247 research outputs found

    Visual pattern recognition using neural networks

    Get PDF
    Neural networks have been widely studied in a number of fields, such as neural architectures, neurobiology, statistics of neural network and pattern classification. In the field of pattern classification, neural network models are applied on numerous applications, for instance, character recognition, speech recognition, and object recognition. Among these, character recognition is commonly used to illustrate the feature and classification characteristics of neural networks. In this dissertation, the theoretical foundations of artificial neural networks are first reviewed and existing neural models are studied. The Adaptive Resonance Theory (ART) model is improved to achieve more reasonable classification results. Experiments in applying the improved model to image enhancement and printed character recognition are discussed and analyzed. We also study the theoretical foundation of Neocognitron in terms of feature extraction, convergence in training, and shift invariance. We investigate the use of multilayered perceptrons with recurrent connections as the general purpose modules for image operations in parallel architectures. The networks are trained to carry out classification rules in image transformation. The training patterns can be derived from user-defmed transformations or from loading the pair of a sample image and its target image when the prior knowledge of transformations is unknown. Applications of our model include image smoothing, enhancement, edge detection, noise removal, morphological operations, image filtering, etc. With a number of stages stacked up together we are able to apply a series of operations on the image. That is, by providing various sets of training patterns the system can adapt itself to the concatenated transformation. We also discuss and experiment in applying existing neural models, such as multilayered perceptron, to realize morphological operations and other commonly used imaging operations. Some new neural architectures and training algorithms for the implementation of morphological operations are designed and analyzed. The algorithms are proven correct and efficient. The proposed morphological neural architectures are applied to construct the feature extraction module of a personal handwritten character recognition system. The system was trained and tested with scanned image of handwritten characters. The feasibility and efficiency are discussed along with the experimental results

    Advances in quantum machine learning

    Get PDF
    Here we discuss advances in the field of quantum machine learning. The following document offers a hybrid discussion; both reviewing the field as it is currently, and suggesting directions for further research. We include both algorithms and experimental implementations in the discussion. The field's outlook is generally positive, showing significant promise. However, we believe there are appreciable hurdles to overcome before one can claim that it is a primary application of quantum computation.Comment: 38 pages, 17 Figure

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases

    Learning Representations for Face Recognition: A Review from Holistic to Deep Learning

    Get PDF
    For decades, researchers have investigated how to recognize facial images. This study reviews the development of different face recognition (FR) methods, namely, holistic learning, handcrafted local feature learning, shallow learning, and deep learning (DL). With the development of methods, the accuracy of recognizing faces in the labeled faces in the wild (LFW) database has been increased. The accuracy of holistic learning is 60%, that of handcrafted local feature learning increases to 70%, and that of shallow learning is 86%. Finally, DL achieves human-level performance (97% accuracy). This enhanced accuracy is caused by large datasets and graphics processing units (GPUs) with massively parallel processing capabilities. Furthermore, FR challenges and current research studies are discussed to understand future research directions. The results of this study show that presently the database of labeled faces in the wild has reached 99.85% accuracy

    Performance evaluation of random forest with feature selection methods in prediction of diabetes

    Get PDF
    Data mining is nothing but the process of viewing data in different angle and compiling it into appropriate information. Recent improvements in the area of data mining and machine learning have empowered the research in biomedical field to improve the condition of general health care. Since the wrong classification may lead to poor prediction, there is a need to perform the better classification which further improves the prediction rate of the medical datasets. When medical data mining is applied on the medical datasets the important and difficult challenges are the classification and prediction. In this proposed work we evaluate the PIMA Indian Diabtes data set of UCI repository using machine learning algorithm like Random Forest along with feature selection methods such as forward selection and backward elimination based on entropy evaluation method using percentage split as test option. The experiment was conducted using R studio platform and we achieved classification accuracy of 84.1%. From results we can say that Random Forest predicts diabetes better than other techniques with less number of attributes so that one can avoid least important test for identifying diabetes

    Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients

    Get PDF
    Dissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceData representation is one of the fundamental concepts in machine learning. An appropriate representation is found by discovering a structure and automatic detection of patterns in data. In many domains, representation or feature learning is a critical step in improving the performance of machine learning algorithms due to the multidimensionality of data that feeds the model. Some tasks may have different perspectives and approaches depending on how data is represented. In recent years, deep artificial neural networks have provided better solutions to several pattern recognition problems and classification tasks. Deep architectures have also shown their effectiveness in capturing latent features for data representation. In this document, autoencoders will be examined to obtain the representation of Parkinson's disease patients and compared with conventional representation learning algorithms. The results will show whether the proposed method of feature selection leads to the desired accuracy for predicting the severity of Parkinson’s disease

    Authorship Attribution Using Principal Component Analysis and Nearest Neighbor Rule for Neural Networks

    Get PDF
    Feature extraction is a common problem in statistical pattern recognition. It refers to a process whereby a data space is transformed into a feature space that, in theory, has exactly the same dimension as the original data space. However, the transformation is designed in such a way that the data set may be represented by a reduced number of "effective" features and yet retain most of the intrinsic information content of the data; in other words, the data set undergoes a dimensionality reduction. Principal component analysis is one of these processes. In this paper the data collected by counting selected syntactic characteristics in around a thousand paragraphs of each of the sample books underwent a principal component analysis. To make a comparison, the original data is also processed. Authors of texts identified with higher success by the competitive neural networks, which use principal components. The process repeated on another group of authors, and similar results are obtained
    • …
    corecore