs
are active. When the supervisor acknowledges that the input belongs to a post neuron,
it will send a signal which will increase the activity of the post-synaptic neuron. Forc-
ing the post neuron to spike after the input will create a causal relation between pre-
and post-synaptic activity. If the STDP algorithm (Section 6.1.1) is used, these spike
pairs will tend to increase the weights for the corresponding synapses; thus, learn the
statistics for a given input class. This is not ideal, as learning has to be turned off when
the user deems it necessary else the network could diverge, and forget the “correct”
weights. There are other methods for supervision in SNNs, they follow Hebbian prin-
ciples and generally optimize spike timing. Some have to do a back-propagation-like

94 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

step to adjust synaptic efficacy, which is biologically implausible [Bohte et al., 2000]
Researchers have also added a special input type which can tell the post-synaptic neu-
ron when it should fire. If the latter spikes at an undesired time, it will adjust the
weights for incoming connections [Ponulak and Kasiński, 2010]

Unsupervised learning

Training algorithms in which the system will acquire statistics from the inputs with-
out labelled data constitute the category of unsupervised learning. ANNs best known
algorithms are the Restricted Boltzmann Machine (RBMs) [Hinton et al., 2006; Tiele-
man, 2008], Auto-encoders (AE) [Bengio et al., 2009; Goodfellow et al., 2016] and
Generative Adversarial Networks (GANs) [Goodfellow et al., 2016].

RBMs are undirected, two-layered, binary unit graphs where changes to the con-
nection weights are achieved by pushing them towards the input distribution and away
from the current state of the network. The input distribution is visible since we have
samples, but the underlying distribution is not and computing it is intractable, so Monte
Carlo (MC) methods are required to estimate it. Contrastive Divergence (CD) is an ef-
ficient algorithm to train RBMs in which the estimate for the underlying distribution is
obtained after n steps of Gibbs sampling.

The structure of AEs is similar to RBMs but the graph is directed and we have a
visible (input), a hidden and a reconstruction population. The main idea is to generate
a sample from the hidden population given an input; then the sample from the hidden
population will be used to reconstruct the input. An error between the input and re-
construction is calculated and this is used in back-propagation to compute the required
weight change. Although the input-to-hidden (feed-forward) weights could be inde-
pendent from the hidden-to-reconstruction (feed-back) ones, in practice making the
feed-forward weights the transpose of the feed-back works fine and accelerates train-
ing. There is a risk of just learning the identity function so strategies such as de-noising
are used to generate more robust features than with the standard algorithm.

Training for GANs is based on game theory. Basically a generator attempts to
create an image and a discriminator judges whether it is real or fake. The generator
samples from a simple distribution for the hidden state and outputs an image through
a neural network. The discriminator, another neural network, receives the generated
image and a sample from the input distribution; the error is calculated by comparing
the inputs and attempting to be correct in judging whether the generated input is close
enough to the real one. Later, the error from the discriminator is used to transform the

6.1. MODELS OF SYNAPTIC PLASTICITY 95

generator network pushing it towards one which will create fake inputs close to the
real ones.

In SNNs the most utilized algorithm, STDP, is already unsupervised; it attempts to
build a model for input statistics by finding correlations in spike times. The algorithm
is based on Hebbian principles: the connection weight is increased if there is a causal
relationship between pre- and post-synaptic activity, that is, the pre spike occurred
before the post one; to reduce non-causal spike pairs, the connection efficacy is reduced
if the post spiked before it received the pre spike. There are many variants to the rule
which go from coincidence detection, to causality-only, to reduced precision.

Reinforcement learning

Supervised and unsupervised learning are good methods to separate inputs into classes
but are not ideal to enable an agent to achieve a goal given input from an environment
with which it interacts. The main difference in Reinforcement Learning (RL) is that
training is done by adjusting the model from rewards and/or punishments provided by
the environment given actions made by the agent [Sutton and Barto, 1998]. Further-
more, this learning is commonly done on-line and could adapt to new goals, or bind
together a series of actions instead of a single category of objects.

Classical RL models are usually Markov decision processes, for which probabili-
ties of transition are adjusted when rewards are granted. Recently there has been re-
newed attention to this approach as Convolutional Neural Networks (CNNs) have been
combined with Q-learning to play video-games [Mnih et al., 2015]. Deep Q-learning
(DQN) has achieved super-human level playing these games. A key aspect of the al-
gorithm is that it keeps a buffer of previous transitions (replay memory) from which
to chose at random. Another key element is to keep two CNNs one which is updated
every iteration (online) and a target network whose weights are copied from the online
network every K steps. The error function for the algorithm comes from the received
reward and the difference between the target and the online network evaluations.

Since SNN learning rules usually depend on instantaneous pre- and post-synaptic
neuron activity, implementing reinforcement learning requires a trace to keep these
states on a much greater time scale (i.e. seconds instead of milliseconds). Additionally,
a reinforcer input is required and this is typically applied as a modulator to STDP.

96 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Spike-timing-dependent plasticity

In 1949, Hebb produced his insightful postulate:

When an axon of cell A is near enough to excite cell B or repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.

This implies that the algorithm is local, as weight updates are a function only of the
states of pre- and post-synaptic neurons:

∆wpre,post ∝ f (s(pre),s(post)) (6.1)

where pre and post refer to the position of the neuron with respect to the synapse
which connects them, w is the synaptic efficacy, and s(·) indicates the state of the
desired neuron.

Hebbian learning can be interpreted as increasing synaptic efficacy, or long-term
potentiation (LTP), for neurons whose activities are correlated [Gerstner, 2016]. Con-
versely, uncorrelated neurons’ weights are usually decreased, also known as long-term
depression (LTD), in most learning algorithms. In particular, spike-timing-dependent
plasticity (STDP) follows Hebbian principles, the states can be abstracted just to the
times at which pre and post neurons spiked [Bi and Poo, 1998; Markram et al., 1997].

∆wpre,post(t) ∝ f (t, tpre, tpost) (6.2)

If the pre neuron spikes before the post one, the synaptic weight is increased; con-
versely when the post neuron spikes before it receives a spike from the pre neuron, the
weight is decreased. This roughly establishes causality (or at least correlation) of the
activities of the neurons.

Typically, temporal window curves (see Figure 6.1b) are modelled as exponential
functions which decay as the temporal difference between pre and post spikes increase:

WT (∆t) =

A+e−|∆t|/τ+ if ∆t < 0 ;

A−e−|∆t|/τ− if ∆t > 0 ;

0 otherwise .

(6.3)

In all cases ∆t is the temporal difference of the pre- minus the post-synaptic spike

6.2. NETWORK ARCHITECTURE 97

(a) (b)

Figure 6.1: a) Original STDP data. From Bi and Poo [1998]. b) Redrawn STDP
experiment, normalized weight change and superimposed curves. From Sjöström and
Gerstner [2010].

times. When ∆t is negative it implies causality of the post spike, thus the weight
should be increased and so A+ > 0. In the other case, ∆t > 0, will produce negative
weight changes (A− < 0). These effects are summed for every pre-post spike pair:

∆wpre,post =
Npre

∑
j

Npost

∑
i

WT (t j− ti) (6.4)

Network architecture

As discussed in Chapter 4, cortical regions react to specific areas of their sensory input.
Hubel et al. observed retinotopic responses and described “cortical columns” whose
maximal activity corresponds to the presentation of specifically oriented, moving bars.
It is unlikely that a hard separation of columns is present in the cortex but this ab-
straction helps the understanding of how neurons may be organized in cortical regions.
As we move up in the visual cortex, topographic organization is maintained although
abstraction and receptive field sizes are increased. At the top of the visual hierarchy
neurons can obtain most information required to categorize the input. For the plastic
stage of our visual pipeline we follow cortical organization principles:

◦ Distance-dependent connectivity. Neurons have limited (local) receptive fields

98 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

with respect to their immediate input: neurons in area An will have higher prob-
ability of connecting to nearby neurons in area An−1.

◦ Hierarchical. Determining a category for the input image requires neurons
whose (global) receptive field can cover the full input. This makes a hierarchy
of neurons –with increasing receptive fields– a necessity; furthermore, model
composability properties allow hierarchies to use fewer neurons to represent the
input statistics.

◦ Simple-complex. Simple neurons receive inputs mostly from a lower hierarchi-
cal level, usually containing distinct origins (e.g. ON/OFF channels, orientation
angles). Complex cells sample from simple neurons, this allows them to join
otherwise separate inputs.

◦ Competition. In most cases neurons should compete to represent the input through
inhibitory signals; competition circuits can be set in a random, distance-dependent
or hard-wired (e.g. winner-takes-all motif) manner.

Through most of the visual hierarchy, synapses are formed (and removed) and
their efficacies are adjusted to achieve classification of input patterns. The most com-
monly used plasticity algorithm in SNNs is an unsupervised one (STDP) and it relies
on stochastic behaviour of the system for neurons to specialize (or favour) an input
pattern over another. Another key component for neuron specialization is local com-
petition circuits which make weight changes steer in different directions for competing
neurons.

Winner-takes-all

A common motif in SNNs is the Winner-Takes-All (WTA) circuit; here an active “win-
ning” neuron (A in Figure 6.2) is chosen because it has a higher rate or fires earlier than
the losing neurons (B and C in Figure 6.2). This neuron will inhibit others, that is it
will prevent the other neurons in the circuit from producing spikes. Inhibitory sig-
nals are generated by inter-neurons whose response and refractory times are shorter
than regular neurons. In some instances there could be more than one winner; this is
usually referred to as a soft winner-takes-all (SWTA) circuit.

6.3. MODULATED LEARNING 99

A B C

I

Figure 6.2: Example of activity for a WTA network, when neuron A is the winner and
it inhibits neurons B and C.

Modulated learning

Since categorization of inputs is the main motivation for plasticity in our pipeline we
depart from unsupervised algorithms (STDP) and investigate biologically-plausible
methods for supervision. In the following sections we study different plasticity rules
which guide neurons to represent specified concepts. In biology, control of plastic
changes is associated with different receptor types; we reflect this in our SNN models
by introducing distinct inputs (similar to the presented in Section 5.2.3).

Third-factor rules

Traditionally, simple models of SNNs have used two types of synapse: excitatory (pos-
itive - AMPA1) and inhibitory (negative - GABAA,B

2). These drive changes to the
membrane voltage and, indirectly, can produce weight changes [Gerstner et al., 2014].

In biological neural networks, there are more neurotransmitters which may alter
learning processes. Research on dopamine (DA) interaction shows that it could be
crucial for reinforcement learning as it has been identified as a control signal for large
regions of the brain. Similarly, NMDA3 is a neurotransmitter which may be essential
to supervised learning as it modifies neural and plastic responses [Clopath et al., 2010;
Frémaux and Gerstner, 2016; Roelfsema and Holtmaat, 2018].

Furthermore, there are additional cells involved in synapse function; astrocytes

are usually characterized as “maintainers” in the central nervous system as they keep
ionic concentration stable, form scar tissue on damaged regions, and aid energy trans-
fer [Sofroniew and Vinters, 2010]. Scientists are focusing more effort to understand
the role of astrocytes as learning modulators [Gibbs et al., 2008]. Research shows that

1α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
2Gamma-aminobutyric acid
3N-methyl-D-aspartate acid

100 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Pre Post

Third

Figure 6.3: Cartoon of third factor interaction on plasticity.

these cells are also involved in the regulation of current frequency, short- and long-term
plasticity, and synapse formation or removal [Halassa et al., 2007; Perea et al., 2009;
Tewari and Majumdar, 2012; Theodosis et al., 2008].

Having a third component modifies Hebbian-based (equation 6.1) weight updates
and now a rule will depend on the state of three parties (Figure 6.3):

∆wpre,post(t) ∝ h(s(pre),s(post),s(third)) (6.5)

where s(·) indicates the activity or state of a party. If only the time is considered as the
state –as is the case for STDP–,

∆wpre,post(t) ∝ h(t, tpre, tpost , tthird) (6.6)

where tx is the time at which a spike from neuron x was perceived by the post neuron.

Ponulak and Kasiński introduced an STDP-like rule with a third factor (ReSuMe),
the extra input is used to get the post neuron to spike at a particular time [Ponulak and
Kasiński, 2010]. When tthird−tpre > 0, a weight increment (∆+) is applied to synapses;
whereas weight depression (∆−) is applied when tpost − tpre > 0. If the post neuron
activates at the desired time (tthird = tpost), depression will be equal to potentiation and
the total weight change will be zero, this is,

∆T = ∆+−∆− = ∆+−∆+ = 0 . (6.7)

Nichols et al. developed a three-factor learning rule whose purpose is, also, to learn
spike times; to do this the third input to the synapse carries a “temporal target” signal
and will alter the magnitude and direction of the weight change [Gardner and Grüning,
2016; Nichols et al., 2017]. The main difference from the ReSuMe rule is that this
requires, additionally, a low-pass filtered version of the error. The temporal error is
to modify the effect a single pre-synaptic spike has on post-synaptic neuron activity.
The filtered version of the error can be seen as an “accumulation” activity for a time

6.3. MODULATED LEARNING 101

window (≈ 10ms).

While the previously mentioned rules make use of a third factor, they remain bio-
logically implausible as a synapse is unlikely to be able to keep track of exact times.
In this context, we can see the neurotransmitter dopamine as a global error signal, or
a modulator which enables learning after the previous activity in the network led to a
reward-worthy action [Sutton and Barto, 1998].

Other modulators (e.g. NMDA, serotonin, noradrenaline) could guide plasticity
through attention-like mechanisms. These are thought to be local signals -as opposed
to dopamine- and may represent feedback and/or lateral interaction [Roelfsema and
Ooyen, 2005].

Models of modulated synaptic plasticity have been developed and in general follow

∆wpre,post(t) ∝ g(t, tthird)× f (t, tpre, tpost) (6.8)

where f is the regular plasticity function (e.g. STDP) and g is the, usually, decaying
response of the modulatory input.

Eligibility traces / synapse tagging

For reinforcement learning, a history of the plasticity function is required, usually
called an eligibility trace. The intuition behind this mechanism is that events in the
world occur at a lower speed than spike interactions and behaviour can be rewarded
(or punished) only after it has happened. Furthermore, researchers have found some
evidence of eligibility traces in biology [Fisher et al., 2017; Gerstner et al., 2018].

In mathematical models, eligibility traces “store” weight updates for a long period,
until a signal arrives at the synapse which triggers “application” of the current state of
the trace [Florian, 2007; Izhikevich, 2007b]. The signal could be dopamine, or another
neuromodulator, which has slower dynamics, decaying in the scale of hundreds of
milliseconds.

In Figure 6.4a the trace labelled STDP shows the weight change functions given the
inputs shown in rows pre and post. Eligibility traces are formed by < pre, post > spike
pairs which are illustrated in zones 1 and 2 in Figure 6.4a; these cause accumulation of
weight changes driven by STDP curves. Since STDP interactions depend on the time
at which the pre and post neurons spiked, if these times are sufficiently far in time,
no weight change is added to the eligibility trace (zone 3 with respect to zone 2 in
Figure 6.4a).

102 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

pre
post

trace

STDP

time

1 2 3

(a)

trace

pre
post

modulator

time

efficacy

(b)

Figure 6.4: Eligibility trace.

Eligibility traces have much slower dynamics than STDP interactions as illustrated
in Figure 6.4a; the curve in row trace decays much slower than any of the curves in row
STDP. The decay rate is low which is useful to keep track of how temporally distant
weight changes contributed to a particular behaviour.

