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ABSTRACT
Multicores are becoming ubiquitous in automotive. Yet, the ex-
pected benefits on integration are challenged by multicore con-
tention concerns on timingV&V.Worst-case execution time (WCET)
estimates are required as early as possible in the software develop-
ment, to enable prompt detection of timing misbehavior. Factoring
in multicore contention necessarily builds on conservative assump-
tions on interference, independent of co-runners load on shared
hardware. We propose a contention model for automotive multi-
cores that balances time-composability with tightness by exploiting
available information on contenders. We tailor the model to the
AURIX TC27x and provide tightWCET estimates using information
from performance monitors and software configurations.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering → Software performance;

KEYWORDS
Multicore contention, Performance counters, AURIX TriCore

1 INTRODUCTION
Automotive industry is increasingly adopting multicores as the
reference computing solution for ECUs [1–3]. Yet, several academic
and industrial studies show that multicores have disruptive effects
on Validation and Verification (V&V) practice, shaped on single-
core architectures: timing analysis techniques have to be carefully
adapted to factor in multicore contention inWCET estimates [5, 14].

Integrated architectures (e.g. AUTOSAR [4]), which have a dom-
inant position in industrial practice, allow OEMs to subcontract the
development of software elements to different software providers
(SWPs). In terms of timing, the OEM provides SWPs with the time
budgets within which all applications must fit. SWPs must provide
trustworthy guarantees on the WCET behavior of the software.
This, however, clashes with the dependence of the timing behavior
of each application on the load other contender applications (likely
developed by other SWPs) put on multicore’s shared resources. To
make things worse, system-level integration and analysis cannot
occur until late development stages, when the cost of handling po-
tential budget overruns is significantly higher, thus jeopardizing the
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whole design and product’s time-to-market. On this view, execution
time characterization in isolation, i.e. without requiring multicore
execution of the final deployment-time integrated tasks, is funda-
mental to get WCET estimates already in early design stages (e.g.
at functional unit implementation). Yet, new methods to factor in
multicore contention are sought.

Time-composable WCET estimates hold valid under any con-
tention scenario (and load put by co-runners on hardware resources),
without any assumption on how tasks are scheduled at system level.
For this reason time-composable bounds rely on the conservative
assumption that each request of the task under analysis is delayed
in the worst possible way by its contenders, which may easily lead
to bounds that are too pessimistic to be useful in practice [11]. Effec-
tively coping with the effects of contention requires WCET bounds
that guarantee an adequate balance between tightness and time
composability. This translates into flexible approaches that can be
easily tailored to derive partially-time composable WCET estimates
that hold for a subset of contention scenarios [10].

We propose a contention model for measurement-based timing
analysis (MBTA), the most widely adopted analysis approach in
automotive. ➀ In order to increase its industrial viability, our con-
tention model relies only on information that can be derived via
standard Debug Support Unit (DSU) rather than metrics that can
only be obtained in processor simulators. Further, ➁ it computes
contention-aware WCET estimates from observations of a task run-
ning in isolation, rather than against contenders, so that to favor
the derivation of WCET estimates during pre-integration design
stages. Finally, ➂ it is flexible enough to model different contention
scenarios while providing tight contention bounds.

We tailor our model to the Infineon AURIX™ TC-27x multicore
family of processors. We analyze the specific execution information
made available by the TC-27x. Building on TC-27x’s Debug Coun-
ters, we define a highly flexible contention model, the first one for
AURIX multicores to our knowledge, that can be easily tailored
to different processor deployment scenarios and fits in standard
MBTA for single-cores. Our model is presented as an Integer Lin-
ear Programming (ILP) problem that finds the worst-case mapping
between conflicting requests on the AURIX Shared Resource Inter-
connect (SRI). Results show that our model provides tighter results,
under different contention scenarios and load of the contenders on
shared resources, than the time-composable model.

