608 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Evaluation of Smart Grid projects for inclusion in the third Union-wide list of Projects of Common Interest: Evaluation of candidate projects in the TEN-E priority thematic area of smart grids deployment

    Get PDF
    The document presents the outcome of the evaluation process of candidate Projects of Common Interest in the priority thematic area of ‘smart grids deployment’, as set out in the trans-European energy infrastructure regulation. The evaluation follows the guidelines of the assessment framework for smart grid Projects of Common Interest, 2017 update, developed by the JRC and adopted by the smart grid Regional Group. The report aims to assist the smart grids Regional Group in proposing projects of common interest in the area of smart grids deployment to be included in the 3rd Union list of Projects of Common Interest.JRC.C.3-Energy Security, Distribution and Market

    Preventing Wide Area Blackouts in Transmission Systems: A New Approach for Intentional Controlled Islanding using Power Flow Tracing

    Get PDF
    A novel method to reduce the impact of wide area blackouts in transmission networks is presented. Millions of customers are affected each year due to blackouts. Splitting a transmission system into smaller islands could significantly reduce the effect of these blackouts. Large blackouts are typically a result of cascading faults which propagate throughout a network where Intentional Controlled Islanding (ICI) has the advantage of containing faults to smaller regions and stop them cascading further. Existing methodologies for ICI are typically calculated offline and will form pre-determined islands which can often lead to excessive splits. This thesis developed an ICI approach based on real time information which will calculate an islanding solution quickly in order to provide a ‘just-in-time’ strategy. The advantage of this method is that the island solution is designed based on the current operating point, but well also be designed for the particular disturbance location and hence will avoid unnecessary islanding. The new method will use a power flow tracing technique to find a boundary around a disturbance which forms the island that will be cut. The tracing method required only power flow information and so, can be computed quite quickly. The action of islanding itself can be a significant disturbance, therefore any islanding solution should aim to add as little stress as possible to the system. While methods which minimise the power imbalance and total power disrupted due to splitting are well documented, there has been little study into the effect islanding would have on voltage. There a new approach to consider the effects that islanding will have on the voltage stability of the system is developed. The ICI method is based on forming an island specific to a disturbance. If the location of a source is known along with information that a blackout is imminent, the methodology will find the best island in which to contain that disturbance. This is a slightly different approach to existing methods which will form islands independent of disturbance location knowledge. An area of influence is found around a node using power flow tracing, which consists of the strongly connected elements to the disturbance. Therefore, low power flows can be disconnected. This area of influence forms the island that will be disconnected, leaving the rest of the system intact. Hence minimising the number of islands formed. Finally the methodology is compared to the existing methods to show that the new tool developed in this thesis can find better solutions and that a new way of thinking about power system ICI can be put forward

    Power system planning methods and experiences in the energy transition framework

    Get PDF
    In recent years, the unbundling of the electricity market together with the profound “energy landscape” transformation have made the transmission network development planning a very complex multi-objective problem. The climate and energy objectives defined at the European level aim for a deepening integration of the European power markets and the electricity sector is recognized as one of the main contributors to the energy transition from a thermal-based power system to a renewable-based one. In the deregulated framework, network planners have to satisfy multiple different objectives, including: facilitating competition between market participants, providing non-discriminatory access to all generation resources for all customers, including green resources, mitigating transmission congestions, efficiently allocating the network development actions, minimizing risks associated with investments, enhancing power system security and reliability and minimizing the transmission infrastructure environmental impact. Further complexities are related to the significant uncertainty about future energy scenarios and policy rules. In particular, the increasing distributed renewable energy source integration dictated by the European energy targets, raises several issues in terms of future power flow patterns, power system flexibility and inertia requirements, and cost-effective development strategies identification. The thesis aims to investigate various aspects concerning the transmission network planning, with particular reference to the Italian power system and the experience gained working in the “Grid Planning and Interconnections Department” of Terna, the Italian Transmission System Operator. One of the main topics of this work is the use of the series compensation to exploit operating limits of underused portions of the HV – EHV transmission network in parallel to critically loaded ones, in order to control and provide alternative paths for power flows. The purpose is to extend the allowable transmission capacity across internal market sections. To this aim, a specific application of series compensation (together with reconductoring) to exploit the transfer capacity of a 250 km long, 230 kV-50 Hz transmission backbone spanning the critical section Centre South – Centre North is illustrated. The results are validated by means of static assessment and similar applications could be hypothesized for grid portions in the South of Italy where the primary network is mainly unloaded whereas the sub-transmission network reaches high levels of loading because of the huge renewable generation capacity situated there. A further characteristic of modern power systems is the need to integrate high levels of renewable energies while fulfilling reliability and security requirements. The offshore wind farms perspectives in the Italian transmission system are evaluated, considering policies, environmental and technical aspects. Furthermore, the adoption of the HVDC technology in parallel to the AC traditional system topic is addressed: planning static and dynamic studies involving a real HVDC Italian project are proposed. In particular, the impact of the planned HVDC link on the loadability and the dynamic performance of the system is investigated in medium and in long-term future planning scenarios. The evaluation of the thermal performance of a specific grid portion in the South of Italy affected by significant increase of power generation by variable energy sources is proposed both in the current situation and in the future scenarios in order to highlight the benefits related to the presence of the planned network reinforcements. Finally, some issues of the prospective reduced inertia systems are illustrated and a possible methodology to evaluate the economic impact of inertia constraints in long-term market studies is proposed. In the light of the emerging concept of power system flexibility, traditional planning evolved to assess the ability of the system to employ its resources when dealing with the changes in load demand and variable generation. Flexibility analyses of the Italian power system, carried out in terms of some market studies-based metrics and grid infrastructure-based indexes, are provided. The flexibility requirements assessment in planning scenarios are of interest to evaluate the impact of network development actions and have been included in the yearly National Development Plan. The last research topic involves the cost-effective target capacity assessment methodology developed by Terna in compliance with the Regulator directives presented together with the results yielded by its application to each significant market section of the Italian power system. The methodology has been positively evaluated from academic independent expert reviewers, and its outputs are relevant for the policy makers, regulatory authority and market participant to assess and co-design the energy transition plan of a future European interconnected power system