The modulating neurotransmitter (modulator curve in Figure 6.4b.) also has slower
dynamics than STDP, but not as slow as eligibility traces. Weight changes are only
applied when the third signal is present, this is modelled as a multiplicative effect

∆weight(t) ∝ modulator(t)× trace(t) , or, (6.9)
dw(t)

dt
= m(t)× c(t) . (6.10)

The dopamine-based, modulated plasticity model as proposed by Izhikevich was
implemented for the SpiNNaker machine [Mikaitis et al., 2018]. Eligibility trace dy-
namics are described by the following equation,

dc(t)
dt

=−c(t)
τc

+ST DP(τ−/+)δ(t− tpre/post) ; (6.11)

where e(t) is the state of the eligibility trace; ST DP(τ−/+) is the value from STDP
(Fig. 6.4a) curves and δ(t− tpre/post) is the Dirac delta function. Similarly, the modu-
lator is governed by

dm(t)
dt

=−m(t)
τm

+M(t)δ(t− tmod) (6.12)

where m(t) is the current state of the “local” modulating transmitter and M(t) is the
concentration of the “external” modulatory signal. In both cases, incoming signals
create an instantaneous change (spike) thus the use of Dirac delta functions.

6.3. MODULATED LEARNING 103

Since SpiNNaker is an event-driven computation platform, these equations re-
quired modifications. Weight changes are performed when a spike arrives at a post-
synaptic core, thus the implemented weight update rule is4:

∆w(t) =
1

− 1
τc
− 1

τm

c(tlc)m(tlm)
[

e−
(

te−tlc
τc

)
−
(

te−tlm
τm

)]t

tlw

, (6.13)

where le, lm and lw subscripts indicate the time (event) at which the last eligibility
trace, modulator and weight updates where performed, respectively. As two different
spike “types” can be received, weight updates will be performed either at tlw = tlc or
tlw = tlm. The terms inside square brackets come from performing a definite integral
so we must evaluate the expression with te = t and subtract it from the evaluation with
te = tlw.

Use cases

Modulation of plasticity rules can be used in different scenarios; the next sections de-
scribe tests done using the dopamine-based plasticity rule. Firstly, we evaluate whether
the prompt release of dopamine into a population can increase the response to a par-
ticular input pattern. Secondly, we test whether dopamine signals could aid in the
formation of Gabor-like receptive fields in a visually-driven network. Finally, a full
visual pipeline is developed to classify MNIST digits.

Credit assignment

We tested the learning rule replicating an experiment which was originally published
in Izhikevich [2007b], the author named it ‘credit assignment’. The name comes from
reinforcement learning terminology and this is because the reward signal should affect
temporally close activity more than distant one. In the experiment, different groups
of neurons in a population are stimulated at random times and one of the groups is
chosen to be rewarded. The expected output of the experiment is to have larger weights
on synapses originating from the chosen group and, as a consequence, higher activity
when the group is stimulated.

The neural network for this procedure consists of 1000 neurons, divided into two

4See Appendix C for a derivation of the rule.

104 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Table 6.1: IFCurrExp neuron model parameters for credit assignment experiment.

Cm Io f f set τm τre f rac τsyn E τsyn I Vreset Vrest Vthresh

Value (Exc) 0.3 0.0 10 4 1 1 -70 -65 -55.4

Value (Inh) 0.3 0.005 10 2 1 1 -70 -65 -56.4

Units nF nA ms ms ms ms mV mV mV

populations, they will emit either excitatory or inhibitory signals (Exc and Inh in Fig-
ure 6.5, respectively). Each neuron connects to others at random with a 10% probabil-
ity, regardless of the neuron population “type” (red and green lines Figure 6.5).

Within the excitatory population we create groups with 50 neurons (5% of the
total) chosen at random; the first group (S1) is chosen as the pattern to search. We
stimulate each group at random, maintaining a maximum of 5 groups spiking per sec-
ond. Additionally, we inject “background” Poisson noise at 10Hz, this puts neurons in
a biologically-plausible setting. In terms of the credit assignment problem, we try to
learn group S1’s activity pattern in a noisy environment, generated by other groups and
random activity incited by background noise.

To learn the particular activity, we connect a modulator input (dopamine-like) to
the excitatory-to-excitatory connections. Whenever group S1 is stimulated, we send a
dopamine pulse with a random delay in the range [0,1) seconds; this will act as the
reward signal.

1
group

Exc Inh

plastic
static

modulator

static static

excitatory

inhibitory

modulatorynoise

Figure 6.5: Credit assignment experiment network.

For this experiment we use standard LIF neurons, parameters are set to promote
higher excitability from the neurons in the inhibitory population when compared to
the excitatory one. High excitability is achieved by adding a small base current, re-
ducing the distance between the resting voltage and the threshold value, and reducing
the refractory period (see Table 6.1). We used exponentially-decaying, current-based
synapses whose temporal constants (τsyn X) are set to 1ms to further approximate the
original experiment.

6.3. MODULATED LEARNING 105

Table 6.2: STDP parameters for credit assignment experiment.

A+ A− τ+ τ− τc τd

Value 1 1 10 12 1000 200

Units – – ms ms ms ms

The learning algorithm was parametrized so that the area for long-term depression
(LTD) is 20% greater than the area for long-term potentiation (LTP) (A+, A−, τ+,
τ− in Table 6.2). Dopamine interaction was characterized in a biologically-plausible
manner: the temporal constant for the eligibility trace, τc, is 1000ms which implies the
network will learn events that occurred up to a second ago; the temporal constant for
dopamine, τd , is 200ms according to biological evidence.

We ran the experiment for about 1.5 hours of biological real time. At approximately
70 minutes the weights from group S1 to other excitatory neurons are sufficiently large
to be visibly noticeable in a raster plot.

0 10 20 30 40 50 60 70

Time [minutes]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
g

e
 o

f
w

e
ig

h
ts

 [
n

A
]

All network Group S1

(a)

34.00 34.50 35.00

Time [s]

0

200

400

600

800

1000

N
e
u

ro
n

 I
D

S1

Excitatory Inhibitory Dopamine

(b)

4389.00 4389.50 4390.00

Time [s]

S1

Excitatory Inhibitory Dopamine

(c)

Figure 6.6: Behaviour of the network in the credit assignment experiment. a) Average
weight in the network, the blue line represents the average for all weights and the green
one shows the mean weight for connections leaving neurons in group S1. b) Spiking
activity at the beginning of the experiment. c) Networks activity at the end of the
experiment.

The evolution of the average weight in group S1 is shown in Figure 6.6a as a green
line, which presents a fast growth pattern. We can also observe the average weight
value for every connection in the network as the experiment progresses (blue line), it
grows but more slowly. Spiking behaviour for all groups is similar in the beginning of
the experiment, this can be seen as correlated vertical dots in Figure 6.6b.

106 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

By the end of the experiment, connections which originate from group S1 are at
such value that most post-synaptic neurons will spike soon after group S1 is stimulated.
This can be seen in the middle of Figure 6.6c as a burst of activity. Although the
network still responds to other patterns, it is now tuned to emit a higher response to
the S1 pattern. This has been observed in cortical regions, for example, a column in
V1 will show a response to many oriented bars as inputs, but it presents the maximum
spike rate for a particular orientation.

Learning digit patch prototypes

In this section we focus on learning regions of digits (patch prototypes) using plas-
ticity control signals. In biology, dopamine is a global (i.e. reaching all neurons in
a region) signal which can be thought of as enabling plasticity; here we remove the
global constraint and target specific groups of neurons. Furthermore, our reward sig-
nal is not linked to the output of the network but to the input so that only the neurons
which are assigned a particular input class are allowed to learn it. To test whether a
plastic network could learn such visual patterns, we created a network whose input
is the multi-scale representation (Section 5.2.1) for MNIST digits. The output of the
multi-scale network is further filtered with the channel-mixing strategy presented in
the same Section 5.2. The resulting activity serves as the input for two populations
of neurons, one per channel (ON and OFF), in which N neurons in a region will be
assigned to a specific digit. This is similar to the arrangement seen in the V1 area of
the mammalian cortex in which particular “simple” cells receive input from just one
channel.

Since we are trying to investigate learning regions of different digits, each region
consists of M×N neurons; where M is the number of unique digits in the dataset (0, 1,
... 9) and N indicates how many neurons represent each digit class. Excitatory neurons
in a region share a common input area, as shown in Figure 6.7a, though connectivity is
initialized at random with a 50% probability. Additionally, neurons in the same region
have been arranged in a Soft Winner-Takes-All (SWTA) circuit to promote diversity of
learned weights (Figure 6.7b).

During the learning procedure we show each digit for 500ms followed by another
500ms period in which no input is given to the network. We apply a reward spike to
the connections reaching the corresponding N neurons to the digit which is currently
shown and this, eventually, specializes neurons. The time to give the reinforcement
signal is chosen at random in the range [50,90)% of the exposure period, this is so that

6.3. MODULATED LEARNING 107

neurons have sufficient time to have spiked. Reward and STDP parameters for these
experiments are presented in Table 6.3.

Table 6.3: Learning parameters for receptive field formation experiment

STDP Reward

A+ A− τ+ τ− τc τd

Value 0.1 0.12 20 20 500 100

Units – – ms ms ms ms

We modified the time constant for the eligibility trace (τc) so that it covers at most
the full exposure of a digit (500ms); we also diminish the time constant for reward
synapses, τd , to 100ms. Finally, each pixel in the input is given a 5Hz Poisson noise
source to further induce stochastic behaviour of the learning procedure. Even after a
single epoch of the MNIST training set synapses are more efficient in the regions which
show higher activity for their assigned digit. The sum of input weights (removing those
which do not differ from the initial setting) for each digit class are shown in Figure 6.8.

As the learning procedure advanced we observed that weights for the middle scale
representation settle first (Figure 6.8b), we speculate that this could provide stability
for the other scales. The lowest resolution version of the input does not seem to provide
much consistent activity, thus weights barely resemble digits (Figure 6.8c). However,
most of the regions whose weights have high values do tend to have blob-like forms.
Since noise was added to the input, the highest resolution weights changed often during
initial training but, eventually, settle to border-like features (Figure 6.8a).

Region:
(10 x N) neurons

Receptive field

(a)

E

I

(b)

Figure 6.7: a) Distance-dependent network to learn regions of MNIST digits.

108 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

(a)

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

cs

(b)

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

cs2

(c)

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

cs3

Figure 6.8: Sum of weights for neurons with the same class per channel. Weights
perceived at the highest-, middle- and lowest-resolution correspond to Figures a, b and
c, respectively. Left column for each class shows weights for the ON-channel-focused
population and the right one to the OFF-channel one.

(a) (b)

Figure 6.9: Hand-picked weight averages: dark indicates OFF and light corresponds to
ON. The shape resembles some weights learned by other ANN procedures.

Finally, weights in different regions of the input have receptive fields whose weights
resemble portions of digits (Figure 6.9) for the high- (left) and middle-resolution (right)
scales. In some cases, particularly neurons whose receptive field are at the central re-
gion of the image, neurons learn complex patterns. In fact, in that central region, the
neurons’ reaction is higher for their corresponding class with a 27% accuracy (when
compared to neurons assigned for other class).

Digit recognition

Since digit patch prototypes study resulted in low recognition accuracy we designed
a more general network. The input for this network is a multi-scale representation of
digits (as in the previous case) though using two scales only. Following the channel-
mixing stage we added a set of convolution-like layers with Gabor kernels, this to have
a general filtering stage (as opposed to digit patch prototypes). The latter resembles

6.3. MODULATED LEARNING 109

(a)

(b)

Figure 6.10: Gabor filters for V1-like filtering. a) A 7×7 kernel is used for the high-
resolution scale. b) A 5×5 kernel is used for the middle-resolution scale.

the V1 area of the visual cortex which is thought to be fixed even before eye-opening
in mammals. Gabor filters were generated using the following equations:

O(x,y;λ,θ,ψ,σ,γ) = exp
(
−x′2 + γ2y′2

2σ2

)
cos
(

2π
x′

λ
+ψ

)
, (6.14)

x′ = xcosθ+ ysinθ , (6.15)

y′ = −xsinθ+ ycosθ . (6.16)

Where λ and ψ are the wavelength and phase of the sinusoidal component, respec-
tively; θ is the orientation of the resulting stripes, σ is the standard deviation of the
Gaussian component; and γ the spatial aspect ratio. Parameters for the generation of
Gabor kernels are presented in Table 6.4.

Table 6.4: Gabor filter parameters

Resolution Width Sampling σ λ γ ψ θ

High 7 2 2 6 0.5 1.7 [0, 30, 60, 120, 150, 180]

Middle 5 1 2 6 0.5 1.1 [0, 30, 60, 120, 150, 180]

Following V1 connectivity patterns the negative values from Gabor kernels (ma-
genta pixels in Figure 6.10a) have been rectified and are used as synaptic efficacies to
receive input from OFF-channel neurons. Similarly, positive values were used in the
connections from ON-channel neurons to V1 populations.

To diminish redundancy of representations of the same feature we make use of
local lateral inhibition (an analogue of centre-surround behaviour of the multi-scale

110 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Figure 6.11: Competition among different feature detectors.

Figure 6.12: Results of feature detection stage

representation) through a Gaussian inhibitory kernel. Additionally, competition be-
tween features is also promoted using Soft Winner-Takes-All (SWTA) circuits in a
per-neuron manner as illustrated in Figure 6.11.

After the Gabor filtering stage the network has changed each centre-surround rep-
resentation into a collection of oriented bar versions of the image. The total representa-
tion count is now increased but the activity should more linearly separable. Figure 6.12
shows a reconstruction from the spike activity for each filter.

At the final stage of the classifier network we add one population per required
class. Each neuron will connect to the Gabor-filtered version of the inputs with a fixed
probability of 50%; this was done to induce neurons to learn different representations
of the same class.

Image
representation

(NVS-like, On/Off)

Multi-scale
(2 scales)

Channel-mix
(2 scales)

Gabor
(2 scales)

inh

Supervisor

Classifier

Figure 6.13: Full pipeline for the digit classifier.

6.3. MODULATED LEARNING 111

Within each population neurons compete for representations through a SWTA cir-
cuit. Since this is a supervised approach, during the training stage, there is no compe-
tition between populations which represent different digits.

To train the network we showed it 200ms spike trains per digit in the TRAINING

set of the MNIST hand-written digit database; each image was converted using the
NVS emulator presented in Chapter 5. Specialization between classifier neurons was
achieved by providing a reward pulse to the output population which was selected to
represent the input digit. Additionally, we randomly provide a punishment (negative-
weighed reward) signal to populations which are not the “correct” one. We chose to
give random punishments to be able to keep the learning rate at a small value. The
network was exposed to the full TRAINING set 3 times.

Unfortunately, this procedure was not able to produce a network which performs
with high recognition accuracy when tested against samples of TESTING set from the
MNIST database. The maximum accuracy obtained was 41% with an average of 38%;
interestingly, these figures do not vary much whether the criterion for correctness was
the number of spikes (rate) or how early a neuron spiked (time). Figures 6.14a and
6.14b show the confusion matrices for each criterion. From these we can observe that
most failures to appropriately recognise digits come from numbers 4, 5, 8 and 9.

