

Automatic Provisioning in Multi-Domain

Software Defined Networking

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Franciscus Xaverius Ari Wibowo
M.Eng. in Telecommunication, Bandung Institute of Technology, Indonesia

B. Eng in Telecommunication, Telkom University, Indonesia

School of Engineering

College of Science, Engineering and Health

RMIT University

November 2018

ii

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of this thesis is the result of work which has

been carried out since the official commencement date of the approved research program;

any editorial work, paid or unpaid, carried out by a third party is acknowledged; and,

ethics procedures and guidelines have been followed.

Franciscus Xaverius Ari Wibowo

 1/11/2018

iii

Dedicated to my Family

iv

Acknowledgements

I wish to acknowledge and express my thanks to those that have provided support,

feedback and the opportunity to undertake my PhD research project.

I would like to express my sincere gratitude to my Senior Supervisor, Associate Professor

Mark a. Gregory, for your belief, patience, motivation, visions and immense knowledge.

You have inspired me not only to become a good researcher but also on how I can develop

my personal qualities and skills.

I would like to express my appreciation to my Associate Supervisor, Dr Karina M.

Gomez, who provided guidance and recommendations, from the beginning of my

candidature to the last milestone.

I would like to acknowledge my employer, PT Telekomunikasi Indonesia, Tbk, who

provided me with the opportunity and financial support to pursue a PhD.

I would like to acknowledge my family, my wife Shanty, my sons Deo and Leo, and my

daughter Dita. Thank you for your love and support during our time together here in

Melbourne.

I would like to appreciate the many anonymous reviewers of my peer-reviewed published

journal and conference proceedings. Their insightful comments helped me to improve my

publications.

Finally, I would like to thank the staff and students in the School of Engineering at RMIT

University, and all of my friends here in Melbourne for their help and support.

v

Abstract

Multi-domain Software Defined Networking (SDN) is the extension of the SDN

paradigm to multi-domain networking and the interconnection of different administrative

domains. By utilising SDN in the core telecommunication networks, benefits are found

including improved traffic flow control, fast route updates and the potential for routing

centralisation across domains. The Border Gateway Protocol (BGP) was designed three

decades ago, and efforts to redesign interdomain routing that would include a replacement

or upgrade to the existing BGP have yet to be realised. For the near real-time flow control

provided by SDN, the domain boundary presents a challenge that is difficult to overcome

when utilising existing protocols. Replacing the existing gateway mechanism, that

provides routing updates between the different administrative domains, with a multi-

domain centralised SDN-based solution may not be supported by the network operators,

so it is a challenge to identify an approach that works within this constraint.

In this research, BGP was studied and selected as the inter-domain SDN communication

protocol, and it was used as the baseline protocol for a novel framework for automatic

multi-domain SDN provisioning. The framework utilises the BGP UPDATE message

with Communities and Extended Communities as the attributes for message exchange. A

new application called Inter-Domain Provisioning of Routing Policy in ONOS

(INDOPRONOS), for the framework implementation, was developed and tested. This

application was built as an ONOS controller application, which collaborated with the

existing ONOS SDN-IP application.

The framework implementation was tested to verify the information exchange mechanism

between domains, and it successfully carried out the provisioning actions that are

triggered by that exchanged information. The test results show that the framework was

successfully verified. The information carried inside the two attributes can successfully

vi

be transferred between domains, and it can be used to trigger INDOPRONOS to create

and install new alternative intents to override the default intents of the ONOS controller.

The intents installed by INDOPRONOS immediately change the route of the existing

connection, which demonstrated that the correct request sent from the other domain, can

carry out a modification in network settings inside a domain.

Finally, the framework was tested using a bandwidth on demand use case. In this use

case, a customer network administrator can immediately change the network service

bandwidth which was provided by the service provider, without any intervention from

the service provider administrator, based on an agreed-predefined configuration setting.

This ability will provide benefits for both customer and service provider, in terms of

customer satisfaction and network operations efficiency.

vii

Table of Contents

Declaration .. ii

Acknowledgements ...iv

Abstract ... v

Table of Contents ... vii

List of Figures ... x

List of Tables .. xii

List of Acronyms and Abbreviations .. xiii

Chapter 1 Introduction .. 1

1.1. Background and Motivation ... 2

1.2. Research Problems ... 4

1.3. Research Objectives ... 6

1.4. Research Contributions .. 6

1.5. Publications .. 8

1.6. Thesis Structure .. 9

Chapter 2 Literature Review .. 11

2.1. Overview .. 12

2.2. Software Defined Networking Overview ... 12

2.2.1. From Programmable Network to SDN .. 13

2.2.2. SDN Architecture and Interfaces ... 15

2.2.3. OpenFlow .. 19

2.3. SDN Controller Deployment ... 21

2.3.1. SDN Controller Design Challenges... 22

2.3.2. Centralised and Distributed SDN Controllers .. 25

2.4. SDN in the Wide Area Network .. 30

2.4.1. Multi-domain SDN Architecture .. 30

2.4.2. Inter-Domain SDN Communication ... 33

2.5. Border Gateway Protocol ... 35

2.5.1. BGP Overview .. 35

2.5.2. BGP Operation ... 37

2.5.3. Path Attributes .. 40

2.6. Conclusion .. 41

Chapter 3 Inter-Domain SDN Communication Protocol ... 43

3.1. Overview .. 44

viii

3.2. Requirements for Inter-Domain SDN Communication .. 44

3.2.1. Primary Ability of SDN Inter-Domain Communication .. 44

3.2.2. Message Exchange between SDN domains... 45

3.3. Inter-Domain SDN Communication Utilising BGP .. 46

3.4. Implementation and Test Scenario .. 48

3.4.1. Test Scenario ... 49

3.5. Results .. 50

3.6. Conclusion .. 53

Chapter 4 Information Exchange Mechanism for Multi-domain SDN Provisioning . 54

4.1. Overview .. 55

4.2. BGP Message for Multi-domain SDN Provisioning ... 55

4.2.1. Selecting Path Attributes ... 56

4.2.2. Communities and Extended Communities Attributes for Multi-domain SDN

Provisioning ... 58

4.3. Inter-Domain SDN Message Exchange Implementation .. 61

4.3.1. ONOS SDN-IP Structure ... 61

4.3.2. Modification of ONOS BGP Routing Modules ... 63

4.4. Verification of Message Exchange Mechanism .. 66

4.4.1. Verification Topology .. 66

4.4.1. ONOS Verification CLI .. 68

4.5. Results .. 68

4.6. Conclusion .. 71

Chapter 5 Multi-domain SDN Automatic Provisioning Framework 72

5.1. Overview .. 73

5.2. Multi-domain SDN Provisioning Challenges ... 73

5.2.1. Automated Provisioning .. 73

5.2.2. SDN Provisioning ... 74

5.3. Design of a Multi-Domain SDN Provisioning Framework ... 76

5.3.1. Proposed Provisioning Procedures ... 77

5.3.2. Proposed Framework .. 79

5.4. Framework Implementation in ONOS Controller... 80

5.4.1. INDOPRONOS Software Modules .. 80

5.4.2. INDOPRONOS Algorithm ... 83

5.4.3. Implementation Test Bed .. 84

ix

5.5. Test Scenarios ... 86

5.5.1. Scenario A: Framework Verification .. 87

5.5.2. Scenario B: Bandwidth on Demand Use Case ... 88

5.5.3. Scenario C: Non-Bandwidth on Demand Subscriber ... 91

5.6. Results .. 93

5.6.1. Scenario A Results ... 93

5.6.2. Scenario B Results ... 97

5.6.3. Scenario C Results ... 101

5.7. Conclusion .. 104

Chapter 6 CONCLUSION AND FUTURE WORK ... 106

6.1. Conclusions .. 107

6.2. Future Work ... 108

BIBLIOGRAPHY ... 110

Appendix 1 – BgpConstants Module ... 120

Appendix 2 – BgpUpdate Module ... 131

Appendix 3 – BgpRouteEntry Module ... 162

Appendix 4 – BgpRoutesListCommand Module ... 174

Appendix 5 – Indopronos Module ... 181

Appendix 6 – IndopronosConnectivityManager Module .. 183

x

List of Figures

Figure 1-1 Centralized and Federated Inter-Domain Communication.. 3

Figure 1-2 Multi-domain Provisioning Approach .. 7

Figure 2-1 SDN Architecture [28] .. 16

Figure 2-2 OpenFlow Components [30] .. 21

Figure 2-3 Implementation Approaches for Multi-domain SDN. .. 32

Figure 2-4 BGP Network Examples .. 36

Figure 2-5 BGP FSM and Messages. .. 38

Figure 3-1 BGP Sessions Establishment Process in Multi-Domain SDN. 47

Figure 3-2 Test Topology. .. 49

Figure 3-3 Flow Setup Latencies.. 51

Figure 3-4 End to End Delay Variation. ... 52

Figure 4-1 Data Formats of Selected Patch Attributes. ... 59

Figure 4-2 Information Flow Diagram of Exchanged Message in Multi-domain SDN. 61

Figure 4-3 SDN-IP Architecture ... 62

Figure 4-4 SDN-IP Software Modules .. 64

Figure 4-5 Software Modules Modifications ... 65

Figure 4-6 Verification Topology ... 67

Figure 4-7 BGP UPDATE Message Received by BGP Speaker. ... 69

Figure 4-8 Routing Table Entry in BGP Speaker. ... 70

Figure 4-9 Displaying Community and Extended Community Attributes in ONOS. 70

Figure 5-1 Example of Matching Process in SDN. ... 75

Figure 5-2 Multi-domain SDN Provisioning Procedure ... 78

Figure 5-3 Multi-domain SDN Provisioning Framework ... 80

Figure 5-4 INDOPRONOS Application Algorithm ... 82

Figure 5-5 Test Bed Implementation using ONOS... 86

Figure 5-6 Topology for Scenario A. .. 88

Figure 5-7 Topology for Scenario B. .. 90

Figure 5-8 Topolgy for Scenario C. .. 92

Figure 5-9 Verification of the Communities Values Exchanged between Domains. 94

Figure 5-10 Verification of New Installed Intents. .. 96

Figure 5-11 RTT Results from Network A to Network B. ... 97

Figure 5-12 Throughput Bandwidth Measured from Network A to Network B. 99

xi

Figure 5-13 Average Packet Loss ... 100

Figure 5-14 Troughput Bandwidth towards Network B .. 102

Figure 5-15 Jitter vs Packet Loss.. 103

xii

List of Tables

Table 2-1 Summary of Controller Platforms [42] .. 25

Table 2-2 Summary of Multi-domain SDN Activities [42] ... 31

Table 2-3 Summary of Current SDN Inter-Domain Communication 34

Table 4-1 Selection of BGP Path Attributes for Multi-domain SDN Provisioning 57

Table 4-2 Communities Attribute Values ... 60

Table 4-3 Extended Communities Attribute Values... 60

Table 4-4 BGP Software Modules Modifications .. 65

Table 4-5 Verification Devices... 67

Table 5-1 SLA Example ... 84

Table 5-2 Test Bed Components .. 86

Table 5-3 Links Specifications ... 89

xiii

List of Acronyms and Abbreviations

API Application Programming Interface

BGP Border Gateway Protocol

CDN Content Delivery Network

DISCO Distributed Multi-domain SDN Controllers

DoS Denial of Service

ForCES Forwarding and Control Element Separation

IP Internet Protocol

ISP Internet Service Provider

ODL OpenDaylight

ONF Open Network Forum

ONOS Open Network Operating System

PB Petabytes

PCE Path Computation Element

RCP Routing Control Platform

REST Representational State Transfer

SDN Software Defined Networking

SNMP Simple Network Management Protocol

SP Service Provider

UDP User Datagram Protocol

WAN Wide Area Network

ZB Zettabytes

1

Chapter 1 Introduction

2

1.1. Background and Motivation

The growth of digital networking has continued over the past decades and now

telecommunications and networking are an essential part of the systems that impact on

every aspect of our daily lives. The complexity of digital communications also continues

unabated and today we’re faced with massive growth in the various communication

technologies used to support communications between people, systems and machines.

Globally, the Internet Protocol (IP) traffic is predicted to increase almost threefold

between 2016 until 2021, i.e. from 1.2 ZB (Zettabytes) in 2016, to 3.3 ZB in 2021 [1].

Content Delivery Networks (CDN) have become a vital part of the strategy to support

real-time and content intensive applications, such as video streaming and enterprise video

conferencing. Globally, 70 % of all internet traffic will cross CDNs by 2021, with the

total traffic amounting to 165,651 PB (Petabytes) per month. This phenomenon has led

to the need for high capacity, reliable and yet cost-effective networks that can carry

increasing traffic volumes, with dynamic and distinct applications for each entity.

Telecommunication networks consist of the core, distribution and access networks and

combinations of the network types, including the relationship between separate

administrative domains are known as Wide Area Networks (WANs). As a widely

deployed network, global Service Providers (SPs) connect the numerous Autonomous

Systems (AS) or domains to form the WAN, which in turn is often termed the Internet

with the inclusion of the services, systems and applications that operate and are provided

over the WAN. Interconnections between domains rely on inter-domain communication

protocols and currently the Border Gateway Protocols (BGP) are the mainstay of this

interaction. BGP has been used for more than 30 years, it remains very similar to what it

was when it was first implemented and today there is a need to improve its performance

[2, 3].

3

In this context, Software Defined Networking (SDN) [4, 5] separates the network control

and management plane from the data plane, thereby providing a programmatic, flexible

and dynamic network management and operations environment. With SDN, network

operators can configure the entire network from a vantage point by using a standardised

Application Programming Interface (API) and protocols. SDN transforms the network

devices into packet forwarding devices (data plane) [5]. The network devices can be

controlled by an interface called the Southbound interface, using the OpenFlow protocol

[6]. SDN offers benefits through its approach [5, 7], i.e. enhancing configuration,

improving performance, and encouraging innovation, which can be offered to the multi-

domain network environment.

Figure 1-1 Centralized and Federated Inter-Domain Communication

The two general approaches for SDN based inter-domain communication, i.e. centralized

and federated, are shown in Figure 1-1 [8]. The centralised framework introduced in [9],

used a routing outsourcing concept [10] that relies on a single SDN domain overlaying

the Service Provider (SP) networks. This concept requires the SP domains to disclose

network information and configuration to the third party, which is not preferred in

practice, due to typical administrative policies and security. The federated framework

relies on communications between SDN domains using an inter-domain communication

ISP A
Domain

ISP B
Domain

3rd Party
Root Controller

ISP A
Domain

ISP B
Domain

SDN Controller

OpenFlow Swich

Inter-domain Communication/API

OpenFlow

Data Link

a) Centralized Approach b) Federated Approach

4

protocol. This concept is more likely to be adopted and there are several research testbeds

running globally [11-13]. However, this approach would require significant changes to

the current inter-domain practices and implementations.

A SDN implementation in multi-domain networking provides an opportunity to introduce

programmability into this key part of the network. The improved network flexibility could

help SPs to meet their customer demands for dynamic traffic, which is currently solved

using overprovisioning [14, 15]. Overprovisioning is an approach where the network is

configured to operate at about 20-40% of capacity [15, 16], therefore it should be able to

cope with the customer traffic surges, which is expensive and not efficient.

1.2. Research Problems

The federated multi-domain SDN approach relies on the communication protocols used

between SDN domains. Unfortunately, although they are defined in the SDN architecture,

the East-Westbound interface which facilitates controller-to-controller communication

has not been standardised [17, 18]. Another challenge is how multi-domain SDN can

improve the efficiency of WAN operations, especially to reduce the need for

overprovisioning. Also, and probably most importantly, there is a likelihood that domain

administrators will wish to continue to limit the visibility within their domain to other

domain administrators, something that BGP does inherently now. How this would be

possible within a federated multi-domain SDN approach is yet to be determined.

The vertical architecture that is currently the focus of SDN development promises to

provide excellent design outcomes and performance improvements for single domain

networks [9]. However, from an implementation perspective for a multi-domain

environment, the concept faces difficulties, as each domain entity needs to communicate

to a root controller and there would be indeterminate issues surrounding control and

5

administration of this root controller. There are at least two other problems, i.e. in the

customer-provider network implementation models, each entity prefers not to disclose

any network related information to its peer, outside the network prefixes (which it

advertises to neighbouring peer). This model also requires a new business entity which

acts as an outsourcing function with new protocols to be used between local domain

controllers with the root controller. The addition of the new business entity could result

in a lack of backwards compatibility with conventional IP networks. For a horizontal

architecture, the resistance between domain entities would be less when compared to the

vertical, where each domain will maintain their privileges and only exchange the

information needed to route packets to other domains. However, this architecture could

face the same problems related to backward compatibility if a new protocol is used.

In the operation of a WAN, the impact of overprovisioning could lead to inefficiency.

And as described in [19], overprovisioning could help to maintain acceptable network

service performance, but it limits network performance due to the reservation of unused

resources and higher operational cost. The introduction of multi-domain SDN in the

WAN should reduce the effect of this legacy approach to network resource demand.

Currently, no multi-domain SDN framework has been proposed to facilitate flexible

provisioning between different domains. This provides the motivation for this research.

Therefore, the following research problems were identified as research questions:

a. How is the performance of current inter-domain SDN communication techniques used

in the multi-domain SDN architecture?

b. What are the requirements and the design drivers of flexible provisioning using multi-

domain SDN architecture?

c. How can SDN controllers in different domains exchange information with peers?

6

d. What are the specifications and the step-by-step process that can be used for message

exchange between controllers which support Automated Provisioning in Multi-

Domain SDN?

1.3. Research Objectives

The research objectives for the research presented in this thesis are:

a. To develop an understanding of multi-domain SDN frameworks and current

architectures to investigate their advantages and drawbacks.

b. To evaluate the inter-domain SDN communication techniques in the federated

approach that are used to exchange messages between controllers in support of multi-

domain SDN automatic provisioning.

c. To propose new techniques and a specification for the exchange of information

between SDN domains and to design a framework for an automatic multi-domain

SDN provisioning framework.

d. To develop a prototype to demonstrate the information exchange and the process of

automated provisioning in multi-domain SDN.

1.4. Research Contributions

The research carried out successfully met the research aims and research objectives. The

contributions of this research can be described as follows:

a. A comprehensive review of SDN with its challenges and controller designs has been

presented with the classification controller design to cope with scalability challenges.

b. An extensive review on current border gateway protocols that could used for inter-

domain SDN communication is presented, which provided the motivation to explore

7

the use of BGP as preferred baseline protocol for inter-domain SDN communication.

c. Procedures for inter-domain SDN communication utilising BGP were discussed and

proposed. The comparison study to compare multi-domain SDN using BGP with

legacy networking was discussed and as a result the utilisation of the existing BGP as

an inter-domain SDN communication protocol was considered.

Figure 1-2 Multi-domain Provisioning Approach

d. This research identified a new and innovative approach to using the BGP UPDATE

message as the information exchange mechanism in a multi-domain SDN

environment. The proposal was implemented using an ONOS controller and

successfully verified. This mechanism was shown to be successful when used in the

automatic provisioning multi-domain SDN framework.

e. The framework was implemented using an ONOS controller with a SDN-IP

SDN Controller

OpenFlow Swich

Inter-domain communication (BGP)

OpenFlow

Data Link

ISP A
Domain

ISP B
DomainReachability (Prefix, Network

Address), Routing Info and
Provisioning Info transported via

BGP UPDATE message

8

application and the new Inter-Domain Provisioning of Routing Policy in ONOS

(INDOPRONOS) application. INDOPRONOS is a novel application developed in

ONOS to conduct the provisioning process between SDN controllers.

1.5. Publications

Peer-reviewed publications either published or submitted for publication during the

research program.

Journal

a. F. X. A. Wibowo, M. A. Gregory, K. Ahmed, and K. M. Gomez, "Multi-domain

Software Defined Networking: Research status and challenges," Journal of Network

and Computer Applications, vol. 87, pp. 32-45, 2017/06/01/ 2017. (status: published).

b. F. X. A. Wibowo and M. A. Gregory, "Bandwidth Update Impact in Multi-Domain

Software Defined Networking," International Journal of Information,

Communication Technology and Applications, vol. 3, pp. 1-14, 2017. (status:

published).

c. F. X. A. Wibowo and M. A. Gregory, “Inter-Domain Software Defined Network

Provisioning Framework,” submitted to Journal of Network and Computer

Applications, August 2018. (status: under review)

Conference Paper

d. F. X. A. Wibowo and M. A. Gregory, "Software Defined Networking properties in

multi-domain networks," in 2016 26th International Telecommunication Networks

and Applications Conference (ITNAC), 2016, 2016, pp. 95-100.

e. F. X. A. Wibowo and M. A. Gregory, "Updating guaranteed bandwidth in multi-

9

domain Software Defined Networks," in 2017 27th International Telecommunication

Networks and Applications Conference (ITNAC), 2017, pp. 1-6.

f. F. X. A. Wibowo and M. A. Gregory, "Multi-domain Software Defined Networking,"

in 2018 28th International Telecommunication Networks and Applications

Conference (ITNAC), 2018 (accepted for presentation)

1.6. Thesis Structure

The thesis chapters presenting the work carried out are summarised to provide a guide to

the thesis composition.

a. Chapter 1 presents the introduction to the research, which consists of the background

and includes research aims, objectives and publications. The introduction presents the

motivating factors behind the research, why it is crucial and adds to the body of

knowledge and briefly outlines the approach taken.

b. Chapter 2 presents a literature review describes the supporting knowledge for this

research and provides the current research status within the research area, especially

on SDN and multi-domain SDN.

c. Chapter 3 presents the study of BGP as an inter-domain SDN communication

protocol. The protocol is tested using a test bed to evaluate its properties in the multi-

domain SDN environment.

d. Chapter 4 presents the study and implementation of information exchange mechanism

in multi-domain SDN. BGP UPDATE message is studied and tested inside the test

bed to verify the proposed mechanism.

e. Chapter 5 presents the proposed framework of automatic provisioning in multi-

domain SDN. Three scenarios are tested and evaluated inside a test bed to verify the

10

proposed framework.

f. Chapter 6 presents a summary of the research contributions and provides suggestions

for future research.