2 PRELIMINARIES
Reference Platform. The AURIX™ TC277 [12] comprises three
different TriCore™ processors: a low-power core (16E) and two
higher-performance cores (16P). All processors have separated core-
local memories (scratchpads and caches) for instructions and data
(though the 1.6E deploys a data buffer instead of data cache). Pro-
cessors are connected to a shared ‘memory system’ through the
SRI cross-bar (see Figure 1). The shared memory system comprises
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Figure 1: Block Diagram of the AURIX™ TC-27x

a SRAM device, accessed via the Local Memory Unit (LMU) and
a FLASH device, accessed via the Program Memory Unit (PMU)
through three independent interfaces, two for code (i.e. program)
and one for data. LMU and PMU memory areas can be accessed in
cacheable or uncacheable mode, depending on the address segment
used. System software statically sets the deployment configurations
defining where stack, functions, and data of the application are
mapped, and their cacheability options.

Basic Notation and Assumptions. We consider one time-cri-
tical task under analysis (τa ) for which a WCET estimate is to
be derived; and a contender task (τb ). This model can be easily
extended to consider more contenders at the same time. We focus
on the case in which the requests of contenders are mapped to the
same SRI priority class. In this scenario, the most stressing one for
our model, stalls (contention) can happen whenever τa issues a
request to a target and the request arrives right after the arbitration
turn has selected another request by τb on the same target. Hence,
contention is determined on a per-target basis, with contenting
requests arbitrated using a round-robin policy.

The exact interference τa suffers because of τb depends on how
inter-core requests interleave in the SRI, which is generally not con-
trollable during testing. Moreover, analysis is often forced to build
on information obtained on τa in isolation, as information from
joint execution cannot be derived until late design phases, when
applications are integrated together. Therefore, contention mod-
els cannot determine exactly how tasks interleave in reality once
integrated and can only conservatively assume that contenders’
requests align in the worst possible way with τa ’s requests [13, 16].
In the TC-27x, contention is determined by the number of requests
of τa (not the type of such requests) and the number and type of
requests of τb . A conservative contention model is forced to as-
sume τa is delayed by each request of its contender for request
duration, which in turn depends on target resource and operation
type. Table 1 summarizes the main terms we use in this work.

The relevant target resources accessible through the SRI in the
AURIX platform comprise LMU and PMU. The latter is further
broken down in different Flash memory interfaces for data and
program (code), which we denoted f l , andp f 0 andp f 1 respectively.
We consider the set of target resources T = {d f l ,p f 0,p f 1,lmu}.
While each target might exhibit different latencies depending on
the type of request (operation) processed (i.e. code/data reads or
data writes), for the time being we differentiate only among code
(co) and data (da) requests for all targets in O = {co,da}, ∀ t ∈ T .
Code accesses can target the p f 0, p f 1, and lmu, while the data
accesses can target any resource: d f l , p f 0, p f 1 and lmu as shown
in Figure 2. We do not consider SRI traffic caused by code and data
requests targeting scratchpads of other cores, as those requests
would enable the occurrence of stalls in the memory interface even

Table 1: Definitions used in this paper.
Acronym Description

Target Resources and Operation Types
T Target resources in the SRI
O Types of operations on a SRI target

Access Counts
na , Total access count of τa
ncoa , ndaa Data and code access count of τa
n̂a , n̂coa , n̂daa Upperbounds to previous values
nt ,oa τa ’s accesses of type o to resource t

Latencies
l t ,o Access latency of o-type requests to t
cs t ,o Stall cycles when accessing t with an access o
cscoa , csdaa τa ’s code and data stall cycles in isolation
∆cscoa , ∆csdaa τa ’s increment in stall cycles due to contention

when accessing core-local memories. This would invalidate any
attempt to provide some level of isolation between cores.