0 1 2 3 4 5 6 7 8 9

Predicted label

0
1

2
3

4
5

6
7

8
9

T
ru

e
 l
a
b
e
l

59 0 5 0 0 0 4 0 0 0

0 73 1 2 0 0 3 1 0 0

5 2 69 3 0 0 8 3 0 0

13 0 8 22 0 0 3 4 0 0

14 4 10 1 0 0 8 10 1 0

11 1 7 6 0 3 2 13 0 0

14 0 5 0 0 0 45 0 0 0

3 1 2 1 0 0 2 65 0 0

15 2 9 8 0 0 7 7 6 0

5 1 6 3 0 0 6 31 0 0
0

15

30

45

60

(a) Rate

0 1 2 3 4 5 6 7 8 9

Predicted label

0
1

2
3

4
5

6
7

8
9

T
ru

e
 l
a
b
e
l

52 0 6 0 0 0 14 7 2 0

0 73 3 1 0 0 9 5 1 0

7 3 68 3 0 0 13 8 5 0

15 1 17 25 0 0 15 16 4 0

15 7 12 1 0 0 21 25 5 0

18 3 7 14 0 3 11 22 1 0

15 0 9 0 0 1 53 2 2 0

2 6 2 5 0 0 2 71 1 0

11 7 12 16 1 0 9 8 15 0

8 5 4 13 1 0 9 37 3 0
0

15

30

45

60

(b) Time

Figure 6.14: Confusion matrices for rate and time criteria.

Weight evolution shows that network parameters aggressively oscillate as some
weights go from a 100% of the maximum allowed to 0% (Figure 6.15). We believe
this is the main problem with the training procedure and it is due to the interaction
between reward and punishment signals. In our experiments, a combination of large
rewards with minuscule punishments were required to keep the network firing.

112 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Figure 6.15: Example of weight evolution through training.

Voltage-based learning

In the previous section we commented on the lack of supervision of STDP; now we
focus on how it may not be a good fit for systems which cannot keep memory of
< pre, post > spike pairs to apply weight changes at a later time. A related problem
arises from STDP’s requirement of spike pairs; lack of post events means the algorithm
could be missing opportunities to collect statistics.

Bengio et al. developed a learning rule which produces an STDP-like curve when
weight changes are ordered with post-synaptic spike timing as the frame of refer-
ence [Bengio et al., 2015]. The same rule can be seen as optimizing the network
towards predicting its next state. Scellier and Bengio extended this framework and
laid a clearer link to machine learning, in particular to back-propagation [Scellier and
Bengio, 2017]. Moreover, there seems to be a link between the rule and contrastive
divergence, as it requires computing a stable state for the network when an input is
provided and it is compared to the state of the network when both the input plus its
desired class are given.

Clopath et al. proposed a voltage-based plasticity rule which mimics STDP re-
sponse [Clopath et al., 2010]. This requires keeping two different low-pass filtered
versions of the membrane voltage; one is used in LTP, the other in LTD. These low-
pass versions of voltage are compared to a threshold and, if greater, weight changes
are applied. In the case of LTP, the change is modulated by a third component which
could represent NMDA or serotonin, known for facilitating learning. The magnitude
for LTD is dynamic and keeps depression bound by a homeostatic mechanism.

To implement plastic synapses in hardware, Qiao et al. created a rule where weight
changes depend on both membrane voltage and a slow-changing chemical level (cal-
cium in their work) [Qiao et al., 2015]. Weight changes are non-zero when voltage
is above a threshold and calcium level is within an appropriate range. Additionally
weights drift exponentially to one of two constant, stable values.

6.4. VOLTAGE-BASED LEARNING 113

In this section we describe our implementation of the rule developed by Bengio
et al., our work solves noise issues O’Connor et al. [2018] by applying an on-line
low-pass filtering technique. We also perform tests to establish that the compatibility
with STDP of the implemented rule. An different input will be used to serve as a
teaching signal, this input is an abstraction of two aspects of NMDA interaction in
biological neurons. First, the current generated by this input will only be taken into
account by the neuron when its membrane voltage is above a threshold, similar to how
NMDA receptors in are activated in synapses. Second, the temporal dynamics of the
post-synaptic potential are slow as NDMDA spikelets Antic et al. [2010]; Mel [1992];
Schiess et al. [2016].

0 10 20 30 40
Time [ms]

70

60

50

40

30

V
o
lt

a
g
e
 [

m
V

]

(a)

0 10 20 30 40
Time [ms]

4

2

0

2

4

V
o
lt

a
g
e
 c

h
a
n
g
e
 [

m
V

/m
s]

(b)

Figure 6.16: LIF neuron - DC response. a) Membrane voltage [v(t); blue continuous]
and its low-passed filtered version [u(t); red dashed]. b) Filtered signal change in time
[∆u(t)/∆t]

Filtered voltage change

Figure 6.16a shows the membrane voltage of a Leaky-Integrate-and-Fire (LIF) neuron
when a DC current is applied. An important observation is that it changes abruptly
near the spiking region (at around 30ms in the figure). In fact, in the continuous do-
main dvm/dt → +−∞, which limits the application of voltage-change-based rules. To
diminish this effect, voltage (blue line in Figure 6.16a) is filtered with the exponential
smoothing technique [Natrella, 2010]:

γ = e−1/τu , (6.17)

u(t) = (1− γ)vm(t)+ γu(t−1) , (6.18)

where u is the filtered version of membrane voltage (vm). The constant γ dictates how
much history affects the current value of u and, as a consequence, how smooth u is.

114 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

The resulting signal (red dashed line in Figure 6.16a) resembles calcium concen-
tration in biological neurons [Senn, 2002]. It can be used to compute voltage change
so that abrupt changes do not dominate the learning rule. The filtered voltage change
signal (∆u/∆t) Figure 6.16b) for the filtered version roughly resembles STDP curves, if
we set the temporal reference as the post-synaptic spike time (dashed, orange, vertical
line). We could also see this as integrating spike activity over longer periods of time
than the neuron dynamics can achieve, similar to what is expected with rate-coding.

Weight changes are proportional to fluctuation in the proxy (low-pass filtered) sig-
nal (u̇)

∆w ∝ f (tpre,u) (6.19)

The final weight change expression for this learning rule is

∆w = α×δ(t− tpre)×
∆u(t)

∆t
(6.20)

where α is a scaling factor or learn rate and δ is the Dirac delta function which limits
weight changes to be generated only when a spike arrives.

To test if STDP-like behaviour is still present with our adaptation to the voltage-
change rule (DVDT), we establish an experimental set-up similar to the one presented
by Bengio et al. [Bengio et al., 2015]. We simulate 5000 LIF neurons using the closed-
form solution (Section 2.1) programmed in the Python language. Each neuron has a
noisy base current, uniformly sampled in the range [−1,1)nA.

Table 6.5: LIF neuron parameters for the DVDT rule

Resting Reset Spike Membrane

Threshold potential potential potential capacitance τmem τre f τu

Value -50.0 -65.0 -70.0 -40.0 0.25 20.0 2.0 10.0

Units mV mV mV mV nF ms ms ms

Random input spikes are generated at every time step, with a 20% and 5% proba-
bility, for excitatory and inhibitory types, respectively. All synapses are characterized
as a 1ms pulse response; weights for inhibitory synapses are fixed, while excitatory
are plastic. Voltage, voltage change and low-pass voltage change, samples are shown
in Figure 6.17 where plots on the left depict membrane voltage, and right plots illus-
trate voltage change (black) and its filtered version (red). Orange, dashed vertical lines
indicate post-synaptic neuron spikes; grey vertical lines are pre-synaptic spikes.

6.4. VOLTAGE-BASED LEARNING 115

30 40 50 60 70 80 90 100
Time [ms]

90

80

70

60

50

40

V
o
lt

a
g
e
 [

m
V

]

(a)

30 40 50 60 70 80 90 100
Time [ms]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

V
o
lt

a
g
e
 c

h
a
n
g
e
 [

m
V

/m
s]

(b)

Figure 6.17: Samples of internal state of neuron. Left membrane voltage, noisy as
input spikes are also noisy. Right voltage change in black, variates violently and this
makes predicting spikes hard; red is the same signal but filtered, as it does not change
as much it allows us to predict easier. Also if we look at the shape of the curve near
post spikes (orange vertical) it resembles STDP.

We then look for post-synaptic neuron spikes and collect weight change statistics
in a +−20ms temporal window in 1ms time steps. Additionally, we do the same for
the non-filtered voltage changes. We compute the average change for each time step,
Figure 6.18a depicts the resulting averages for voltage changes.

20 10 0 10 20
∆t (pre - post) [ms]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

∆
w

(a)

20 10 0 10 20
∆t (pre - post) [ms]

0.02

0.01

0.00

0.01

0.02

∆
w

(b)

Figure 6.18: Average weight change near post-synaptic spikes. Left is the average of
weight changes produced by using non-filtered voltage change. The right plot shows
the average weight change proportional to the variation of the low-pass version of the
membrane voltage, we can see closer resemblance to standard STDP curve mainly due
to slow changes in the input function.

While it still looks similar to an STDP curve, the area of the negative region is quite
different since it spans just a couple of milliseconds and its height is about 3 times that
of the positive region; the potentiating area has a larger temporal range but changes in

116 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

weight (∆w) are smaller. In contrast, the low-pass filtered version (Figure 6.18b) has
a behaviour which is closer to the STDP curve. Areas under the positive and negative
curves are similar, depression is around 15% larger. Light blue shade shows the stan-
dard deviation of data; we believe the large variance is present since our neurons are
constantly injected with noise.

Table 6.6: Izhikevich neuron model parameters

a b c d

Value 0.02 0.2 -65 8

Units dimensionless

We repeated the same experiment now with Izhikevich neurons (IZK), which show
a behaviour closer to biological neurons (Figure 6.19). Membrane voltage does not
change as abruptly as it depends on both input current and the state of the auxiliary
variable u, and the latter has really slow dynamics. This implies that the low-pass
filtering does not require as wide a window as in the LIF neuron case (5ms vs 10ms).

0 10 20 30 40
Time [ms]

80

60

40

20

0

20

40

V
o
lt

a
g
e
 [

m
V

]

(a)

0 10 20 30 40
Time [ms]

10

5

0

5

10

V
o
lt

a
g
e
 c

h
a
n
g
e
 [

m
V

/m
s]

(b)

Figure 6.19: Izhikevich neuron model behaviour in response to a step input. Left -
blue is the membrane voltage (v), green is the auxiliary variable u, the dashed-red is
the low-pass filtered version of v. Right - black is the change in time of the low-pass
filtered voltage.

While the average in the unfiltered voltage change case is closer to an STDP-like
curve than in the case of LIF neurons, we still see a short temporal range(Figure 6.20a).
Using the filtered version, Figure 6.20b, we observe STDP-like behaviour for the av-
erage weight change; furthermore, variance of the sample points is much smaller than
in the LIF case, even with a shorter time constant τu.

6.4. VOLTAGE-BASED LEARNING 117

20 10 0 10 20
∆t (pre - post) [ms]

1.0

0.5

0.0

0.5

1.0

∆
w

(a)

20 10 0 10 20
∆t (pre - post) [ms]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

∆
w

(b)

Figure 6.20: DVDT experiments with Izhikevich neurons. Left shows average weight
changes using the membrane voltage derivative with respect to time. The right plot
shows the average weight change when these are proportional to the temporal deriva-
tive of the low-pass filtered version of the voltage.

SpiNNaker implementation

Porting the learning rule to the SpiNNaker machine required modification to the default
LIF neuron model. Firstly, the current simulation model pulls the membrane voltage
(vm) to a reset level (vreset) as soon as it crosses a threshold (vthresh); this has the effect
of increasing the LTD area. To counter this, when the threshold is crossed, we set vm

to a spike level (vs) during the first millisecond of the refractory period, after that vm is
set to vreset . A set-back for this is that a minimum 1ms refractory period is required.

We performed a similar experiment, as in the Python-based implementation, and
computed the average of generated data points which gives rise to an STDP-like curve
(Figure 6.21a). A major difference is that the curve gets shifted 1ms to the right; this
is because weight changes are computed as soon as a spike arrives at the post-synaptic
core but applied a time step after.

With the Izhikevich neuron model, the fast dynamics of the near threshold make
the voltage value be in the range from tens to hundreds of millivolts; this means that
weight increments near spikes are far greater than any decrements afterwards. In con-
ventional computers the fast dynamics problem is usually diminished by using floating
point representations and reducing the integration step. While there has been extensive
work on the fixed-point solvers in SpiNNaker [Hopkins and Furber, 2015] we had to
use a more primitive fix for this problem. We changed the simulation so that after
the membrane voltage surpasses the threshold, the simulation also sets the membrane
voltage to a (fixed) maximum value which is also just above the threshold. Changing

118 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

20 10 0 10 20
∆t [ms]

0.02

0.01

0.00

0.01

0.02

0.03

∆
w

Area+ = 0.0133

Area− = 0.0773

τ=10

(a) LIF

~|Vspike - Vthresh|

~|Vspike - Vreset|

~(trefrac, m)

~ m

~ scale

(b) Curve parameters

20 10 0 10 20
∆t [ms]

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

∆
w Area+ = 0.1240

Area− = 0.1929

τ=10

(c) Izhikevich – standard (30mV)

20 10 0 10 20
∆t [ms]

0.02

0.01

0.00

0.01

0.02

0.03

0.04

∆
w Area+ = 0.0551

Area− = 0.1184

τ=10

(d) Izhikevich – low (-30mv)

Figure 6.21: Results of the experiments for the DVDT rule as implemented in the
SpiNNaker machine.

Table 6.7: Izhikevich LTP and LTD areas for the DVDT rule

Maximum
voltage (mV) LTD area LTP area Ratio (LTP:LTD)

30 0.1929 0.1240 1.5556

-30 0.1184 0.0551 2.1488

this parameter scales the curve vertically but, unfortunately, also increases the ratio of
LTD-to-LTP from 1.5556 to 2.1448 (Figures 6.21c and 6.21d, respectively).

To the best of our knowledge, this is the first real-time implementation of the rule
on neuromorphic hardware. A great advantage over the STDP implementation is that
we require fewer operations thus a 2x speed-up was observed in a small set of tests.
The implementation for spiking neurons required applying low-pass filtering to the
membrane voltage which also provides certain control over the shape of the LTP and
LTD curves (i.e. wider moving average windows result in wider curves). An interesting
aspect of the rule is that, by changing neuron parameters, the areas under the LTD

6.4. VOLTAGE-BASED LEARNING 119

and LTP ratios change. This could mean that neurons could self-adjust the learning
function depending on their spiking regime (e.g. burst- vs regular spiking).

Plastic behaviour in a soft winner-takes-all circuit

Since competition is one of the chosen motifs for neural connectivity, we compared the
behaviour of plasticity using the STDP and DVDT rules when neurons are connected
using a WTA network. The hypothesis of this experiment is that STDP will not be able
to capture weight changes for some of the post-synaptic neurons. Because the DVDT
rule does not require post-synaptic activation all weights should change. A population
of 24 neurons, randomly spiking at 400Hz, excites a target population of 3 neurons,
target neurons form part of a WTA circuit (Figure 6.22).

Figure 6.22: Simple WTA network. Network for the experiment; a random input
consisting of 24 neurons and an all-to-all plastic connection to 3 target neurons, the
latter are connected in a WTA circuit.

The experiment is run for 50ms, where the random inputs and source to target
weights are fixed for both cases (STDP and DVDT learning rules). Whenever a target
neuron spikes, it is guaranteed to activate the inhibitory neuron thus blocking neigh-
bours from spiking.

Figure 6.23 presents the spiking behaviour of the network: blue are source spikes,
green are generated by target neurons and red lines indicate inhibitory neuron spikes.
In both cases post neurons 1 and 2 spiked while neuron 3 did not fire. Although spiking
behaviour is similar, in the case of the DVDT rule, target neurons are activated sooner,
this is probably due to weight changes not requiring a post-synaptic spike.