11

Chapter 2 Literature Review

12

2.1. Overview

The literature review provided in this chapter identifies current research and provides

knowledge of the fundamental technologies and systems encountered during the research

project. In this chapter, a summary of SDN is provided to highlight the origin of SDN, its

architecture and protocol. Scalability as one of the SDN challenges will be discussed,

along with the comparison of how single and multiple controllers might be deployed and

used to meet that challenge. Special attention is given to the multi-controller approach for

WANs and multi-domain SDN research. Finally, selected inter-domain SDN

communication proposals are described.

2.2. Software Defined Networking Overview

In the past, telecommunication networks were generally built using tightly coupled

software and hardware, which made the networks inflexible and hard to facilitate new or

updated service deployments in a timely manner. The use of vendor-specific network

devices and systems often led to the organisation’s systems becoming tailored to match

the complexities of the vendor equipment and systems. The idea of programmable

networking was introduced to overcome some of the legacy networking challenges and

over time this approach became known as SDN. SDN has evolved over the past decade

to provide a more flexible and dynamic networking architecture that incorporates

improved support for management and network services. The SDN approach decouples

the management and control of traffic flows from the underlying transmission

infrastructure and systems that is used to forward traffic. To facilitate separation of the

control and data planes a standardised and open protocol, known as OpenFlow, was

developed to facilitate control traffic transfer between the management and control

systems, known as controllers, and the network devices, e.g. a switch, that forward traffic.

13

2.2.1. From Programmable Network to SDN

The development of SDN originated from the early work on programmable networking

and the separation of control logic from the data transfer mechanism. There were two

concepts of programmable networking, i.e. active networks and open signalling.

However, the idea to decouple the control logic from the data transfer mechanism

emerged later as a new architecture, to reduce the complexity of the distributed

computations.

The active network concept was introduced in the mid-1990s in an endeavour to control

a network in real-time. Active networking introduced a method that permits packets

flowing through the network to carry instructions to be executed at network nodes. The

code carried within the packets alters the network operation either temporarily for an

individual packet or a stream of packets. In this approach, the network devices become a

dynamically programmable environment that can be altered using the code carried by the

packets, which differs from the rigidity of traditional networking [20].

Implementations of active networks include SwitchWare [21] and conventional computer

routing suites such as Click, XORP, Quagga, and BIRD [7]. With the active networking

implementations, the operations and behaviour of the network can be modified

dynamically. Although the active networking approach offered a new paradigm by

providing a more dynamic environment, there was only minor development of the control

plane. The active networking approach placed the intelligence at the endpoints (which

can be inferred to be computers and servers acting as smart devices) while utilising

enhanced switches and routers to execute and carry out limited tasks based on the

instructions carried within the packets traversing the network. Therefore, in active

networking, packets are entities that can determine or control how nodes manage packets

and streams.

14

The second programmable network concept was open signalling (OPENSIG), which was

proposed by the telecommunication network community [22]. This community suggested

the idea of separating the communication hardware and control software by accessing the

network hardware using an open and programmable network interface. That idea was

very challenging due to the vertically integrated network device architecture, e.g. routers

and switches. OPENSIG suggested that the well-defined programmable network

interfaces could lead to a distributed programming environment which provides open

access to switches and routers and facilitates the entry into the telecommunication

software market of third-party software providers.

In parallel with the programmable networking effort, innovations emerged on the

separation of the control and data planes, which aimed to develop open and standardised

interfaces along with a logically centralised network control model. One of the

innovations was the Forwarding and Control Element Separation (ForCES). FORCES

tried to improve networking with the use of distributed packet processing network

elements [23]. Other innovations including, Routing Control Platform (RCP), Path

Computation Element (PCE), and Intelligent Route Service Control Protocol (IRSCP),

were focused on improving network operation, however, the need for coexistence and

backward compatibility prevented them from being deployed immediately [17].

In 2004, the 4D project [24] introduced a clean slate design, which stressed the separation

of the routing decision logic and the protocols used to pass messages between network

elements. The proposal used a global view of the network with a decision plane, serviced

by a dissemination and discovery plane that would be used to control traffic forwarding.

Later, these ideas inspired advanced research into NOX, the first SDN controller, which

in the context of an OpenFlow-enabled network is also known as an operating system for

networks.

15

The IETF Network Configuration Working Group proposed NETCONF in 2006, as a

management protocol for network device configuration. The protocol carried messages

to network devices through an exposed API that supported extensible configuration data.

NETCONF had efficiency, effectiveness, and security advantages when compared to the

Simple Network Management Protocol (SNMP), a popular network management

protocol, especially when managing complex and diverse network environments [25].

Simple Network Management Protocol (SNMP) and NETCONF are both useful

management tools that can be used in parallel on hybrid switches that support

programmable networking.

Other protocols that preceded OpenFlow were the SANE [26] and Ethane [27] projects

completed in 2006. They defined a new architecture for enterprise networks that utilised

a centralised controller to manage policy and security. Identity-based access control was

the notable feature. Relatively the same as SDN, Ethane consists of two components, i.e.

a controller and Ethane switch. The controller decides whether a packet should be

forwarded, while the switch connects to the controller via a secure channel and holds a

flow table, which provided the foundation for SDN.

2.2.2. SDN Architecture and Interfaces

The Open Networking Forum (ONF) defined SDN as an emerging networking

architecture where network control is decoupled from forwarding and is directly

programmable [28]. The control function is migrated from formerly tightly bound devices

in each network into manageable computing devices. This migration enables the

underlying infrastructure to be abstracted for applications and network services. Later,

the network could be treated as a logical or virtual entity.

There are two primary SDN characteristics, as depicted from its architecture shown in

16

Figure 2-1, including decoupling of the control and data planes, and control plane

programmability. Both have previously been the focus of extensive research and recent

improvements in the reliability, capacity, and capability of global networks that have

enabled the control plane programmability concept to move forward. SDN encompasses

the separation of control and data planes in the network’s architectural design, which

means that network control is to be carried out utilising separate channels between device

control management ports that utilise different addresses to that used for the data plane.

The network intelligence is taken out of the switching devices, thereby leaving the

switching devices as general forwarding devices.

Figure 2-1 SDN Architecture [28]

There are three functional layers in the SDN architecture, i.e. Application Layer, Control

Layer, and Infrastructure Layer. Each layer provides functionality and communicates

with the other layers via a specific interface [17, 29]. The descriptions of SDN layers are

presented below:

Application
Layer

Application
Layer

Control
Layer

Control
Layer

Infrastructure
Layer

Infrastructure
Layer

Virtualization

Network
Policy &
Security

Applications

Network
Access
Control

Applications

Other
Network
Related

Applications

Other
Business

Applications

SDN Controller SDN ControllerSDN Controller

Physical SwitchesPhysical Switches Virtual SwitchesVirtual Switches

Northbound Interface

Southbound Interface

Eastbound
Interface

Westbound
Interface

17

a. Application Layer. The Application Layer consists of network services and

applications that can be abstracted using the dynamic modular structure of the

Application Layer. Examples of network services and applications include

management systems, monitoring, security and flow control related network services.

The network abstraction utilises an API to provide consistency and standardisation of

the interface. Through this API, SDN services and applications can access network

status information reported from forwarding devices. SDN services and applications

can also use this API to transfer flow rules to forwarding devices through the lower

layers.

b. Control Layer. The Control Layer consists of a set of software-based SDN controllers

that provide control functionality through open API-based interfaces that facilitate the

control and management of traffic forwarding. The controllers incorporate three

communication interfaces, i.e. southbound, northbound and eastbound/westbound.

The control plane acts as an intermediary layer between the application and data

planes. The controller provides a programmatic interface that can be accessed by

network services and applications in the Application Layer and used to implement

management and control tasks. This abstraction assumes that the control is

centralised, and applications are written assuming that the network is a single

interconnected system, which enables the SDN model to be implemented for a broad

range of scenarios, such as centralised, hybrid or distributed and for heterogeneous

network technologies (wireless or wired). The controller implementation design

significantly affects the overall performance of the network. Several challenges must

be overcome to achieve network performance that is at or above the network

performance of the previous legacy network.

c. Infrastructure Layer. The Infrastructure Layer is the lowest layer in the SDN

18

architecture. Forwarding elements are the main components in this layer, which

includes the physical and virtual routers and switches. These devices are accessible

via an open interface and carry out packet routing, switching and forwarding. The

control connections to the network devices utilise separate secure channels to that

used for user data flows.

SDN architecture employs three specific interfaces. These interfaces enable the

interactions between and within SDN layers. The SDN interfaces include:

a. Northbound Interface. The Northbound interface is used to connect network services

and applications found in the Application Layer to the controllers in the Control

Layer. The Northbound interface consists of one or more API providing a

programmability capability that is used to manage network traffic flows dynamically.

It is more of a software API than a protocol-based interface to take advantage of the

innovative programmability paradigm. The ONF suggest a definition that the different

levels of abstractions are latitudes and the various use cases are longitudes, but this

characterisation is yet to be finalised. The ONF approach suggests that more than a

single northbound interface standard can provide increased flexibility to serve

different use cases and environments. Representational State Transfer (REST) is one

of the proposed APIs as the programmable interface for business applications to the

controllers.

b. Eastbound/Westbound Interface. The Eastbound/Westbound interface supports

control traffic between controllers using a yet to be standardised communication

protocol. It is identified as enabling communication between groups or federations of

controllers to synchronise states for high reliability and resiliency. The

Eastbound/Westbound interface concept aims to partially meet the SDN scalability

19

and reliability challenge. The Eastbound/Westbound interface protocol manages

communications between multiple controllers. There are two possible use cases for

this interface. The first use case is an interconnecting interface between conventional

IP networks with SDN networks. As there are no standards defined for this interface,

its implementation depends on the technology used by the underlying network. An

example of this use case is to connect the SDN domain with a legacy domain using a

legacy routing protocol to react to message requests, e.g., Path Computation Element

(PCE) protocol and Multi-Protocol Label Switching (MPLS). The second use case is

to use the interface as an information conduit for admission and authentication,

between the SDN control planes of different SDN domains. The multi-domain

connectivity challenge needs to be overcome to facilitate a global network view and

influence the routing decisions of controllers on domain boundaries. A solution would

allow a seamless setup of network flows across heterogeneous SDN domains.

Conventional border protocols like BGP could be used or modified to support

interconnection of remote SDN domains.

c. Southbound Interface. The Southbound interface enables the controller to

communicate with the forwarding elements found in the Infrastructure Layer using a

standardised protocol. OpenFlow, a protocol maintained by the ONF, is described as

a fundamental element in the development of SDN solutions and is seen to be a

promising implementation of a southbound interface protocol. A standardised

protocol permits multi-vendor network device SDN implementations.

2.2.3. OpenFlow

OpenFlow [6] is an open source communications protocol that is used to transport

messages from controllers to network devices via the Southbound interface. OpenFlow

provides software-based access to the switch and router flow tables to enable dynamic

20

network traffic management. Manual or automated control systems can be used

depending on the specific network management operations scenario. Also, the OpenFlow

protocol provides a core set of management tools which can be utilised to manage several

features, such as topology changes and packet filtering.

An OpenFlow-enabled switch contains flow and group tables that include several entries,

depending on the network device [30]. The OpenFlow messages, exchanged between the

switch and the controller over a secure channel, can manipulate the flow entries as

desired. By maintaining a flow table, the switch can make forwarding decisions for

incoming packets using a simple look-up on the entries of its flow table [31]. The switch

carries out an exact match check on selected fields of the incoming packets. The switch

examines the flow table entries to find a matching entry for incoming packets. The flow

tables are numbered sequentially, starting at 0. The packet processing pipeline starts at

the first flow table and if a match is not found it moves on to the next flow table and so

on until a match is found, or the end of the last flow table is reached. If the specific packet

fields match a flow entry, the corresponding instruction set is executed. Instructions

related to each flow entry describe packet forwarding, packet modification, group table

processing, and pipeline processing.

Pipeline-processing instructions enable the packet fields to be matched to a flow entry in

one table and based on the flow entry instructions be sent to associated tables for

additional matching and processing, which can result in an aggregation of actions that are

to occur to the packet before transmission. The aggregated information (metadata) can be

communicated between flow tables. Flow entries may also forward to a physical or virtual

port.

21

Figure 2-2 OpenFlow Components [30]

Flow entries may link to a group table entry, which specifies additional processing. A

group table, which consists of group entries, offers additional forwarding methods

(multicast, broadcast, fast reroute, link aggregation). A group entry contains a group

identifier, a group type, counters, and a list of action buckets, which contain a set of

actions to be executed and associated parameters. Groups also support multiple flows to

be forwarded to a single identifier, e.g., IP forwarding to a common next hop [31].

Sometimes, a packet might not match a flow entry in any of the flow tables; this is called

a ‘table miss’. The action taken in the case of a miss depends on the table configuration.

By default, selected packet fields are sent to the controller over the secure channel.

Another option is to drop the packet.

2.3. SDN Controller Deployment

SDN offers flexibility when managing network traffic flows. The global digital network

is increasing in its size and complexity and individual network domains are connected to

become a massive and vast network. With its advantages, SDN could provide a more

efficient way of managing the traffic flows and global networks. The SDN controller

deployment that has been selected to cope with scalability challenges will be described,

Controller 1 Controller 2 Controller n

Secure Channel

Group Table

Flow 1 Flow 2 Flow 3 Flow n

OpenFlow Switch

SDN Control Plane

OpenFlow Protocol

22

and as SDN supports both centralised and distributed controller models, each model will

also be discussed.

2.3.1. SDN Controller Design Challenges

Controller design requires substantial effort if the controller is to provide flexible

interfaces for network services and applications and a verified OpenFlow interface. It is

more than just a matter of designing and implementing the interfaces, matching the

interfaces with the network and applications, programming languages, and software

architecture in the controller; the design also relates to the performance of SDN-enabled

networks. Selected challenges are described below:

a. Scalability. An initial concern that arises when offloading control from the switching

hardware is the scalability and performance of the network controller(s). SDN’s

centralised control methodology naturally faces scalability issues. The controller is

the most important element in the SDN architecture, and a single controller

elucidation may result in a single point of failure and performance bottleneck

problems in a wide area SDN [8, 20]. The entire network will break down if the

controller fails. On the other hand, no matter where we place the controller, it will be

farther away from some of the switches under its control. These switches will

experience higher flow setup latency [32]. A single controller solution is not suitable

for wide-area SDN and some enterprise networks. Other concerns on the scalability

of SDN in vast networks are the aggregating and disseminating of a massive amount

of information, both from and throughout the network [33]. Those processes need to

be carried out in real-time, which make things worse.

b. Placement and Reliability. In the wide area SDN implementation, controller(s)

location may impact on the overall network performance. Whether the SDN consists

23

of single or multiple controllers, the placement of the controller(s) will have an impact

on the performance and the cost of the network. Research is ongoing into architecture,

location and the number of controllers concerning the average and worst-case

latencies of control plane [34] and other metrics, e.g. latency in case of failure and

inter-controller latency [35]. The research shows that latency drives the overall

behaviour of the network, and bandwidth for the control traffic affects the number of

flows that the controller can process. Network modelling is used to identify controller

locations that enhance reliability and limit control message latency [36]. Alternative

approaches try to solve the controller(s) placement issue, optimise the reliability of

the control network and identify several placement algorithms and strategies along

with metrics to characterise the reliability of SDN control networks [35, 37].

c. Availability. SDN in the vast global network could suffer from various failures. The

potential failures include controller/switch failure and link failure. SDN controllers

can be overloaded due to an enormous number of requests from linked network

devices. An SDN-enabled switch could be confronted with a failure if any of its sub-

components does not function correctly. Controller failure could cause the traffic

routing/forwarding functions of linked network devices to become limited. Network

link failure can occur due to the link itself failing or the terminating devices failing.

The cause of this failure could be from network connectivity and hardware problems,

or software problems in any network device that generates link down notifications

falsely [38]. In SDN networks, the overall design, including placement and selection

of network devices such as the controllers and switches, should be robust, and this

should be tested for a range of anticipated scenarios. An approach that improves SDN

robustness is to use a runtime system that automates failure recovery by spawning a

new controller instance and replaying inputs observed by the old controller. The

24

controller can install static rules on the switches to verify topology connectivity and

locate link failures based on those rules. Another approach is to try to improve

recovery time by the frequent issuing and receipt of monitoring messages, but this

may place a significant load on the control plane [20] [7]. In multi-controller SDN, a

load balancing mechanism based on a load informing strategy is proposed to balance

the load among controllers dynamically [39].

d. Security. SDN controllers may suffer from a range of security problems, which can

reduce network performance. The attacks might affect performance due to the lack of

controller scalability in the event of a denial of service (DoS) attack. The impact could

become severe in the extensive network for single controller or multiple controller

scenarios. The attacks can target the forwarding layer, control layer, and application

layer, and their types can be discussed as follows [40, 41]. On the application layer,

the attacks could occur through unauthenticated applications and policy enforcement.

DoS is an attack that might target the forwarding and control layers. DoS could be

caused by massive traffic flows that flood the switches which subsequently flood

controllers with traffic route requests. The result is a slowing down of the network

and possibly device collapse. Another type of attack is the compromised controller

attack, which happens when the attacker gains access to the controller and utilises this

access to alter or deny traffic routing. Data leakage and flow rule modification are the

impacts of attacks on forwarding layer input buffers, which can be disastrous.

Controller hijacking and fraudulent rule insertion attacks are types of malicious

attacks. DoS is related to availability related attacks. Types of DoS attack include the

Controller-Switch Communication Flood that aims to overload the affected switches

and controllers. There are possible countermeasures for each of the likely attacks.

Attacks targeting the forwarding plane could be avoided by proactive rule caching,

25

rule aggregation, increasing switch buffering capacity, decreasing switch-controller

communication delay, and packet type classification based on traffic analysis. Other

attacks that target the control and application plane could be mitigated by controller

replication, dynamic master controller assignment, efficient controller placement,

controller replication with diversity, and resourceful controller assignments [40].

2.3.2. Centralised and Distributed SDN Controllers

The proposed control plane design solutions that cope with scalability issues can be

classified into two categories, i.e. centralised controller and distributed controller

deployment. Currently many SDN controllers are available, both as open source and

commercial. The controllers have their specific features and capabilities, especially in

their support of solutions for the SDN scalability challenge. A summary of controller

platform deployments is presented in Table 2-1.

Table 2-1 Summary of Controller Platforms [42]

Controller Name Programming

Language

Open

Source

Architecture Description

Beacon [43] Java Yes Centralised

Multi-

threaded

Cross-platform, modular, Java-based

OpenFlow Controller that supports

event-based and threaded operation.

Maestro [44] Java Yes Centralised

Multi-

threaded

A network operating system based on

Java which provides interfaces for

implementing modular network

control applications.

Floodlight [45] Java Yes Centralised

Multi-

threaded

Java-based OpenFlow Controller,

based on the Beacon implementation,

works with physical and virtual

OpenFlow switches.

RISE [46] C & Ruby Yes Centralised OpenFlow Controller based on

Trema, which is an OpenFlow stack

based on Ruby and C.

ONOS [47] Java Yes Distributed Open source SDN controller platform

explicitly designed for scalability and

high-availability. With this design,

ONOS projects itself as a network

operating system, with separation of

control and data planes for WAN and

service provider networks.

26

Controller Name Programming

Language

Open

Source

Architecture Description

RYU [48] Phyton Yes Centralised

Multi-

threaded

SDN operating system that aims for

logically centralised control and

APIs, to create new network

management and control

applications.

NOX/POX [49] Phyton Yes Centralised The first OpenFlow controller.

OpenContrail [50] Phyton Yes Distributed An open source version of Juniper’s

Contrail controller

OpenDaylight

[51]

Java Yes Distributed An open source project based on

Java. It supports OSGi Framework

for local controller programmability

and bidirectional REST for remote

programmability as Northbound

APIs.

OpenMUL [52] C Yes Centralised

Multi-

threaded

C-based multi-threaded OpenFlow

SDN controller that supports a multi-

level northbound interface for

attaching applications.

Ericsson SDN

Controller [53]

Java No Distributed Ericsson used the OpenDaylight as

the base of its controller and bind a

Policy Control to drive end-user

service personalisation in network

connectivity.

HP VAN SDN

Controller [54]

Java No Distributed OpenDaylight based controller with

HP contributions in AAA, device

drivers, OpenFlow and Hybrid Mode,

clustering for High Availability,

multi-application support including

the Network Intent Composition

(NIC) API, Persistence, Service

Function Chaining, OpenStack

integration and federation of

controllers.

Programmable

Network

Controller [55]

Java No Distributed OpenDaylight based controller

offered by IBM as part of its Data

Center Solution.

Contrail [56] Phyton No Distributed Contrail Controller is Juniper’s

software controller that is designed to

operate on a virtual machine (VM).

Contrail exposes a set of REST APIs

for northbound interaction with cloud

orchestration systems, such as

OpenStack, as well as other

applications.

Open SDN

Controller [57]

Java No Distributed OpenDaylight based SDN Controller

with additional Cisco’s embedded

applications, robust application

development environment and

additional OpenFlow protocol

support for Cisco Multiprotocol

Label Switching (MPLS) extensions.

