8 research outputs found

    Towards a cloud enabler : from an optical network resource provisioning system to a generalized architecture for dynamic infrastructure services provisioning

    Get PDF
    This work was developed during a period where most of the optical management and provisioning system where manual and proprietary. This work contributed to the evolution of the state of the art of optical networks with new architectures and advanced virtual infrastructure services. The evolution of optical networks, and internet globally, have been very promising during the last decade. The impact of mobile technology, grid, cloud computing, HDTV, augmented reality and big data, among many others, have driven the evolution of optical networks towards current service technologies, mostly based on SDN (Software Defined Networking) architectures and NFV(Network Functions Virtualisation). Moreover, the convergence of IP/Optical networks and IT services, and the evolution of the internet and optical infrastructures, have generated novel service orchestrators and open source frameworks. In fact, technology has evolved that fast that none could foresee how important Internet is for our current lives. Said in other words, technology was forced to evolve in a way that network architectures became much more transparent, dynamic and flexible to the end users (applications, user interfaces or simple APIs). This Thesis exposes the work done on defining new architectures for Service Oriented Networks and the contribution to the state of the art. The research work is divided into three topics. It describes the evolution from a Network Resource Provisioning System to an advanced Service Plane, and ends with a new architecture that virtualized the optical infrastructure in order to provide coordinated, on-demand and dynamic services between the application and the network infrastructure layer, becoming an enabler for the new generation of cloud network infrastructures. The work done on defining a Network Resource Provisioning System established the first bases for future work on network infrastructure virtualization. The UCLP (User Light Path Provisioning) technology was the first attempt for Customer Empowered Networks and Articulated Private Networks. It empowered the users and brought virtualization and partitioning functionalities into the optical data plane, with new interfaces for dynamic service provisioning. The work done within the development of a new Service Plane allowed the provisioning of on-demand connectivity services from the application, and in a multi-domain and multi-technology scenario based on a virtual network infrastructure composed of resources from different infrastructure providers. This Service Plane facilitated the deployment of applications consuming large amounts of data under deterministic conditions, so allowing the networks behave as a Grid-class resource. It became the first on-demand provisioning system that at lower levels allowed the creation of one virtual domain composed from resources of different providers. The last research topic presents an architecture that consolidated the work done in virtualisation while enhancing the capabilities to upper layers, so fully integrating the optical network infrastructure into the cloud environment, and so providing an architecture that enabled cloud services by integrating the request of optical network and IT infrastructure services together at the same level. It set up a new trend into the research community and evolved towards the technology we use today based on SDN and NFV. Summing up, the work presented is focused on the provisioning of virtual infrastructures from the architectural point of view of optical networks and IT infrastructures, together with the design and definition of novel service layers. It means, architectures that enabled the creation of virtual infrastructures composed of optical networks and IT resources, isolated and provisioned on-demand and in advance with infrastructure re-planning functionalities, and a new set of interfaces to open up those services to applications or third parties.Aquesta tesi es va desenvolupar durant un període on la majoria de sistemes de gestió de xarxa òptica eren manuals i basats en sistemes propietaris. En aquest sentit, la feina presentada va contribuir a l'evolució de l'estat de l'art de les xarxes òptiques tant a nivell d’arquitectures com de provisió d’infraestructures virtuals. L'evolució de les xarxes òptiques, i d'Internet a nivell mundial, han estat molt prometedores durant l'última dècada. L'impacte de la tecnologia mòbil, la computació al núvol, la televisió d'alta definició, la realitat augmentada i el big data, entre molts altres, han impulsat l'evolució cap a xarxes d’altes prestacions amb nous serveis basats en SDN (Software Defined Networking) i NFV (Funcions de xarxa La virtualització). D'altra banda, la convergència de xarxes òptiques i els serveis IT, junt amb l'evolució d'Internet i de les infraestructures òptiques, han generat nous orquestradors de serveis i frameworks basats en codi obert. La tecnologia ha evolucionat a una velocitat on ningú podria haver predit la importància que Internet està tenint en el nostre dia a dia. Dit en altres paraules, la tecnologia es va veure obligada a evolucionar d'una manera on les arquitectures de xarxa es fessin més transparent, dinàmiques i flexibles vers als usuaris finals (aplicacions, interfícies d'usuari o APIs simples). Aquesta Tesi presenta noves arquitectures de xarxa òptica orientades a serveis. El treball de recerca es divideix en tres temes. Es presenta un sistema de virtualització i aprovisionament de recursos de xarxa i la seva evolució a un pla de servei avançat, per acabar presentant el disseny d’una nova arquitectura capaç de virtualitzar la infraestructura òptica i IT i proporcionar serveis de forma coordinada, i sota demanda, entre l'aplicació i la capa d'infraestructura de xarxa òptica. Tot esdevenint un facilitador per a la nova generació d'infraestructures de xarxa en el núvol. El treball realitzat en la definició del sistema de virtualització de recursos va establir les primeres bases sobre la virtualització de la infraestructura de xarxa òptica en el marc de les “Customer Empowered Networks” i “Articulated Private Networks”. Amb l’objectiu de virtualitzar el pla de dades òptic, i oferir noves interfícies per a la provisió de serveis dinàmics de xarxa. En quant al pla de serveis presentat, aquest va facilitat la provisió de serveis de connectivitat sota demanda per part de l'aplicació, tant en entorns multi-domini, com en entorns amb múltiples tecnologies. Aquest pla de servei, anomenat Harmony, va facilitar el desplegament de noves aplicacions que consumien grans quantitats de dades en condicions deterministes. En aquest sentit, va permetre que les xarxes es comportessin com un recurs Grid, i per tant, va esdevenir el primer sistema d'aprovisionament sota demanda que permetia la creació de dominis virtuals de xarxa composts a partir de recursos de diferents proveïdors. Finalment, es presenta l’evolució d’un pla de servei cap una arquitectura global que consolida el treball realitzat a nivell de convergència d’infraestructures (òptica + IT) i millora les capacitats de les capes superiors. Aquesta arquitectura va facilitar la plena integració de la infraestructura de xarxa òptica a l'entorn del núvol. En aquest sentit, aquest resultats van evolucionar cap a les tendències actuals de SDN i NFV. En resum, el treball presentat es centra en la provisió d'infraestructures virtuals des del punt de vista d’arquitectures de xarxa òptiques i les infraestructures IT, juntament amb el disseny i definició de nous serveis de xarxa avançats, tal i com ho va ser el servei de re-planificació dinàmicaPostprint (published version

