62,921 research outputs found

    Towards understanding open-coopetition – Lessons from the automotive industry

    Get PDF
    Products are often co-developed in networks that embed multiple organizations. Paradoxically, such product development networks can tie rival and competing firms that cooperate with each other in an open-source way. The management of such modus operandi, where firms give up some intellectual property rights granted by law and work with competitors in an open-source way, can be very challenging as it can lead to commoditization, free-riding, and unintended spillover effects. Building upon extant knowledge in coopetition, open-source software, product development, and innovation, we conducted an exploratory case study aimed at understanding open-coopetition (i.e., cooperation among competitors in an open-source way) in the automotive industry. To do so, we leveraged publicly available naturally occurring digital data and qualitative interviews pertaining to four coopetitive open-source projects. Out preliminary results highlight the increasing complexity of the software that powers modern cars and consequent convergence of the automotive industry with the software industry

    IMoG -- a methodology for modeling future microelectronic innovations

    Full text link
    [Context and motivation] The automotive industry is currently undergoing a fundamental transformation towards software defined vehicles. The automotive market of the future demands a higher level of automation, electrification of the power train, and individually configurable comfort functions. [Question/problem] These demands pose a challenge to the automotive development cycle, because they introduce complexity by larger and not yet well explored design spaces that are difficult to manage. [Principal ideas/results] To cope with these challenges, the main players along the value chain have an increased interest in collaborating and aligning their development efforts along joint roadmaps. Roadmap development can be viewed as a field of requirements engineering with the goal to capture product aspects on an appropriate level of abstraction to speed up investment decisions, reduce communication overhead and parallelize development activities, while complying with competition laws. [Contribution] In this paper, we present a refinement of the "Innovation Modeling Grid" (IMoG), which encompasses a methodology, a process and a proposed notation to support joint analysis of development roadmaps. IMoG is focused on the automotive domain, yet there are clear potentials for other applications.Comment: 15 pages, 7 figure

    Embedded Software V&V using Virtual Platforms for Powertrain applications

    Get PDF
    International audienceCurrent development trends for automotive products are driven by time to market reduction, cost optimization, and quality improvement. Dual to these business constraints are demands for innovation and safety conformance which impose increasing complexity on embedded systems. To address these challenges impacting software and hardware to improve system dependability, new methodology and tools need to be set-up. The use of representative virtual platforms combining speed and accuracy allows earlier software development, improved system testing, and fault injection analysis, with a high potential for reuse of system IPs (including both hardware and software). In this paper, we will present investigation on new methods and associated results using a simplified virtual platform to test a powertrain application

    Modelling multicore contention on the AURIXTM TC27x

    Get PDF
    Multicores are becoming ubiquitous in automotive. Yet, the expected benefits on integration are challenged by multicore contention concerns on timing V&V. Worst-case execution time (WCET) estimates are required as early as possible in the software development, to enable prompt detection of timing misbehavior. Factoring in multicore contention necessarily builds on conservative assumptions on interference, independent of co-runners load on shared hardware. We propose a contention model for automotive multicores that balances time-composability with tightness by exploiting available information on contenders. We tailor the model to the AURIX TC27x and provide tight WCET estimates using information from performance monitors and software configurations.The research leading to this work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644080 (SAFURE). This work has also been partially funded by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. The Ministry of Economy and Competitiveness partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717) and Enrico Mezzetti under Juan de la Cierva-Incorporación postdoctoral fellowship (IJCI-2016-27396).Peer ReviewedPostprint (published version

    Networking Innovation in the European Car Industry : Does the Open Innovation Model Fit?