Huawei IP SDN

Controller [58]

Java No Distributed OpenDaylight based SDN controller

with the addition of Huawei’s Open

Programmability System (OPS),

which implements multi-layer

capability openness including

network control and management

27

A description of the centralised and distributed approaches follows:

a. Centralised Controller Approach. SDN may have either a centralised or distributed

control plane [18, 29], although the protocols such as OpenFlow specify that a

controller controls a switch, and this seems to imply centralisation. OpenFlow is not

defined for controller-to-controller communication, but it is apparent that something

similar is needed for distribution or redundancy in the control plane. The centralised

controller approach is based on a single centralised controller that manages and

supervises the entire network or domain. In this model, network intelligence and states

are logically centralised inside a single decision point. This centralised controller uses

the Southbound interface protocol (e.g. OpenFlow) to conduct global management

and control operations. The centralised controller must have a global view of the

entire network, including the load on each switch along the routing path. It also must

monitor link bottlenecks between the remote SDN nodes. Additionally, statistical

information, errors and faults from each network device can be collected by the

controller from the attached switches and this information is passed on to another

entity, which is often a database and analytic system that identifies switch and

network loads and predicts future loads. As mentioned before, the single controller

approach exploits two methods, i.e. utilising the hardware and reducing the overhead

to minimise controller loads. The first method provides performance scalability at

times of high load or when a controller failure occurs. Conventional software

optimisation techniques can be used to improve the controller’s performance. Multi-

core hardware that supports multi-threading can be used to support parallel process

optimisation, load balancing, and replication. High-performance controllers, such as

McNettle [59], targeted powerful multi-core servers and are being designed to scale

28

up to handle large data centre workloads (around 20 million flow requests per second

and up to 5000 switches). Despite the performance improvements presented in this

approach, there are limitations and challenges. The hardware setup cannot be easily

modified due to its rigid nature. Another limitation is that this approach retains a

Single Point of Failure due to its single-controller architecture. The second method

tries to reduce the controller load, as highlighted by proposals including DIFANE [54]

and DevoFlow [55], by extending the switch data plane mechanism. DIFANE partly

uses intermediate switches called authority switches to make the forwarding decisions

instead of relying on the centralised controller to reduce the load and the latencies of

rule installation. A similar approach is also proposed in DevoFlow with the selection

of flows to be directed to the controller, while switches handle the other flows.

b. Distributed Controller Approach. The distributed controller approach uses multiple

controllers to manage, control and supervise the network. The controllers are

distributed around the network and can be called distributed controllers. There are

two classes of distributed SDN controllers, i.e. logically centralised but physically

distributed controller, and the exclusively distributed controller. Distributed

controllers have several key challenges that should be addressed to improve the

scalability and robustness of networks. First, the distributed approaches requires that

a consistent network-wide view be maintained in all of the controllers. Also, the

mapping between control planes and forwarding planes must be automated instead of

the current static configuration which can result in an uneven load distribution among

the controllers. Second, it is difficult to obtain an optimal global view of the entire

network. Further, it is difficult to identify an optimal number of distributed controllers

that provides a linear scale-up of the SDN network when their number increases.

Finally, most of these approaches use local algorithms to develop coordination

29

protocols in which each controller needs to respond only to events that take place in

its local neighbourhood. Thus, there remains the need to synchronise the overall local

and distributed events to provide a global picture of the network. The first class of

distributed controllers is the logically centralised but physically distributed controller.

The controllers share information to build a consistent view of the entire network.

They are using either a distributed file system, a distributed hash table, or a pre-

computation of all possible routing combinations to centralise their logic. This

approach imposes a strong requirement: a strong consistent network-wide view that

is maintained in each of the controllers. The network-wide view is maintained via

controller-to-controller synchronisation. When the local view of a controller changes,

the controller will synchronise the updated state information with the other

controllers. The information exchange or state synchronisation among controllers

consumes network resources; therefore, it is critical to reducing the resulting network

load, while keeping the information consistent for the logically-centralised control

plane. The examples of this implementation are Onix [56], Hyperflow [57] and

Devolved controllers [59]. The second type of distributed controller model is the

exclusively distributed controller. It introduces a physically distributed control plane

state and logic; therefore, there is no synchronisation of network states between

controllers to maintain a global view. Synchronisation could lead to a network

overload due to the frequent network changes, and it suffers from control state

inconsistency which will degrade the performance of applications running on top of

SDN. The examples of this implementation are Kandoo [60], Distributed Multi-

domain SDN Controllers (DISCO) [61], Pratyaastha [62] and Open Network

Operating System (ONOS) [47].

30

2.4. SDN in the Wide Area Network

The introduction of the SDN paradigm into the WAN has commenced [63, 64] and

promises to improve management and control efficiency and performance. One of the

critical factors for SDN implementation in the WAN is scalability. Issues such as single

point of failure and performance bottleneck [8, 20] can appear due to the centralised

nature of SDN. Decisions as to controller placement can cause latency in the flow setup

[32, 34], and restrict the capability for controller to switch control message flow [33].

There are two approaches for SDN deployment in the WAN, i.e., using a single controller

or multiple controllers. Due to its limitation of becoming a single point of failure and

lower performance, the single controller approach is not likely to be suitable for SDN

implementation in the WAN [64]. In the multiple controller approach, two architectures

are proposed, i.e. the centralised architecture and fully-distributed or multi-domain

architecture [42, 65]. The centralised architecture can be considered to be similar to the

initial design for SDN, while the distributed or multi-domain architecture has a different

design, in which it creates distributed control planes [66]. Ongoing research on multi-

domain SDN has suggested two architectures, i.e., horizontal and vertical.

2.4.1. Multi-domain SDN Architecture

A multi-domain SDN architecture refers to a network architecture that connects multiple

SDN domains. SDN domain refers to the administrative SDN domain, which might be a

sub-network in a data centre network, or a carrier or an enterprise network, or an

Autonomous System (AS). Most of the distributed control plane architectures with a

logically centralised approach such as Onix, Hyperflow, and Devolved controllers

currently cannot manage inter-domain flows between SDN domains. According to [67],

the fully distributed SDN controller architectures could be utilised for multi-domain SDN

communication. A summary of contributions in multi-domain SDN is presented in Table

31

2-2.

Table 2-2 Summary of Multi-domain SDN Activities [42]

Contributions Descriptions

Elasticon Proposed proposes a controller pool which dynamically grows or

shrinks corresponding to traffic conditions, and the workload is

dynamically allocated among the controllers [68].

Pratyaastha Proposes a novel method for assigning SDN switches and partitions of

SDN application state to distributed controller instances [62].

DISCO Proposed an open and extensible distributed SDN control plane able to

deal with the distributed and heterogeneous properties of modern

overlay networks and WAN [61].

Kandoo Proposed a hierarchical model of distributed controllers, i.e. root

controller and local controllers [60].

ONOS Propose the distributed architecture for high availability and scale-out

SDN [47].

ODL SDNi OpenDaylight split the network logically and physically into different

slices or tenants. It developed a multi-controller instance by using an

inter-SDN controller communication application called ODL-SDNi

(Software Defined Network interface)[51].

IETF SDNi Proposed an IETF draft to connect SDN domains using an automated

system [69]

East-West Bridge Proposes an information exchange platform for inter-domain SDN

peering [70].

Novel SDN Multi-

Domain Architecture

Proposed multi-domain SDN architecture and defined an

interconnection protocol [71].

There are two implementation approaches for multi-domain SDN: vertical and horizontal

[64, 72], as shown in Figure 2-1. In the vertical approach, the controllers are connected

into a hierarchical control plane where the controller functionality is organised vertically.

In this deployment model, control tasks are distributed to different controllers depending

on selected criteria such as network view and locality requirements. The communication

between SDN controllers are performed via RESTful APIs. Local events are handled by

32

the controller that is lower in the hierarchy, and global events are handled at the higher

level, which is called the master controller. In the horizontal approach, multiple

controllers were organised in a flat control plane where each one governs a subset of the

network switches, and the SDN controllers can communicate with each other using a

standard inter-domain SDN protocol.

Figure 2-3 Implementation Approaches for Multi-domain SDN.

As discussed in [72], though the vertical approach can work for data centres, problems

may arise if this approach is to be scaled up in an enterprise that spreads across different

locations. The horizontal approach appears more realistic for scaling across multiple

locations, as controllers in this approach can communicate with each other using a

Forwarding Device Forwarding Device Forwarding Device

Interdomain
Protocol

Interdomain
Protocol

Forwarding Device Forwarding Device Forwarding Device

REST APIREST API

REST API

Low Level SDN
Controller

Low Level SDN
Controller

Low Level SDN
Controller

High Level SDN
Controller

SDN Controller SDN Controller SDN Controller

a) Vertical approach

b) Horizontal approach

33

standard inter-domain SDN protocol. This approach will maintain a federation between

domain and keeps the SDN controller in each domain independent to manage the policies

and path setup within its control.

2.4.2. Inter-Domain SDN Communication

The SDN inter-domain communication protocol can be implemented using the SDN

controller East-Westbound interface. Its main functions are to set up a connection

between controllers in different domains and exchange control, service and application

information. As mentioned in the Section 2.2.2, the East-Westbound interface has not

been standardised, which could lead to an interoperability challenge in the deployment of

multi-domain SDN. Currently, many SDN controllers have been developed by open-

source communities and private companies, complying with the Southbound interface

standard, i.e. OpenFlow, but there are no interoperable protocols for the East-Westbound

interface.

An IETF draft, titled SDN interconnection (SDNi), was proposed in 2012, as the initial

work in defining the SDN inter-domain communication protocol [69]. This draft proposed

a definition of a protocol to connect SDN domains using an automated system. However,

the draft that was placed in the IETF data tracker in mid-2012 expired in December 2012,

without any work progressing. SDNi proposed the extension of BGP and the Session

Initiation Protocol (SIP) as implementation protocols.

Google® published a paper on its Software-Defined Wide Area Network (SDWAN),

called B4 [15]. It presented the design and evaluation of its global data centre to data

centre connectivity exploiting SDN. This excellent design showed the benefit of SDN in

managing significant data traffic volumes between data centres, but still, the domains are

inside the same administration entity. B4 used BGP as the communication protocol

34

between controllers in different data centres.

Another SDN inter-domain communication framework was introduced by DISCO [61].

DISCO was developed on top of the Floodlight controller. It used the Advanced

Messaging Queuing Protocol (AMQP) as a base for implementing the inter-domain

messenger. The use of this protocol created a limitation in the interoperability of DISCO

with legacy IP networks. An additional BGP agent was proposed that would be added

into the DISCO architecture to solve this limitation.

The interoperability between SDN with legacy IP networks was introduced by the work

done in Software Defined Internet Exchange (SDX), which maintains BGP as the

protocol to interconnect SDN domains with the legacy IP network domain [73]. Another

SDN and IP network interworking was introduced in [74], which proposed a Route

Information Base (RIB) synchronisation protocol to send RIB updates towards the SDN

controller from BGP Speakers.

Table 2-3 Summary of Current SDN Inter-Domain Communication

Inter-Domain SDN

Communications

Proposed Base

Protocol(s)

Description

IETF SDNi BGP or SIP Using the extensions of BGP or SIP

DISCO

AMQP Limit the interoperability with legacy

IP network, proposed an additional

BGP agent

SDX
BGP Promote the interoperability between

SDN domain with legacy IP domain

SDN-IP interworking BGP Based on RIB synchronisation

EW Bridge BGP Modify BGP update into JSON form

ODL SDNi
BGP Exploit BGP applications of the

controller

ONOS SDN-IP
BGP Exploit BGP applications of the

controller

35

East-West Bridge (EW Bridge) was introduced as an advanced development of

interworking between SDN and legacy IP networks; EW Bridge is a platform to exchange

elementary network information between different domains [70]. This platform also

enables third-party innovations to be realised in the multi-domain environment. The EW

Bridge design kept the principles used in BGP with the modification of the BGP

UPDATE message to utilise JSON (Javascript Object Notation).

From the SDN controllers side, an OpenDaylight (ODL) controller application was

developed to support the multi-controller functionality [75]. The ODL-SDNi (SDN

interface) exploits the BGP application inside the ODL controller to facilitate the

exchange of information between ODL controllers.

Almost at the same time, the ONOS controller was expanded to include BGP interfacing

applications, i.e. the SDN-IP application [76], which permits interconnect between SDN

domains with legacy IP network domains and with other SDN domains.

2.5. Border Gateway Protocol

The BGP is a core building block of the Internet that enables the exchange of information

about networks, between Autonomous Systems (ASes) [77]. Therefore, one part of the

Internet knows how to reach another part. BGP was known as the Inter-AS routing

protocol [78].

2.5.1. BGP Overview

The BGP protocol is commonly used to exchange routing information from an AS to

another AS. It is done by setting up a communication session between bordering AS,

using a Transmission Control Protocol (TCP) link with port 179, for reliable delivery.

This TCP link should always be connected and runs over a physical link that connects AS

border routers.

36

The routing information update in BGP follows a path-vector routing protocol approach

[78], which is based on a distance vector-type approach where looping is avoided through

path tagging and where reliable sessions, for information exchange, are used. Network

reachability information in BGP contains the network number, path-specific attributes,

and the list of AS numbers that a route must transit to reach a destination network. This

list is contained in the AS-path attribute. The BGP path-vector routing algorithm is a

combination of the distance-vector routing algorithm and the AS-path loop detection.

Figure 2-4 BGP Network Examples

BGP selects a single path as the best path to a destination host or network by default. The

algorithm for best path selection analyses path attributes to determine which route should

be installed as the best path in the BGP routing table. Each path carries well-known

mandatory, well-known discretionary, and optional transitive attributes that are used in

BGP best path analysis.

There are two types of BGP sessions, based on its implementation scenario. The first type

is the external BGP (eBGP) session, which is created when a BGP speaker wants to

AS 64500

Network 10.10.1.0/24 Network 10.5.2.0/24

iBGP

AS 61111

Network 10.20.1.0/24 Network 192.168.2.0/24

iBGP

Network 192.168.10.0/24

iBGP iBGP

eBGP

AS 62900

Network 13.21.1.0/24 Network 12.18.2.0/24

iBGP

eBGP

R1

R2 R3

R4 R5

R6 R7

37

connect to another BGP speaker in a different AS. The second type is the internal BGP

(iBGP) session, which is created to set up a peer connection between two BGP speakers

within an AS. Rules regulate the use of eBGP and iBGP, i.e.:

a. A BGP speaker can advertise IP prefixes it has learned from an eBGP speaker to a

neighbouring iBGP speaker; similarly, a BGP speaker can advertise IP prefixes it has

learned from an iBGP speaker to an eBGP speaker.

b. An iBGP speaker cannot advertise IP prefixes it has learned from an iBGP speaker to

another neighbouring iBGP speaker.

The underlying mechanism for iBGP and eBGP is the same, when the two rules discussed

above are correctly addressed. The illustration of BGP with an eBGP and iBGP example

is shown in Figure 2-4.

2.5.2. BGP Operation

The BGP operation follows a Finite State Machine (FSM) described in [77]. The BGP

session may report the following states: Idle, Connect, Active, OpenSent, OpenConfirm

and Established. Aside from those states, the specification also defines the messages sent

between BGP peers, i.e., OPEN, UPDATE, KEEPALIVE, and NOTIFICATION.

A description of the BGP’s FSM include:

a. Idle. The first stage of the BGP FSM. In this state, BGP detects a start event, and upon

the receiving of a start event, it will initiate a TCP connection to the BGP peer, listens

for a new connection from a peer router, and change its state to Connect.

b. Connect. In this stage, BGP initiates the TCP connection to the BGP peer. The

Connect state indicates the router waits for the completion of a TCP connection

between itself and another BGP speaking peer. If the 3-way TCP handshake

38

succeeded, the OPEN message is sent to the neighbour and change the state to

OpenSent.

Figure 2-5 BGP FSM and Messages.

c. Active. In this state, BGP starts a new TCP handshake, as the initial connect failed. If

a connection is established, an OPEN message is sent, Hold timer is set, and the state

moves to OpenSent. If this attempt for TCP connection fails, the state moves back to

the Connect state.

d. OpenSent. In this state, an OPEN message has been sent from the originating router

and is awaiting an OPEN message from the other router. After the originating router

receives the OPEN message from the other router, both OPEN messages are checked

for errors. If no error found, KEEPALIVE message is sent, and the state is moved to

OpenConfirm. If an error is found, a NOTIFICATION message is sent, and the state

Idle

ConnectActive

OpenSent

OpenConfirm

Established

OPEN

OPEN

KEEPALIVE

NOTIFICATION

NOTIFICATION

KEEPALIVE

KEEPALIVE
UPDATE

NOTIFICATION

39

is moved back to Idle.

e. OpenConfirm. In this state, BGP waits for a KEEPALIVE or NOTIFICATION

message. Upon receipt of a neighbour’s Keepalive, the state is moved to Established.

If the hold timer expires, a stop event occurs, or a Notification message is received,

and the state is moved to Idle.

f. Established. In this state, the BGP session is established. BGP neighbours exchange

routes via UPDATE messages. As UPDATE and KEEPALIVE messages are

received, the Hold Timer is reset. If the Hold Timer expires (not reset), an error is

detected, and BGP moves the neighbour back to the Idle state.

Also, the description of each BGP’s messages are discussed as follows [77]:

a. OPEN. This is the first message sent to establish a BGP session after the TCP

connection has been established. Routers use this message to identify itself and to

specify its BGP operational parameters. The information carried inside this message

is BGP version, AS number of the sender, Hold Timer, BGP identifier, Optional

Parameters Length and the Optional Parameters.

b. UPDATE. This message is used to transfer routing information between BGP peers.

The information in the UPDATE message can be used to construct a graph that

describes the relationships of the various AS. UPDATE message carries routing

information such as Unfeasible Routes Length, Withdrawn Routes, Total Path

Attribute Length, Path Attributes (describes the characteristics of the advertised path)

and Network Layer Reachability Information (NLRI).

c. KEEPALIVE. This message is used by BGP for the keep-alive mechanism, to

determine if peers are reachable.

40

d. NOTIFICATION. This message is sent whenever something wrong has happened,

e.g. an error is detected and causes the BGP connection to close.

2.5.3. Path Attributes

Path Attributes are carried by the BGP UPDATE message and describe the characteristics

of the advertised path. As described in [77, 79, 80], Path Attributes consist of a triple

<attribute type, attribute length, attribute value> of variable length. There are several

categories of Path Attributes, i.e.:

a. Well known, Mandatory. This attribute must appear in every UPDATE message. It

must be supported by all BGP software implementations. If a well-known, mandatory

attribute is missing from an UPDATE message, a NOTIFICATION message must be

sent to the peer. Examples:

- AS_path

- Origin

- Next_Hop

b. Well known, Discretionary. This attribute may or may not appear in an UPDATE

message, but it must be supported by any BGP software implementation. Examples:

- Local_Pref

- Atomic_aggregate

c. Optional, Transitive. These attributes may or may not be supported in all BGP

implementations. If it is sent in an UPDATE message, but not recognised by the

receiver, it should be passed on to the next AS. Examples:

- Aggregator

41

- Community

- Extended Community

d. Optional, Non-Transitive. These attributes may or may not be supported, but if

received, it is not required that the router pass it on. It may safely and quietly ignore

the optional attribute. Examples:

- Multi Exit Discriminator (MED)

- Originator_ID

- Cluster List

2.6. Conclusion

The literature review had established the knowledge to understand the SDN concepts and

the current status of inter-domain communications including a description of BGP. It

reviewed past programmable network efforts and the journey to SDN. This chapter

discussed the SDN architecture, its interfaces and the OpenFlow protocol as the key SDN

enabler. This review has discussed the challenges faced by SDN and provide a

comprehensive review of the controller designs to cope with one of the challenges, i.e.

scalability.

In this chapter, the design configurations of a SDN implementation in the WAN was

presented and discussed the concept of vertical and horizontal implementation

approaches. The horizontal approach was perceived as more realistic for enterprise

network scaling across multiple locations, while it also can maintain federation between

controllers. This approach was adopted during the research project. The literature review

has also provided a discussion on the state of the art of inter-domain SDN communication

research. From the review, most of the inter-domain SDN communication research

42

indicated using BGP or emulating the BGP functions in an inter-domain SDN protocol.

Finally, the current inter-domain network protocol, BGP, is described, which covers its

operations, type of messages and the path attributes, which will be used as a primary

reference in the design of an inter-domain SDN communication protocol.

43

Chapter 3 Inter-Domain SDN Communication

Protocol

44

3.1. Overview

This chapter provides the analysis of BGP as the inter-domain SDN communication

protocol. It describes the reasons for using BGP as the inter-domain SDN communication

protocol and the process of connecting different SDN domains using BGP. A multi-

domain SDN test bed is presented and the comparison of network performance test results

between legacy IP network, SDN networks and multi-domain SDN is also presented.

3.2. Requirements for Inter-Domain SDN Communication

Inter-domain SDN communication is needed to connect different SDN domains.

Currently, no standardised protocol is defined as the inter-domain SDN protocol. The

primary ability of inter-domain SDN communication protocols will be presented,

including the requirements for information to be exchanged between SDN domains.

3.2.1. Primary Ability of SDN Inter-Domain Communication

As described in Section 2.4.1, the multi-domain SDN architecture requires an inter-

domain communication protocol that supports the exchange of information between

domains while maintaining the federation of each domain. The inter-domain SDN

communication protocol should have two primary capabilities, as recommended in [69].

Those capabilities are:

a. Coordination of flow setup originated by applications, which will allow the

controllers in a different domain to coordinate the flow setup from applications across

multiple SDN domains. This flow setup can contain information such as path

requirement, Service Level Agreement (SLA), and Quality of Service (QoS).

b. Reachability information exchange to facilitate SDN-based inter-domain routing,

which will allow the single flow to traverse along multiple SDN domains, and each

controller will select the most suitable path when multiple paths are available.

45

3.2.2. Message Exchange between SDN domains

An inter-domain SDN protocol will enable information exchange between SDN domains.

According to the SDN architecture discussed in Section 2.2.2, there is an interface defined

for that purpose, i.e. east-westbound interface. Unfortunately, no standard has been

released on this interface, which motivates researchers to utilise existing inter-domain

protocols, as described in Section 2.4.2. Apart from the interface, the information

exchanged between domains is still being researched. Proposals were described in [69,

72], which listed the type of information that should be exchanged, i.e.:

a. Reachability update, which will update the reachability information to provide a

dynamic route for a single flow to traverse multiple SDN domains.

b. Flow setup, tear-down, and update requests: to Coordinate flow setup requests, which

contain information such as path requirements, QoS, and so on, across multiple SDN

domains.

c. Capability Update: Controllers exchange information on network-related capabilities

such as bandwidth, QoS and so on, as well as system and software capabilities

available inside the domain.