Hardware Profiling. Our contention model builds on the AU-
RIX™ DSU interface and TC-27x’s Debug counters that can be con-
figured to collect data on both core-local and inter-core events. We
exploit the on-chip cycle counter (CCNT); PMEM_STALL and DMEM_STALL
to count the number of cycles the pipeline has been stalled when
accessing the Program/Data memory interface respectively; and
PCACHE_MISS, DCACHE_MISS_CLEAN and DCACHE_MISS_DIRTY, re-
lated to cache performance and specifically to cache misses.

Maximum and minimum observable end-to-end latencies for
SRI transactions in isolation are reported in Table 2. Note that the
reported latency is always the maximum between read and write
operations per SRI target, as we are only interested in discriminating
between code and data operations. Table 2 also reports cst,o as the
amount of stall cycles incurred in the best-case for single accesses
in isolation to each SRI target. Best-case stall counts should take
into account the effects of prefetching, pipelining in the SRI, etc.
so that they can be used to compute an over-approximation of the
number of SRI accesses of a given application or task.

3 CONTENTION MODELS
3.1 State of the art
Modeling multicore contention has been addressed by a notable
amount of works [9]. Approaches to analyze contention on COTS
hardware generally build on the availability of performance mon-
itoring counters (PMCs) [7, 8, 13, 15, 16]. Some approaches have
proposed to extend single-core timing analysis frameworks to ac-
count for the effect of shared resources [6], which is generally un-
sustainable for COTS platforms due to the entailed computational
complexity and overly pessimistic results. We also exclude from
our discussion ad-hoc hardware architectures that may present
specialized mechanisms for contention analysis and enforcement.

In [7] authors propose a contention model on systems with
front-side bus (FSB) building upon PMCs to derive the maximum
number of bus accesses of the target task. A recent work [16], builds
on PMC support on the P4080 to implement a RTOS-level mecha-
nism to enforce precomputed bounds to the maximum contention
caused/suffered at operation. Some of these approaches generally
focus on a predefined set of contender tasks, in an attempt to ac-
curately model how accesses may cause interference on shared
resources, often building on fragile assumptions on specific distri-
butions of memory accesses. More importantly, obtained results
are only valid under the considered context and are not flexible



Target (t)
lmu pf dfl

lmax 11(21) 16 43
lmin 11 12 43
cs t ,co 11 6 -
cs t ,da 10 11 42

Table 2: Maximum latency
and minimum stall cycles

Figure 2: Code and data access
paths to the SRI

enough to adapt to different deployment scenarios, hence nega-
tively affecting time composability. Partial time composability has
been recently introduced [8, 10, 13] for processors in which con-
tention happens on the bus and hence are not applicable to AURIX.
While several contention models exist, they are not applicable to
our target platform: either they build on information hard to derive
in industrial scenarios (while we build on DSU) or do not guarantee
time composability. Furthermore they focus on the contention on a
FSB-like shared interconnect while in our target AURIX platform
contention happens on the specific slave interface as the SRI allows
parallel transactions on distinct interfaces.

In the following we define a flexible contention model for the
AURIX that is naturally amenable to handle different configurations
and produce results with varying degree of time-composability.
Our first model assumes all relevant information on SRI access is
available. Then, we show how we deal with the lack of information
and define a realistic and tight ILP-based contention model.

3.2 Ideal contention model for the AURIX
In the ideal model, each request of τb delays a request of τa . If τb has
more requests than τa , those requests of τb with highest latency are
assumed to be the ones delaying the requests of τa . For simplicity,
we assume that all requests of a given type of τb have the same
latency. The worst-case contention τb can cause on τa , i.e. ∆contb→a ,
is shown in Equation 1, where nt,ob is the number of τb requests of
type o to target resource t and lt,o is the latency of that request.

∆contb→a =
∑
t∈T

∑
o∈O

min (nt ,oa , nt ,ob ) × l t ,o (1)

In general, different requests of τb may have different latencies,
which can be trivially captured by the model.