120 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

0 10 20 30 40 50
0

5

10

15

20

25

Time [ms]

N
e
u
ro

n
 i
d

pre

p
o
st

initial weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

pre
p
o
st

final weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0 5 10 15 20 25

0.01

0.00

0.01

0.02

0.03

weights difference
for post neuron 1

0 5 10 15 20 25

0.01

0.00

0.01

0.02

0.03

weights difference
for post neuron 2

0 5 10 15 20 25

0.01

0.00

0.01

0.02

0.03

weights difference
for post neuron 3

(a) STDP

0 10 20 30 40 50
0

5

10

15

20

25

Time [ms]

N
e
u
ro

n
 i
d

pre

p
o
st

initial weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

pre

p
o
st

final weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0 5 10 15 20 25

0.03

0.02

0.01

0.00

0.01

weights difference
for post neuron 1

0 5 10 15 20 25

0.03

0.02

0.01

0.00

0.01

weights difference
for post neuron 2

0 5 10 15 20 25

0.03

0.02

0.01

0.00

0.01

weights difference
for post neuron 3

(b) DVDT

Figure 6.23: Activity for the STDP and DVDT plasticity rules; in both cases the third
neuron of the target population never spiked.

Another difference is that, since post neuron 3 never spiked, weight changes are
zero for the STDP case as seen in the rightmost plot in Figure 6.24a. In contrast, the
DVDT rule allows for the network to adjust its weights for every pre-synaptic spike,
this is reflected in rightmost of Figure 6.24b.

0 10 20 30 40 50
0

5

10

15

20

25

Time [ms]

N
e
u
ro

n
 i
d

pre

p
o
st

initial weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

pre

p
o
st

final weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0 5 10 15 20 25

0.01

0.00

0.01

0.02

0.03

weights difference
for post neuron 1

0 5 10 15 20 25

0.01

0.00

0.01

0.02

0.03

weights difference
for post neuron 2

0 5 10 15 20 25

0.01

0.00

0.01

0.02

0.03

weights difference
for post neuron 3

(a) STDP

0 10 20 30 40 50
0

5

10

15

20

25

Time [ms]

N
e
u
ro

n
 i
d

pre

p
o
st

initial weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

pre

p
o
st

final weights

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0 5 10 15 20 25

0.03

0.02

0.01

0.00

0.01

weights difference
for post neuron 1

0 5 10 15 20 25

0.03

0.02

0.01

0.00

0.01

weights difference
for post neuron 2

0 5 10 15 20 25

0.03

0.02

0.01

0.00

0.01

weights difference
for post neuron 3

(b) DVDT

Figure 6.24: Weight change comparison for plasticity rules. a) STDP only makes
changes to the weights for the incoming connections on the first two target neurons. b)
DVDT makes changes to weights of connections reaching all target neurons.

6.4. VOLTAGE-BASED LEARNING 121

Pattern learning

One of the benefits of this rule is that it maintains compatibility with STDP which is
an unsupervised learning algorithm. To test for unsupervised pattern learning we set a
similar experiment as for the initial WTA test (Section 6.4.2). The main difference is
that the input is now a 5×5 pixel/neuron array with two distinct noisy patterns (A, B;
left side of Figure 6.25).

A

B

1 Hz. Poisson

50ms

Figure 6.25: SWTA network with visual pattern as input. A 5× 5 pixel/neuron array
is given an input which corresponds to the two main diagonals alternated with a 50ms
delay between them; it is also provided with a 1Hz noise with a Poisson distribution.
This array is connected with plastic connections to 5 target neurons, which in turn are
in a SWTA circuit.

To generate the noisy patterns we generate spikes which correspond to the two
diagonals of the pixel array, these will be alternated every 50ms. Additionally, 5× 5
noise population generates spikes at 1Hz using a Poisson distribution. These spikes
will excite the source population; every source neuron will connect to every target
population neuron using plastic synapses whose initial weights are set at random using
a uniform distribution with the range (0.05,0.2] (Figure 6.26a).

Post 1 Post 2 Post 3 Post 4 Post 5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

(a)

Post 1 Post 2 Post 3 Post 4 Post 5

0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56

(b)

Figure 6.26: Weight changes after alternating pattern simulation. a) Shows the input
weights for each target neuron, these were set at random with a uniform distribution
[0.05, 0.2). b) By the end of the simulation some neurons have specialized for a pattern
as shown by the weights.

122 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

0.33 0.67 1.00 1.33 1.67 2.00
Time [minutes]

1
0
1
2
3
4
5
6

N
e
u
ro

n
 i
d

(a) STDP

0.33 0.67 1.00 1.33 1.67 2.00
Time [minutes]

1
0
1
2
3
4
5
6

N
e
u
ro

n
 i
d

(b) DVDT

Figure 6.27: Activity during the alternating pattern input to SWTA circuit simulation.
a) The simulation with the STDP algorithm never alters synaptic efficacy as the initial
weights do not permit target neurons to spike. b) With the DVDT plasticity rule, after
about half a minute of simulation, the target population starts to spike.

Figure 6.26b shows plastic weights at the end of the experiment. Each matrix
corresponds to a post-synaptic neuron; the weight matrices have been projected to the
input space. We can see that post neurons 1 and 4 specialize in pattern A, while neurons
2 and 5 do so for pattern B. Neuron 3 did not specialize, it spikes irrespective of the
input.

The algorithm seems to saturate weights, for this experiment the maximum weight
was 0.6nA. Notice how the efficacy of incoming synapses is close to its maximum
for all output neurons. This could be a useful property as we can essentially set how
many input connections are needed to make a post-synaptic neuron spike (synchronous
activation). A problem with saturating weights is that, if the maximum is set arbitrarily,
the SWTA circuit fails to separate input patterns (i.e. neurons spike for every pattern).

When comparing the STDP and DVDT rules, spiking behaviour shows an interest-
ing phenomenon. While the STDP-based experiment shows no spikes (Figure 6.27a),
the dynamics of the DVDT rule allows it to modify the network to a point where spikes
are produced after about 30 seconds of simulation (Figure 6.27b).

Figure 6.28 shows a section of the raster plot for post-synaptic neurons in the
DVDT experiment (Figure 6.27b); the initial spiking response (around the 30 second
mark – Figure 6.28a) is weak.

6.4. VOLTAGE-BASED LEARNING 123

29.0 29.25 29.5 29.75 30.0

Time [seconds]

20

21

22

23

24

25

26

27

28

29

30

N
e
u
ro

n
 i
d

(a)

119.0 119.25 119.5 119.75 120.0

Time [seconds]

20

21

22

23

24

25

26

27

28

29

30

N
e
u
ro

n
 i
d

(b)

Figure 6.28: Zoom to activity of alternating pattern input to WTA circuit simulation

Unfortunately, target neurons do not spike for every presentation of the input pat-
tern as shown in Figure 6.28b. This could be because the target neurons may still be
dependent on noise or the low-pass filtering of the membrane voltage results in tak-
ing into account previous patterns. This problem can be diminished by increasing the
maximum weight allowed in the experiment to the efficacy required for a neuron to
spike and divide it by the number of synchronous spikes per input pattern.

Lateral signals

The notion of modulated learning is a powerful, biologically-plausible one (Section 6.3)
as it can serve to provide reward or punishment signals to the learning rule. We ex-
tended the DVDT rule to have a modulator-like component; this is done by increasing
the learning rate when a special signal is present. The implementation also requires
a third factor, expressed as an extra receptor which does not interact with membrane
voltage directly but it is kept as a second compartment. When the concentration for
this transmitter [c(t)] is above a certain threshold, it facilitates LTP. This is expressed
in the following equation

∆w = (α+β)×δ(t− tpre)×u(t) , (6.21)

where β is the increment factor and its value changes according to

β =

 β0 : c(t)≥ θlat and u(t)> 0 ,

0 : otherwise
. (6.22)

124 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

In the previous equation c(t) is the concentration for the second compartment, and θlat

is a static threshold which has to be met to activate the boost β0. Following Hebbian
principles, the voltage change proxy, u(t), has to be positive.

To test the mechanism we connected single source and modulator neurons to a tar-
get one. Both the source and modulator spiked at random times. Figure 6.29a depicts
signal u(t), this will serve as a reference to weight evolution shown in Figure 6.29b.
Boosting could be achieved in the shaded region in both plots, since during this period
concentration c(t)>= θlat .

160 180 200 220 240
Time [ms]

1.0

0.5

0.0

0.5

1.0

V
o
lt

a
g

e
 c

h
a
n
g

e
 [

m
V

/d
t]

(a) Early

160 180 200 220 240
Time [ms]

1.06

1.07

1.08

1.09

1.10

1.11

1.12

W
e
ig

h
t

(b) Late

Figure 6.29: Effect of lateral signal (shaded region) to weight change. a) Voltage
change gets affected only by standard (AMPA) input and not by the lateral signals. b)
Weight changes are altered, notice larger positive alterations even if the corresponding
voltage change is not as large.

The first thing to notice is how negative weight changes are smaller than positive
ones in the shaded region. The increment near 160ms is roughly 0.01nA and corre-
sponds to an u value of ∼ 0.6mv/ms; in contrast the gain close to time 185ms is about
0.4nA but the level of u is even smaller than the first case (∼ 0.4mv/ms).

Soft winner-takes-all networks with lateral inputs

The main goal in this Chapter is to develop supervision mechanisms for spiking neu-
ral networks. To test whether this interaction makes any difference to the learning
process, i.e. we can use it as a teaching signal, we compare the following network
with and without lateral signals. For this experiment, we duplicate architecture for pat-
tern learning and make the upper target population a notional student, while the lower
one will be a teacher (Figure 6.30); the parameters for neurons in both populations
are shown in Table 6.8. This interaction could be to increase the chances of different

6.4. VOLTAGE-BASED LEARNING 125

Table 6.8: LIF parameters – lateral interaction

Vthresh Vrest Vreset Vspike Cm τmem τre f τsyn τu

Value -50.0 -65.0 -70.0 -30.0 0.25 20.0 5.0 1.0 10.0

Units mV mV mV mV nF ms ms ms ms

concept neurons of firing together or as a teaching signal coming from a higher level
neuron. The experiment is set so that the student network won’t specialize for any of
the inputs, thus only through a teaching signal could the student develop a preference.

1 Hz. Poisson

A B
50ms

Lateral
interaction

1 Hz. Poisson

B A
50ms

Figure 6.30: Effects of lateral inputs to WTA network. Two parallel networks as de-
scribed in Section 6.4.3 with inverted diagonals. The weights for the plastic synapses
of top network are initialized at a high value; the weights for the bottom network are
initialized to low values. Lateral signals are sent through a one-to-one connectivity
from the bottom to the top network.

The plastic weights for the student population are initially set to random values
with a normal distribution whose mean is the maximum weight for the simulation. For
the teacher population the weights are set low, as in the non-lateral interaction case
(Section 6.4.3). We ran the experiment for 15 minutes while presenting alternating
noisy patterns at 200Hz.

For the first run we removed any lateral interaction, initial weights are shown in
Figure 6.31a, the big values of the student population make it spike from the beginning
of the experiment. This modifies the behaviour observed before (Section 6.4.3) and
all neurons learn the weights which correspond to both incoming patterns (upper part
of Figure 6.31b). The teacher population evolves as before and each neuron learns a
single pattern, as seen in lower Figure 6.31b.

126 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Post (1, 1)

Post (2, 1)

Post (1, 2)

Post (2, 2)

Post (1, 3)

Post (2, 3)

Post (1, 4)

Post (2, 4)

Post (1, 5)

Post (2, 5)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

Post (1, 1)

Post (2, 1)

Post (1, 2)

Post (2, 2)

Post (1, 3)

Post (2, 3)

Post (1, 4)

Post (2, 4)

Post (1, 5)

Post (2, 5)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b)

Figure 6.31: Weight change for network without lateral interaction. a) Initial condi-
tions. b) At the end of simulation.

In the next experiment we add a one-to-one connection from the teacher to the stu-
dent population. To characterize the new receptor type we used additional parameters,
which are shown in Table 6.9. The lateral signal from the teacher will weaken in a
much longer time (about 10 times) than incoming patterns. Both the learning rate (α)
and the boosting (β0) are set to the same value (0.01), doubling the learning rate for
a short period. The threshold is set to a low value to ensure lateral interaction in this
experiment, though more complex networks would probably require to increase the
threshold so that many neurons ”supervise” the learning of a target neuron.

Table 6.9: Parameters for lateral interaction with DVDT rule

Weight τlat θlat β0

0.01 100 0.005 0.01

0.00 0.17 0.33 0.50 0.67 0.83 1.00
Time [minutes]

0

5

10

15

20

25

30

N
e
u
ro

n
 i
d

(a) Student – beginning

0.00 0.17 0.33 0.50 0.67 0.83 1.00
Time [minutes]

0

5

10

15

20

25

30

N
e
u
ro

n
 i
d

(b) Teacher – beginning

Figure 6.32: Activity of network for student and teacher networks.

The student population begins firing early and continues to do so throughout the
experiment (top of Figures 6.32a). Just before the 1 minute mark, the teacher popula-
tion begins firing which, in turn, will force the student population to focus on a single
pattern (top of Figure 6.32b).

6.4. VOLTAGE-BASED LEARNING 127

In the beginning of the simulation the student population (Figure 6.33a) spikes at
random. As time progresses, both the teacher and student populations specialise and
spike for a given input (Figures 6.33b and 6.33c). An interesting phenomenon is that,
even though we increased the maximum weight, it seems that neurons are not activated
as much. This is likely to be caused by post-synaptic neuron parameters requiring an
accumulation of multiple input patterns to activate.

0.0 0.25 0.5 0.75 1.0
Time [seconds]

21

22

23

24

25

1

2

3

4

5

N
e
u
ro

n
 i
d

(a)

299.0 299.25 299.5 299.75 300.0
Time [seconds]

21

22

23

24

25

1

2

3

4

5

N
e
u
ro

n
 i
d

(b)

299.0 299.25 299.5 299.75 300.0
Time [seconds]

21

22

23

24

25

1

2

3

4

5

N
e
u
ro

n
 i
d

(c)

Figure 6.33: Activity of network for student and teacher networks. a) In the beginning
the student population spikes at random. b) By the end neurons in the student popula-
tion respond to specific patterns, dictated by the teacher population. c) Similarly to the
student population, teacher neurons specialized to a particular pattern.

Finally, we show a comparison of weights at the beginning, Figure 6.34a), where
student neurons have multiple synaptic weights in the (0.8− 1.0) range. At the end
of the experiment, the teacher population has similar input weights as the non-lateral
interaction case (bottom of Figures 6.34b and 6.31b, respectively).

Post (1, 1)

Post (2, 1)

Post (1, 2)

Post (2, 2)

Post (1, 3)

Post (2, 3)

Post (1, 4)

Post (2, 4)

Post (1, 5)

Post (2, 5)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

Post (1, 1)

Post (2, 1)

Post (1, 2)

Post (2, 2)

Post (1, 3)

Post (2, 3)

Post (1, 4)

Post (2, 4)

Post (1, 5)

Post (2, 5)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b)

Figure 6.34: Changes to synaptic efficacy for WTA network with lateral interaction.
Top matrices represent weights which belong to the student population, the bottom
ones to the teacher neurons. a) Initial conditions. b) Weights at the end of the simula-
tion.

The lateral interaction will encourage neurons from the student population to learn
a particular spatial pattern. In this experiment we set the input activity to have opposite
diagonals shown at the same time.