    Protecting Electricity Networks from Natural Hazards

    Get PDF
    This handbook supports OSCE participating States in better protecting critical electrical energy infrastructure from natural hazards. By providing risk management options, tools and case studies, it is designed as a guide for policy-makers, state authorities, transmission networks operators and regulators in charge of protecting energy networks. In recent years the risk of supra-national power blackouts in the OSCE area causing significant economic losses has increased. One contributing factor is that extreme weather conditions occur more frequently. Another is an increased connectivity of power and telecommunication infrastructures and a higher technical complexity of the grid due to a changing energy mix, leaving industrial and commercial companies, the public and the private sector at risk

    Insights from the Inventory of Smart Grid Projects in Europe: 2012 Update

    Get PDF
    By the end of 2010 the Joint Research Centre, the European Commission’s in-house science service, launched the first comprehensive inventory of smart grid projects in Europe1. The final catalogue was published in July 2011 and included 219 smart grid and smart metering projects from the EU-28 member states, Switzerland and Norway. The participation of the project coordinators and the reception of the report by the smart grid community were extremely positive. Due to its success, the European Commission decided that the project inventory would be carried out on a regular basis so as to constantly update the picture of smart grid developments in Europe and keep track of lessons learnt and of challenges and opportunities. For this, a new on-line questionnaire was launched in March 2012 and information on projects collected up to September 2012. At the same time an extensive search of project information on the internet and through cooperation links with other European research organizations was conducted. The resulting final database is the most up to date and comprehensive inventory of smart grids and smart metering projects in Europe, including a total of 281 smart grid projects and 90 smart metering pilot projects and rollouts from the same 30 countries that were included in the 2011 inventory database. Projects surveyed were classified into three categories: R&D, demonstration or pre-deployment) and deployment, and for the first time a distinction between smart grid and smart metering projects was made. The following is an insight into the 2012 report.JRC.F.3-Energy securit

    Large Scale Integration of Electric Vehicles into the Power Grid and Its Potential Effects on Power System Reliability

    Get PDF
    In this thesis, the potential effects of large scale integration of electric vehicles into the power grid are discussed in both the beneficial and detrimental aspects. The literature review gives a comprehensive introduction about the existing smart charging algorithms. According to the system structure and market mechanism, the smart charging algorithms can be divided into centralized and distributed method. With the knowledge of driving patterns and charging characteristics of electric vehicles, both the centralized and decentralized smart charging algorithms are studied in this research. Based on the smart charging pricing and sequential price update mechanism, a multi-agent based distributed smart charging algorithm is used in this research to flatten the load curve and therefore mitigate the potential detrimental effects caused by uncoordinated charging. Each EV agent has some extent of intelligence to solve its own charging scheduling problem. The optimization method used in this research is the binary hybrid GSA-PSO algorithm, which combines the merits of particle swarm optimization (PSO) and gravitational search algorithm (GSA), and has very good exploration and exploitation abilities. A V2G enabled centralized smart charging algorithm is also introduced in this thesis, each EV can earn revenues by discharging power into the grid. The dominant search matrix is used to resolve the \u27\u27curse of dimensionality\u27\u27 problem existing in the centralized optimization problems. Numerical case studies show both the distributed and V2G enabled smart charging algorithms can effectively transfer the charging load from the peak load period to the load valley hours. Because of the limited integration ratio of electric vehicles, most power system reliability methods do not evaluate the charging load of EVs separately in their analytical procedures. However, with a fast increasing integration level, the potential effects of large scale integration of EVs on the power system reliability should be comprehensively evaluated. The effects of EV charging on power system reliability in the planning phase is analyzed in this research based on the RBTS. The results show the uncontrolled charging will deteriorate the reliability level while the smart charging can effectively decrease the detrimental effect. The potential application of aggregated EV providing operating reserve to the grid as a kind of ancillary service is also discussed, and the related effects on power system reliability in operating phase are calculated using the modified PJM method. The case study shows the unit commitment risk of the system can decrease to a very low level with the additional operating reserve capacity provided by aggregated EVs, which can not only improve the system\u27s reliability level but also save the cost

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods
    corecore