The East-West Bridge described in Section 2.4.2 and [70], introduced a more structured

form of the information exchanged across multiple domains. This information was called

the Network View and contains two aspects:

a. network static state information, which includes reachability information (e.g. IP

address prefixes), topology (e.g. node, links), network service capability (e.g. Service

Level Agreement), and QoS parameters (e.g. latency, packet loss rate)

b. network dynamic state information, which includes flow/table entries information in

46

each switch, real-time bandwidth utilisation in the topology, and the all the flow paths

in the network.

3.3. Inter-Domain SDN Communication Utilising BGP

Research has occurred into SDN inter-domain communications which use BGP as the

baseline protocol. BGP is a standardised gateway protocol which enables the exchange

of information (routing and reachability) between AS [77]. BGP has the potential as the

baseline protocol for SDN inter-domain communication due to:

a. BGP could support information exchange regarding capability and reachability, as

part of the existing message format.

b. BGP is a standard and the most feasible protocol for any peer data to be exchanged.

c. BGP would enable interoperability for interconnection between SDN with legacy IP

networks.

Therefore, based on these reasons and along with the research found in the literature into

SDN inter-domain communication developments, BGP will be used as the baseline inter-

domain SDN communication protocol throughout this thesis.

In the current global networks, i.e. the Internet, the interconnection between AS occurs

using BGP. BGP is currently the network-wide deployed inter-AS communication

protocol. From the previous discussion, BGP also being used to facilitate the

communication between different SDN domains.

BGP sessions are used to established communication between SDN domains. The BGP

sessions are established over TCP links and follow a state machine approach. The process

used for connection establishment is similar to the regular BGP session establishment;

only it involves SDN entities such as Controller and OpenFlow Switch along with BGP

47

Speakers. The step-by-step process was proposed in [72, 81] and shown in Figure 3-1.

The process between two SDN domains can be explained as follows:

a. BGP speakers are deployed in each domain on top of SDN controllers. Each BGP

speaker has state-machine logic to conduct the message exchange process. BGP

speakers will coordinate with the SDN controller to start its process to establish a

session between two domains. An event generated from a SDN controller can be used

as a trigger for the BGP speakers.

Figure 3-1 BGP Sessions Establishment Process in Multi-Domain SDN.

b. It is assumed that initially, the network administrators in each domain will configure

the BGP information manually. The controller will establish a TCP connection with

its neighbour. If the connection is not established due to reasons such as TCP timeout

or BGP message timer expiry, the BGP speaker must establish a connection with

another neighbour, which must be configured by the administrator.

c. BGP will use TCP and once the TCP connection is established, the OPEN message is

sent by both the BGP speakers to each other, and after that, they move to the OPEN

state.

Controller

TCP Connection Established

BGP OPEN Message Exchanged

BGP Session Established

Send & Receive BGP
Information Update

Controller

Domain BDomain A

OF Switch OF Switch

48

d. During the OPEN state, BGP speakers can negotiate capabilities of the session

through OPEN messages (as per RFC 5492). In each domain, information related to

the network topology can be retrieved by the SDN controller(s) using the OpenFlow

protocol.

e. Once the BGP peers are in a session, the controllers move to the ESTABLISHED

state. The BGP UPDATE messages are exchanged in this state. At this state, the

domains can exchange messages which can contain information such as reachability

data, bandwidth information and other information.

f. As the two controllers are BGP speakers, the reachability data is maintained in each

controller. This information is converted into flows in OpenFlow enabled switches.

g. Route selection is made when more than one path is available based on the BGP

process decision. Once the path is established, packets can traverse successfully

between SDN domains and later it can support the information exchange.

The communication between multiple SDN domains can be established in the same

manner.

3.4. Implementation and Test Scenario

The motivation behind the study is to evaluate the impact of the programmability

properties of SDN in a multi-domain environment and to provide a baseline to develop

advanced algorithms and schemes for multi-domain SDN environments.

For this study, virtual machines were set up using the VirtualBox virtualisation platform.

The virtual machines included the Mininet [82] network emulator and the Ryu controller

with Quagga applications [83] inside Vandervecken VM [84] to enable BGP in each of

the controllers. Three AS were used as illustrated in Figure 3-2. Each AS will have its

49

own AS Number (ASN).

The experiments included ICMP messages being sent from Domain A to Domain C,

passing through Domain B as an intermediary domain. The latency was measured of the

first ping message to determine the flow setup latency and results were compared between

the three scenarios.

Figure 3-2 Test Topology.

3.4.1. Test Scenario

The scenarios were based on three use cases:

a. Legacy network, in this use case the domains represent legacy networks with

switches and manual routing tables inserted into the switches before the operation.

In this scenario, no SDN framework is used.

b. SDN without BGP, in this use case, the network uses SDN with default

capabilities and no pre-defined routing tables, were implemented in the controllers

and switches. In this scenario, the SDN controller did not have any information

about the other AS network.

c. SDN with BGP, in this use case the networks use SDN with BGP capable

50

controllers. In this scenario, each of the AS retains knowledge of their neighbour

network and advertises the local network to its neighbour. The experiment process

was started when the network initialisation commenced.

The experiments were run multiple times, and the results were the average value of the

measurements. For the two SDN scenarios, the network setup always reset to initial

conditions (empty Flow Table) during each of the simulations.

3.5. Results

The results presented in Figure 3-3, show that the performance of legacy networks

supporting multi-domain communications in terms of latency is still superior to that of

the SDN approaches. Almost 90% of the legacy network traffic has a latency below 2.5

ms, while the SDN based approach has a minimum latency of 6.5 ms and 8 ms

respectively.

The performance of SDN with BGP outperformed the default SDN without BGP setup

for a multi-domain network. Most traffic was found to have a latency between 7.5 ms and

15 ms. The use of BGP reduced the latency significantly.

51

Figure 3-3 Flow Setup Latencies.

The results demonstrate that legacy networking still outperforms SDN based approaches

and highlights the need for more work to optimise SDN systems and protocols. No flow

setup was needed in the legacy network, due to the pre-operation manual setup and this

provided an early performance benefit, but there is an associated cost of the manual

intervention. Apart from performance, the legacy network suffers from inflexibility, high

operational cost and is tightly dependent on the network devices remaining in sync.

52

Figure 3-4 End to End Delay Variation.

The results presented in Figure 3-4 show the point-to-point or one-way delay variations

from the experiments. As shown from the results, the legacy network scenario showed its

delay variation varies from 0.5 ms to 2.95 ms, while the average value of its delay

variation is 1.73 ms. The OpenFlow network without BGP scenario showed its delay

variation varies from 6.02 ms to 21.54 ms, while the average value of its delay variation

is 14.26 ms. Finally, the OpenFlow network BGP scenario showed its delay variation

varies from 2.76 ms to 6.47 ms, while the average value of its delay variation is 4.75 ms.

The performance of legacy networks supporting multi-domain communications in terms

of delay variation shows its superiority compared to the SDN scenarios. Although as

shown in the results, the delay variation of SDN with BGP scenario show a similar

stability with the legacy network, while the SDN without BGP scenario shows a more

unstable delay variation. With this result, the performance of SDN with BGP scenario

could be potentially be accepted by the user with the reference of a legacy network. Some

applications which required real-time traffic will depend on the network performance in

terms of delay variation.

53

The performance of SDN in the multi-domain scenarios shows that there is a need to

improve the operational outcomes further but highlights the flexibility and automation

potential of the programmability provided.

3.6. Conclusion

In this chapter, a comparative study on the inter-domain SDN communication protocols

has been presented. The primary ability to send messages for inter-domain

communication, the requirement for inter-domain SDN protocol and the type of

information that should be exchanged in an inter-domain protocol have been discussed

and presented. The discussion was focused on the use of BGP as a prospective protocol,

because of its characteristics and capabilities.

The results of a comparative study showed that despite its lack of operational performance

compared to a legacy multi-domain network, SDN offers the potential for improved

flexibility and reduced network management interaction. There is a need for the SDN

programmability properties to be coupled with an improved eastbound/westbound

interface and a simplified protocol that facilitates improved performance. The outcomes

of the study provide a baseline as a more advanced multi-domain management approach

is developed including an improved eastbound/westbound interface protocol.

54

Chapter 4 Information Exchange Mechanism

for Multi-domain SDN Provisioning

55

4.1. Overview

This chapter describes the mechanism to exchange information between SDN domains to

support multi-domain provisioning. As discussed in Chapter 3, BGP will be used as the

inter-domain SDN protocol in this research. Therefore this mechanism will be utilising

current BGP operations and messages. The design will be implemented inside an ONOS

controller by modifying the ONOS SDN-IP application. Finally, verification of the

implementation will be presented.

4.2. BGP Message for Multi-domain SDN Provisioning

From the explanation in Section 2.5.2 and Section 3.3, SDN domains can be connected

and reasons identified during the literature review support the adoption of BGP as the

inter-domain SDN communication protocol, as excerpted from [72, 85], i.e.:

a. In general, BGP has several potential benefits such as a Finite State Machine (FSM)

approach which make it easier to implement, it can be used independently as an

application layer protocol, and simplicity of its message format is by OpenFlow

Message.

b. BGP messages can support the transport of information required for inter-domain

SDN communication. That information is capability, reachability and flow setup

information. BGP OPEN message has the capability field that can be used, while BGP

UPDATE message can be used to carry reachability and flow setup information.

c. The Internet currently is built from the interconnected domains which implement

BGP. These domains could be managed by SDN in the future Internet architecture,

which will still be reached by legacy IP network because of the backward

compatibility introduced from using BGP as an inter-domain SDN communication

protocol.

56

Provisioning in multi-domain SDN should be related to the flow setup activities.

Therefore the BGP UPDATE message is the suitable BGP message to support multi-

domain SDN provisioning.

4.2.1. Selecting Path Attributes

In the BGP operation described in Section 2.5.2, the Established state starts when two

domains are connected and communicate to each other. Within this state, BGP UPDATE

messages are exchanged. As described in Section 2.5.3, Path Attributes defines the

character of an advertised BGP Route. A set of selection criteria should be determined to

help with the decision of which attributes will be used for multi-domain SDN

provisioning.

Firstly, multi-domain provisioning should be implemented in a production network which

could also have a connection to legacy IP networks and still adopt the implementation of

a router gateway. The criteria for the attributes for provisioning purposes are:

a. The attribute used should be accepted by the non-SDN network to maintain

compatibility. As SDN domains might be connected to non-SDN domains, the

attributes should not affect the connection to non-SDN domains, and both SDN

and non-SDN peering should be supported.

b. The received attribute must be forwarded to the BGP Speaker inside the SDN

network. This criterion will accommodate the use of ra outer gateway in the

implementation of the production network. The router is commonly called the

Edge router, and it can be implemented both as the Customer Edge (CE) router

and Provider Edge (PE) router.

The matched BGP Path Attributes category is the Optional Transitive, and it will be used

57

as the first selection criteria. The second selection criteria should be motivated by the

published scenarios where path attributes were used to exchange or collect data. Based

on this publication, it is assumed that the path attributes could be adopted for carrying

provisioning data.

According to the list of Path Attributes published by IANA [86] and based on the first

and second criteria which were described above, Table 4-1 shows the selected BGP Path

Attributes for multi-domain SDN provisioning, i.e. Community and Extended

Communities.

Table 4-1 Selection of BGP Path Attributes for Multi-domain SDN Provisioning

No. Path Attributes

Criteria 1:

Optional-

Transitive

Criteria 2:

Published

Scenarios

Remarks

1 ORIGIN - - Not selected

2 AS_PATH - - Not selected

3 NEXT_HOP - - Not selected

4 MULTI_EXIT_DISC - - Not selected

5 LOCAL_PREF - - Not selected

6 ATOMIC_AGGREGATE - - Not selected

7 AGGREGATOR - - Not selected

8 COMMUNITY ✓ ✓

Selected.

This path attribute was used for

data collection [87].

9 ORIGINATOR_ID - - Not selected

10 CLUSTER_LIST - - Not selected

11 MP_REACH_NLRI - - Not selected

12 MP_UNREACH_NLRI - - Not selected

13 EXTENDED
✓ ✓ Selected.

58

No. Path Attributes

Criteria 1:

Optional-

Transitive

Criteria 2:

Published

Scenarios

Remarks

COMMUNITIES This path attribute was used for

QoS marking [88] and Link

Bandwidth exchange [89].

14 AS4_PATH ✓ - Not selected

15 AS4_AGGREGATOR ✓ - Not selected

16 PMSI_TUNNEL ✓ - Not selected

17
Tunnel Encapsulation

Attribute
✓ - Not selected

18 Traffic Engineering - - Not selected

19
IPv6 Address Specific

Extended Community
✓ - Not selected

20 AIGP - - Not selected

21 PE Distinguisher Labels ✓ - Not selected

22 BGP-LS Attribute - Not selected

23 LARGE_COMMUNITY ✓ - Not selected

24 BGPsec_Path - - Not selected

25
BGP Community

Container Attribute
✓ - Not selected

26 Internal Only to Customer - - Not selected

27 Unassigned - - Not selected

28 BGP Prefix-SID ✓ - Not selected

29 Unassigned - Not selected

30 ATTR_SET ✓ - Not selected

4.2.2. Communities and Extended Communities Attributes for Multi-
domain SDN Provisioning

The BGP Communities Attribute is a BGP Path Attribute that may be used to pass

additional information to both neighbouring and remote BGP peers [79]. A community is

a group of destinations which share common properties. Each AS administrator may

define to which communities a destination belongs. By default, all destinations belong to

59

the general Internet community.

The BGP Extended Communities Attribute is a BGP Path Attribute that provides a

mechanism for labelling information carried in BGP-4 [80]. The labels can be used to

control the distribution of this information, or for other applications. This attribute

provides the enhancement of the Communities Attribute in terms of extended range and

additional Type Field.

Each attribute has a data format. The Communities Attribute data format length is four

octets or 32 bits, with the two first octets used for the AS number while the last two octets

are used for the community values. The Extended Communities Attribute data format

length is eight octets or 64 bits, with the first two octets used for Type Fields, the next

two octets are used for the AS number, while the last four octets are used for the

community values. The data formats are shown in Figure 4-1.

Figure 4-1 Data Formats of Selected Patch Attributes.

The attributes can be adopted so that values for each field can be examined for

provisioning purposes. The IETF documentation specifies the values for each field. As

the community value is defined privately between peers, any value could be used, except

the values that already specified in the IETF document. Those values are presented in

Table 4-2 and Table 4-3.

a) Communities Attribute’s
Data Format

b) Extended Communities Attribute’s
Data Format

AS number Communities Value

2 octets 2 octets

0 15 16 31

Type Fields AS number Communities Value

2 octets 2 octets 4 octets

0 15 16 31 32 63

60

Table 4-2 Communities Attribute Values

Fields Current Value Rules
Proposed Value for Multi-

domain SDN Provisioning

AS number
16 bits AS number

0x0000 and 0xFFFF are reserved
No changes

Community Value

16 bits numerical value, with

0x0000 until 0xFFFF are

reserved.

No changes

Table 4-3 Extended Communities Attribute Values

Fields Current Value Rules
Proposed Value for

Multidomain SDN Provisioning

Type Field

0x00 or 0x40 for 2 octets AS

number

0x02 set to indicate Route Target

Community

0x03 to indicate Route Origin

Community

0x03

AS number
16 bits AS number

0x0000 and 0xFFFF are reserved
No changes

Community Value 32 bits numerical values No changes

From [80], a route may carry both the BGP Communities attribute, as defined in

[RFC1997], and the Extended BGP Communities attribute. Based on the BGP FSM

operations, an information flow of the message exchanged for provisioning is shown in

Figure 4-2. In that diagram, Domain A is the SDN domain that wants to send a

provisioning message. It has established peering with Domain B, another SDN domain,

using eBGP. Domain A should be able to send to Domain B a BGP UPDATE message

which contains Communities and Extended Communities Attributes. Domain B will

receive the BGP UPDATE and store the received Communities, and Extended

Communities Attributes inside its RIB. A message exchange application in the SDN

controller will read the received attributes and extract their values to be used later in the

provisioning application.

61

Figure 4-2 Information Flow Diagram of Exchanged Message in Multi-domain SDN.

4.3. Inter-Domain SDN Message Exchange Implementation

The messaging design in Section 4.2.2 was implemented to be verified. The

implementation used ONOS SDN controller. ONOS provides an open platform that

simplifies the creation of innovative and beneficial network applications and services that

work across a wide range of hardware [90]. The ONOS Java APIs are the primary APIs

of the ONOS system [91]. ONOS has an application that supports the connection between

the SDN domain with another SDN domain or a legacy IP network, called SDN-IP. SDN-

IP is an ONOS application that allows SDN domain to connect to external networks on

the Internet using the standard BGP [76]. From the BGP perspective, the SDN network

is seen as a single AS that behaves as a traditional AS. Within the AS, the SDN-IP

application provides the integration mechanism between BGP and ONOS. At the protocol

level, SDN-IP behaves like a regular BGP speaker. From ONOS perspective, it is just an

application that uses its services to install and update the appropriate forwarding state in

the SDN data plane [76].

4.3.1. ONOS SDN-IP Structure

ONOS is a SDN controller that was designed and developed to provide scalability, high

performance, resiliency, legacy and next-generation device support [92]. It has been used

Domain A
ASN A

Domain B
ASN B

BGP UPDATE Message
Path Attributes:
- Communities
- Extended Communities

BGP session between
Domain A and B is in

Established state

Message Exchange
Application

Extracted Values of:
- Communities

- Extended Communities

62

as the base for the development of next-generation solutions in the service provider

network, such as the Central Office Re-architecture as Datacenter (CORD) [93] and Open

Disaggregated Transport Network (ODTN) [94].

SDN-IP as an ONOS application supports the interconnection between SDN domains and

the lagacy IP network using BGP. The SDN-IP network architecture shown in Figure 4-3,

is composed of OpenFlow enabled switches controlled by an ONOS controller running

the SDN-IP application and one or more internal BGP speakers. The internal BGP

speakers use eBGP to exchange BGP routing information with the border routers of the

adjacent external networks, and iBGP to propagate that information amongst themselves

and to SDN-IP application instances [95].

Figure 4-3 SDN-IP Architecture

As described in [95], the BGP speakers within SDN-IP receive the routes advertised by

the external border routers belonging to external networks. The routes are processed

according to the normal BGP processing and routing policies, and eventually re-

advertised to the other external networks. The routes are also advertised to the SDN-IP

application instances which act as iBGP peers. The SDN-IP application will select the

best route for each destination according to the iBGP rules and translated into an ONOS

ONOS

SDN-IP

BGP Speaker

iBGP

eBGP

eBGP eBGP

eBGP

OpenFlow

External
NetworkExternal

Network

63

Application Intent Request. The Application Intent Request will be translated by ONOS

into forwarding rules in the data plane, and those rules are used to forward the transit

traffic between the interconnected IP networks. ONOS provides a built-in Intent-

Framework [96] for installing low-level flow rules into the network devices using abstract

high-level intents. There are two types of Application Intents used by SDN-IP, i.e. Single-

point to Single-point intents and Multi-point to single point intents. The BGP speakers

and the SDN-IP application instances are interconnected in a typical BGP deployment: a

full iBGP mesh, route reflectors, and other deployments. The only difference is that the

SDN-IP instances do not need iBGP peering among themselves; i.e., they only need to

interconnect with the BGP speakers.

4.3.2. Modification of ONOS BGP Routing Modules

As discussed in Section 4.2.2, to implement the message exchange mechanism, the SDN-

IP network should support the implementation of Communities and Extended

Communities attributes. The border routers and internal BGP speakers are implemented

by an existing BGP router or appropriate BGP software. As for the SDN-IP application,

according to its developer’s guide [97], the application software modules rely on the

ONOS BgpSessionManager module to get the BGP session information from the BGP

speaker, as shown in Figure 4-4.

The SDN-IP developer guide [97], describes the BgpSessionManager responsibilities as

being responsible for interfacing with the BGP speakers, listening for incoming iBGP

connections and creating a BgpSession instance per-session. The BgpSession instance is

responsible for the following:

a. Receiving and decoding the BGP protocol messages.

b. Generating and transmitting the necessary BGP control messages (BGP Open and the

64

periodic BGP Keepalive messages) that are needed to establish and maintain the BGP

session.

c. Generating BGP notifications if a BGP error is detected (as defined by the BGP

protocol specification).

d. Translating the BGP Update control messages into BGP routing updates that are

submitted to the BgpSessionManager.

Figure 4-4 SDN-IP Software Modules

An observation of the BgpSessionManager related javascript in the ONOS online

repository [98] shows that the current ONOS release has not implemented Communities

and Extended Communities attributes. Thus, modifications of the software modules must

be carried out to implement those attributes in the ONOS BGP routing modules. Three

software modules must be modified, i.e. BgpConstants, BgpUpdate, and BgpRouteEntry.

RouterSdnIpConfigReader

PeerConnectivity

IntentSynchronizer

PeerConnectivityManager SdnIpService RouteListener

BgpSessionManager

IntentService

SDN-IP

C
o

n
fi

gu
ra

ti
o

n
A

rp
Se

rvice
Le

ad
e

rsh
ip

Se
rvice

BGP Session of
iBGP from the BGP

Speaker

65

Figure 4-5 Software Modules Modifications

BGP session modules from the ONOS SDN-IP application BGP speaker component were

modified to enable the Communities and Extended Communities Attributes. The software

modules and their modifications are described in Table 4-4.

Table 4-4 BGP Software Modules Modifications

Software Modules

Software

Module

Functions

Modifications

BgpConstants.java

Define the

BGP Session

related

constants

Add new constants definitions of Community as eight

octets int data and Extended Community as 16 octets int

data. Any BGP session software modules will use these

new constants.