3.3 Coping with limited information
The ideal model builds on detailed information on (i) the latency
of each operation for each target resource; (ii) the total access
count per resource of the task under analysis; and (iii) total access
count and operation type per target resource of the contender tasks.
However, such information is not always (exhaustively) available,
due to the limited hardware support in typical DSU for deriving
nt,ox for an arbitrary task τx . Furthermore, focusing on maximum
lt,o for each resource and operation type inherently introduces
pessimism by possibly discarding effects of prefetching on the SRI
targets. We cope with these concerns in the TC-27x.

3.3.1 Latencies. We empirically derived the longest latency
incurred by each resource when processing a code or data request,
see Table 2. To measure the maximum latency to each target re-
source we considered the latency incurred by single accesses to a
target (slave) resource in the SRI as measured by the on-chip cycle

counter (CCNT). Note that dirty data misses latency on the lmu are
reported within brackets as they apply only on limited scenarios.

3.3.2 Access counts of τa . AURIX TC27x lacks SRI access
counters on a per-resource basis. Hence, we used the existing stall
cycle counters (PMEM_STALL and DMEM_STALL) in our target AURIX
platform. An upperbound to the number of SRI requests can be de-
rived, separately for code and data, by dividing the total amount of
stall cycles by theminimum amount of stall cycles per single request.
We derived the latter by analyzing PMEM_STALL and DMEM_STALL
under a specific set of microbenchmarks [10] comprising a known
number of requests of a given type to a desired target resource. This
allowed deriving a lower bound to the stall cycles a task can suffer
while completing a code and data request to a given target, cst,co

and cst,da . It is worth noting that we are interested in lower bounds
to the stall cycles in order to upperbound the number of possible
accesses to the slave. The second factor for the computation of (an
over-approximation of) the SRI traffic of a given task consists in the
total amount of stall cycles suffered in isolation because of stalls
in the memory interface. For a given task τx , these values can be
obtained for code and data request separately (cscox and csdax ) by
running the task in isolation and collecting cumulative end-to-end
values of PMEM_STALL and the DMEM_STALL counters.

From the stall cycles we can derive an upperbound to the num-
ber of code and data requests assuming that the entire stall de-
lay has been caused by the requests of the shortest duration, i.e.
csmin =min({cst,o }∀t ∈T ∧∀o∈O ). As depicted in Figure 2, the low-
est possible stall cycles incurred for code and data requests in the
AURIX™ platform can be derived by taking into account the archi-
tectural constraints on where code and data can be deployed:

cscomin =min
(
cspf 0,co, cspf 1,co, cs lmu,co

)
(2)

csdamin =min
(
cspf 0,da, cspf 1,da, cs lmu,da, csdf l ,da

)
(3)

An upperbound to code and access counts of task τa can be
derived by assuming that all requests are of the type incurring the
lowest number of stalls (hence more requests are needed to cause
cscoa and csdaa ) and dividing the stall cycles by the duration of the
shortest request.

n̂coa =
⌈
cscoa
cscomin

⌉
n̂daa =



csdaa
csdamin


(4)

3.3.3 Per Target Access Counts (PTAC) of τb . Cumulative
SRI access counts for code and data do not suffice to derive a tight
contention model. Since the SRI mechanism allows handling re-
quests directed to different slaves in parallel (and each slave does
incur different latencies), a good approximation of inter-core con-
tention cannot be obtained without considering Per-Target Access
Counts (PTAC). As shown in Figure 2, code and data accesses of a
given task can go to different targets.

nb = n
co
b + n

da
b =

∑
t∈T

nt ,cob +
∑
t∈T

nt ,dab (5)

Different approximations of PTAC can be defined based on the
information available and deployment configuration,. In the follow-
ing we first present the fully time-composable contention model –
building on information on τa only – and a more generic ILP for-
mulation of the problem that can be deployed with different levels
of information and supporting various degrees of composability.