128 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Biologically-inspired approach

The previous mechanism is a functional interpretation of NMDA interaction in the
sense that an NMDA spike may be associated with synaptic potentiation [Ahmad and
Hawkins, 2015; Antic et al., 2010]. In this section we investigate if an additional input
(φ) with similar slow temporal behaviour can still produce this increased potentiation
without contrived mechanisms. The signal will also have a similar constraint as NMDA
receptors, the receiving neuron will allow current influx only when its membrane volt-
age is above a certain level [Mel, 1992]. Implementing this behaviour on SpiNNaker
required altering how the total input current (I) is computed, by default,

I = ∑ I+−∑ I− (6.23)

where I is the total input current given to the neuron which consists of I+, the excitatory
inputs, and I− the inhibitory ones. With this scheme it is not possible to condition the
activation of the φ input.

I = ∑ I+−∑ I−+∑ Iφ (6.24)

where Iφ is the current which would be provided by the φ input. Note that Iφ could
further be split into positive and negative (slow) currents but has been kept positive
here for simplicity. The approach taken is to simply allow current to pass when the
membrane voltage is above the threshold Vφ:

Iφ =

Iφ if Vm >Vφ or t− tφ < Tφ

0 otherwise
(6.25)

We added a mechanism (t− tφ < Tφ in equation 6.25) which keeps the φ channel open
for at least Tφ simulation steps. To achieve this we subtract the time at which an φ

spike was last received (tφ) from the current simulation time and compare this to the
minimum time the channel should be open Tφ. This was done to allow sufficient current
from the φ input to go into the neuron and further push the membrane voltage above
the desired level (Vφ).

Shaded regions in Figure 6.35 show times at which φ is allowed to provide exci-
tatory input to the neuron (above Vφ = −67.5mV). Both Iφ and the total input I are
shown on the left plot; notice how Iφ decays at a much slower rate (τφ = 300ms), this
adds an almost-constant increment to the input current. This is subsequently reflected

6.4. VOLTAGE-BASED LEARNING 129

0 100 200 300 400 500
Time [ms]

6

4

2

0

2

4

6

8

In
p
u
t

cu
rr

e
n
t

(n
A

)

I

Iφ

(a)

0 100 200 300 400 500
Time [ms]

80

60

40

20

0

20

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
] Instantaneous

Low-pass filtered

(b)

Figure 6.35: Reaction of input current and membrane voltage to lateral current. Shaded
regions depict times at which is NMDA-enabled. a) Total input and φ-driven current.
b) Membrane voltage and its low-pass-filtered version

in the voltage, making it likelier for spikes to occur when current from the φ input is
present (Figure 6.35b).

Since we previously fixed lateral signals to trigger weight increments (Equation 6.21),
we wanted to compare whether the influence of Iφ could also be perceived as a weight
increment boost. To test this we set a simple network (Figure 6.36) where the source,
noise and lateral populations fire at random with a 20, 40, 40 Hz frequency, respec-
tively. The lateral population is allowed to spike only for a quarter (125ms) of the
total simulation time (500ms), this to resemble multiple lateral connections spiking at
about the same time. The target population consists of an Izhikevich neuron with the
parameters expressed in Table 6.6.

Source Target Lateral

Noise

Figure 6.36: Simple φ experiment setup

We tested 3 different synaptic efficacy values for the lateral connection (1, 0.5 and
0.25) and repeated the experiment 20 times for each one; Table 6.10 summarizes the
results for the experiments.

On average, weight changes which occurred in φ-inactive regions (OFF) are nega-
tive because once the target neuron spikes, it is likelier for source spikes to arrive when
the voltage gradient is negative as well. Conversely, whenever a synapse efficacy is

130 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

Table 6.10: Characteristics of φ interaction

Lateral
weight

Average weight change Spike generation

φ OFF φ ON φ OFF φ ON

1.0 -2.0562 1.5258 14.28% 85.72%

0.5 -1.1212 1.3915 9.52% 90.48%

0.25 -1.3462 0.5988 9.09% 90.91%

modified in φ active regions (ON) this change is usually positive (∼ 98%). This hap-
pens because the additional, almost-constant, current input provided by φ activation
induces an prolonged positive change on the membrane voltage. Since more current
is being injected to the target neuron it is also likelier to spike. In fact, throughout the
experiments, most target spikes are generated in φ-active regions. We can see that, as
we decrease the lateral weight, positive weights are smaller as the magnitude of the
injected current is also small. An advantage to having low lateral weights is that we
can ensure that only with coincident source and φ spikes will the target neuron spike.

Pattern learning via φ supervision

To test whether this mechanism could work in a supervision scenario similar to the
one presented in Section 6.4.4, we performed a similar experiment although a guid-
ing signal was added to the bottom target population (lower right of Figure 6.30) and
Izhikevich neurons were used instead of the LIF model. The parameters for the exci-
tatory and inhibitory neurons are shown in Table 6.11.

Table 6.11: Neuron parameters for pattern learning with φ signal.

a b c d τu τexc τinh τφ θφ

Excitatory 0.01 0.2 -65 8 10 2 2 50 -75

Inhibitory 0.2 0.26 -65 0 – 1 1 – –

Units dimensionless ms ms ms ms mV

The first two neurons were assigned one pattern (slash), last two neurons were set
to learn the other pattern (backslash) and the remaining neuron was not assigned a
target. To guide neurons in the bottom target population to learn a particular pattern
we use lateral, φ signals which arrive 5ms before the feed-forward pattern. This time

6.4. VOLTAGE-BASED LEARNING 131

difference can change and will (mostly) depend on the chosen synapse shape and its
temporal constant. Since we chose an exponentially-decaying shape and a 50ms time
constant we have a window of about 20ms for a single φ spike to effectively guide
learning.

Similarly to the experiment in Section 6.4.4, the φ threshold (Vφ) was kept low so
that φ is effective every time it is presented. Lateral interaction between the bottom
and top target populations was kept as before, though the feed-forward pattern for the
top population was set to arrive 5ms after a potential lateral spike would reach. The
guiding signal was provided during a training period (29.66min) but removed for a
testing phase (20s).

Post 1; 1

Post 2; 1

Post 1; 2

Post 2; 2

Post 1; 3

Post 2; 3

Post 1; 4

Post 2; 4

Post 1; 5

1.0 1.5 2.0 2.5

Post 2; 5

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

(a)

Post 1; 1

Post 2; 1

Post 1; 2

Post 2; 2

Post 1; 3

Post 2; 3

Post 1; 4

Post 2; 4

Post 1; 5

0 1 2 3 4 5

Post 2; 5

0 1 2 3 4 5

(b)

Figure 6.37: Weights at start and end of training using an φ signal. a) Synaptic effi-
cacies are set to random values initially. b) After ∼30min of simulation the weights
favour the assigned input patterns.

Synaptic efficacy was initially set to uniformly-distributed, random values (Fig-
ure 6.37a) which, when combined, could make post-synaptic neurons spike. By the
end of the experiment, input weights resemble the assigned input pattern as depicted
in Figure 6.37b.

Interestingly, weights initially decrease enough to stop post neurons from spiking;
after some guiding signals have been received in the bottom population weights begin
to increase (Figure 6.38). The values for input synaptic efficacies corresponding to
the bottom population begin to settle after about 10min. This in turn stabilises spiking
activity which guide the learning process for the top population, as shown by rising
lines in the top plot of Figure 6.38.

132 CHAPTER 6. BIOLOGICALLY-PLAUSIBLE SUPERVISED LEARNING

0

2

4

6

 -6.7 0.0 6.7 13.3 20.0 26.7 33.3
Time [minutes]

0

2

4

6

Sy
na

pt
ic

ef
fic

ac
y

[n
A]

Figure 6.38: Weight evolution during training with φ signal.

Figure 6.39 shows the activity of the top and bottom populations for the last second
of simulation. The guiding signal for the bottom population has been turned off for
19s but the learning mechanism is still active. The maximum weight was set so that
a combination of 5 incoming spikes are needed to make a post-synaptic neuron to
spike. Guided neurons in the bottom population (Figure 6.39b) react only to their
assigned input pattern; similarly, the unconstrained neuron reacts to a single input
pattern. Neurons in the top population react to specific patterns which were selected
by the lateral interaction with the bottom population (Figure 6.39a).

1799.0 1799.25 1799.5 1799.75 1800.0
Time [seconds]

21

22

23

24

25

1

2

3

4

5

Ne
ur

on
 id

(a)

1799.0 1799.25 1799.5 1799.75 1800.0
Time [seconds]

21

22

23

24

25

1

2

3

4

5

Ne
ur

on
 id

(b)

Figure 6.39: Spike activity after training with φ signal. The green crosses at the top
represent the output for a given post-synaptic neuron. The blue dots indicate a pat-
tern type: bottom represents the slash-like and the top illustrates the backslash one. a)
shows the activity for the top population and b) spike responses for the bottom popu-
lation.

6.5. SUMMARY 133

Summary

While static networks have proven useful to process visual information, plasticity al-
lows for more complex behaviours without the need to hand-craft features. Unsu-
pervised learning has been successfully applied as the primary plasticity algorithm in
SNNs. In this chapter we have described and utilized learning rules which can use an
additional signal to trigger or enhance weight changes. This could allow another region
of the neural network to determine whether particular synapses should be modified.

Dopamine-based reinforcement is a powerful mechanism for evaluating the perfor-
mance of a network after it performed a task. Unfortunately, this learning paradigm
requires several passes of the experiment to obtain good performance of the system.
This happens because rewards are not provided often and punishments can overtake
the learning process. In our experiments we were able to enhance efficacy for a set
of neurons in an experiment similar to Pavlovian conditioning. We also demonstrated
that providing this signal to neurons with distance-dependent connectivity could result
in specialized receptive fields. A low classification performance was observed when
training a network to recognise hand-written digits using rewards and punishments.

We have also demonstrated an STDP-compatible learning rule (DVDT) which does
not require saving post-synaptic spike times. A key feature for this rule is that it al-
lows incoming spikes (excitatory or inhibitory) to determine the direction of weight
changes; furthermore, the magnitude of the synaptic change could be expressed as
spiking rate. A significant advantage of the DVDT rule with respect to STDP is that
weight changes occur even if the post-synaptic neuron has not spiked, thus allowing the
learning algorithm to capture more of the network dynamics. We extended the DVDT
algorithm to include an additional signal to trigger further weight increments. This was
successfully used to train networks to recognise visual patterns and influence a neigh-
bouring neuron to tune for a particular input. We also explored the possibility of using
NMDA-like signals to influence neurons and discovered that, since an almost-constant
current injection is given, weight changes are mostly positive during the presence of
the additional neurotransmitter.

Chapter 7

Conclusions

We have developed the building blocks of a spike-based computer vision pipeline
adopting biological principles. Engineering a vision system which resembles its bi-
ological counterpart is a difficult task; if this is done for a real-time system, difficulties
increase. We now present conclusions on the topics discussed in this document.

Loading networks

Since our vision pipeline is software defined we required the network topology to be
uploaded to the SpiNNaker machine; depending on the complexity of the network, this
could consume more time than the actual simulation. The main problem preventing
fast deployment of SNNs to the SpiNNaker machine was that an explicit representa-
tion of networks requires a lot of data to be transmitted. The problem was diminished
by using a high-level description of the network, sending it to the SpiNNaker machine
and allowing its computing elements to expand this description. We measured perfor-
mance with different networks and the largest used was a multi-scale representation
network with an input of 128× 128 pixel size. The corresponding input population
(representing an NVS) had a total of 32K neurons which spiked at 10Hz per neuron.
We converted the input to a multi-scale representation with four scales of decreasing
resolution and a total of 140K neurons. The connectivity required 3.6M synapses inter-
nally and the output population consisted of 68K ganglion cells. Loading the network
when the connectivity was generated on host took about 2 hours; while on-SpiNNaker
expansion resulted in a 40 minutes load time. Most time (30 minutes) is spent in-
specting the network on host and transferring descriptions to the SpiNNaker machine;
the time to expand the network on SpiNNaker was 10 minutes. The time to inspect

134

7.2. IMAGE ACQUISITION 135

network connectivity could further be diminished if the implementation of the SpiN-
Naker software toolchain supported parallel computation. While the implementation
presented here is not the one which ended in the main SpiNNaker toolchain, we believe
the statistics showed the developers that the improvement was worth the effort.

Image acquisition

Considerable energy and time is consumed in transferring images from sensors to com-
puting devices. Biology has many examples where image pre-processing is done as
close to the sensor as possible. This is likely to avoid transferring a full image over rel-
atively long distances. The NVS emulator described in this thesis follows this principle
by reporting large changes in brightness. This emulator is open-source and available
online1; it has been forked 8 times and gained another developer.

In the model described in Section 5.1.2 we combined two strategies used by nature:
change the representation to an over-complete set of vector basis, and emit signals only
when there is sufficient change in the input image. Unfortunately, changing the rep-
resentation increases the output neuron count. Nevertheless, even if the neuron count
is increased by about 3 times and, since we require around 10% of the neurons to
spike per micro-saccade, this results in about 30% of the number of active neurons as
in the original input (0.3×width×height neurons) but with a multi-scale representa-
tion. However, in practice we observed that active output neurons roughly accounts for
∼10% of the original image size or ∼3.5% of the output neuron count. An advantage
of changing to a multi-scale representation is that low-resolution versions of the input
do not vary as much over time, which could allow learning algorithms to use these
nearly-constant signals to drive learning. Furthermore, low-resolution versions of the
input have been typically used for localization of objects while high resolution tend to
be used for recognition tasks.

Feature extraction

Common pre-processing tasks for computer vision include image filtering, motion de-
tection and feature extraction, to name a few. These can be performed via convolution-
like operations and, in our opinion, should be carried out as close to the sensor as

1https://github.com/chanokin/pydvs

https://github.com/chanokin/pydvs

136 CHAPTER 7. CONCLUSIONS

possible to avoid bandwidth penalties. While a standard convolution returns a contin-
uous number, approximating this operation in SNNs results in outputting only spikes.
The number of spikes can be seen as an approximation to the continuous value for the
standard version, nevertheless, each spike represents a whole region of an image. This
reduces the traffic and seems a probable strategy in biological neural networks. Partic-
ularly, the input for the networks inspired by retinal circuitry developed in this thesis
can be thought of as rate-coded values representing single pixels; while in the middle
and output layers a single spike represents regions of the input.

In static networks we can compute the degree of inhibition neurons should provide
to their neighbours by computing the cross-correlation of their input connectivity. We
used this mechanism to create the multi-scale network shown in Section 5.2.1 to gen-
erate the lateral inhibition kernels. This reduces the chances of output spikes sharing
the same information (i.e. spikes represent different regions or shapes).

Spiking neural networks are flexible enough to perform vision operations on static
input (images) and moving stimuli (video). Temporal characteristics of synapses al-
low them to act as short-term decoders of incoming spike sequences; neurons integrate
these decoded signals to identify features (e.g. oriented bars, centre-surround mo-
tifs) in small image regions. If synapses’ time constants are set to a single time step
of simulation (similar to a Dirac delta) then an instantaneous measurement is done
but, when these time constants are increased, an exponential average is computed.
Furthermore, it could be that conductance-based synapse models act as decoders of
temporally-encoded values; in particular a scheme where the most important spikes
arrive sooner than less important ones. This could happen since the first spike to arrive
would have full conductance and subsequent ones would be able to access reduced
channel conductivity only.

