52,717 research outputs found

    Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Get PDF
    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps

    Resilience: Going from Conventional to Adaptive Freshwater Management for Human and Ecosystem Compatibility

    Get PDF
    This Policy Brief highlights the need for water management to incorporate complexity and uncertainty and introduces the concepts of resilience? and ?adaptive co-management.? It emphasises the need to go from conventional to ecosystem-oriented adaptive freshwater management

    Evaporating Asset: Water Scarcity and Innovations for the Future

    Get PDF
    The World Economic Forum has identified "water crises" as one of the top ten issues of greatest concern to the global economy in 2014. What is causing these crises and how do we address them? Through research supported by the Rockefeller Foundation in 2014, SustainAbility explored the challenges faced by freshwater and freshwater ecosystems globally due to growing sectoral competition -- between agricultural, industrial and municipal users -- for limited water. This paper illuminates some of the most innovative approaches to protect, preserve and replenish freshwater ecosystems

    Part 3: Systemic risk in ecology and engineering

    Get PDF
    The Federal Reserve Bank of New York released a report -- New Directions for Understanding Systemic Risk -- that presents key findings from a cross-disciplinary conference that it cosponsored in May 2006 with the National Academy of Sciences' Board on Mathematical Sciences and Their Applications. ; The pace of financial innovation over the past decade has increased the complexity and interconnectedness of the financial system. This development is important to central banks, such as the Federal Reserve, because of their traditional role in addressing systemic risks to the financial system. ; To encourage innovative thinking about systemic issues, the New York Fed partnered with the National Academy of Sciences to bring together more than 100 experts on systemic risk from 22 countries to compare cross-disciplinary perspectives on monitoring, addressing and preventing this type of risk. ; This report, released as part of the Bank's Economic Policy Review series, outlines some of the key points concerning systemic risk made by the various disciplines represented - including economic research, ecology, physics and engineering - as well as presentations on market-oriented models of financial crises, and systemic risk in the payments system and the interbank funds market. The report concludes with observations gathered from the sessions and a discussion of potential applications to policy. ; The three papers presented in this conference session highlighted the positive feedback effects that produce herdlike behavior in markets, and the subsequent discussion focused in part on means of encouraging heterogeneous investment strategies to counter such behavior. Participants in the session also discussed the types of models used to study systemic risk and commented on the challenges and trade-offs researchers face in developing their models.Financial risk management ; Financial markets ; Financial stability ; Financial crises

    Spatial correlation as leading indicator of catastrophic shifts

    Get PDF
    Generic early-warning signals such as increased autocorrelation and variance have been demonstrated in time-series of systems with alternative stable states approaching a critical transition. However, lag times for the detection of such leading indicators are typically long. Here, we show that increased spatial correlation may serve as a more powerful early-warning signal in systems consisting of many coupled units. We first show why from the universal phenomenon of critical slowing down, spatial correlation should be expected to increase in the vicinity of bifurcations. Subsequently, we explore the applicability of this idea in spatially explicit ecosystem models that can have alternative attractors. The analysis reveals that as a control parameter slowly pushes the system towards the threshold, spatial correlation between neighboring cells tends to increase well before the transition. We show that such increase in spatial correlation represents a better early-warning signal than indicators derived from time-series provided that there is sufficient spatial heterogeneity and connectivity in the syste

    Immune cognition, social justice and asthma: structured stress and the developing immune system

    Get PDF
    We explore the implications of IR Cohen's work on immune cognition for understanding rising rates of asthma morbidity and mortality in the US. Immune cognition is conjoined with central nervous system cognition, and with the cognitive function of the embedding sociocultural networks by which individuals are acculturated and through which they work with others to meet challenges of threat and opportunity. Using a mathematical model, we find that externally- imposed patterns of 'structured stress' can, through their effect on a child's socioculture, become synergistic with the development of immune cognition, triggering the persistence of an atopic Th2 phenotype, a necessary precursor to asthma and other immune disease. Reversal of the rising tide of asthma and related chronic diseases in the US thus seems unlikely without a 21st Century version of the earlier Great Urban Reforms which ended the scourge of infectious diseases

    Managing the Ethical Dimensions of Brain-Computer Interfaces in eHealth: An SDLC-based Approach

    Get PDF
    A growing range of brain-computer interface (BCI) technologies is being employed for purposes of therapy and human augmentation. While much thought has been given to the ethical implications of such technologies at the ‘macro’ level of social policy and ‘micro’ level of individual users, little attention has been given to the unique ethical issues that arise during the process of incorporating BCIs into eHealth ecosystems. In this text a conceptual framework is developed that enables the operators of eHealth ecosystems to manage the ethical components of such processes in a more comprehensive and systematic way than has previously been possible. The framework’s first axis defines five ethical dimensions that must be successfully addressed by eHealth ecosystems: 1) beneficence; 2) consent; 3) privacy; 4) equity; and 5) liability. The second axis describes five stages of the systems development life cycle (SDLC) process whereby new technology is incorporated into an eHealth ecosystem: 1) analysis and planning; 2) design, development, and acquisition; 3) integration and activation; 4) operation and maintenance; and 5) disposal. Known ethical issues relating to the deployment of BCIs are mapped onto this matrix in order to demonstrate how it can be employed by the managers of eHealth ecosystems as a tool for fulfilling ethical requirements established by regulatory standards or stakeholders’ expectations. Beyond its immediate application in the case of BCIs, we suggest that this framework may also be utilized beneficially when incorporating other innovative forms of information and communications technology (ICT) into eHealth ecosystems
    corecore