3.4 fTC model in the lack of PTAC
A baseline fTC model disregards per-target information altogether,
using only cumulative information at code/data access level. Despite
the incurred pessimism, this fTC model is still relevant when no
PTAC information is available and time-composability is the driving
concern. With current TC-27x debug counters, PTAC information is
only indirectly and fragmentarily available through cross-checking
information on deployment configuration and cache (miss) statistics.
In terms of access counts, we derive access data and code counts
for τa and τb as described by Equation 4. In terms of delay, instead,
the model exploits the maximum delay a code/data request from
τa can suffer from τb , based on the type of requests that can go
to each resource. Code accesses can address pf0, pf1 or lmu, hence
the longest delay a code access from τa can suffer is defined by
the longest latency it can suffer owing to τb accessing the same
interfaces for code and data, as shown in Equation 6.

lcomax =max (lpf 0,co, lpf 0,da, lpf 1,co, lpf 1,da, l lmu,co, l lmu,da ) (6)

ldamax =max (lcomax , l
df l ,da ) (7)

Likewise, the maximum delay a data access can suffer is defined
by Eq. 7 that matches the previous one with the exception that
it factors in dflash (data) accesses from τb . Hence, the contention
delay τa can suffer (Eq. 8) is defined as the number of code and data
accesses of τa times the longest latency each request can suffer.

∆contb→a = n̂
co
a × l

co
max + n̂

da
a × ldamax (8)

This contention model is fully time-composable as it assumes that
all τa requests always suffer the longest possible contention. The
inherent pessimism of this approach is even more evident on the
TC-27x on the account of its crossbar mechanism as not only latency
varies depending on the specific target, but contention itself can
only be incurred when requests are directed to the same target.

3.5 ILP-Based PTAC Model (ILP-PTAC)
Tighter bounds can be obtained by considering τb code and data
requests (partial time-composability) and by exploring all possible
PTAC for both τa and τb . To that end we formulate the model
as an Integer Linear Programming problem to find the per-target
mapping of τa ’s and τb ’s requests that maximizes the contention
suffered by τa .

Our objective functionmaximizes the SRI stall cycles incurred
by τa because of contention in code and data accesses (∆cscoa ,
∆csdaa ). This is modelled in Equation 9 where nt,ob→a stands for
the number of requests from contender τb targeting interface t for
accesses of type o that are assumed to interfere with τa . Note that
we break down interference between data and code accesses.

∆contb→a = [∆cscoa ] + [∆csdaa ] =
[
npf 0,cob→a × lpf 0,co + npf 1,cob→a × lpf 1,co + nlmu,co

b→a × l lmu,co
]
+

[
ndf l ,dab→a × ldf l ,da + npf 0,dab→a × lpf 0,da +

npf 1,dab→a × lpf 1,da + nlmu,da
b→a × l lmu,da

]
(9)

Again, we assume that each interfering request of τb aligns in
the worst manner with τa requests. Hence, each interfering request
delays τa by lt,o .

Constraints. Constraints in the ILP formulation are defined on
the number of requests per target resource as follows. Equation 10
captures that the number of data requests from τb that can contend

with τa on the d f l is bounded by the maximum number of requests
that τa and τb make to the d f l .

The constraint in Equation 11 captures that the maximum num-
ber of inflictive code requests from τb onto p f 0 that interfere with
both τa ’s code and data requests is bounded by the minimum be-
tween τb ’s code requests and all τa requests (still to p f 0). Similarly,
the number of inflictive data requests from τb onto p f 0 is smaller
than τb ’s data requests and τa ’s data and code requests to p f 0
(Equation 12). Finally, Equation 13 states a cumulative constraint
on the total number of conflicts τa can suffer because of τb accesses
to p f l0, which is bounded by the total number of τa code and data
accesses to p f 0. Equations 14-16 and 17-19 are the counterparts of
Equations 11-13 but applied to the p f 1 and the lmu respectively.

The following pairs of constraints wrap up the problem variables
for the objective function. Equations 20 and 21 represent the SRI
access profile (for code and data separately) from the single core
execution: they reflect that τa makes nt,cox and nt,dax accesses to
the different resources, which result in cscox and csdax stall cycles
respectively. The latter values are exactly those obtained by reading
PMEM_STALL and DMEM_STALL when running τa in isolation. Equa-
tions 22 and 23 are the equivalent constraints on τb execution in
isolation. Note that discarding these latter constraints on τb would
make the ILP model to be fully time-composable.