Motion is an important signal for survival as it may be a cue to avoid immediate
harm or even predict long-term movement. Additionally, generative processes in the
cortex (feed-back) could use these motion cues to activate or facilitate spiking of neu-
rons even if feed-forward input is occluded. We presented models for motion sensing
which are based on biological detectors. While our direction-selective circuit only
senses apparent motion, neurons with a wider receptive field (e.g. at a higher level of
a hierarchy) should be able to detect real motion.

Orientation filtering done with non-circular Gaussians (and its centre-surround cir-
cuit) are comparable to proposed orientation sensitive circuits in the LGN which com-
bine the input of multiple aligned neurons with symmetric centre-surround receptive

7.4. PLASTIC NETWORKS 137

fields.

Event-based computation could be more efficient in computer vision-related tasks
such as convolutions as cores can be set to a low-power state when no input is received.
Measurements taken for the static region of our visual pipeline (Section 5.4) show that
an important reduction in activity can be achieved. In the SpiNNaker machine, this
is tied to population partitioning and placement which is currently performed as a 1D
array and is not a good fit for image processing.

Plastic networks

Computer vision systems aim to understand visual input and, possibly, decide actions
based on this understanding. Achieving some form of understanding often requires a
mechanism to capture the statistics of the input. In general, ANNs use changes to con-
nections’ weights to build a probabilistic graphical model of the input statistics. Most
plasticity algorithms for SNNs follow Hebbian-like strategies, STDP being the most
widely used. Unfortunately, STDP is an unsupervised learning procedure so modify-
ing the weights in the network for it to perform a specific task requires modification
to the STDP rule. A biologically-plausible change is to add modulation to synaptic
weight changes, in particular, using a dopamine-based model.

Reinforcement learning

We tested a modulated STDP plasticity algorithm implemented for the SpiNNaker
machine and which can be used for reinforcement learning. Initial testing was done
with an experiment where a group of neurons was selected as the preferred input and
synapses were reinforced whenever these neurons were active. After multiple presen-
tations of the input pattern and the reinforcement signal, the network shows a high re-
sponse rate for the specified pattern. This experiment was performed with biologically-
plausible time constants for neurons and synapses; however, altering these can result
in a viable algorithm for supervised learning.

Given the multi-scale representation and distance-dependent connectivity we ob-
tained receptive fields which are similar to Gabor filters. The weights in these resemble
the input distribution more than standard Gabor filters. Since the input is a multi-scale

138 CHAPTER 7. CONCLUSIONS

representation we observed a stabilization of weights originating from lower resolu-
tions which, in turn, helps the synapses coming from the high resolution represen-
tation to stabilize, even in the presence of noise. An undesired effect of using low-
resolution versions is that it renders the input pattern indistinguishable; for example,
using MNIST digits as inputs, a 5 looks practically the same as a 6 in low resolutions.
This could probably be resolved by giving different importance to these resolutions;
perhaps the low-resolution version provides a hint and high-resolution input delivers
the decisive factor for the post-synaptic neuron to activate.

There are multiple benefits of modulating plasticity in neural networks. Firstly,
a modulator can also be used as a plasticity enabler, providing stability to learned
structures; stopping modulator signals would keep the network in the same state. Ad-
ditionally, having control over the direction of the computed weight change can result,
not only in positive reinforcement, but a negative one also which could reduce the
importance synapses have to a particular input. Another case would be to bind rep-
resentations in nearby areas; for example, neurons from neighbouring regions could
co-supervise each other. If we think of higher cortical layers we could bind different
representations of complex concepts together (e.g. spoken and written words).

A weakness of reinforcement learning is that, typically, there are many more pun-
ishments than rewards. This could, potentially, reduce network activity to a point
where learning is essentially disabled. Since this framework is based on STDP, even if
dopamine is present but the < pre, post > neurons did not spike, no plasticity would
be triggered. We found that making the reinforcement for rewards much stronger than
that for punishments keeps neurons in the network spiking. Unfortunately, this creates
instability in the learning process as it, usually, brings weight changes to an oscillatory
state. If the network is still responding, due to noise or other exploration mechanism,
learning the correct set of parameters is likely to take much longer than in conventional
training algorithms. The reinforcement signal transmits only an activation for plastic-
ity plus the direction of the change; it requires an additional agent to judge whether the
activity of the neurons was expected. This could provide an approximation of an error
signal encoded as spike rate.

Voltage-change-based learning

The STDP plasticity algorithm has been used in multiple studies and, although suc-
cessful, it has some drawbacks. The foundation of this rule is that, weights are altered
proportionally to pre- and post-synaptic neuron spike times. This could be obscuring

7.4. PLASTIC NETWORKS 139

other neural interactions which could also modify the way synaptic efficacy changes
(e.g. spike triplets).

The voltage-change plasticity rule (DVDT) developed in this thesis is based on
work which intends to link machine learning to neuroscience. The change in synap-
tic efficacy is proportional to the voltage variation with respect to time when a spike
arrives to a neuron. Since SNNs are typically noisy systems the original rule was un-
stable; to solve this we apply a low-pass filter to the membrane voltage. An important
aspect of this algorithm is that it allows capture of more of the network dynamics. For
example, if a neuron is receiving excitatory input from multiple sources, it is likely that
this neuron should be spiking. Using STDP as the plasticity adjustment algorithm, if
the post neuron never spiked, all this activity is lost; in contrast, the DVDT rule would
capture the increment in membrane potential and increase the efficacy. A subtlety
found in our experiments is that, in some tests, more than one continuous pre spike
was needed per synapse to ensure stable weight changes. This is due to the nature of
the learning rule which is based on rate-coding; additionally, the small temporal win-
dow for the LTP versus the wideness of the LTD region pushes weights towards zero
values.

Winner-takes-all (in both hard and soft versions) circuits have been proposed as un-
supervised classification mechanisms. When a neuron “wins” it prevents others from
spiking via inhibitory spikes which occlude network dynamics from STDP. If learning
is done through the DVDT algorithm, the inhibitory input will not only prevent “los-
ing” neurons from spiking but, also, drive the membrane voltage gradient to a negative
value and, thus, it is likelier that input weights would decrease for these neurons. Re-
current connectivity using this algorithm should be treated with care as it could lead to
a positive feedback loop since a voltage increment will result in higher weight values
which, in turn, make neurons spike more and artificially inject more energy into the
network.

We presented a supervised version of the algorithm where a spike received by a
special receptor type becomes a weight increase signal. The additional increment will
only happen when this signal is above a certain value; this is similar to the behaviour
observed for NMDA interaction. With this simple modification we have shown it is
possible to bind patterns from lateral regions, a form of co-supervision.

Another modification within the DVDT algorithm framework was created so that
interaction NMDA-like signals could be simulated. This modification consists of

140 CHAPTER 7. CONCLUSIONS

adding a receptor type which is active only when a certain membrane voltage thresh-
old is surpassed. Additionally, the temporal dynamics of this receptor are much slower
than the ones for standard receptors. These two requirements essentially mean that
weight increments could be facilitated given feed-forward and lateral (or feedback) ac-
tivity, via standard and NMDA-like signals, respectively. Since this is a computational
model, modifying the sign of the NMDA-like signal could result in weight reduction.

Finally, because this algorithm does not need to perform as many operations, it
is around two times faster than the current STDP implementation for the SpiNNaker
machine; this allowed us to simulate up to 200 plastic neurons per core (∼30% more
than STDP). Furthermore, the current STDP implementation requires storing results
for exponential functions in look-up-tables (LUTs) for computation time efficiency;
the DVDT algorithm does not require the these tables so it is also more efficient in
terms of memory consumption. The DVDT algorithm should also be a better fit for
hardware SNN simulators since it relies only on the time at which pre-synaptic spikes
arrive to the neuron body.

Comparison with traditional ANNs

Biological plausibility imposes certain constraints; for example, not being able to turn
neurons from excitatory to inhibitory is a crucial difference. This implies that in-
hibitory neurons should learn “opposing” concepts to their target excitatory one. If we
partition ANN populations into a ratio of excitatory and inhibitory in SNNs to keep the
same number of neurons, we may now have to rely on fully-connected networks or a
way to change connections as the experiment runs.

Special signals in ANNs allow distinct forward and backward phases, the former
evaluates the network and has been approximated by researchers using SNNs. The
signals in the backward phase transmit errors and are not present in standard SNNs; this
has prevented spiking networks from being trained using gradient-based algorithms
(e.g. the back-propagation algorithm).

Since we can efficiently simulate spiking neurons, it is possible to allow higher
neuron counts while maintaining sparse connectivity. A benefit of having few incom-
ing synapses is that neurons could become selective to particular patterns just from
connectivity; furthermore, N-of-M encoding could be used throughout the simulated
network.

7.5. FUTURE WORK 141

Future work

Colour encoding in retinal circuits is achieved using opposing channels: red-centre/green-
surround and yellow-centre/blue-surround. How to integrate this into an NVS-like
mechanism is still an open question and an interesting avenue of research. While
we have shown that spiking neurons are flexible enough to do multiple vision tasks,
perhaps simpler algorithms could make better use of the hardware (e.g. a simpler
event-driven, real-valued convolution operator).

Assigning regions of an input image to particular neurons can be done through
careful partitioning and routing of populations. In the current version of the SpiNNaker
Toolchain neurons in a population are assigned identification numbers sequentially
(1D), regardless of a possible structure in the population. Neuron populations are
then divided into smaller groups according to these identification numbers. These
partitions then connect to others by specific rules (e.g. all-to-all, one-to-one, distance-
dependent). If there is some structure in a population, such as each neuron representing
a pixel from an image, such a partition scheme may hinder performance. One aspect of
this detriment can be found when retrieving connectivity data from SDRAM, which is
stored in a sparse matrix. Using 1D enumeration and partitioning can lead to rows with
few columns; this means DMA calls are not fully utilized because only the beginning
of retrieved data will be useful (see left of Figure 7.1).

Pre 1

Post

Row 1

Row 2

Pre 2

1D 2D

Pre

Post

Row 1

Figure 7.1: Data retrieval with 1D vs 2D populations

If we opt for 2D partitioning then a single pre-synaptic population could have more
columns represented in the same synaptic row at the core simulating the post-synaptic
population. This way each DMA call retrieves more useful data and efficiency in-
creases. Additionally, routing can benefit from the structure since fewer cores would
need to be connected. This could also potentially reduce routing table sizes and bottle-
necks in the communication fabric.

Attention mechanisms could reduce the spatial region of input signal and, thus, the

142 CHAPTER 7. CONCLUSIONS

complexity of statistics to be learned. Such a mechanism could likely act on the LGN-
based channel mixing stage of our pipeline. This mechanism would require develop-
ment of algorithms which mimic how the cortex understands and predicts sequences.

Reinforcement learning is key to interactive robots which could be trained by hu-
mans. Creating an actor-critic infrastructure using networks of spiking neurons is of
high relevance; this would allow the simulation itself to judge whether to provide re-
wards or punishments (as opposed to an external entity). Furthermore, it could aid to
set the rate at which these reinforcement signals are generated, thus allowing them to
approximate an error signal.

The theory behind the DVDT rule suggests error signals in ANNs could be encoded
as a temporal derivative of neuron state variables. Error propagation in multi-layered
spiking networks is still an open question and is one of the most interesting lines of re-
search. Work towards this goal hints at the evaluation of the network in different states
or changing plasticity rules dynamically. Perhaps such changes could be implemented
using different signals, such as NMDA or GABAB, to propagate errors. In particular, a
SpiNNaker implementation of the DVDT for any delay could allow motion detection
units to be formed (similar to those presented in this thesis) or polychronous networks
which are richer coincidence detectors.

Bibliography

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., and Vi-
jayanarasimhan, S. (2016). Youtube-8m: A large-scale video classification bench-
mark. arXiv preprint arXiv:1609.08675.

Ahmad, S. and Hawkins, J. (2015). Properties of sparse distributed represen-
tations and their application to hierarchical temporal memory. arXiv preprint

arXiv:1503.07469.

Antic, S. D., Zhou, W.-L., Moore, A. R., Short, S. M., and Ikonomu, K. D. (2010).
The decade of the dendritic nmda spike. Journal of Neuroscience Research,
88(14):2991–3001.

Azzopardi, G. and Petkov, N. (2012). A CORF computational model of a simple
cell that relies on LGN input outperforms the gabor function model. Biological

cybernetics, 106(3):177–189.

Barlow, H. B., Hill, R. M., and Levick, W. R. (1964). Retinal ganglion cells responding
selectively to direction and speed of image motion in the rabbit. The Journal of

Physiology, 173(3):377–407.

Behnke, S. (2003). Hierarchical neural networks for image interpretation, volume
2766. Springer Science & Business Media.

Bengio, Y. et al. (2009). Learning deep architectures for AI. Foundations and trends R©
in Machine Learning, 2(1):1–127.

Bengio, Y., Lee, D., Bornschein, J., and Lin, Z. (2015). Towards biologically plausible
deep learning. CoRR, abs/1502.04156.

Berner, R., Brandli, C., Yang, M., Liu, S.-C., and Delbruck, T. (2013). A 240× 180
10mW 12µs latency sparse-output vision sensor for mobile applications. In VLSI

Circuits (VLSIC), 2013 Symposium on, pages C186–C187. IEEE.

143

144 BIBLIOGRAPHY

Bhattacharya, B. S. and Furber, S. B. (2010). Biologically inspired means for rank-
order encoding images: A quantitative analysis. IEEE Transactions on Neural Net-

works, 21(7):1087–1099.

Bi, G.-q. and Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type.
Journal of Neuroscience, 18(24):10464–10472.

Bogdan, P. A., Rowley, A. G. D., Rhodes, O., and Furber, S. B. (2018). Structural
plasticity on the SpiNNaker many-core neuromorphic system. Frontiers in Neuro-

science, 12:434.

Bohte, S. M., Kok, J. N., and La Poutré, J. A. (2000). Spikeprop: backpropagation for
networks of spiking neurons. In ESANN, pages 419–424.

Borst, A. and Euler, T. (2011). Seeing things in motion: models, circuits, and mecha-
nisms. Neuron, 71(6):974–994.

Brodal, A. (1981). Neurological anatomy. Relation to Clinical Anatomy.

Bromley, P. A. (2017). Products and convolutions of gaussian probability density func-
tions. http://www.tina-vision.net/docs/memos/2003-003.pdf.

Brunel, N. and Van Rossum, M. C. (2007). Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biological cybernetics, 97(5-6):337–339.

Cessac, B., Paugam-Moisy, H., and Viéville, T. (2010). Overview of facts and issues
about neural coding by spikes. Journal of Physiology Paris, 104(1-2):5–18.

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects
coding: a model of voltage-based stdp with homeostasis. Nature neuroscience,
13(3):344.

Cook, P. B. and McReynolds, J. S. (1998). Lateral inhibition in the inner retina is
important for spatial tuning of ganglion cells. Nature neuroscience, 1(8):714.

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet,
L., and Yger, P. (2009). PyNN: a common interface for neuronal network simulators.
Frontiers in Neuroinformatics, 2:11.

http://www.tina-vision.net/docs/memos/2003-003.pdf

BIBLIOGRAPHY 145

Dayan, P. and Abbott, L. F. (2001). Theoretical neuroscience, volume 806. Cambridge,
MA: MIT Press.

Durka, P. J. (2007). Matching pursuit. Scholarpedia, 2(11):2288. revision #140500.

Euler, T., Haverkamp, S., Schubert, T., and Baden, T. (2014). Retinal bipolar cells:
elementary building blocks of vision. Nature Reviews Neuroscience, 15(8):507–
519.

Field, D. J. (1994). What is the goal of sensory coding? Neural computation, 6(4):559–
601.