BgpUpdate.java

Define a class

to handle

BGP

UPDATE

message

Define the “Long” data type wrapper for Community and

Extended Community type of data and format the stored

value as “Pair<Long, Long>” for Community and

Triple<Long,Long,Long>” for Extended Community.

Add new parsing process of Community and Extended

Community Attributes within BGP UPDATE message

and add them in the added Route in BGP.

Define the Community and Extended Community format

to be read by BgpRouteEntry process, therefore it can

understand the format of <AS number>:<Community

Values> for Community and <TypeFields>:<AS

number>:<Community Values> for the Extended

community.

BgpSessionManager

BgpConstants BgpRouteEntry BgpUpdate

Modified to define new
constants: Communities &

Extended Communities
definitions

Modified to include
Communities &

Extended Communities Value in
Route

Modified to add Communities &
Extended Communities

attributes in BGP UPDATE

66

Software Modules

Software

Module

Functions

Modifications

BgpRouteEntry.java
Represent a

Route in BGP

Include the Communities and Extended Communities in

the BGP Route advertised in BGP session towards

BgpSessionManager.

Define a class to represent Communities and Extended

Communities Attributes.

Adds the new attributes to the existing Hash Code

computation process

The complete code for those modifications can be viewed in the appendixes.

4.4. Verification of Message Exchange Mechanism

The implementation of a message exchange mechanism in ONOS was verified by

comparing the Communities, and Extended Communities values sent from an external

network with the values received by the ONOS controller SDN-IP application. The

verification utilises a SDN-IP network topology implemented with Mininet [82] and

Quagga Software [83]. Wireshark and an additional ONOS command line interface (CLI)

command were used to verify this implementation.

4.4.1. Verification Topology

The verification topology was built using a Mininet SDN emulator. The BGP router and

internal BGP speaker were implemented using Quagga [83]. The devices used are

presented in Table 4-5, and the topology is shown in Figure 4-6

67

Figure 4-6 Verification Topology

The Border Router (r1) was configured to send the attributes in its routing information,

as follows:

a. 65011:200 as Community Attribute

b. 65011:200 as route origin Extended Community Attribute

The ONOS controller with a BGP UPDATE extension, and the activated SDN-IP

application were installed, running and connected to the BGP Speaker via a link using

TCP port 2000. Wireshark software was setup to capture traffic in the bgp-eth0 interface

and using an ONOS console the CLI command was executed.

Table 4-5 Verification Devices

Devices Interfaces IP Address

OpenFlow Switch
s1-eth0 and s1-eth2 (Data Plane)

s1-lo for (Control Plane)

Control plane uses loopback IP

address 127.0.0.1

BGP speaker (bgp) bgp-eth0 and bgp-eth1
bgp-eth0: 10.0.1.101

bgp-eth1: 10.10.10.1

Border router (r1) r1-eth0 and r1-eth1
r1-eth0: 10.0.1.1

r1-eth1: 192.168.1.1

OpenFlow Switch

BGP Speaker (bgp)

Border Router (r1)

OpenFlow

iBGP

eBGP

bgp-eth0

192.168.1.0/24
network

r1-eth0

ONOS Controller with SDN-IP

ASN: 65011

ASN: 65000

68

4.4.1. ONOS Verification CLI

An additional CLI was initiated and linked to the ONOS BgpRoutesListCommand

module. The command is “bgp-routes -c” was executed inside the ONOS console to

display the Communities and Extended Communities values which are retrieved from the

ONOS controller BGP speaker. The script is shown in the appendix.

4.5. Results

The verification was carried out by starting the SDN-IP network. The Border Router (r1)

and BGP speaker (bgp) commence the BGP session and begin sending BGP messages.

The Wireshark application captured the packets that pass through the bgp-eth0 interface,

which is the BGP speaker interface peered with the Border Router (r1). As presented in

Figure 4-7, the Wireshark screen capture shows the content of BGP UPDATE messages

received by the BGP Speaker (BGP). The messages include both Community and

Extended Community attributes, i.e. 65011:200 as Community and 65011:200 as route

origin Extended Community Attribute. The sub-type field value is 0x03 because of the

route origin type of Extended Community.

69

Figure 4-7 BGP UPDATE Message Received by BGP Speaker.

The attributes received by BGP speaker will be stored in its RIB and should be advertised

to all peers, including to the ONOS controller SDN-IP application. Using the “show ip

bgp” command inside the BGP Speaker console, the attributes information is presented,

as shown in Figure 4-8. The result verified the values of the Community and Extended

Community attributes are the same value that was sent by the Border Router and the

attributes were correctly advertised to the ONOS controller SDN-IP application.

70

Figure 4-8 Routing Table Entry in BGP Speaker.

The SDN-IP application peers with the BGP Speaker using iBGP via a TCP link using

port 2000. The verification in the ONOS controller should also test the modifications

made to the ONOS software modules. The modifications should enable the ONOS

controller BgpSessionManager module to receive the path attributes from the BGP

UPDATE message from Border Router (r1) advertised by BGP Speaker (bgp). Using the

“bgp-routes -c” command inside the ONOS console, the Community and Extended

Community attributes are shown, as presented in Figure 4-9. The result verified that the

modification successfully enabled the ONOS controller to retrieve Community and

Extended Community attributes from the BGP Speaker advertisement and the values

received were the same as the value sent.

Figure 4-9 Displaying Community and Extended Community Attributes in ONOS.

The results show that both Community and Extended Community attributes can be sent

from a legacy IP or SDN domain into a SDN domain. The sender domain can be modified

to be an SDN domain according to the test in Section 3.3. Therefore, the results presented

verify the successful implementation of a multi-domain SDN message exchange

bgp> sh ip bgp 192.168.1.0
BGP routing table entry for 192.168.1.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Advertised to non peer-group peers:
10.10.10.2
65011
10.0.1.1 from 10.0.1.1 (10.0.1.1)
Origin IGP, metric 0, localpref 100, valid, external, best
Community: 65011:200
Extended Community: SoO:65011:200
Local update: Fri Sep 28 18:35:16 2018

bgp>

onos> bgp-routes -c

IPv4 Network BGP Community BGP Extended Community
192.168.1.0/24 65011:200 3:65011:200

IPv6 Network BGP Community BGP Extended Community

onos>

71

mechanism.

4.6. Conclusion

In this chapter, the BGP Path Attributes were selected to support provisioning in multi-

domain SDN. The selection process considered several criteria, which include published

scenarios outside multi-domain SDN provisioning. The selected path attributes were

Communities and Extended Communities attributes. Consideration of their data format

and flow diagrams in the mechanism were also defined.

The implementation of the proposed information exchange for multi-domain SDN

provisioning was developed using an ONOS controller, with its SDN-IP application. The

SDN-IP application allows the SDN domain to connect to external networks (SDN or

non-SDN) on the Internet using the standard BGP. This implementation required

modifications to be made to several of the ONOS controller software modules. The

modifications were intended to enable the retrieval of Community and Extended

Community attributes.

The verifications were carried out using a SDN-IP network topology and additional

ONOS CLI command shells. The results of the test scenario, in the form of Wireshark

capture results from the BGP Speaker, successfully displayed both attributes in the ONOS

console. The results verified the implementation of the information exchange mechanism

for multi-domain SDN provisioning, which forms the basis of the multi-domain SDN

provisioning framework provided in the next chapter.

72

Chapter 5 Multi-domain SDN Automatic

Provisioning Framework

73

5.1. Overview

In Chapter 4, the information exchange mechanism for multi-domain SDN provisioning

has been studied. The Communities and Extended Communities attributes were selected

as the information transport media for the exchange between domains. The mechanism

was implemented in the ONOS Controller SDN-IP application by modifying several

software modules.

The exchange mechanism can be used to send specific information that can be used to

trigger a provisioning action in the remote domain. The provisioning action would occur

automatically without any intervention from the remote domain administrator. In this

chapter, the proposed framework for the automatic provisioning in multi-domain SDN

will be discussed and implemented using a test bed implementation.

5.2. Multi-domain SDN Provisioning Challenges

Network provisioning is a subset of the network operation processes that are defined by

the TeleManagement Forum (TMForum) as the Enhanced Telecommunications

Operation Map (eTOM) – The Business Process Frameworx [99]. In this standard, the

TMForum defined network provisioning as a resource provisioning process in the

resource domain. Resource provisioning is defined as encompassing allocation,

installation, configuration, activation and testing of specific resources to meet the service

requirements, or in response to requests from other processes to alleviate specific resource

capacity shortfalls, availability concerns or failure conditions.

5.2.1. Automated Provisioning

The provisioning of a service in a network involves network operator roles and processes.

Network administrators and engineers are the actors who stand in the first line to satisfy

customer demand. They need to create and modify the network configuration to balance

74

the customer requirements with efficient network operation.

The network provisioning automation was developed in part by the motivation to reduce

operational complexity and capital expenditure by diminishing human involvement in

network operational tasks, as well as optimisation of network capacity, coverage, and

service quality [100]. Automation was introduced through the integration of network

planning, configuration and optimisation, into automated processes that require a

minimum of human intervention. The TMForum has released a definition of their zero-

touch provisioning for network management and operation as part of their Zero-time

Orchestration, Operations and Management (ZOOM) model [101]. This zero-touch

operation was defined as a self-service operation which can respond with the speed and

agility to outpace competitors, and as guidance, it should require minimal intervention

from expert resources and enable customer configuration.

One of the simplest examples of zero-touch provisioning is the IP address assignment

using the Dynamic Host Control Protocol (DHCP) server as described in [100]. In this

example, the IP address allocation should be configured using the DHCP server. A

computer or any device that is connected in the same network will send a DHCP query

and the computer is configured with an IP address allocated by the DHCP server without

any end-user intervention.

The use of SDN in automatic provisioning has been mentioned in the TMForum [101].

The programmability of SDN creates an opportunity to develop software that carries out

automatic provisioning.

5.2.2. SDN Provisioning

The addition of two network devices usually identifies SDN networks - the controllers

and OpenFlow enabled switches. The two network elements work together to facilitate

75

the control and management of network traffic and to transmit network traffic from one

location to another. The controller manages the traffic in the network by manipulating

flow entries inside the flow tables found within SDN enabled switches. Flow tables also

contain the instructions to be applied to the traffic. When a packet arrives at a switch, the

switch will match the header fields with flow entries found in the flow table. If any entry

matches, the indicated actions are performed, and switch counters are updated. If packet

header fields do not match an entry in the switch flow table, the switch will ask the

controller for instructions on what to do with the packet by sending a message to the

controller with the packet header. The matching process can be observed in Figure 5-1.

Figure 5-1 Example of Matching Process in SDN.

Figure 5-1 provides examples of the fields of flow entry rules in a flow table with possible

actions. This example shows the fields of a packet header. As explained in the OpenFlow

specification [30], the match fields identify a unique flow entry in a specific flow table.

The specification also explains that a flow entry instruction may contain actions to be

performed on the packet at some point of the pipeline. Therefore, every flow table will

RULE ACTION STAT

Packet + Counters

1. Forward packet to port(s)
2. Encapsulate & forward to controller
3. Drop Packet
4. Send to normal processing pipeline

Switch
Port

MAC
src

MAC
dst

Eth
Type

VLAN
ID

IP src IP dst
TCP
psrc

TCP
pdst

Flow Table with 3 sections

Control Plane: SDN Controller

Network Applications

Data Plane

OpenFlow

Flow TableFlow Table

OpenFlow

OpenFlow Switch OpenFlow Switch

76

have its own match fields along with its actions, in accordance with the OpenFlow

specification.

In a single domain SDN architecture, OpenFlow is the protocol that is used to pass

messages between the OpenFlow enabled switch and the controller’s southbound

interface. Before the controller and OpenFlow enabled switch can talk to each other, the

administrator will pre-configure the OpenFlow enabled switch to be paired with the

controller. Therefore the OpenFlow enabled switch will always accept flow entries from

this controller. The OpenFlow specification [30] defines the OpenFlow messages that are

used to add, modify or remove flow entries of flow table. This will change how the

network behaves and the basic provisioning process in SDN.

In the multi-domain SDN architecture, the first challenge to do provisioning between

SDN domains is to identify how information be exchanged between the domains. The

second challenge is how the information can be understood as a network provisioning

request. Both challenges are basic requirements that need to be fulfilled to implement

provisioning in multi-domain SDN.

5.3. Design of a Multi-Domain SDN Provisioning Framework

In the previous section, it was mentioned that SDN has the potential to implement

automated provisioning which will reduce human intervention when configuring network

devices. It was also mentioned that two fundamental challenges exist when provisioning,

i.e. an information exchange mechanism between SDN domains and the format of that

information related to the provisioning of the SDN domain. The information exchange

was discussed in the previous chapter; therefore, the same mechanism will be applied in

this chapter.

77

5.3.1. Proposed Provisioning Procedures

In multi-domain SDN, the provisioning procedures start when one domain requests a

provisioning action to be conducted in the other domain. As a prerequisite, both domain

administrators should have agreements about the provisioning actions and parameters that

can be carried out using the multi-domain SDN provisioning framework. The agreed

actions and parameters are very specific to each party, based on their needs and could be

updated when required. Both parties are likely to have this detail included in their SLA

documentation.

To describe the common procedures, the SDN domain which requests a provisioning

action is defined as the Sender. The SDN domain that accepts the request, and conducts

the provisioning actions, is identified as the Receiver. It is assumed that all of the pre-

configuration parameters and provisioning actions have been put in place and both Sender

and Receiver are already connected using a BGP session. Each network domain had an

AS number assigned. The procedures can be explained as follows:

1) Initiation of the provisioning request. In this first step, the Sender will initiate a

provisioning action that will be sent to the Receiver. The provisioning action is

matched with an agreed list of provisioning actions that is included in the current

SLA. The SLA identified list will provide values that are to be sent from the Sender

to the Receiver.

2) Creating the provisioning request. In the second step, the Sender’s controller will

create an update in its BGP module to add Communities and Extended Communities

attributes with the values determined from the previous step. The BGP configuration

in the Sender will be updated.

3) Sending the provisioning request. In this step, the Sender will invoke and send the

78

BGP UPDATE message to the Receiver. The BGP UPDATE message will carry the

Communities and Extended Communities attributes values to the Receiver.

4) Accepting the provisioning request. In the next step, the Receiver receives the BGP

UPDATE message. In the Receiver domain, the BGP Speaker accepts the BGP

UPDATE message and extracts the Communities and Extended Communities

attributes values which are then matched to the agreed SLA list of provisioning

actions. If the values extracted from the Communities and Extended Communities

attributes matches one or more specific actions in the list, the provisioning actions are

then advertised to the SDN controller, which then determines the actions that it needs

to take.

5) Conduct the provisioning action. If provisioning actions are to occur, the Receiver’s

controller will generate OpenFlow messages with parameters and actions based on

the information stored in the SLA agreed provisioning list. The OpenFlow messages

are then sent to the linked OpenFlow enabled switch, which installs the flow updates

in its flow table.

The steps are illustrated in Figure 5-2.

Figure 5-2 Multi-domain SDN Provisioning Procedure

1

2 4

3

5

Receiver’s
Controller

Sender’s
Controller

Sender’s
Network

Receiver’s
Network

SLA

BGP Update

Flow Table

79

5.3.2. Proposed Framework

The framework shown in Figure 5-3, utilises a BGP session established between SDN

domains and uses the BGP UPDATE message as the information exchange media. The

framework consists of four main components, i.e. BGP speaker, application modules,

SDN Controller, and OpenFlow enabled switch. The framework can be described as

follows:

a. The BGP speaker acts as a BGP route server that uses the BGP routing protocol and

advertises routes to BGP peers. In this framework, the BGP speaker receives and

advertises a prefix to the BGP speaker in the other SDN based domains via eBGP.

The BGP speaker also advertises the prefix to the application modules via iBGP. This

advertised prefix will contain information to be used by the application module to

establish and modify the network service. The additional information for modifying

the network service is carried inside the BGP UPDATE message, which is the

message that actively exchanges information between BGP peers once the BGP

session is established.

b. The application modules receive prefix information from the BGP speaker. Initially,

the application modules will make the route selection and push a request to the

controller to create forwarding rules in the data plane. The application modules also

will check the BGP UPDATE message to extract the Communities and Extended

Communities attributes that will be used to create a request to the controller to create

new forwarding rules in the data plane. The process will be repeated if another BGP

UPDATE message is received with those attributes.

c. The controller in this framework acts to create forwarding rules based on requests

from application modules. The controller sends OpenFlow messages to install flow

80

entries into the linked OpenFlow enabled switch.

d. The OpenFlow enabled switch acts as a forwarding device that forwards traffic

according to the flows installed in its flow table. Any changes in the flow table entries

will change the path of the traffic. In this framework, the information sent from

different SDN domains can be used to modify the flow table entries.

Figure 5-3 Multi-domain SDN Provisioning Framework

5.4. Framework Implementation in ONOS Controller

The automated provisioning framework proposed in Section 5.3.2 was verified and tested.

As the information exchange mechanism presented in Section 4.3 was implemented on

top of ONOS controller, the provisioning framework was implemented using the same

ONOS controller for simplification.

5.4.1. INDOPRONOS Software Modules

The basis of this framework implementation is the ONOS controller that was modified

and described in Section 4.3, with the inter-domain SDN information exchange

mechanism applied. The existing SDN-IP application will be used in the framework

implementation, and new software modules are developed to complete the

implementation.

INDOPRONOS is the name given to the new software modules developed to complete

the implementation of automated multi-domain SDN provisioning framework.

Controller

Application
BGP

Speaker
iBGP

eBGP REST API

OpenFlow

eBGP
Session to

other
Domain

OpenFlow Switch

81

INDOPRONOS works together with the SDN-IP application module inside the ONOS

controller to conduct the provisioning process. From the BGP perspective, the SDN

domain will be considered as a single AS domain with the same properties as a traditional

AS domain. At this level, SDN-IP behaves like a regular domain interconnection

application based on BGP, while INDOPRONOS behaves as the provisioning

application.

The SDN-IP application will select the best routes according to the iBGP rules and

translates those routes into an ONOS Application Intents Request. ONOS translates the

Application Intents Request into forwarding rules in the data plane to forward the transit

traffic between the interconnected IP networks. SDN-IP creates the ONOS Intents that

are used by the external BGP routers to peer with the BGP Speakers using the

interconnected data plane.

82

Figure 5-4 INDOPRONOS Application Algorithm

There are two types of Application Intents used by the SDN-IP application [95], i.e.

single-point to single-point intents and multi-point to single-point intents. The single-

point to single-point intents are unidirectional intents, which are used to establish the BGP

peering session between external BGP routers with BGP speakers. The intents connect

two single attachment points in the SDN network. The multi-point to single-point intent

is a unidirectional intent used to connect the hosts of external networks. Intents are

associated with an IP Prefix (IP destination) that connects the ingress attachment points

of SDN networks with the single egress attachment point.

Start

Extract ASN, Communities,
and Extended Communities

values

Compare the values of
<AS Number>:<Communities> & <ASN>:<Extended Communities>

to the pre-populated values in the provisioning rules

Exact Match?
Alter SDN-IP Intents by
installing INDOPRONOS

application intents

De-alter SDN-IP Intents
by withdrawing
INDOPRONOS

application intents

Check for Prefix Update from
BGP Speaker

Stop

Yes No

Install FlowRules in
OpenFlow Switch

Delete FlowRules in
OpenFlow Switch

83

The egress attachment point is the connection to the best next-hop router toward the

destination IP prefix. With the intent, an IP packet is matched using the IP destination

address while entering the ingress edge of the SDN network. The packet will be forwarded

toward the corresponding egress attachment point based on the selected forwarding entry

that is the best match. Also, right before the packet is forwarded, the “change destination

MAC address” action is applied such that the data packet will contain the MAC address

of the egress IP router toward the destination.

5.4.2. INDOPRONOS Algorithm

INDOPRONOS was developed using several Java classes that were based on the existing

SDN-IP Java classes (IntentSyncrhonizer), ONOS interface (RouteListener), and ONOS

services (BgpSessionManager and IntentService). The INDOPRONOS application acts

to alter the normal SDN-IP operation. The basic algorithm of the proposed application is

shown in Figure 5-4.

INDOPRONOS detects the BGP Communities attribute inside a BGP UPDATE message.

The first check is performed to match the AS number in the first two octets to an

authorised AS number (pre-provisioned based on SLA). If no match occurs, no action is

taken. If a match is found, then the second check occurs using the attribute VALUE octets.

The VALUE is matched with the action list entries, as shown in Table 5-1. The

application performs a different logic process as shown in Figure 5-4. If no match occurs,

no action is taken. If a match is found, INDOPRONOS will install new intents to alter the

SDN-IP Intents, but if no match is found, INDOPRONOS will widthdraw its intents from

ONOS controller.

When INDOPRONOS install its new intents, it will carry out the provisioning action by

installing new flow rules in the OpenFlow switch. While, when INDOPRONOS

84

widthdraw its new intents, it also will carry out the provisioning action by deleting the

previous flow rules in the OpenFlow Switch. The full code scripts of

IndopronosConnectivityManager.java and Indopronos.java are presented in the

Appendix.

5.4.3. Implementation Test Bed

A test bed environment incorporating the implementation of the automatic multi-domain

SDN provisioning framework was built to do testing. The prototype host was setup within

a Ubuntu Virtual Machine (VM) with Mininet and the Quagga Software Routing Suite.

The basic configuration was developed from the topology described in Section 4.4.1. A

description of how the prototype was used to test the framework in an existing BGP

network is provided in this section.

Table 5-1 SLA Example

AS Number VALUE Route Definition SLA Actions

65011 100 Alternate Route (port 6) Change to Premium Link

65011 Other Default Route (port 5) Change to Common Link

Other 100 Default Route (port 5) Change to Common Link

Other Other Default Route (port 5) Change to Common Link

The scenarios used for testing are focused on how the INDOPRONOS application is used

to implement the multi-domain SDN provisioning framework. Therefore, it will be

observed from the Receiver side, while on the Sender side, a regular BGP router is used

to send the BGP UPDATE message which contains Communities and Extended

Communities attributes during testing.