Note that, while debug counters provide unique values for cscoτ
and csdaτ , there are no unique stall values for each single cst,ob as
the actual stall cycles are not constant and depend on pipelining
and prefetching effects. As a conservative assumption, we consider
the minimum observed stall cycles per request, with the inherent
drawback of potentially accounting for more requests than those
actually performed by the application.

ndf l ,dab→a =min (ndf l ,daa , ndf l ,dab ) (10)

npf 0,cob→a ≤ min (npf 0,coa + npf 0,daa , npf 0,cob ) (11)

npf 0,dab→a ≤ min (npf 0,coa + npf 0,daa , npf 0,dab ) (12)

npf 0,cob→a + npf 0,dab→a ≤ npf 0,coa + npf 0,daa (13)

npf 1,cob→a ≤ min (npf 1,coa + npf 1,daa , npf 1,cob ) (14)

npf 1,cob→a ≤ min (npf 1,coa + npf 1,daa , npf 1,dab ) (15)

npf 1,cob→a + npf 1,cob→a ≤ npf 1,coa + npf 1,daa (16)

nlmu,co
b→a ≤ min (nlmu,co

a + nlmu,da
a , nlmu,co

b ) (17)

nlmu,da
b→a ≤ min (nlmu,co

a + nlmu,da
a , nlmu,da

b ) (18)

nlmu,co
b→a + nlmu,da

b→a ≤ nlmu,co
a + nlmu,da

a (19)

cscoa = n
pf 0,co
a × cspf 0,coa + npf 1,coa × cspf 1,coa +

nlmu,co
a × cs lmu,co

a (20)

csdaa = npf 0,daa × cspf 0,daa + npf 1,daa × cspf 1,daa +

nlmu,da
a × cs lmu,da

a + ndf l ,daa × csdf l ,daa (21)

cscob = n
pf 0,co
b × cspf 0,cob + npf 1,cob × cspf 1,cob +

nlmu,co
b × cs lmu,co

b (22)

csdab = npf 0,dab × cspf 0,dab + npf 1,dab × cspf 1,dab +

nlmu,da
b × cs lmu,da

b + ndf l ,dab × csdf l ,dab (23)



4 EVALUATION
The AURIX™ TC-27x supports several deployment configurations
with different code and data placement and cacheability options.
Architectural constrains are summarized in Table 3, where ‘$’ stands
for cacheable and ‘n$’ non cacheable.

The large number of deployment configurations offer high system-
level flexibility. On the timing side, this results in different con-
tention scenarios and thus restrict the PTAC feasibility region. To
that end, our model takes as input information about the appli-
cation code and data layout to obtain tighter results. Our generic
ILP model can be easily tailored to capture any scenario by adding
some constraints on target and access type.

Table 3: Constraints on co
code/data wrt SRI slaves.

pf0 pf1 dfl LMU
Code $ ✓ ✓ ✕ ✓
Code n$ ✓ ✓ ✕ ✓
Data $ ✓ ✓ ✕ ✓
Data n$ ✕ ✕ ✓ ✓

Table 4: Debug counters (‘$’
stands for cache)

Counter Task a Task b
PMEM_STALL PSa PSb
DMEM_STALL DSa DSb

P$_MISS PMa PMb
D$_MISS_CLEAN DMCa DMCb
D$_MISS_DIRTY DMDa DMDb

4.1 Deployment scenarios and model tailoring
As common deployment strategy, part of the application code and
data is always deployed into the local scratchpads that do not gen-
erate traffic on the SRI. As a matter of fact, w.r.t. the rest of the
application, some configurations, though admissible, are rarely used
in practice.We focus on two deployment scenarios, see Figure 3, par-
ticularly representative of real-world deployment configurations.
Without loss of generality, we assume deployment configurations
equally apply to the task under analysis and contenders.