Fisher, S. D., Robertson, P. B., Black, M. J., Redgrave, P., Sagar, M. A., Abraham,
W. C., and Reynolds, J. N. (2017). Reinforcement determines the timing dependence
of cortico-striatal synaptic plasticity in vivo. Nature communications, 8(1):334.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve
membrane. Biophysical journal, 1(6):445.

Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation, 19(6):1468–1502.

Fox, P., Miezin, F., Allman, J., Van Essen, D., and Raichle, M. (1987). Retinotopic
organization of human visual cortex mapped with positron- emission tomography.
Journal of Neuroscience, 7(3):913–922.

Frémaux, N. and Gerstner, W. (2016). Neuromodulated spike-timing-dependent plas-
ticity, and theory of three-factor learning rules. Frontiers in neural circuits, 9:85.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural Networks, 1(2):119 – 130.

Funke, K., Kisvarday, Z., Volgushev, M., and Wörgötter, F. (2002). Integrating
anatomy and physiology of the primary visual pathway: from LGN to cortex. In
van Hemmen, J. L., Cowan, J. D., and Domany, E., editors, Models of Neural Net-

works IV: early vision and attention, pages 97–182. Springer.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., and
Brown, A. D. (2013). Overview of the SpiNNaker system architecture. Computers,

IEEE Transactions on, 62(12):2454–2467.

146 BIBLIOGRAPHY

Földiák, P. (1991). Learning invariance from transformation sequences. Neural Com-

putation, 3(2):194–200.

Gardner, B. and Grüning, A. (2016). Supervised learning in spiking neural networks
for precise temporal encoding. PLOS ONE, 11(8):1–28.

George, D. and Hawkins, J. (2009). Towards a mathematical theory of cortical micro-
circuits. PLoS computational biology, 5(10):e1000532.

Gerstner, W. (2016). Hebbian learning and plasticity. In Arbib, M. and Bonaiuto, J.,
editors, From Neuron to Cognition Via Computational Neuroscience, Computational
Neuroscience Series. MIT Press.

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics:

From single neurons to networks and models of cognition. Cambridge University
Press.

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J. (2018). Eligibility
traces and plasticity on behavioral time scales: Experimental support of neohebbian
three-factor learning rules. arXiv preprint arXiv:1801.05219.

Ghodrati, M., Khaligh-Razavi, S.-M., and Lehky, S. R. (2017). Towards building a
more complex view of the lateral geniculate nucleus: Recent advances in under-
standing its role. Progress in Neurobiology, 156:214 – 255.

Gibbs, M. E., Hutchinson, D., and Hertz, L. (2008). Astrocytic involvement in learning
and memory consolidation. Neuroscience and Biobehavioral Reviews, 32(5):927 –
944.

Gollisch, T. (2009). Throwing a glance at the neural code: rapid information transmis-
sion in the visual system. HFSP journal, 3(1):36–46.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Grill-Spector, K. and Malach, R. (2004). The human visual cortex. Annual Review of

Neuroscience, 27(1):649–677. PMID: 15217346.

Gross, C. G. (2007). The discovery of motor cortex and its background. Journal of the

History of the Neurosciences, 16(3):320–331. PMID: 17620195.

http://www.deeplearningbook.org

BIBLIOGRAPHY 147

Halassa, M. M., Fellin, T., and Haydon, P. G. (2007). The tripartite synapse: roles for
gliotransmission in health and disease. Trends in Molecular Medicine, 13(2):54 –
63.

Hammond, P. (1974). Cat retinal ganglion cells: size and shape of receptive field
centres. The Journal of physiology, 242(1):99–118.

Hawkins, J. and George, D. (2006). Hierarchical temporal memory: Concepts, theory
and terminology. Technical report, Numenta.

Hebb, D. O. (1949). The organization of behavior: A neurophysiological approach.
Wiley.[JH].

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up pri-
mate brain. Frontiers in Human Neuroscience, 3:31.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of

Physiology, 117(4):500–544.

Hopkins, M. and Furber, S. (2015). Accuracy and efficiency in fixed-point neural ode
solvers. Neural Computation, 27(10):2148–2182. PMID: 26313605.

Hopkins, M., Pineda Garcı́a, G., Bogdan, P. A., and Furber, S. B. (2018). Spiking
neural networks for computer vision. Interface Focus, 8(4).

Hubel, D. and Wiesel, T. (1963). Shape and arrangement of columns in cat’s striate
cortex. The Journal of physiology, 165:559–568.

Hubel, D. H., Wensveen, J., and Wick, B. (1995). Eye, brain, and vision. Scientific
American Library New York.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on

neural networks, 14(6):1569–1572.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

transactions on neural networks, 15(5):1063–1070.

Izhikevich, E. M. (2007a). Dynamical Systems in Neuroscience. MIT press.

148 BIBLIOGRAPHY

Izhikevich, E. M. (2007b). Solving the distal reward problem through linkage of STDP
and dopamine signaling. BMC Neuroscience, 8(2):S15.

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools
for Python. [Online; accessed June-2018].

Kandel, E. R., Schwartz, J. H., Jessell, T. M., of Biochemistry, D., Jessell, M. B. T.,
Siegelbaum, S., and Hudspeth, A. (2000). Principles of neural science, volume 4.
McGraw-hill New York.

Kanerva, P. (1988). Sparse distributed memory. MIT press.

Karklin, Y. and Simoncelli, E. P. (2011). Efficient coding of natural images with a
population of noisy linear-nonlinear neurons. In Advances in neural information

processing systems, pages 999–1007.

Kim, H., Leutenegger, S., and Davison, A. J. (2016). Real-time 3d reconstruction and
6-dof tracking with an event camera. In Leibe, B., Matas, J., Sebe, N., and Welling,
M., editors, Computer Vision – ECCV 2016, pages 349–364, Cham. Springer Inter-
national Publishing.

Koopman, P. (2002). 32-bit cyclic redundancy codes for internet applications. In
Proceedings International Conference on Dependable Systems and Networks, pages
459–468.

Krizhevsky, A., Nair, V., and Hinton, G. (2014). The CIFAR-10 dataset. http://www.
cs.toronto.edu/kriz/cifar.html.

Krubitzer, L. A. and Seelke, A. M. H. (2012). Cortical evolution in mammals: The
bane and beauty of phenotypic variability. Proceedings of the National Academy of

Sciences, 109(Supplement 1):10647–10654.

Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian
retina. Journal of neurophysiology, 16(1):37–68.

Kupers, R. and Ptito, M. (2004). “seeing” through the tongue: cross-modal plasticity
in the congenitally blind. International Congress Series, 1270:79 – 84. Frontiers in
Human Brain Topology. Proceedings of ISBET 2004.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995.

http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html

BIBLIOGRAPHY 149

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551.

LeCun, Y., Cortes, C., and Burges, C. J. (2010). MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist.

Liu, Q., Pineda Garcı́a, G., Stromatias, E., Serrano-Gotarredona, T., and Furber, S. B.
(2016). Benchmarking spike-based visual recognition: A dataset and evaluation.
Frontiers in Neuroscience, 10:496.

Liu, S.-C. and Delbruck, T. (2010). Neuromorphic sensory systems. Current opinion

in neurobiology, 20(3):288–295.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synap-
tic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297):213–
215.

Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2):266–
280.

McIntosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus, S. (2016).
Deep learning models of the retinal response to natural scenes. In Advances in

Neural Information Processing Systems, pages 1369–1377.

Mead, C. and Ismail, M. (2012). Analog VLSI implementation of neural systems,
volume 80. Springer Science & Business Media.

Mead, C. A. and Mahowald, M. (1988). A silicon model of early visual processing.
Neural Networks, 1(1):91 – 97.

Mel, B. W. (1992). Nmda-based pattern discrimination in a modeled cortical neuron.
Neural Computation, 4(4):502–517.

Mikaitis, M., Pineda Garcı́a, G., Knight, J. C., and Furber, S. B. (2018). Neuromodu-
lated synaptic plasticity on the SpiNNaker neuromorphic system. Frontiers in Neu-

roscience, 12:105.

Misra, J. and Saha, I. (2010). Artificial neural networks in hardware: A survey of two
decades of progress. Neurocomputing, 74(1):239–255.

http://yann.lecun.com/exdb/mnist

150 BIBLIOGRAPHY

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540):529.

Natrella, M. (2010). NIST/SEMATECH e-handbook of statistical methods. https:

//www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm.

Nichols, E., Gardner, B., and Gruning, A. (2017). Supervised Learning on the SpiN-

Naker Neuromorphic Hardware.

O’Connor, P., Gavves, E., and Welling, M. (2018). Training a network of spiking
neurons with equilibrium propagation.

Pack, C. C. and Bensmaia, S. J. (2015). Seeing and feeling motion: canonical compu-
tations in vision and touch. PLoS biology, 13(9):e1002271.

Pardo, F., Boluda, J. A., and Vegara, F. (2015). Selective change driven vision sensor
with continuous-time logarithmic photoreceptor and winner-take-all circuit for pixel
selection. IEEE Journal of Solid-State Circuits, 50(3):786–798.

Patterson, C., Garside, J., Painkras, E., Temple, S., Plana, L. A., Navaridas, J., Sharp,
T., and Furber, S. (2012). Scalable communications for a million-core neural pro-
cessing architecture. Journal of Parallel and Distributed Computing, 72(11):1507–
1520.

Perea, G., Navarrete, M., and Araque, A. (2009). Tripartite synapses: astrocytes pro-
cess and control synaptic information. Trends in Neurosciences, 32(8):421 – 431.

Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., and Chichilnisky, E. (2005).
Prediction and decoding of retinal ganglion cell responses with a probabilistic spik-
ing model. Journal of Neuroscience, 25(47):11003–11013.

Pineda Garcı́a, G., Camilleri, P., Liu, Q., and Furber, S. (2016). PyDVS: An extensible,
real-time dynamic vision sensor emulator using off-the-shelf hardware. In 2016

IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–7.

Ponulak, F. and Kasiński, A. (2010). Supervised learning in spiking neural networks
with resume: Sequence learning, classification, and spike shifting. Neural Compu-

tation, 22(2):467–510. PMID: 19842989.

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm

BIBLIOGRAPHY 151

Portelli, G., Barrett, J. M., Hilgen, G., Masquelier, T., Maccione, A., Di Marco, S.,
Berdondini, L., Kornprobst, P., and Sernagor, E. (2016). Rank order coding: a
retinal information decoding strategy revealed by large-scale multielectrode array
retinal recordings. eNeuro, 3(3).

Project, S. (2018). SpiNNaker manchester at github.com. http://

spinnakermanchester.github.io.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., and
Indiveri, G. (2015). A reconfigurable on-line learning spiking neuromorphic proces-
sor comprising 256 neurons and 128k synapses. Frontiers in Neuroscience, 9:141.

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant visual
representation by single neurons in the human brain. Nature, 435(7045):1102.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature neuroscience,
2(1).

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature neuroscience, 2(11):1019.

Roelfsema, P. R. and Holtmaat, A. (2018). Control of synaptic plasticity in deep corti-
cal networks. Nature Reviews Neuroscience, 19(3):166.

Roelfsema, P. R. and Ooyen, A. v. (2005). Attention-gated reinforcement learning of
internal representations for classification. Neural computation, 17(10):2176–2214.

Roska, B. and Meister, M. (2014). The Retina Dissects the Visual Scene into Distinct

Features, chapter 13. Mit Press.

Scellier, B. and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap be-
tween energy-based models and backpropagation. Frontiers in Computational Neu-

roscience, 11:24.

Schiess, M., Urbanczik, R., and Senn, W. (2016). Somato-dendritic synaptic plastic-
ity and error-backpropagation in active dendrites. PLOS Computational Biology,
12(2):1–18.

Schwartz, G. and Rieke, F. (2011). Nonlinear spatial encoding by retinal ganglion
cells: when 1+ 16= 2. The Journal of general physiology, 138(3):283–290.

http://spinnakermanchester.github.io
http://spinnakermanchester.github.io

152 BIBLIOGRAPHY

Senn, W. (2002). Beyond spike timing: the role of non-linear plasticity and unreliable
synapses. Biological cybernetics, 87(5-6):344–355.

Serrano-Gotarredona, T. and Linares-Barranco, B. (2013). A 128×128 1.5% contrast
sensitivity 0.9% FPN 3µs latency 4mW asynchronous frame-free dynamic vision
sensor using transimpedance preamplifiers. IEEE Journal of Solid-State Circuits,
48(3):827–838.

Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., and Poggio, T. (2005). A
theory of object recognition: computations and circuits in the feedforward path of
the ventral stream in primate visual cortex. Technical report, Massachusetts Institute
of Technology Computer Science and Artificial Intelligence Laboratory.

Sherman, S. M. (2006). The thalamus. http://www.scholarpedia.org/article/
Thalamus.

Sjöström, J. and Gerstner, W. (2010). Spike-timing dependent plasticity. Scholarpedia,
5(2):1362. revision #184913.

Sofroniew, M. V. and Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta

Neuropathologica, 119(1):7–35.

Spruyt, V. (2017). A geometric interpretation of the co-
variance matrix. http://www.visiondummy.com/2014/04/

geometric-interpretation-covariance-matrix/.

Srinivasan, M. V., Laughlin, S. B., and Dubs, A. (1982). Predictive coding: a fresh
view of inhibition in the retina. Proceedings of the Royal Society of London B:

Biological Sciences, 216(1205):427–459.

Sterling, P. (2015). Beyond the retina: Pathways to perception and action. In Sterling,
P. and Laughlin, S., editors, Principles of Neural Design, pages 323–362. MIT Press.

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). Power analysis of
large-scale, real-time neural networks on spinnaker. In The 2013 International Joint

Conference on Neural Networks (IJCNN), pages 1–8.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge.

http://www.scholarpedia.org/article/Thalamus
http://www.scholarpedia.org/article/Thalamus
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

BIBLIOGRAPHY 153

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science
& Business Media.

Tewari, S. G. and Majumdar, K. K. (2012). A mathematical model of the tripar-
tite synapse: astrocyte-induced synaptic plasticity. Journal of Biological Physics,
38(3):465–496.

Theodosis, D. T., Poulain, D. A., and Oliet, S. H. R. (2008). Activity-dependent struc-
tural and functional plasticity of astrocyte-neuron interactions. Physiological Re-

views, 88(3):983–1008.

Thompson, R. (2000). The Brain: A Neuroscience Primer. Worth Publishers.

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid
processing. Neural Networks, 14(6):715 – 725.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th international conference on

Machine learning, pages 1064–1071. ACM.

Tootell, R. B. and Hadjikhani, N. (2001). Where is ‘Dorsal V4’ in human visual cortex?
retinotopic, topographic and functional evidence. Cerebral Cortex, 11(4):298–311.

Van Rullen, R. and Thorpe, S. J. (2001). Rate coding versus temporal order cod-
ing: what the retinal ganglion cells tell the visual cortex. Neural computation,
13(6):1255–1283.

VanRullen, R., Guyonneau, R., and Thorpe, S. J. (2005). Spike times make sense.
Trends in Neurosciences, 28(1):1 – 4.

Whittington, J. C. and Bogacz, R. (2019). Theories of error back-propagation in the
brain. Trends in Cognitive Sciences, 23(3):235 – 250.

Wikipedia (2017a). List of AMD Graphics Processing Units. https://en.

wikipedia.org/wiki/List_of_AMD_graphics_processing_units.

Wikipedia (2017b). List of Nvidia Graphics Processing Units. https://en.

wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units.