    Get PDF
    The automobile industry is has entered an innovation race. Uncertain technological trends, long development cycles, highly capital intensive product development, saturated markets, and environmental and safety regulations have subjected the sector to major transformations. The technological and organizational innovations related to these transformations necessitate research that can enhance our understanding of the characteristics of the new systems and extrapolate the implications for companies as well as for the wider economy. Is the industry ready to change and accelerate the pace of its innovation and adaptability? Have the traditional supply chains transformed into supply networks and regional automobile ecosystems? The study investigates the applicability of the Open Innovation concept to a mature capital-intensive asset-based industry, which is preparing for a radical technological discontinuity - the European automobile industry - through interviewing purposely selected knowledgeable respondents across seven European countries. The findings contribute to the understanding of the OI concept by identifying key obstacles to the wider adoption of the OI model, and signalling the importance of intermediaries and large incumbents for driving network development and OI practices as well as the need of new competencies to be developed by all players.Peer reviewe

    Case study evidence of the extent and nature of foreign subsidiaries' R&D and innovation capability in Hungary

    Get PDF
    Multinational companies increasingly locate their R&D activities outside their home countries, thus being one of the main contributors to the ongoing process of the internationalisation of R&D. The internationalisation of corporate R&D is gaining momentum and the New Member States of the European Union, including Hungary are increasingly taking part in that process. The present paper analyses three aspects of this topic, first, the characteristics of R&D activities carried out by foreign affiliates in Hungary. Second, what are those locational factors which attract these types of investments to Hungary, distinguishing between production-related and knowledge-seeking R&D and relating locational factors in Hungary to those in the home country. And third, we analyse what the impact of this type of investments on the local economy is, where we also distinguish between production-related and “stand-alone”, knowledge-seeking projects. In the analysis, company case studies were used based on questionnaire-led semi-structured interviews with leading managers of 20 foreign-owned automotive and electronics companies

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    Investigating the impact of networking capability on firm innovation performance:using the resource-action-performance framework

    Get PDF
    The author's final peer reviewed version can be found by following the URI link. The Publisher's final version can be found by following the DOI link.Purpose The experience of successful firms has proven that one of the most important ways to promote co-learning and create successful networked innovations is the proper application of inter-organizational knowledge mechanisms. This study aims to use a resource-action-performance framework to open the black box on the relationship between networking capability and innovation performance. The research population embraces companies in the Iranian automotive industry. Design/methodology/approach Due to the latent nature of the variables studied, the required data are collected through a web-based cross-sectional survey. First, the content validity of the measurement tool is evaluated by experts. Then, a pre-test is conducted to assess the reliability of the measurement tool. All data are gathered by the Iranian Vehicle Manufacturers Association (IVMA) and Iranian Auto Parts Manufacturers Association (IAPMA) samples. The power analysis method and G*Power software are used to determine the sample size. Moreover, SmartPLS 3 and IBM SPSS 25 software are used for data analysis of the conceptual model and relating hypotheses. Findings The results of this study indicated that the relationships between networking capability, inter-organizational knowledge mechanisms and inter-organizational learning result in a self-reinforcing loop, with a marked impact on firm innovation performance. Originality/value Since there is little understanding of the interdependencies of networking capability, inter-organizational knowledge mechanisms, co-learning and their effect on firm innovation performance, most previous research studies have focused on only one or two of the above-mentioned variables. Thus, their cumulative effect has not examined yet. Looking at inter-organizational relationships from a network perspective and knowledge-based view (KBV), and to consider the simultaneous effect of knowledge mechanisms and learning as intermediary actions alongside, to consider the performance effect of the capability-building process, are the main advantages of this research

    The liminality of trajectory shifts in institutional entrepreneurship

    Get PDF
    In this paper, we develop a process model of trajectory shifts in institutional entrepreneurship. We focus on the liminal periods experienced by institutional entrepreneurs when they, unlike the rest of the organization, recognize limits in the present and seek to shift a familiar past into an unfamiliar and uncertain future. Such periods involve a situation where the new possible future, not yet fully formed, exists side-by-side with established innovation trajectories. Trajectory shifts are moments of truth for institutional entrepreneurs, but little is known about the underlying mechanisms of how entrepreneurs reflectively deal with liminality to conceive and bring forth new innovation trajectories. Our in-depth case study research at CarCorp traces three such mechanisms (reflective dissension, imaginative projection, and eliminatory exploration) and builds the basis for understanding the liminality of trajectory shifts. The paper offers theoretical implications for the institutional entrepreneurship literature
    corecore