(a) Scenario 1 (b) Scenario 2
Figure 3: Scenarios deployed in this work.

Scenario 1 (see Figure 3-a): part of the code and data fit on local
scratchpads, some (cacheable) code is fetched from pf0/pf1, and
some (non cacheable) data is shared among cores in the lmu. In
this specific case, we exploit the fact that P$_MISS holds the exact
number of code requests from a task on the SRI (as all code requests
through the SRI are performed in cacheable mode): ncoa = PMa and
ncob = PMb . Nothing, instead, can be argued on data requests.

Scenario 2 (see Figure 3-b): part of the code and data fit on local
scratchpads, some code is fetched from pf0/pf1 (cacheable), some
data is deployed to lmu (cacheable and non-cacheable), and finally
constant data is found in pf0/pf1 (cacheable). This represents a chal-
lenging scenario for the fTC baseline model as it would assume
all cacheable accesses to any target incur a contention delay in the
amount of a dirty miss latency. Besides considering the contender
accesses, the ILP model can also exploit some indirect PTAC in-
formation from the cacheable code debug counter as the P$_MISS
counter gives the exact number of code requests on pf0/pf1. We
cannot do the same for data since the sum of D$_MISS_CLEAN and
D$_MISS_DIRTY provides the cumulative count of cacheable data

requests but does not discriminate between the target of each ac-
cess, which can equally be the pf0/pf1 or the lmu (also accessed in
non-cacheable mode).

Table 5: Tailoring of the ILP-PTAC model
Scenario 1 Scenario 2

ndf l ,daa =0, nlmu,co
a = 0 ndf l ,daa =0, nlmu,co

a = 0
npf 0,daa =0, npf 1,daa =0 npf 0,daa + npf 1,daa + nlmu,da

a ≥ DMCa + DMDa
npf 0,coa + npf 1,coa = PMa npf 0,coa + npf 1,coa = PMa

Table 5 shows the instantiation of the ILP-PTAC model to both
scenarios, by introducing few additional ILP constraints on the
PTAC. The counter used by the model and respective notation for
τa and τb are reported in Table 4. It is worth noting that indirect
PTAC information, as derived by deployment configuration options,
can be incorporated on a refined fTC model, but limitedly to τa and
thus with minor benefits.

4.2 Experimental Results
Workloads. We evaluated the contention models on an application
mimicking a control loop (e.g., of an Automotive Cruise Control
System). The application performs the typical sequence of signal
acquisition, computation and status update, and it operates on two
medium-size data structures. The application has been deployed
in two variants, according to the identified deployment scenarios.
We stress the application with 3 different co-runners that generate
an increasing (load) number of accesses to the SRI, which hence,
increasingly disturb the application under analysis. We respectively
refer to these benchmarks as H-Load, M-Load, and L-Load, where
‘H’, ‘M’, and ‘L’ stands for high, medium and low. In all experiments,
Core 1 and Core 2 (TC-1.6P) host the application under analysis
and a contender respectively.

Metrics. We first executed the application and each contender in
isolation to collect readings on the relevant debug counters. For the
application we also collect its (observed) execution time in isolation.
Then, with the counter readings we feed our model and assess the
accuracy of the so-obtained WCET estimation against execution in
isolation. In all experiments our model predictions upperbound the
observed multicore execution time.

Debug counters readings. Table 6 reports the debug counter
values observed under the two reference scenarios, for cores 1 and
2, running the target application and the H-Load contender respec-
tively. The fact that dirty data cache misses are zeroed under both
scenarios is not surprising, as cacheable data accesses are typically
performed to address constant data. This provides evidence on the
correct setup of the cacheability and memory deployment options.