Wohrer, A. and Kornprobst, P. (2009). Virtual Retina : A biological retina model
and simulator, with contrast gain control. Journal of Computational Neuroscience,
26(2):219.

https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

154 BIBLIOGRAPHY

Zhang, Y., Kim, I.-J., Sanes, J. R., and Meister, M. (2012). The most numerous gan-
glion cell type of the mouse retina is a selective feature detector. Proceedings of the

National Academy of Sciences, 109(36):E2391–E2398.

Appendix A

Connector descriptions

In this appendix we describe the required data to perform on-SpiNNaker connection
expansion; each section describes a component of the expander. Names (e.g. One-
To-One, All-To-All) are encoded using a cyclic redundancy check (CRC) and used
to identify the component type (for compression purposes). The encoded name is a
required parameter for each component but some require additional data which will be
described in the following sections.

Connectors

We begin by listing acceptance rules for different connectivity patterns. The first three
are basic connection styles found in the PyNN description language, while the last two
where developed solely for this thesis.

One to one
Input: None
begin

for i ∈ pre do
for j ∈ post do

if i = j then
Accept

end
end

end
end

155

156 APPENDIX A. CONNECTOR DESCRIPTIONS

All to all
Input: allow: Will neurons with the same id be allowed to connect.
begin

for i ∈ pre do
for j ∈ post do

if i = j and not allow then
Reject

else
Accept

end
end

end
end

Fixed probability
Input: allow: Will neurons with the same id be allowed to connect.
Input: prob: Probability that neuron pairs form synapses.
begin

for i ∈ pre do
for j ∈ post do

sample← SampleUniform(0,1)
if (i = j and not allow) or prob > sample then

Reject
else

Accept
end

end
end

end

A.1. CONNECTORS 157

Kernel
Input: shapep: Shape of pre-synaptic population (2D).
Input: o f f sets, steps: Spatial sampling offsets and steps.
Input: shapek: Shape of kernel weights
begin

for i ∈ pre do
for j ∈ post do

valid region← ProjectKernel(j, shapep, shapek, o f f sets, steps)

if i ∈ valid region then
Accept

else
Reject

end
end

end
end

Cortical
Input: shapep: Shape of pre-synaptic population (2D).
Input: distancemax: How far should neuron pairs may be to consider

generating a synapse.
Input: o f f sets, steps: Spatial sampling offsets and steps.
Input: allow: Will neurons with the same id be allowed to connect.
Input: prob: Probability that neuron pairs form synapses.
begin

for i ∈ pre do
for j ∈ post do

distance← ComputeDistance(i, j, shapep, o f f sets, steps)

sample← SampleUniform(0,1)
if (i = j and not allow) or prob > sample or distance > distancemax

then
Reject

else
Accept

end
end

end
end

158 APPENDIX A. CONNECTOR DESCRIPTIONS

Weights and delays

Each synapse has an associated weight (efficacy) and delay; on-SpiNNaker generation
of these values requires additional parameters which are described in the following
table.

Table A.1: Weight and delay generation parameters.

Type Parameters

Constant Value

Random uniform Range extrema

Random normal Mean and standard deviation

Kernel Values

Synapse types

In SNNs simulations we can make weights remain static or the dynamics of the net-
work to modify them. When static, the on-SpiNNaker synapse generator does not
require further information as a 16-bit integer is the standard used for weights. If plas-
ticity is enabled, synapse generators require to know how much space is needed to
store additional plasticity parameters.

Table A.2: Static and plastic synapse generator parameters.

Type Parameters

Static None

Plastic Number of 32-bit words to save weight state

Appendix B

Competition of Gaussian receptive
fields

Convolution of two 1D Gaussian functions

Let Gi(x) be a Gaussian function

Gi(x) =
1√

2πσi
e−x2/(2σ2

i) , (B.1)

with mean µ = 0 and variance equal to σ2
i . The convolution of two functions is defined

by

f (x)~g(x) =
∫ u

−u
f (u) ·g(u− x)du . (B.2)

The convolution operation in the frequency domain is a multiplication [REF],

f (x)~g(x) = F−1 [F [f (x)] ·F [g(x)]] , (B.3)

where F is the Fourier transform

F [f (x)] =
∫

∞

−∞

f (x)e−2πikxdx , (B.4)

159

160 APPENDIX B. COMPETITION OF GAUSSIAN RECEPTIVE FIELDS

and F−1 is its inverse. We can compute the convolution of two 1D Gaussian functions
by transforming them to the frequency domain

F [Gi(x)] =
∫

∞

−∞

1√
2πσi

e−x2/(2σ2
i)e−2πikxdx , (B.5)

=
1√

2πσi

∫
∞

−∞

e−x2/(2σ2
i) [cos(−2πkx)− i · sin(−2πkx)]dx , (B.6)

=
1√

2πσi

∫
∞

−∞

e−x2/(2σ2
i) [cos(−2πkx)]dx . (B.7)

This integral has an established solution

∫
∞

0
e−ax2

cos(2bx)dx =
1
2

√
π

a
e−(b

2/a) , (B.8)

so the Fourier transform of Gi is

F [Gi(x)] =
1√

2πσi
·2 · 1

2

√
π

1
2σ2

i

e
− (πk)2

1/(2σ2
i) (B.9)

=
1√

2πσi

√
2πσ2

i e−2σ2
i π2k2

(B.10)

= e−2σ2
i π2k2

. (B.11)

We can now produce the convolution through the Fourier transforms of G0(x) and
G1(x)

F−1 [F [G0(x)] ·F [G1(x)]] = F−1
[
e−2σ2

0π2k2
· e−2σ2

1π2k2
]

(B.12)

= F−1
[
e−2π2k2(σ2

0+σ2
1)
]

(B.13)

= F−1
[
e−2π2k2(σ′2)

]
(B.14)

=
1√

2πσ′
e
− x2

2(σ′2) (B.15)

=
1√

2π(σ2
0 +σ2

1)
e
− x2

2(σ2
0+σ2

1) (B.16)

B.2. CONVOLUTION OF TWO 2D GAUSSIAN FUNCTIONS 161

Convolution of two 2D Gaussian functions

A 2D Gaussian function with independent variables x and y is defined as

Gi(x,y) =
1

2πσxσy
e(−[(x−µx)

2/(2σ2
x)+(y−µy)

2/(2σ2
y)]). (B.17)

We will constrain 2D Gaussian functions to have

µx = µy = 0 and σx = σy ,

The competition of two neurons with Gaussian receptive fields is given by the
correlation of their input weight matrix. Since their receptive fields are based on an
odd function, their correlation is equal to their convolution, which is given by

G0(x,y)~G1(x,y) =
∫ u

−u

∫ v

−v
G0(u,v) ·G1(x−u,y− v)du dv . (B.18)

The convolution of these functions is separable∫ u

−u

∫ v

−v
G0(u,v) ·G1(x−u,y− v)du dv =∫ u

−u

∫ v

−v

1
2πσ2

0
e(−[(u

2+v2)/(2σ2
0)]) · 1

2πσ2
1

e(−[((x−u)2+(y−v)2)/(2σ2
1)]) du dv =∫ u

−u

∫ v

−v
K0K1e(−[(u

2+v2)/(2σ2
0)]) · e(−[((x−u)2+(y−v)2)/(2σ2

1)]) du dv =∫ u

−u
K0K1 · e(−[u

2/(2σ2
0)]) · e(−[(x−u)2/(2σ2

1)]) du
∫ v

−v
e(−[v

2/(2σ2
0)]) · e(−[(y−v)2/(2σ2

1)]) dv =∫ u

−u

√
K0K1 · e(−[u

2/(2σ2
0)]) · e(−[(x−u)2/(2σ2

1)]) du
∫ v

−v

√
K0K1 · e(−[v

2/(2σ2
0)]) · e(−[(y−v)2/(2σ2

1)]) dv

(B.19)

this is merely the multiplication of two 1D convolutions (horizontal and vertical axis),
so the right hand side integral solutions are∫ u

−u

√
K0K1·e(−[u

2/(2σ2
0)]) · e(−[(x−u)2/(2σ2

1)]) du
∫ v

−v

√
K0K1 · e(−[v

2/(2σ2
0)]) · e(−[(y−v)2/(2σ2

1)]) dv =

1√
2π(σ2

0 +σ2
1)

e−x2/[2(σ2
0+σ2

1)] · 1√
2π(σ2

0 +σ2
1)

e−y2/[2(σ2
0+σ2

1)] =

1
2π(σ2

0 +σ2
1)

e−(x
2+y2)/[2(σ2

0+σ2
1)] ,

(B.20)

162 APPENDIX B. COMPETITION OF GAUSSIAN RECEPTIVE FIELDS

finally, the convolution is

G0(x,y)~G1(x,y) =
1

2π(σ2
0 +σ2

1)
e−(x

2+y2)/[2(σ2
0+σ2

1)] . (B.21)

Appendix C

Event-driven reinforcement learning
rule

Izhikevich [2007b] describes modulated STDP model with the following equations
(Section 6.3).

dc(t)
dt

= −c(t)
τc

+ST DP(∆t)δ(t− tpre/post) (C.1)

dm(t)
dt

= −m(t)
τm

+M(t)δ(t− tmod) (C.2)

dw(t)
dt

= m(t)× c(t) (C.3)

where c, m are the eligibility trace and modulator, respectively. Function ST DP(t)

comes from Spike-timing-dependent plasticity rule; and M(t) is the concentration of
modulator when a reward -or punishment- is received. The change in weight is char-
acterized by the multiplication of the modulator and eligibility trace states.

We require a separation of continuous and discrete portions of Equations C.1, C.2
and C.3. This due to the event-driven computation nature of the SpiNNaker machine.
To know what the current level of variables c and m we integrate their equations with
time limits set to their last update. Functions ST DP(t) and M(t) are not continuous
(i.e. it’s an instantaneous change) so integration is not required.

Both dc(t)/dt and dm(t)/dt are linear differential equations and integration can be

163

164 APPENDIX C. EVENT-DRIVEN REINFORCEMENT LEARNING RULE

done as follows:

dx(t)
dt

= −x(t)
τx

(C.4)

dx(t)
x(t)

= − 1
τx

dt (C.5)∫ t

tlast

dx(t)
x(t)

= −
∫ t

tlast

1
τx

dt (C.6)

lnx(t)− lnx(tlast) = −t− tlast

τx
(C.7)

ln
x(t)

x(tlast)
= −t− tlast

τx
(C.8)

x(t)
x(tlast)

= e−
t−tlast

τx (C.9)

x(t) = x(tlast)e
− t−tlast

τx (C.10)

exponentially decaying the value since the last update.

For the weight update [dw(t)/dt] integration can be achieved via

dw
dt

= c(t)×m(t) =

(
c(tlc)e

−
(

t−tlc
τc

))(
m(tlm)e

−
(

t−tlm
τm

))
(C.11)∫ t

tlw
dw = c(tlc)m(tlm)

∫ t

tlw
e−
(

t−tlc
τc

)
e−
(

t−tlm
τm

)
dt (C.12)∫ t

tlw
dw = c(tlc)m(tlm)

∫ t

tlw
e−
(

t−tlc
τc +

t−tlm
τm

)
dt (C.13)

where le, lm and lw subscripts indicate the time at which the last eligibility trace,
modulator and weight updates where performed, respectively. To solve Equation C.13
we will transform it into a linear differential equation form, thus we require variable
change

u = −
(

t− tlc
τc

)
−
(

t− tlm
τm

)
(C.14)

du
dt

= − 1
τc
− 1

τm
(C.15)

dt = du/
(
− 1

τc
− 1

τm

)
(C.16)

Now we can solve the next equation instead

165

∫ t

tlw

eu

− 1
τc
− 1

τm

du =

[
eu

− 1
τc
− 1

τm

]t

tlw

(C.17)

∫ t

tlw
e−
(

t−tlc
τc

)
−
(

t−tlm
τm

)
dt =

e−
(

t−tlc
τc

)
−
(

t−tlm
τm

)
− 1

τc
− 1

τm

t

tlw

(C.18)

Finally,

∫ t

tlw
dw = [w(t)]ttlw =

1
− 1

τc
− 1

τm

c(tlc)m(tlm)
[

e−
(

t−tlc
τc

)
−
(

t−tlm
τm

)]t

tlw

(C.19)

Since weights are evaluated when a spike arrives to a post-synaptic core, we need
two versions of the weight update. If the last weight update was done when a standard
spike arrived (tlw = tlc)

∆w =
c(tlc)m(tm)
− 1

τc
− 1

τm

[
e−
(

t−tlc
τc

)
e−
(

t−tlm
τm

)
− e−

(
tlc−tlm

τm

)]
. (C.20)

Similarly, if the last weight update was done on a dopamine spike arrival (tlw = tlm),

∆w =
c(tlc)m(tlm)
− 1

τc
− 1

τm

[
e−
(

t−tlc
τc

)
e−
(

t−tlm
τm

)
− e−

(
tlm−tlc

τc

)]
. (C.21)

Appendix D

Software repositories

The developed software can be found at the following locations:

Image conversion dataset

https://github.com/NEvision/NE15

NVS emulator (PyDVS)

https://github.com/chanokin/pyDVS

Vision modules

https://github.com/chanokin/vision

Voltage-change plasticity

https://github.com/SpiNNakerManchester/sPyNNaker/tree/dvdt_plasticity

https://github.com/SpiNNakerManchester/sPyNNaker7/tree/dvdt_plasticity

166

https://github.com/NEvision/NE15
https://github.com/chanokin/pyDVS
https://github.com/chanokin/vision
https://github.com/SpiNNakerManchester/sPyNNaker/tree/dvdt_plasticity
https://github.com/SpiNNakerManchester/sPyNNaker7/tree/dvdt_plasticity

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Contributions
	Publications
	Thesis structure
	Summary

	Spiking neural networks
	Neuron models
	Hodgkin-Huxley model
	Leaky Integrate-and-fire model
	Izhikevich model

	Synapse models
	Encoding information with spikes
	Rate code
	Temporal codes

	Neural simulation and neuromorphic hardware
	The SpiNNaker project.

	Summary

	Biological vision
	The visual pathway
	The eye
	The Lateral Geniculate Nucleus (LGN)
	Computational models of the visual cortex
	Cortical architecture

	Summary

	Topographic connectivity deployment
	Topographic connectivity in the visual pathway
	Image kernel-based connectivity
	Cortical connectivity

	Efficient neural network deployment on the SpiNNaker machine
	Description collection

	Connector expander
	Python interface
	SpiNNaker executor

	Benchmarks
	Summary

	Sensing the visual world
	Image conversion to spikes
	Neuromorphic vision sensor emulation
	Rank-ordered neuromorphic vision sensor

	Visual processing
	General image representation
	Orientation detection
	Motion sensing

	Mixing On-Off channels
	Activity measurements
	Summary

	Biologically-plausible supervised learning
	Models of synaptic plasticity
	Spike-timing-dependent plasticity

	Network architecture
	Winner-takes-all

	Modulated learning
	Third-factor rules
	Eligibility traces / synapse tagging
	Use cases

	Voltage-based learning
	Filtered voltage change
	Plastic behaviour in a soft winner-takes-all circuit
	Pattern learning
	Lateral signals

	Summary

	Conclusions
	Loading networks
	Image acquisition
	Feature extraction
	Plastic networks
	Reinforcement learning
	Voltage-change-based learning
	Comparison with traditional ANNs

	Future work

	Connector descriptions
	Connectors
	Weights and delays
	Synapse types

	Competition of Gaussian receptive fields
	Convolution of two 1D Gaussian functions
	Convolution of two 2D Gaussian functions

	Event-driven reinforcement learning rule
	Software repositories