As mentioned in Section 5.2.1, specific connectivity arrangements between domain

administrators are typically agreed upon and listed in an SLA to enable the zero-touch or

automated process. An example of a connectivity arrangement that could be included in

85

the SLA is presented in Table 5-1, and it was used during the testing. The Sender domain

passes the values in Table 5-1 to the Receiver domain inside the BGP Communities and

Extended Communities attributes.

The ONOS controller was installed in the Ubuntu VM, and the Quagga [40] software was

used as the BGP Speaker. An OpenFlow Virtual Switch (OVS) [41] was installed in the

Ubuntu VM and a connection to the switch was made using the loopback interface. The

Linux containers were used to create other domains which were represented by Quagga

based BGP routers, as shown in Figure 5-5 Test Bed Implementation using ONOSFigure

5-5.

Based on the SLA example in Table 5-1, the framework utilises the SDN-IP application

inside the Receiver domain to connect the Sender domain to the target network via the

default route, i.e. BGP Router 2 via port number 5 of the OpenFlow switch. This situation

occurred if the Communities value is not 100. If the Sender domain sends Communities

value of 100 inside both Communities and Extended Communities attribute, the

framework will utilize the INDOPRONOS application inside the Receiver domain to

create two point-to-point intents, which will create an alternate route in the Receiver

domain, i.e. forward the traffic flows to BGP Router 3 via port number 6 of the OpenFlow

switch. The framework was tested using both scenarios.

The framework includes a BGP UPDATE message monitoring function for messages sent

from the Sender to the Receiver that examines the Communities and Extended

Communities attribute value. If the values do not match an action entry in the list, the

process sets the default connectivity. If an action entry match is found in the list, the

process will alter the default connectivity to that specified by the action entry.

86

Figure 5-5 Test Bed Implementation using ONOS

5.5. Test Scenarios

There were two scenarios were developed to test the framework. Those scenarios were

used to verify the behaviour of the framework implementation and test the framework

using a simple Bandwidth on Demand use case. The list of virtual devices used in both

scenarios is presented in Table 5-2.

Table 5-2 Test Bed Components

Virtual Devices Networking Remarks

ONOS Controller Loopback (lo) interface

Running inside the Ubuntu VM

with SDN- IP and

INDOPRONOS application

activated

BGP Speakers

loopback (lo) interface

10.1.1.0/24 to BGP Router 1

10.1.2.0/24 to BGP Router 2

10.1.3.0/24 to BGP Router 3

Using Quagga and it is connected

to ONOS Controller with iBGP.

Together with the ONOS

controller and OpenFlow switch,

they act as Receiver domain.

BGP Router 1

Peered with BGP Speakers with

10.1.1.0/24 network.

It is the gateway to the 192.168.1.0/24

network.

Act as the Sender domain

established the eBGP session

with Receiver domain.

BGP Router 2

Peered with BGP Speakers with

10.1.2.0/24 network.

The default gateway of the

192.168.2.0/24 network.

Act as the default gateway to test

the provisioning. It connects the

192.168.2.0/24 network with a

common link.

BGP Router 3

Peered with BGP Speakers with

10.1.3.0/24 network.

Alternate gateway of 192.168.2.0/24

network

Act as the other gateway to test

the network. It connects to BGP

Router 4.

BGP Router 1

SDN-IP Indopronos

ONOS Core

iBGP

OpenFlow Switch

OpenFlow

BGP Router 2
ASN:65012

BGP Router 3
ASN:65013

10.1.2.2 10.1.3.2

10.1.1.2 1 2 3
4

5 6

Sender
ASN: 650011

Receiver
ASN: 65000

BGP Speaker

87

Virtual Devices Networking Remarks

BGP Router 4
Private BGP Router of 192.168.2.0/24

network.

BGP Router 4 connects the

192.168.2.0/24 network with a

premium link.

5.5.1. Scenario A: Framework Verification

Scenario A is the test scenario used to verify the framework with the ONOS controller

implementation. The framework was used for an end-to-end test using the test bed. As

shown in Figure 5-6, the topology used in this scenario consists of three routers, one BGP

Speaker, an OpenFlow switch, and an ONOS controller. The first BGP router is the

Sender BGP router, which will send BGP Communities and Extended Communities

Attributes to request the provisioning action. The BGP Speaker, OpenFlow switch, and

ONOS controller play a role as the Receiver. Inside the ONOS controller, the

INDOPRONOS and SDN-IP applications were installed and activated. The Scenario A

test procedure is explained as follow:

a. BGP Router 1 establishes a connection with the BGP Speaker and sends the

Communities and Extended Communities Attributes, within a BGP UPDATE

message, each with value 65011:200. Where 65011 is the AS Number of the Sender

domain, while 200 is an agreed value, between Sender and Receiver, for a specific

action. In the following scenarios, this value will be used to indicate that the network

should use a common link to forward traffic from Sender.

b. The BGP Speaker receives the value and advertises the value to the ONOS controller.

The INDOPRONOS application within the ONOS controller detects the value of the

attribute. The SDN-IP application installs the multi-point to single-point intents into

the OpenFlow switch. The intents will facilitate the default routing to port five where

the BGP Router 2 is connected.

88

c. BGP Router 1 is set to send another BGP UPDATE message with Communities value

of 100.

d. BGP Speaker received the update and advertised the new value to the ONOS

controller. The INDOPRONOS application within the ONOS controller detects the

value and installs the new intents to override the intents previously installed by the

SDN-IP application.

e. Wireshark was used to check the message contents and to check the intents installed

in the ONOS controller. The monitoring process occurs when BGP Router 1 sends a

BGP UPDATE message to the BGP Speaker.

Figure 5-6 Topology for Scenario A.

5.5.2. Scenario B: Bandwidth on Demand Use Case

The second scenario was developed based on a Bandwidth on Demand use case. This

topology is used to observe the impact of the proposed framework for a simple use case.

In [102], a use case from an operator was observed, which uses the traffic captured from

BGP Router 1
ASN: 65011

BGP Router 2
ASN: 65012

BGP Router 3
ASN: 65013

ONOS Controller
with Indopronos Application

BGP
Speaker

ASN: 65000

iBGP

: Default Route

: Alternate Route

Sender Domain

Receiver Domain

89

two enterprise customers who subscribed to an IP Transit service. The study explored the

captured traffic and discovered an over-provisioning phenomenon which will lead to a

reduction of the network operation efficiency.

Scenario B will represent a Bandwidth on Demand use case of a typical network service.

In this use case, a customer is connected to the SP network and traffic is routed to a remote

network. There are two links that can be used by this customer, as it also subscribed to an

On Demand (OD) service. The OD service enables the customer to automatically switch

between the two links and is eventually charged based on traffic utilisation over each link.

Therefore, the customer does not have to subscribe to a premium link all of the time and

can subscribe to the premium link when it is needed.

Table 5-3 Links Specifications

Links Maximum Bandwidth Link Latency

Common Link 10 Mbit/second 15 milliseconds

Premium Link 20 Mbit/second 5 milliseconds

In this scenario, the use case is implemented in the network topology shown in Figure

5-7. The topology consists of two domains, the Customer domain and SP domain.

Network A can send and receive data to Network B, which can be reached via a common

link or premium link. The link specifications are presented in Table 5-3. The customer

can switch between the two links without SP administrator intervention as it is subscribed

to the OD service.

The default route for the common link is via BGP Route 2. This route is the default route

used by Network A to reach Network B. The alternate route for the premium link is via

BGP Route 3. This route will not be chosen by the transit network under default

conditions as it has an additional hop to reach Network B, i.e. BGP Router 4.

A network operator (Network A) has subscribed to a network service with the SP network

90

using the SLA Example list shown in Table 5-1. Therefore, the customer domain

administrator can switch the link between the premium link and common link without

having to wait for the SP domain administrator to manually implement the provisioning

request.

Figure 5-7 Topology for Scenario B.

The Scenario B can be described as follows:

a. Initially, the same as Scenario A, BGP Router 1 establishes a connection with BGP

Speaker in the SP domain using eBGP. During this step, a BGP UPDATE message

was used to send Communities value of 200 in both Communities and Extended

Communities Attributes.

b. Inside the transit network, the BGP Speaker will advertise the BGP Communities

Attribute value to the local ONOS controller. The INDOPRONOS application within

the ONOS controller will detect the attributes value, and the SDN-IP application

installs the multi-point to single-point intents into the OpenFlow enabled switch. The

BGP
Speaker

ASN: 65000

iBGP

OpenFlow

: Common Link

: Premium Link

BGP Router 3
ASN: 65013

BGP Router 4
ASN: 65014

BGP Router 2
ASN: 65012

BGP Router 1
ASN: 65011

Network B
192.168.2.0/24

Network A
192.168.1.0/24

ONOS Controller
With INDOPRONOS Application

SP Domain

Customer Domain

91

intents provision the default routing to Network B via BGP Router 2.

c. When the Customer Domain administrator identifies the need to use the premium link,

BGP Router 1 was used to send a BGP UPDATE message to the transit network with

a Communities value of 100 in both Communities and Extended Communities

Attributes.

d. Inside the SP Domain, the BGP Speaker will advertise the attribute value to the local

ONOS controller. The new value is detected by the INDOPRONOS application

within the ONOS controller, and it creates the new intents that will be used to override

the intents installed in the OpenFlow enabled switch. The new intents will facilitate

the alternate route towards Network B via BGP Router 3 and 4, which is the premium

link.

e. Two network applications, i.e. fping and iperf were used to measure the Round-Trip

Time (RTT) and throughput bandwidth with packet loss from Network A to Network

B to check network performance before and after the automated provisioning.

5.5.3. Scenario C: Non-Bandwidth on Demand Subscriber

The third scenario was developed on top of the Bandwidth on Demand use case, with the

addition of another domain. The scenario was focused how the provisioning framework

can only work on the specific network, i.e. the subscribed network. This scenario is taken

from the latest conference paper presented in Section 1.5. Point f.

The test scenario topology, shown in Figure 5-8, included two enterprise customer

networks, Network A and Network C, an ISP network running INDOPRONOS

application and the destination network, i.e. Network B. There are two routes provisioned

to reach Network B, which has the same link specification of previous scenario, as shown

92

in Table 5-3.

It is assumed that the Network A customer is subscribed to a Bandwidth on Demand

service with an SLA in place. An example of what might be contained in the SLA is

shown in Table 5-1. Network C is not subscribed to this service. Network A can request

the link be switched to the premium path to gain additional link capacity on demand.

Figure 5-8 Topolgy for Scenario C.

The scenario C can be described as follows:

a. Initially, all BGP Routers establish connections with the ISP BGP Speaker using

eBGP. During this step, a BGP UPDATE message was used to send the BGP

Communities and Extended communities attributes value of 65011:200 from the

Network A and Network C BGP Routers to the ISP network.

b. Inside the ISP network, the BGP Speaker advertises the BGP Communities Attribute

ONOS Controller
With Indopronos Application

BGP
Speaker

ASN: 65000
iBGP

OpenFlow

: Default Route

: Provisioned Route

BGP Router 3
ASN: 65013

BGP Router 4
ASN: 65014

BGP Router 2
ASN: 65012

BGP Router 1
ASN: 65011

Network B
192.168.2.0/24

Network A
192.168.1.0/24

BGP Router 6
ASN: 65066

Network C
192.168.6.0/24

Subscribed to
“On Demand”

service

Regular
customer

93

value to the local ONOS controller. The INDOPRONOS application within the

ONOS controller detects the attributes value and the SDN-IP application installs the

multi-point to single-point intents into the OpenFlow enabled switch. The intents

provision the common routing to Network B via BGP Router 2.

c. For the next step, Network A and Network C’s BGP Routers send BGP UPDATE

messages to the ISP network with the attributes of 65011:100 and 65066:100

respectively.

d. Inside the ISP network, the BGP Speaker will advertise the new attribute values to

the local ONOS controller. INDOPRONOS acts based on the attribute values

received.

e. Network A and Network C’s BGP Routers send BGP UPDATE messages again to

ISP network with the attributes of 65011:200 and 65066:200 respectively.

f. Iperf, a simple network performance measurement tool, was used to measure link

bandwidth, jitter and packet loss from Network A and Network C to Network B. The

iperf performance measurement was carried out by transmitting 1470 bytes User

Datagram Protocol (UDP) packets at the speed of 15 Mbps.

5.6. Results

5.6.1. Scenario A Results

In the first scenario, the ONOS CLI and ONOS Graphical User Interface (GUI) were used

to testing the framework. The first check carried out tested the framework capability to

exchange the Communities values from the Sender to the Receiver and the second check

examined the state of the Intents list in the ONOS controller.

94

The first check was done to ensure that the changes in Communities attributes can be

retrieved by the framework. Using the same command described in Section 4.4.1, the

communities values sent from the Sender domain were checked. As shown in Figure 5-9,

the framework can retrieve the initial value sent, i.e., 200. When the Communities value

was changed to 100, it also changed, and when the value is changed back to 200 by the

Sender, the command successfully verifies that the framework retrieved the latest value.

Figure 5-9 Verification of the Communities Values Exchanged between Domains.

The second check was done to ensure that the framework can install the point-to-point

intents when they are required. The intents installed by the framework were verified using

the GUI, as shown in Figure 5-10. When the Sender transmits the initial BGP UPDATE

message with Communities value of 200, the ONOS controller installed multi-points to

single point intents from the SDN-IP application for the default route. When the Sender

transmits the Communities values of 100, we observed the ONOS controller installed new

point-to-point intents. The intents were generated by the INDOPRONOS application and

had a higher priority value to the previous multi-points to single point intents, therefore

overriding them. The new intents were used to set the traffic route to the target network

onos> bgp-routes -c

IPv4 Network BGP Community BGP Extended Community
192.168.1.0/24 65011:200 3:65011:200

IPv6 Network BGP Community BGP Extended Community

onos> bgp-routes -c
IPv4 Network BGP Community BGP Extended Community

192.168.1.0/24 65011:100 3:65011:100

IPv6 Network BGP Community BGP Extended Community
onos> bgp-routes -c

IPv4 Network BGP Community BGP Extended Community

192.168.1.0/24 65011:200 3:65011:200

IPv6 Network BGP Community BGP Extended Community

onos>

95

via port 6 of the OpenFlow enabled switch, as defined in Table 5-1. As the Sender

transmit the Communities values of 200 again, the ONOS controller withdraws the point

to point intents. Therefore the initial multi-points to single-point intents are now valid.

The scenario A test results confirmed that the multi-domain SDN automatic provisioning

framework had accomplished the objectives as follows:

a. The framework successfully applied the inter-domain SDN communication protocol

to implement the information exchange mechanism. The BGP Communities and

Extended Communities attributes can be utilised to send information to trigger a pre-

defined application on the ONOS Controller.

b. The framework successfully conducted the automatic provisioning, by automatically

overriding the default behaviour, triggered by the correct information sent by the other

domain.

96

Figure 5-10 Verification of New Installed Intents.

a) View of Intents when Communities and Extended Communities values are changed to 100

b) View of Intents when Communities and Extended Communities values are changed back to 200

97

5.6.2. Scenario B Results

In the second scenario, the framework was tested with the Bandwidth on Demand use

case. In this use case, Network A (192.168.1.0/24) is subscribed to a network service to

reach Network B (192.168.2.0/24), and the SLA example list shown in Table 5-1 is used.

The SLA agreement permits the administrator of Network A (customer domain) to change

the route to Network B by sending a BGP UPDATE message with the appropriate

Communities value.

The fping tool was used to send ICMP packets from a Network A host with IP address

192.168.1.10, to the target Network B host, with IP Address 192.168.2.10. During the

test, BGP Communities Attributes were sent from the Sender to the Receiver, and the

ping traffic was monitored. The fping tool RTT result is shown in Figure 5-11.

Figure 5-11 RTT Results from Network A to Network B.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

R
o

u
n

d
 T

ri
p

 T
im

e
(m

s)

Packet Sequence

98

The observation showed that the network behaved as expected. As the premium link has

a lower latency when compared to the common link, the measurement tools showed that

the common link RTT average value is 33.92 milliseconds, while the premium link RTT

average value is 16.65 milliseconds. The results presented show that the traffic behaved

as expected. The RTT is higher when traffic traverses through the common link and lower

when the traffic traverses through the premium link. We can also observe that the time

taken for the transit network to reroute traffic was 56 seconds. This was the time used by

BGP Route 1 and the transit network for BGP convergence, and intents installation in the

OpenFlow enabled switch. This time is not unusual for BGP updates.

The iperf performance measurement was carried out by transmitting 1470 byte User

Datagram Protocol (UDP) packets at 10 Mbps and 20 Mbps. As described in the previous

section, the common link was provisioned with 10 Mbps throughput, while the premium

link was provisioned with 20 Mbps throughput. The throughput bandwidth and packet

loss measurement results are shown in Figure 5-12 and Figure 5-13respectively.

99

Figure 5-12 Throughput Bandwidth Measured from Network A to Network B.

When the data transfer occurred using a 10 Mbps transfer rate, the route change provided

a marginal performance improvement. From the iperf tool data, we noted the common

link average throughput bandwidth was 7.85 Mbps, and the premium link was 9.99 Mbps.

While the packet loss for the common link was 16.01% and the premium link was 0.01%.

The results also demonstrate how over-provisioning can meet the agreed service level,

but with a higher network cost.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90

B
an

d
w

id
th

 (M
b

p
s)

Time (s)

Transfer Rate 10 Mbps Transfer Rate 20 Mbps

100

Figure 5-13 Average Packet Loss

When the data transfer occurred using a 20 Mbps transfer rate, the route change provided

a significant performance improvement, again as would be expected given the default

route provides a throughput of 10 Mbps. Iperf tool measurement result data shows that

the common link average throughput bandwidth was measured 8.35 Mbps, and the

premium link was 14.28 Mbps. The packet loss for the common link was 53.44%, and

the premium link was 24.24%. The 20 Mbps transfer rate testing result showed that when

Network A was using the common link, traffic from Network A to Network B was

significantly affected and more than half of the packets were lost. When the link is

changed to the premium link, the average throughput bandwidth did not reach the

maximum 20 Mbps as expected. It could be caused by a bottleneck in the links between

the routers. As the data transfer rate was higher than the average throughput bandwith of

the premium link, the packet loss performance was still considered to be high, although

it has been reduced significantly from the traffic on the common link. The ability for the

0

10

20

30

40

50

60

Default Link Premium Link

A
ve

ra
ge

 P
ac

ke
t L

o
ss

 (%
)

Transfer rate 10 Mbps Transfer rate 20 Mbps

101

Network A administrator to shift traffic to the premium link improved network

performance.

These results show several keypoints, i.e.:

a. Network A can change the flow entries in the Service Provider’s OpenFlow

Switch, by sending the correct BGP UPDATE message. This ability shows that

Network A can conduct an automatic provisioning in other network domain, in

this case within the Service Provider’s network.

b. INDOPRONOS application built within ONOS controller can support the multi-

domain provisioning and correctly behave according to the prior setup. Therefore,

the test bed could demonstrate the ability of automatic multi-domain provisioning

using SDN.

5.6.3. Scenario C Results

In the third scenario, the observation was focused on how the test bed reacted when there

was another domain introduced, i.e. Network C. Network C was not subscribed to the

Bandwidth on Demand service, but it can send the correct format of the BGP UPDATE

message, similar to Network A. The results in terms of link bandwidth can be observed

in Figure 5-14. Network A successfully changed its route to the premium link to gain

additional link capacity after sending an appropriately formatted BGP UPDATE message.

Although Network C sent an appropriately formatted BGP UPDATE message, its link

capacity has remained the same, because Network C is not subscribed to the Bandwidth

on Demand service. The average throughput bandwidth of Network A was upgraded from

9.32 Mbps to 14.98 Mbps. While the average throughput bandwidth of Network C was

8.12 Mbps initially, and 9.03 Mbps after it sent the BGP UPDATE message. The results

showed that Network A gained significant link capacity due to a service change to the

102

premium link and the Network C improvement occurred but was not significant, which

could be the result of the absence of Network A traffic from common link.

Figure 5-14 Troughput Bandwidth towards Network B

The jitter and packet loss performance results show similar behavior. As shown in Figure

5-15, Network A successfully changed to the premium link which changed the jitter and

packet loss performance, while the Network C performance remained the same. The

average jitter for Network A was reduced from 0.74 ms to 0.60 ms, while the Network C

average jitter was 0.89 initially, and 0.77 ms after the BGP UPDATE messages. The

jitter performance was not improved significantly in this experiment, due to the link

configuration only defining the link delay and link bandwidth. In terms of packet loss,

Network A reduced its average packet loss from 33% down to 3%, while the Network C

average packet loss was 42% initially and 39% after the BGP UPDATE messages.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100 110 120

L
i
n
k

B
a
n
d
w
i
d
t
h

(
M
b
p
s
)

Time (Seconds)

Network A

Network C

103

Figure 5-15 Jitter vs Packet Loss

It was observed that the network behaved as expected. As the premium link has a higher

bandwidth and lower latency when compared to the common link, the performance of

Network A improved significantly. It was also observed that the time taken for the transit

network to reroute traffic was 55 seconds. This was the time used for BGP convergence

b) Network C (no Bandwidth on Demand)

a) Network A (with Bandwidth on Demand)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90 100 110 120

P
a
c
k
e
t

L
o
s
s

J
i
t
t
e
r

(
m
s
)

Time (seconds)

jitter

Packet Loss

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120

P
a
c
k
e
t

L
o
s
s

J
i
t
t
e
r

(
m
s
)

Time (seconds)

jitter

Packet Loss

New Bandwidth
Provisioned

104

and the ONOS application processes, after BGP Router 1 and BGP Router 6 used the

BGP sessions to send BGP UPDATE message to the ISP network.