    Automatic provisioning in multi-domain software defined networking

    Get PDF
    Multi-domain Software Defined Networking (SDN) is the extension of the SDN paradigm to multi-domain networking and the interconnection of different administrative domains. By utilising SDN in the core telecommunication networks, benefits are found including improved traffic flow control, fast route updates and the potential for routing centralisation across domains. The Border Gateway Protocol (BGP) was designed three decades ago, and efforts to redesign interdomain routing that would include a replacement or upgrade to the existing BGP have yet to be realised. For the near real-time flow control provided by SDN, the domain boundary presents a challenge that is difficult to overcome when utilising existing protocols. Replacing the existing gateway mechanism, that provides routing updates between the different administrative domains, with a multi-domain centralised SDN-based solution may not be supported by the network operators, so it is a challenge to identify an approach that works within this constraint. In this research, BGP was studied and selected as the inter-domain SDN communication protocol, and it was used as the baseline protocol for a novel framework for automatic multi-domain SDN provisioning. The framework utilises the BGP UPDATE message with Communities and Extended Communities as the attributes for message exchange. A new application called Inter-Domain Provisioning of Routing Policy in ONOS (INDOPRONOS), for the framework implementation, was developed and tested. This application was built as an ONOS controller application, which collaborated with the existing ONOS SDN-IP application. The framework implementation was tested to verify the information exchange mechanism between domains, and it successfully carried out the provisioning actions that are triggered by that exchanged information. The test results show that the framework was successfully verified. The information carried inside the two attributes can successfully be transferred between domains, and it can be used to trigger INDOPRONOS to create and install new alternative intents to override the default intents of the ONOS controller. The intents installed by INDOPRONOS immediately change the route of the existing connection, which demonstrated that the correct request sent from the other domain, can carry out a modification in network settings inside a domain. Finally, the framework was tested using a bandwidth on demand use case. In this use case, a customer network administrator can immediately change the network service bandwidth which was provided by the service provider, without any intervention from the service provider administrator, based on an agreed-predefined configuration setting. This ability will provide benefits for both customer and service provider, in terms of customer satisfaction and network operations efficiency

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science

    SDN-based traffic engineering in data centers, Interconnects, and Carrier Networks