Table 6: Counter readings for Scenarios 1 and 2.
PM DMC DMD PS DS

Sc
1 Core1 236544 0 0 3421242 8345056

Core2 120594 0 0 1744167 4251811

Sc
2 Core1 458394 200 0 2753995 86371

Core2 233694 200 0 1404145 42826

WCET estimation. We measure how our model and the fTC
model behave under the two deployment scenarios (scenario1 and
scenario2) and the load added by the corunner on shared resources
(H-load, M-load, L-load). Under Scenario 1, contention only happens
disjointly on pf0/pf1, for code, and lmu, for data. The benchmarks
are fetching part of the code from the PFlash and performing data



read and writes on the lmu. Scenario 2, instead, requires data to be
deployed to the lmu (in both cacheable and non-cacheable mode)
and to pf0/pf1 (constant and cacheable). Contention is suffered on
the same slave because of different types of accesses (code and data).
Figure 4 assesses the predictions of the different models against
WCET estimates in isolation. Results from both scenarios clearly
indicate that the fully time-composable bounds may end up being
poorly useful in consideration of the pessimism they incur. Our
model, instead, exploits the information from debug counters to
derive tighter bounds on contention under specific deployment
configurations. In both cases, contention cycles are below half of
those for fTC bounds. Focusing on the variation across different
contenders, we see that our ILP model adapts to the load introduced
by the contenders, while the fTC model is unable to benefit from
this information. In the first scenario, the ILP model predicts an
execution time increase in between 1.49 and 1.24 while the fTC
model cannot do better than 1.95. Similar results are obtained in
the second scenario, where the ILP results ranges in between 1.67
and 1.34, against a 2.33 returned by the fTC model.

Flexibility and adaptability of the model is a fundamental desired
property for a contention model: it provides a powerful and reac-
tive method for OEM and SWPs to explore and evaluate different
scheduling allocations and deployment scenarios with respect to
the expected contention they will suffer during operation, before
actual integration. The contention model should also conservatively
capture the worst-case contention effects without renouncing tight-
ness. However, whether the gap between actual measurements and
model estimates corresponds to overestimation (and to what ex-
tent) cannot be determined. Triggering the worst time-alignment
of memory accesses is, in general, not feasible and thus, our model
relieves end users from having to exercise that level of control. On
the other hand, the limited information available on AURIX PMCs
forces our model to make some pessimistic assumptions on the
number of contention events and their effects, which may intro-
duce some pessimism. In any case, preliminary results on real-world
automotive use cases show much lower contention bounds (∼10%)
than those of our benchmark (30-40%).

4.3 Adaptability to other platforms
Contention models are only as effective as much as their ability
to model low-level architectural details. Defining a generic low-
level contention model that fits all architectures and families of
processors is an utopic endeavor, as contention is unequivocally
determined by the amount and organization of shared resources, the
arbitration policies in place as well as the debug counter support.

In this work we have been focusing on the AURIX TC27x, as a
representative platform for the automotive domain. The contention
model is naturally adaptable to other processors in TriCore fam-
ily. Additionally, we consider our model to be flexible enough to
be adapted to other processor models. With respect to the debug
counter support, our model is exploiting a minimal set of counters
and equivalent information is generally provided by modern DSU.
Our model is strongly characterized by the AURIX cross-bar while
other approaches presented in Section 3.1 focus on FSB-based archi-
tectures. We do not see any major obstacle in adapting our model
to cover the FSB behavior as we consider the FSB model to be a
reduced case for the more generic cross-bar model.

Figure 4: Model predictions w.r.t. execution in isolation.

5 CONCLUSIONS
Advanced multicore platforms are the preferred industrial solution
for delivering cutting-edge functionalities in modern automotive
systems. In this work we presented two analytical contention mod-
els for the AURIX TC-27x platform, building on the existing debug
counters support. While fTC bounds are confirmed to be overly
pessimistic, our partially time-composable model (ILP-PTAC) pro-
vides realistic bounds that are valid for a wide range of contention
scenarios. Further, formulating the contention as an ILP problem,
guarantees better adaptability to different configuration scenarios.
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