These results show several keypoints, i.e.:

a. As observed also in previous scenario, Network A can conduct automatic

provisioning in another network domain. On the other hand, Network C was not

allowed to make any changes to the flow entries in the Service Provider’s

OpenFlow Switch, although it also sent the correct format of a BGP UPDATE

message.

b. The INDOPRONOS application built within an ONOS controller in this test bed

demonstrated the ability to match the correct combinations of AS numbers and

Communities and Extended Communities values. This ability confirms that the

INDOPRONOS application can detect the network domains that are authorised to

carry out multi-domain provisioning and behave according to the agreed setup in

the different administrative domains. Therefore, the test bed was used to

successfully demonstrate automatic multi-domain provisioning using SDN.

5.7. Conclusion

The Automatic Provisioning can be implemented by applying Zero-touch provisioning

approach. The Zero-touch provisioning objective is to limit or diminish the human

intervention in network operational tasks. As demonstrated by the IP address assigned by

the DHCP server, the automatic provisioning requires message exchange mechanism

between parties and pre-defined parameters and actions.

In multi-domain SDN, the basic process for automatic provisioning is the information

exchange between SDN domains and the flow table content modification based on the

105

other domain request. The Communities and Extended Communities attributes are the

media the enables the information exchange between the interconnected SDN domains

using BGP. An application will be triggered by the information carried inside the

Communities value to conduct the provisioning request and modify the flow table in the

OpenFlow switch inside the SDN domain.

A framework for automatic provisioning in multi-domain SDN was proposed and

implemented using the ONOS controller. A new application called INDOPRONOS was

developed and acts based on the Communities value exchanged between SDN domains.

The framework implementation in ONOS was tested using a basic scenario to verify its

behaviours and a use case to test its effect on the network performance of the

interconnected domains.

The test results show that the ONOS controller has been successfully used as an

implementation platform for multi-domain SDN automatic provisioning. The

performance limitation of this framework was caused by the fundamental limitation of

BGP as its underlying protocol, which is the convergence time. The time measured for

the switching between the common link to the premium link and vice versa is quite

noticeable, but not unexpected. This convergence time would be a great challenge for the

future research into improving the automatic provisioning framework.

106

Chapter 6 CONCLUSION AND FUTURE

WORK

107

6.1. Conclusions

This research aims and objective provided in Chapter 1 have been successfully answered

and contribute to the body of knowledge in the area of multi-domain SDN

communication. A novel framework for automatic provisioning in multi-domain SDN

has been presented, which will enhance efficiency and flexibility in managing WAN

operation.

A comprehensive review of SDN with its challenges and controller designs has been

presented. Classification of approaches to cope with the scalability challenges was

discussed thoroughly, with the focus on the design consideration on implementing SDN

in WAN. An extensive review on current border gateway protocols that used for inter-

domain SDN communication was presented, which motivate the use of BGP as preferred

baseline protocol for inter-domain SDN communication.

The requirement for inter-domain SDN communication methods and how BGP can

support that requirement had been discussed and presented. BGP could support the

capability and reachability information exchange needed in inter-domain SDN

communication, and it also supports the backward interoperability for interconnection

with non-SDN domains. Despite its lack of operational performance compared to a legacy

multi-domain network, the use of BGP in multi-domain SDN offers the potential for

improved flexibility and reduced network management interaction.

BGP UPDATE message was identified as the message that can carry the information

needed for provisioning between SDN domains. The breakdown of BGP UPDATE

messages can suggest the use of Path Attributes part of BGP. The selection process had

decided the Communities, and Extended Communities could be used to transport the

information from one SDN domain to the other SDN domain. This mechanism had been

108

successfully implemented on ONOS controller with SDN-IP application activated. The

implementation required some modification in several software modules related to

BgpSessionManager.

The framework design of automatic provisioning in multi-domain SDN used the

information exchange mechanism as one of the core functions. The other core functions

of this framework were the automatic provisioning procedures. The framework was

implemented on top of ONOS controller with SDN-IP Application and a new application

called INDOPRONOS was developed to add the automatic provisioning capability.

The framework basic test result showed the successful behaviour of the framework to

conduct the two core functions. The bandwidth on demand use case was used to provide

performance measurement results in terms of Round Trip Time, throughput Bandwidth

and average packet loss.

6.2. Future Work

Multi-domain SDN communication is a very vast topic, and this research could suggest

some research topics for future works, such as:

a. Improving the framework implementation by adding more flexibility to modify the

pre-defined parameters and actions. Current framework implementation only supports

static parameters embodied inside the script, which was fine for Proof of Concept

stage. As the concept has been proved, the application needs to be enhanced to be

prepared for real-life implementation

b. Improving the convergence time in the provisioning. The current research limitation

came from the inheritance of BGP convergence time to the framework. BGP has

always had problems with its convergence time, which can range from 10 seconds

until more than 1 minute. Research on how to shorten the convergence time could

109

help in improving the provisioning performance towards zero-touch and real-time

provisioning.

c. This research did not discuss the security factor of the framework. As the domains

belong to different entities, security would be one of the main concerns to implement

this framework. The authentication method and process between SDN domains are

one of the primary challenges in the multi-domain SDN provisioning. Therefore,

research on the security frameworks in the multi-domain SDN will become an

interesting topic.

110

BIBLIOGRAPHY

111

[1] Cisco. (2017, June 6, 2017). Cisco Visual Networking Index: Forecast and

Methodology 2016-2021 (White Paper).

[2] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, "Delayed Internet routing

convergence," ACM SIGCOMM Computer Communication Review, vol. 30, pp.

175-187, 2000.

[3] N. Feamster, H. Balakrishnan, and J. Rexford, "Some foundational problems in

interdomain routing," in Proceedings of Third Workshop on Hot Topics in

Networks (HotNets-III), 2004, pp. 41-46.

[4] N. McKeown, "Software-defined networking," INFOCOM keynote talk, vol. 17,

pp. 30-32, 2009.

[5] H. Kim and N. Feamster, "Improving network management with software

defined networking," IEEE Communications Magazine, vol. 51, pp. 114-119,

2013.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, et al., "OpenFlow: enabling innovation in campus networks," ACM

SIGCOMM Computer Communication Review, vol. 38, pp. 69-74, 2008.

[7] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, "A survey on software-

defined networking," IEEE Communications Surveys & Tutorials, vol. 17, pp.

27-51, 2015.

[8] B. A. A. Nunes, X.-N. Nguyen, T. Turletti, M. Mendonca, and K. Obraczka, "A

survey of software-defined networking: Past, present, and future of

programmable networks," IEEE Communications Surveys and Tutorials, vol.

16, pp. 1617-1634, 2014.

[9] V. Kotronis, A. Gämperli, and X. Dimitropoulos, "Routing centralization across

domains via SDN: A model and emulation framework for BGP evolution,"

Computer Networks, vol. 92, Part 2, pp. 227-239, 12/9/ 2015.

[10] V. Kotronis, X. Dimitropoulos, and B. Ager, "Outsourcing the routing control

logic: better internet routing based on SDN principles," in Proceedings of the

11th ACM Workshop on Hot Topics in Networks, 2012, pp. 55-60.

[11] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, et

al., "GENI: A federated testbed for innovative network experiments," Computer

Networks, vol. 61, pp. 5-23, 2014.

[12] G. Carrozzo, R. Monno, B. Belter, R. Krzywania, K. Pentikousis, M. Broadbent,

et al., "Large-scale SDN experiments in federated environments," in Smart

112

Communications in Network Technologies (SaCoNeT), 2014 International

Conference on, 2014, pp. 1-6.

[13] C. Fernandez, C. Bermudo, G. Carrozzo, R. Monno, B. Belter, K. Pentikousis,

et al., "A recursive orchestration and control framework for large-scale,

federated SDN experiments: the FELIX architecture and use cases,"

International Journal of Parallel, Emergent and Distributed Systems, vol. 30,

pp. 428-446, 2015.

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, et al.,

"Achieving high utilization with software-driven WAN," in ACM SIGCOMM

Computer Communication Review, 2013, pp. 15-26.

[15] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, et al., "B4:

Experience with a globally-deployed software defined WAN," in ACM

SIGCOMM Computer Communication Review, 2013, pp. 3-14.

[16] S. Nickolay, E.-S. Jung, R. Kettimuthu, and I. Foster, "Bridging the gap between

peak and average loads on science networks," Future Generation Computer

Systems, vol. 79, pp. 169-179, 2018.

[17] Y. Jarraya, T. Madi, and M. Debbabi, "A Survey and a Layered Taxonomy of

Software-Defined Networking," Communications Surveys & Tutorials, IEEE,

vol. 16, pp. 1955-1980, 2014.

[18] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, "Software-defined networking: A comprehensive survey,"

Proceedings of the IEEE, vol. 103, pp. 14-76, 2015.

[19] F. X. A. Wibowo and M. A. Gregory, "Updating guaranteed bandwidth in multi-

domain software defined networks," in 2017 27th International

Telecommunication Networks and Applications Conference (ITNAC), 2017, pp.

1-6.

[20] H. Farhady, H. Lee, and A. Nakao, "Software-Defined Networking: A survey,"

Computer Networks, vol. 81, p. 79, 2015.

[21] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis, J.

T. Moore, et al., "The SwitchWare active network architecture," Network, IEEE,

vol. 12, pp. 29-36, 1998.

[22] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, "Open signaling for ATM,

internet and mobile networks (OPENSIG'98)," SIGCOMM Comput. Commun.

Rev., vol. 29, pp. 97-108, 1999.

113

[23] E. Haleplidis, J. Hadi Salim, J. M. Halpern, S. Hares, K. Pentikousis, K. Ogawa,

et al., "Network Programmability With ForCES," Communications Surveys &

Tutorials, IEEE, vol. 17, pp. 1423-1440, 2015.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, et al.,

"A clean slate 4D approach to network control and management," ACM

SIGCOMM Computer Communication Review, vol. 35, pp. 41-54, 2005.

[25] J. Yu and I. Al Ajarmeh, "An Empirical Study of the NETCONF Protocol," in

2010 Sixth International Conference on Networking and Services (ICNS) 2010,

pp. 253-258.

[26] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown,

et al., "SANE: a protection architecture for enterprise networks," presented at

the Proceedings of the 15th conference on USENIX Security Symposium -

Volume 15, Vancouver, B.C., Canada, 2006.

[27] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

"Ethane: taking control of the enterprise," in ACM SIGCOMM Computer

Communication Review, 2007, pp. 1-12.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, and L. Peterson.

(2012). Software-defined networking: the new norm for network.

[29] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, "Software-

Defined Networking: Challenges and research opportunities for Future Internet,"

Computer Networks, vol. 75, Part A, pp. 453-471, 12/24/ 2014.

[30] O. N. F. (ONF), "OpenFlow® Switch Specification Ver 1.5.1," ed, 2015.

[31] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, "Software defined

networking: State of the art and research challenges," Computer Networks, vol.

72, pp. 74-98, 2014.

[32] M. Karakus and A. Durresi, "A Scalability Metric for Control Planes in Software

Defined Networks (SDNs)," in 2016 IEEE 30th International Conference on

Advanced Information Networking and Applications (AINA), 2016, pp. 282-289.

[33] L. Shuhao and L. Baochun, "On scaling software-Defined Networking in wide-

area networks," Tsinghua Science and Technology, vol. 20, pp. 221-232, 2015.

[34] B. Heller, R. Sherwood, and N. McKeown, "The controller placement problem,"

in Proceedings of the first workshop on Hot topics in software defined networks,

2012, pp. 7-12.

[35] P. Vizarreta, C. M. Machuca, and W. Kellerer, "Controller placement strategies

114

for a resilient SDN control plane," in 2016 8th International Workshop on

Resilient Networks Design and Modeling (RNDM), 2016, pp. 253-259.

[36] A. Sallahi and M. St-Hilaire, "Optimal Model for the Controller Placement

Problem in Software Defined Networks," IEEE Communications Letters, vol.

19, pp. 30-33, 2015.

[37] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia, "On the controller placement

for designing a distributed SDN control layer," in Networking Conference, 2014

IFIP, 2014, pp. 1-9.

[38] T. A. Nguyen, T. Eom, S. An, J. S. Park, J. B. Hong, and D. S. Kim, "Availability

Modeling and Analysis for Software Defined Networks," in 2015 IEEE 21st

Pacific Rim International Symposium on Dependable Computing (PRDC), 2015,

pp. 159-168.

[39] Y. Jinke, W. Ying, P. Keke, Z. Shujuan, and L. Jiacong, "A load balancing

mechanism for multiple SDN controllers based on load informing strategy," in

2016 18th Asia-Pacific Network Operations and Management Symposium

(APNOMS), 2016, pp. 1-4.

[40] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, "Software-defined

networking security: pros and cons," IEEE Communications Magazine, vol. 53,

pp. 73-79, 2015.

[41] R. Kaur, A. Singh, S. Singh, and S. Sharma, "Security of software defined

networks: Taxonomic modeling, key components and open research area," in

2016 International Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), 2016, pp. 2832-2839.

[42] F. X. Wibowo, M. A. Gregory, K. Ahmed, and K. M. Gomez, "Multi-domain

software defined networking: research status and challenges," Journal of

Network and Computer Applications, vol. 87, pp. 32-45, 2017.

[43] D. Erickson, "The beacon openflow controller," in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking, 2013,

pp. 13-18.

[44] Z. Cai, "Maestro: Achieving scalability and coordination in centralizaed network

control plane," ProQuest, UMI Dissertations Publishing, 2011.

[45] Project Floodlight. Available: http://www.projectfloodlight.org/

[46] S. Ishii, E. Kawai, T. Takata, Y. Kanaumi, S.-i. Saito, K. Kobayashi, et al.,

"Extending the RISE controller for the interconnection of RISE and

http://www.projectfloodlight.org/

115

OS3E/NDDI," in Networks (ICON), 2012 18th IEEE International Conference

on, 2012, pp. 243-248.

[47] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, et al.,

"ONOS: towards an open, distributed SDN OS," in The third workshop on Hot

topics in Software Defined Networking, 2014, pp. 1-6.

[48] R. Kubo, T. Fujita, Y. Agawa, and H. Suzuki. (2014, 28/08/2014). Ryu SDN

Framework - Open-source SDN Platform Software. 12. Available:

https://www.ntt-

review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_p

df

[49] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, et al., "NOX:

Towards an operating system for networks," ACM SIGCOMM Comp. Commun.

Rev., vol. 38, pp. 105-110, 2008.

[50] A. Singla and B. Rijsman. (2013). OpenContrail Architecture Document.

Available: http://www.opencontrail.org/opencontrail-architecture-

documentation/

[51] J. Medved, R. Varga, A. Tkacik, and K. Gray, "Opendaylight: Towards a model-

driven sdn controller architecture," in Proceeding of IEEE International

Symposium on a World of Wireless, Mobile and Multimedia Networks 2014,

2014.

[52] D. Saikia and N. Malik, "An Introduction to Open MUL SDN Suite," ed, 2015.

[53] (2014, 27/08/2015). The Real-Time Cloud. [White Paper]. Available:

http://www.ericsson.com/res/docs/whitepapers/wp-sdn-and-cloud.pdf

[54] (2015, 26/08/2015). HP VAN SDN Controller Software. [Data Sheet].

Available: http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-9827ENW.pdf

[55] "IBM Programmable Network Controller V3.0," 03/10/2012 2012.

[56] (2013, Contrail Architecture. [White Paper]. Available:

http://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000535-en.pdf

[57] (2012, 28/08/2015). Cisco Open SDN Controller 1.2. [White Paper]. Available:

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-

management/open-sdn-controller/datasheet-c78-733458.pdf

[58] (2013, 4 September 2015). Huawei IP SDN Controller Open and Application.

[Presentation]. Available: http://www.euchina-fire.eu/wp-

content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_pdf
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_pdf
https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201408fa4.pdf&mode=show_pdf
http://www.opencontrail.org/opencontrail-architecture-documentation/
http://www.opencontrail.org/opencontrail-architecture-documentation/
http://www.ericsson.com/res/docs/whitepapers/wp-sdn-and-cloud.pdf
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-9827ENW.pdf
http://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000535-en.pdf
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/datasheet-c78-733458.pdf
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/datasheet-c78-733458.pdf
http://www.euchina-fire.eu/wp-content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-ApllicationV1-2.pdf
http://www.euchina-fire.eu/wp-content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-ApllicationV1-2.pdf

116

ApllicationV1-2.pdf

[59] A. Voellmy and J. Wang, "Scalable software defined network controllers," in

Proceedings of the ACM SIGCOMM 2012 conference on Applications,

technologies, architectures, and protocols for computer communication, 2012,

pp. 289-290.

[60] S. Hassas Yeganeh and Y. Ganjali, "Kandoo: a framework for efficient and

scalable offloading of control applications," in Proceedings of the first workshop

on Hot topics in software defined networks, 2012, pp. 19-24.

[61] K. Phemius, M. Bouet, and J. Leguay, "Disco: Distributed multi-domain sdn

controllers," in Network Operations and Management Symposium (NOMS),

2014 IEEE, 2014, pp. 1-4.

[62] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson, "Pratyaastha:

an efficient elastic distributed SDN control plane," in Proceedings of the third

workshop on Hot topics in software defined networking, Chicago, Illinois, USA,

2014, pp. 133-138.

[63] O. Michel and E. Keller, "SDN in wide-area networks: A survey," in Software

Defined Systems (SDS), 2017 Fourth International Conference on, 2017, pp. 37-

42.

[64] R. Ahmed and R. Boutaba, "Design considerations for managing wide area

software defined networks," Communications Magazine, IEEE, vol. 52, pp. 116-

123, 2014.

[65] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, "A survey on software defined

networking with multiple controllers," Journal of Network and Computer

Applications, vol. 103, pp. 101-118, 2018/02/01/ 2018.

[66] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, et al., "A database

approach to sdn control plane design," ACM SIGCOMM Computer

Communication Review, vol. 47, pp. 15-26, 2017.

[67] H. E. Egilmez, "Distributed QoS architectures for multimedia streaming over

software defined networks," Multimedia, IEEE Transactions on, vol. 16, pp.

1597-1609, 2014.

[68] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, "Towards an

elastic distributed SDN controller," in ACM SIGCOMM Computer

Communication Review, 2013, pp. 7-12.

[69] H. Yin, H. Xie, T. Tsou, D. R. Lopez, P. A. Aranda, and R. Sidi. (2012). SDNi:

http://www.euchina-fire.eu/wp-content/uploads/2015/01/Huawei-IP-SDN-Controller-Open-and-ApllicationV1-2.pdf

117

A Message Exchange Protocol for Software Defined Networks (SDNS) across

Multiple Domains. Available: https://datatracker.ietf.org/doc/html/draft-yin-

sdn-sdni-00

[70] P. Lin, J. Bi, and Y. Wang, "WEBridge: west–east bridge for distributed

heterogeneous SDN NOSes peering," Security and Communication Networks,

vol. 8, pp. 1926-1942, 2015.

[71] P. Helebrandt and I. Kotuliak, "Novel SDN multi-domain architecture," in

Emerging eLearning Technologies and Applications (ICETA), 2014 IEEE 12th

International Conference on, 2014, pp. 139-143.

[72] D. Gupta and R. Jahan. (2014). Inter-sdn controller communication: Using

border gateway protocol [White Paper]. Available:

https://www.researchgate.net/publication/324452059

[73] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster,

et al., "SDX: a software defined internet exchange," SIGCOMM Comput.

Commun. Rev., vol. 44, pp. 551-562, 2014.

[74] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi,

et al., "Seamless interworking of SDN and IP," in ACM SIGCOMM computer

communication review, 2013, pp. 475-476.

[75] R. Jahan, S. Shaik, K. Kotaru, and D. C. Kuppili. (2014, December). ODL-SDNi

Available: https://wiki.opendaylight.org/view/ODL-SDNi_App:Main

[76] J. Hart and L. Prete. SDN-IP - ONOS - Wiki. Available:

https://wiki.onosproject.org/display/ONOS/SDN-IP

[77] Y. Rekhter, S. Hares, and T. Li. (2006). A Border Gateway Protocol 4 (BGP-4)

[https://doi.org/10.17487/RFC4271]. Available: https://rfc-

editor.org/rfc/rfc4271.txt

[78] D. Medhi and K. Ramasamy, Network Routing : Algorithms, Protocols, and

Architectures. Saint Louis, UNITED STATES: Elsevier Science & Technology,

2017.

[79] T. Li, R. Chandra, and P. S. Traina. (1996). BGP Communities Attribute

[https://doi.org/10.17487/RFC1997]. Available: https://rfc-

editor.org/rfc/rfc1997.txt

[80] D. Tappan, S. S. Ramachandra, and Y. Rekhter. (2006). BGP Extended

Communities Attribute [https://doi.org/10.17487/RFC4360]. Available:

https://rfc-editor.org/rfc/rfc4360.txt

https://datatracker.ietf.org/doc/html/draft-yin-sdn-sdni-00
https://datatracker.ietf.org/doc/html/draft-yin-sdn-sdni-00
https://www.researchgate.net/publication/324452059
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.onosproject.org/display/ONOS/SDN-IP
https://doi.org/10.17487/RFC4271
https://rfc-editor.org/rfc/rfc4271.txt
https://rfc-editor.org/rfc/rfc4271.txt
https://doi.org/10.17487/RFC1997
https://rfc-editor.org/rfc/rfc1997.txt
https://rfc-editor.org/rfc/rfc1997.txt
https://doi.org/10.17487/RFC4360
https://rfc-editor.org/rfc/rfc4360.txt

118

[81] F. X. A. Wibowo and M. A. Gregory, "Software Defined Networking properties

in multi-domain networks," in 2016 26th International Telecommunication

Networks and Applications Conference (ITNAC), 2016, pp. 95-100.

[82] M. Team. Mininet: An Instant Virtual Network on your Laptop (or other PC) -

Mininet. Available: http://mininet.org

[83] B. Gurudoss, P. Jakma, T. Teräs, and G. Troxel. Quagga Software Routing Suite.

Available: https://www.quagga.net/

[84] GitHub - routeflow_RouteFlow at vandervecken. Available:

https://github.com/routeflow/RouteFlow/tree/vandervecken

[85] R. Bennesby, E. Mota, P. Fonseca, and A. Passito, "Innovating on interdomain

routing with an inter-SDN component," in Advanced Information Networking

and Applications (AINA), 2014 IEEE 28th International Conference on, 2014,

pp. 131-138.