    Get PDF
    Server virtualization and cloud computing have escalated the bandwidth and performance demands on the DCN (data center network). The main challenges in DCN are maximizing network utilization and ensuring fault tolerance to address multiple node-and-link failures. A multitenant and highly dynamic virtualized environment consists of a large number of endstations, leading to a very large number of flows that challenge the scalability of a solution to network throughput maximization. The challenges are scalability, in terms of address learning, forwarding decision convergence, and forwarding state size, as well as flexibility for offloading with VM migration. Geographically distributed data centers are inter-connected through service providers’ carrier network. Service providers offer wide-area network (WAN) connection such as private lines and MPLS circuits between edges of data centers. DC sides of network operators try to maximize the utilization of such defined overlay WAN connection i.e. data center interconnection (DCI), which applies to edges of DC networks. Service provider sides of network operators try to optimize the core of carrier network. Along with the increasing adoption of ROADM, OTN, and packet switching technologies, traditional two-layer IP/MPLS-over-WDM network has evolved into three-layer IP/MPLS-over-OTN-over-DWDM network and once defined overlay topology is now transitioning to dynamic topologies based on on-demand traffic demands. Network operations are thus divided into three physical sub-networks: DCN, overlay DCI, and multi-layer carrier network. Server virtualization, cloud computing and evolving multilayer carrier network challenge traffic engineering to maximize utilization on all physical subnetworks. The emerging software-defined networking (SDN) architecture moves path computation towards a centralized controller, which has global visibility. Carriers indicate a strong preference for SDN to be interoperable between multiple vendors in heterogeneous transport networks. SDN is a natural way to create a unified control plane across multiple administrative divisions. This thesis contributes SDN-based traffic engineering techniques for maximizing network utilization of DCN, DCI, and carrier network. The first part of the thesis focuses on DCN traffic engineering. Traditional forwarding mechanisms using a single path are not able to take advantages of available multiple physical paths. The state-of-the-art MPTCP (Multipath Transmission Control Protocol) solution uses multiple randomly selected paths, but cannot give total aggregated capacity. Moreover, it works as a TCP process, and so does not support other protocols like UDP. To address these issues, this thesis presents a solution using adaptive multipath routing in a Layer-2 network with static (capacity and latency) metrics, which adapts link and path failures. This solution provides innetwork aggregated path capacity to individual flows, as well as scalability and multitenancy, by separating end-station services from the provider’s network. The results demonstrate an improvement of 14% in the worst bisection bandwidth utilization, compared to the MPTCP with 5 sub-flows. The second part of the thesis focuses on DCI traffic engineering. The existing approaches to reservation services provide limited reservation capabilities, e.g. limited connections over links returned by the traceroute over traditional IP-based networks. Moreover, most existing approaches do not address fault tolerance in the event of node or link failures. To address these issues, this thesis presents ECMP-like multipath routing algorithm and forwarding assignment scheme that increase reservation acceptance rate compared to state-of-art reservation frameworks in the WAN-links between data centers, and such reservations can be configured with a limited number of static forwarding rules on switches. Our prototype provides the RESTful web service interface for link-fail event management and re-routes paths for all the affected reservations. In the final part of the thesis, we focused on multi-layer carrier network traffic engineering. New dynamic traffic trends in upper layers (e.g. IP routing) require dynamic configuration of the optical transport to re-direct the traffic, and this in turn requires an integration of multiple administrative control layers. When multiple bandwidth path requests come from different nodes in different layers, a distributed sequential computation cannot optimize the entire network. Most prior research has focused on the two-layer problem, and recent three-layer research studies are limited to the capacity dimensioning problem. In this thesis, we present an optimization model with MILP formulation for dynamic traffic in a three-layer network, especially taking into account the unique technological constraints of the distinct OTN layer. Our experimental results show how unit cost values of different layers affect network cost and parameters in the presence of multiple sets of traffic loads. We also demonstrate the effectiveness of our proposed heuristic approach

    Minimal deployable endpoint-driven network forwarding: principle, designs and applications

    Get PDF
    Networked systems now have significant impact on human lives: the Internet, connecting the world globally, is the foundation of our information age, the data centers, running hundreds of thousands of servers, drive the era of cloud computing, and even the Tor project, a networked system providing online anonymity, now serves millions of daily users. Guided by the end-to-end principle, many computer networks have been designed with a simple and flexible core offering general data transfer service, whereas the bulk of the application-level functionalities have been implemented on endpoints that are attached to the edge of the network. Although the end-to-end design principle gives these networked systems tremendous success, a number of new requirements have emerged for computer networks and their running applications, including untrustworthy of endpoints, privacy requirement of endpoints, more demanding applications, the rise of third-party Intermediaries and the asymmetric capability of endpoints and so on. These emerging requirements have created various challenges in different networked systems. To address these challenges, there are no obvious solutions without adding in-network functions to the network core. However, no design principle has ever been proposed for guiding the implementation of in-network functions. In this thesis, We propose the first such principle and apply this principle to propose four designs in three different networked systems to address four separate challenges. We demonstrate through detailed implementation and extensive evaluations that the proposed principle can live in harmony with the end-to-end principle, and a combination of the two principle offers more complete, effective and accurate guides for innovating the modern computer networks and their applications.Ope

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Innovating on Interdomain Routing with an Inter-SDN Component

    No full text
    corecore