[86] E. Rosen, G. Nalawade, M. Djernaes, and N. Sheth. (2018). Border Gateway

Protocol (BGP) Parameters. Available: https://www.iana.org/assignments/bgp-

parameters/bgp-parameters.xhtml#bgp-parameters-2

[87] D. Meyer. (2006). BGP Communities for Data Collection

[https://doi.org/10.17487/RFC4384]. Available: https://rfc-

editor.org/rfc/rfc4384.txt

[88] T. M. Knoll. (2018). BGP Extended Community for QoS Marking. Available:

https://datatracker.ietf.org/doc/html/draft-knoll-idr-qos-attribute-22

[89] P. Mohapatra and R. Fernando. (2018). BGP Link Bandwidth Extended

Community. Available: https://datatracker.ietf.org/doc/html/draft-ietf-idr-link-

bandwidth-07

[90] Introducing ONOS -a SDN network operating system for Service Providers.

[White Paper]. Available: http://onosproject.org/wp-

content/uploads/2014/11/Whitepaper-ONOS-final.pdf

[91] B. Lantz. Introduction to the ONOS APIs - ONOS - Wiki. Available:

https://wiki.onosproject.org/display/ONOS/Introduction+to+the+ONOS+APIs

[92] Open Network Operating System. Available: https://onosproject.org

[93] L. Peterson. (2015, CORD: Central Office Re-Architected as a Datacenter.

Available: https://sdn.ieee.org/newsletter/november-2015/cord-central-office-

re-architected-as-a-datacenter

[94] L. Prete and A. Campanella. (2018). ODTN - ODTN - Wiki. Available:

http://mininet.org/
https://www.quagga.net/
https://github.com/routeflow/RouteFlow/tree/vandervecken
https://www.iana.org/assignments/bgp-parameters/bgp-parameters.xhtml#bgp-parameters-2
https://www.iana.org/assignments/bgp-parameters/bgp-parameters.xhtml#bgp-parameters-2
https://doi.org/10.17487/RFC4384
https://rfc-editor.org/rfc/rfc4384.txt
https://rfc-editor.org/rfc/rfc4384.txt
https://datatracker.ietf.org/doc/html/draft-knoll-idr-qos-attribute-22
https://datatracker.ietf.org/doc/html/draft-ietf-idr-link-bandwidth-07
https://datatracker.ietf.org/doc/html/draft-ietf-idr-link-bandwidth-07
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
https://wiki.onosproject.org/display/ONOS/Introduction+to+the+ONOS+APIs
https://onosproject.org/
https://sdn.ieee.org/newsletter/november-2015/cord-central-office-re-architected-as-a-datacenter
https://sdn.ieee.org/newsletter/november-2015/cord-central-office-re-architected-as-a-datacenter

119

https://wiki.onosproject.org/display/ODTN/ODTN

[95] A. Koshibe and J. Hart. SDN-IP Architecture - ONOS - Wiki. Available:

https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture

[96] Intent Framework - ONOS - Wiki. Available:

https://wiki.onosproject.org/display/ONOS/Intent+Framework

[97] A. Koshibe and J. Hart. SDN-IP Developer Guide - ONOS - Wiki. Available:

https://wiki.onosproject.org/display/ONOS/SDN-IP+Developer+Guide

[98] Onos/BgpConstants.java at master Available:

https://github.com/opennetworkinglab/onos/blob/master/apps/routing/common/

src/main/java/org/onosproject/routing/bgp/BgpConstants.java

[99] T. GB921, "Enhanced Telecom Operations Map (eTOM)-The business process

framework," in Version 6.1. TeleManagement Forum, Morristown, NJ, 2005.

[100] Y. Demchenko, S. Filiposka, R. Tuminauskas, A. Mishev, K. Baumann, D.

Regvart, et al., "Enabling Automated Network Services Provisioning for Cloud

Based Applications Using Zero Touch Provisioning," in 2015 IEEE/ACM 8th

International Conference on Utility and Cloud Computing (UCC), 2015, pp.

458-464.

[101] K. Dilbeck. Zero-time Orchestration, Operations and Management (ZOOM).

Available: https://www.tmforum.org/wp-

content/uploads/2014/10/ZoomDownload.pdf

[102] F. X. A. Wibowo and M. A. Gregory, "Bandwidth Update Impact in Multi-

Domain Software Defined Networking," International Journal of Information,

Communication Technology and Applications, vol. 3, pp. 1-14, 2017.

https://wiki.onosproject.org/display/ODTN/ODTN
https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/SDN-IP+Developer+Guide
https://github.com/opennetworkinglab/onos/blob/master/apps/routing/common/src/main/java/org/onosproject/routing/bgp/BgpConstants.java
https://github.com/opennetworkinglab/onos/blob/master/apps/routing/common/src/main/java/org/onosproject/routing/bgp/BgpConstants.java
https://www.tmforum.org/wp-content/uploads/2014/10/ZoomDownload.pdf
https://www.tmforum.org/wp-content/uploads/2014/10/ZoomDownload.pdf

120

Appendix 1 – BgpConstants Module

BgpConstants.java

/*

 * Copyright 2017-present Open Networking Foundation

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.onosproject.routing.bgp;

/**

 * BGP related constants.

 */

public final class BgpConstants {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private BgpConstants() {

 }

 /** BGP port number (RFC 4271). */

 public static final int BGP_PORT = 179;

 /** BGP version. */

 public static final int BGP_VERSION = 4;

 /** BGP OPEN message type. */

 public static final int BGP_TYPE_OPEN = 1;

 /** BGP UPDATE message type. */

 public static final int BGP_TYPE_UPDATE = 2;

 /** BGP NOTIFICATION message type. */

 public static final int BGP_TYPE_NOTIFICATION = 3;

 /** BGP KEEPALIVE message type. */

 public static final int BGP_TYPE_KEEPALIVE = 4;

 /** BGP Header Marker field length. */

 public static final int BGP_HEADER_MARKER_LENGTH = 16;

 /** BGP Header length. */

121

 public static final int BGP_HEADER_LENGTH = 19;

 /** BGP message maximum length. */

 public static final int BGP_MESSAGE_MAX_LENGTH = 4096;

 /** BGP OPEN message minimum length (BGP Header included). */

 public static final int BGP_OPEN_MIN_LENGTH = 29;

 /** BGP UPDATE message minimum length (BGP Header included). */

 public static final int BGP_UPDATE_MIN_LENGTH = 23;

 /** BGP NOTIFICATION message minimum length (BGP Header included). */

 public static final int BGP_NOTIFICATION_MIN_LENGTH = 21;

 /** BGP KEEPALIVE message expected length (BGP Header included). */

 public static final int BGP_KEEPALIVE_EXPECTED_LENGTH = 19;

 /** BGP KEEPALIVE messages transmitted per Hold interval. */

 public static final int BGP_KEEPALIVE_PER_HOLD_INTERVAL = 3;

 /** BGP KEEPALIVE messages minimum Holdtime (in seconds). */

 public static final int BGP_KEEPALIVE_MIN_HOLDTIME = 3;

 /** BGP KEEPALIVE messages minimum transmission interval (in seconds). */

 public static final int BGP_KEEPALIVE_MIN_INTERVAL = 1;

 /** BGP AS 0 (zero) value. See draft-ietf-idr-as0-06.txt Internet Draft. */

 public static final long BGP_AS_0 = 0;

 /**

 * BGP OPEN related constants.

 */

 public static final class Open {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private Open() {

 }

 /**

 * BGP OPEN: Optional Parameters related constants.

 */

 public static final class OptionalParameters {

 }

 /**

 * BGP OPEN: Capabilities related constants (RFC 5492).

 */

 public static final class Capabilities {

 /** BGP OPEN Optional Parameter Type: Capabilities. */

 public static final int TYPE = 2;

 /** BGP OPEN Optional Parameter minimum length. */

 public static final int MIN_LENGTH = 2;

 /**

 * BGP OPEN: Multiprotocol Extensions Capabilities (RFC 4760).

122

 */

 public static final class MultiprotocolExtensions {

 /** BGP OPEN Multiprotocol Extensions code. */

 public static final int CODE = 1;

 /** BGP OPEN Multiprotocol Extensions length. */

 public static final int LENGTH = 4;

 /** BGP OPEN Multiprotocol Extensions AFI: IPv4. */

 public static final int AFI_IPV4 = 1;

 /** BGP OPEN Multiprotocol Extensions AFI: IPv6. */

 public static final int AFI_IPV6 = 2;

 /** BGP OPEN Multiprotocol Extensions SAFI: unicast. */

 public static final int SAFI_UNICAST = 1;

 /** BGP OPEN Multiprotocol Extensions SAFI: multicast. */

 public static final int SAFI_MULTICAST = 2;

 }

 /**

 * BGP OPEN: Support for 4-octet AS Number Capability (RFC 6793).

 */

 public static final class As4Octet {

 /** BGP OPEN Support for 4-octet AS Number Capability code. */

 public static final int CODE = 65;

 /** BGP OPEN 4-octet AS Number Capability length. */

 public static final int LENGTH = 4;

 }

 }

 }

 /**

 * BGP UPDATE related constants.

 */

 public static final class Update {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private Update() {

 }

 /** BGP AS length. */

 public static final int AS_LENGTH = 2;

 /** BGP 4 Octet AS length (RFC 6793). */

 public static final int AS_4OCTET_LENGTH = 4;

 /**

 * BGP UPDATE: ORIGIN related constants.

 */

 public static final class Origin {

 /**

 * Default constructor.

 * <p>

123

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private Origin() {

 }

 /** BGP UPDATE Attributes Type Code ORIGIN. */

 public static final int TYPE = 1;

 /** BGP UPDATE Attributes Type Code ORIGIN length. */

 public static final int LENGTH = 1;

 /** BGP UPDATE ORIGIN: IGP. */

 public static final int IGP = 0;

 /** BGP UPDATE ORIGIN: EGP. */

 public static final int EGP = 1;

 /** BGP UPDATE ORIGIN: INCOMPLETE. */

 public static final int INCOMPLETE = 2;

 /**

 * Gets the BGP UPDATE origin type as a string.

 *

 * @param type the BGP UPDATE origin type

 * @return the BGP UPDATE origin type as a string

 */

 public static String typeToString(int type) {

 String typeString = "UNKNOWN";

 switch (type) {

 case IGP:

 typeString = "IGP";

 break;

 case EGP:

 typeString = "EGP";

 break;

 case INCOMPLETE:

 typeString = "INCOMPLETE";

 break;

 default:

 break;

 }

 return typeString;

 }

 }

 /**

 * BGP UPDATE: AS_PATH related constants.

 */

 public static final class AsPath {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private AsPath() {

 }

124

 /** BGP UPDATE Attributes Type Code AS_PATH. */

 public static final int TYPE = 2;

 /** BGP UPDATE AS_PATH Type: AS_SET. */

 public static final int AS_SET = 1;

 /** BGP UPDATE AS_PATH Type: AS_SEQUENCE. */

 public static final int AS_SEQUENCE = 2;

 /** BGP UPDATE AS_PATH Type: AS_CONFED_SEQUENCE. */

 public static final int AS_CONFED_SEQUENCE = 3;

 /** BGP UPDATE AS_PATH Type: AS_CONFED_SET. */

 public static final int AS_CONFED_SET = 4;

 /**

 * Gets the BGP AS_PATH type as a string.

 *

 * @param type the BGP AS_PATH type

 * @return the BGP AS_PATH type as a string

 */

 public static String typeToString(int type) {

 String typeString = "UNKNOWN";

 switch (type) {

 case AS_SET:

 typeString = "AS_SET";

 break;

 case AS_SEQUENCE:

 typeString = "AS_SEQUENCE";

 break;

 case AS_CONFED_SEQUENCE:

 typeString = "AS_CONFED_SEQUENCE";

 break;

 case AS_CONFED_SET:

 typeString = "AS_CONFED_SET";

 break;

 default:

 break;

 }

 return typeString;

 }

 }

 /**

 * BGP UPDATE: NEXT_HOP related constants.

 */

 public static final class NextHop {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private NextHop() {

 }

 /** BGP UPDATE Attributes Type Code NEXT_HOP. */

 public static final int TYPE = 3;

125

 /** BGP UPDATE Attributes Type Code NEXT_HOP length. */

 public static final int LENGTH = 4;

 }

 /**

 * BGP UPDATE: MULTI_EXIT_DISC related constants.

 */

 public static final class MultiExitDisc {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private MultiExitDisc() {

 }

 /** BGP UPDATE Attributes Type Code MULTI_EXIT_DISC. */

 public static final int TYPE = 4;

 /** BGP UPDATE Attributes Type Code MULTI_EXIT_DISC length. */

 public static final int LENGTH = 4;

 /** BGP UPDATE Attributes lowest MULTI_EXIT_DISC value. */

 public static final int LOWEST_MULTI_EXIT_DISC = 0;

 }

 /**

 * BGP UPDATE: LOCAL_PREF related constants.

 */

 public static final class LocalPref {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private LocalPref() {

 }

 /** BGP UPDATE Attributes Type Code LOCAL_PREF. */

 public static final int TYPE = 5;

 /** BGP UPDATE Attributes Type Code LOCAL_PREF length. */

 public static final int LENGTH = 4;

 }

 /**

 * BGP UPDATE: ATOMIC_AGGREGATE related constants.

 */

 public static final class AtomicAggregate {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private AtomicAggregate() {

 }

126

 /** BGP UPDATE Attributes Type Code ATOMIC_AGGREGATE. */

 public static final int TYPE = 6;

 /** BGP UPDATE Attributes Type Code ATOMIC_AGGREGATE length. */

 public static final int LENGTH = 0;

 }

 /**

 * BGP UPDATE: AGGREGATOR related constants.

 */

 public static final class Aggregator {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private Aggregator() {

 }

 /** BGP UPDATE Attributes Type Code AGGREGATOR. */

 public static final int TYPE = 7;

 /** BGP UPDATE Attributes Type Code AGGREGATOR length: 2 octet AS. */

 public static final int AS2_LENGTH = 6;

 /** BGP UPDATE Attributes Type Code AGGREGATOR length: 4 octet AS. */

 public static final int AS4_LENGTH = 8;

 }

 /**

 * BGP UPDATE: COMMUNITY related constants.

 */

 public static final class Community {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private Community() {

 }

 /** BGP UPDATE Attributes Type Code COMMUNITY. */

 public static final int TYPE = 8;

 /** BGP UPDATE Attributes Type Code COMMUNITY minimum length: 4 octet. */

 public static final int MIN_COMM_LENGTH = 4;

 }

 /**

 * BGP UPDATE: EXTENDED COMMUNITY related constants.

 */

 public static final class ExtendedCommunity {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

127

 private ExtendedCommunity() {

 }

 /** BGP UPDATE Attributes Type Code ExtendedCOMMUNITY. */

 public static final int TYPE = 16;

 /** BGP UPDATE Attributes Type Code ExtendedCOMMUNITY minimum length: 8 octet. */

 public static final int MIN_COMM_LENGTH = 8;

 }

 /**

 * BGP UPDATE: MP_REACH_NLRI related constants.

 */

 public static final class MpReachNlri {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private MpReachNlri() {

 }

 /** BGP UPDATE Attributes Type Code MP_REACH_NLRI. */

 public static final int TYPE = 14;

 /** BGP UPDATE Attributes Type Code MP_REACH_NLRI min length. */

 public static final int MIN_LENGTH = 5;

 }

 /**

 * BGP UPDATE: MP_UNREACH_NLRI related constants.

 */

 public static final class MpUnreachNlri {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private MpUnreachNlri() {

 }

 /** BGP UPDATE Attributes Type Code MP_UNREACH_NLRI. */

 public static final int TYPE = 15;

 /** BGP UPDATE Attributes Type Code MP_UNREACH_NLRI min length. */

 public static final int MIN_LENGTH = 3;

 }

 }

 /**

 * BGP NOTIFICATION related constants.

 */

 public static final class Notifications {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

128

 * this utility class.

 */

 private Notifications() {

 }

 /**

 * BGP NOTIFICATION: Message Header Error constants.

 */

 public static final class MessageHeaderError {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private MessageHeaderError() {

 }

 /** Message Header Error code. */

 public static final int ERROR_CODE = 1;

 /** Message Header Error subcode: Connection Not Synchronized. */

 public static final int CONNECTION_NOT_SYNCHRONIZED = 1;

 /** Message Header Error subcode: Bad Message Length. */

 public static final int BAD_MESSAGE_LENGTH = 2;

 /** Message Header Error subcode: Bad Message Type. */

 public static final int BAD_MESSAGE_TYPE = 3;

 }

 /**

 * BGP NOTIFICATION: OPEN Message Error constants.

 */

 public static final class OpenMessageError {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private OpenMessageError() {

 }

 /** OPEN Message Error code. */

 public static final int ERROR_CODE = 2;

 /** OPEN Message Error subcode: Unsupported Version Number. */

 public static final int UNSUPPORTED_VERSION_NUMBER = 1;

 /** OPEN Message Error subcode: Bad PEER AS. */

 public static final int BAD_PEER_AS = 2;

 /** OPEN Message Error subcode: Unacceptable Hold Time. */

 public static final int UNACCEPTABLE_HOLD_TIME = 6;

 }

 /**

 * BGP NOTIFICATION: UPDATE Message Error constants.

 */

129

 public static final class UpdateMessageError {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private UpdateMessageError() {

 }

 /** UPDATE Message Error code. */

 public static final int ERROR_CODE = 3;

 /** UPDATE Message Error subcode: Malformed Attribute List. */

 public static final int MALFORMED_ATTRIBUTE_LIST = 1;

 /** UPDATE Message Error subcode: Unrecognized Well-known Attribute. */

 public static final int UNRECOGNIZED_WELL_KNOWN_ATTRIBUTE = 2;

 /** UPDATE Message Error subcode: Missing Well-known Attribute. */

 public static final int MISSING_WELL_KNOWN_ATTRIBUTE = 3;

 /** UPDATE Message Error subcode: Attribute Flags Error. */

 public static final int ATTRIBUTE_FLAGS_ERROR = 4;

 /** UPDATE Message Error subcode: Attribute Length Error. */

 public static final int ATTRIBUTE_LENGTH_ERROR = 5;

 /** UPDATE Message Error subcode: Invalid ORIGIN Attribute. */

 public static final int INVALID_ORIGIN_ATTRIBUTE = 6;

 /** UPDATE Message Error subcode: Invalid NEXT_HOP Attribute. */

 public static final int INVALID_NEXT_HOP_ATTRIBUTE = 8;

 /** UPDATE Message Error subcode: Optional Attribute Error. Unused. */

 public static final int OPTIONAL_ATTRIBUTE_ERROR = 9;

 /** UPDATE Message Error subcode: Invalid Network Field. */

 public static final int INVALID_NETWORK_FIELD = 10;

 /** UPDATE Message Error subcode: Malformed AS_PATH. */

 public static final int MALFORMED_AS_PATH = 11;

 }

 /**

 * BGP NOTIFICATION: Hold Timer Expired constants.

 */

 public static final class HoldTimerExpired {

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private HoldTimerExpired() {

 }

 /** Hold Timer Expired code. */

 public static final int ERROR_CODE = 4;

 }

130

 /** BGP NOTIFICATION message Error subcode: Unspecific. */

 public static final int ERROR_SUBCODE_UNSPECIFIC = 0;

 }

}

131

Appendix 2 – BgpUpdate Module

BgpUpdate.java

/*

 * Copyright 2017-present Open Networking Foundation

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.onosproject.routing.bgp;

import org.apache.commons.lang3.tuple.Pair;

import org.apache.commons.lang3.tuple.Triple;

import org.javatuples.Quartet;

import org.jboss.netty.buffer.ChannelBuffer;

import org.jboss.netty.buffer.ChannelBuffers;

import org.jboss.netty.channel.ChannelHandlerContext;

import org.onlab.packet.Ip4Address;

import org.onlab.packet.Ip4Prefix;

import org.onlab.packet.Ip6Address;

import org.onlab.packet.Ip6Prefix;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

import java.util.Map;

/**

 * A class for handling BGP UPDATE messages.

 */

final class BgpUpdate {

 private static final Logger log = LoggerFactory.getLogger(BgpUpdate.class);

 /**

 * Default constructor.

 * <p>

 * The constructor is private to prevent creating an instance of

 * this utility class.

 */

 private BgpUpdate() {

 }

 /**

 * Processes BGP UPDATE message.

 *

132

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param message the message to process

 */

 static void processBgpUpdate(BgpSession bgpSession,

 ChannelHandlerContext ctx,

 ChannelBuffer message) {

 DecodedBgpRoutes decodedBgpRoutes = new DecodedBgpRoutes();

 int minLength =

 BgpConstants.BGP_UPDATE_MIN_LENGTH - BgpConstants.BGP_HEADER_LENGTH;

 if (message.readableBytes() < minLength) {

 log.debug("BGP RX UPDATE Error from {}: " +

 "Message length {} too short. Must be at least {}",

 bgpSession.remoteInfo().address(),

 message.readableBytes(), minLength);

 //

 // ERROR: Bad Message Length

 //

 // Send NOTIFICATION and close the connection

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotificationBadMessageLength(

 message.readableBytes() + BgpConstants.BGP_HEADER_LENGTH);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 return;

 }

 log.debug("BGP RX UPDATE message from {}",

 bgpSession.remoteInfo().address());

 //

 // Parse the UPDATE message

 //

 //

 // Parse the Withdrawn Routes

 //

 int withdrawnRoutesLength = message.readUnsignedShort();

 if (withdrawnRoutesLength > message.readableBytes()) {

 // ERROR: Malformed Attribute List

 actionsBgpUpdateMalformedAttributeList(bgpSession, ctx);

 return;

 }

 Collection<Ip4Prefix> withdrawnPrefixes = null;

 try {

 withdrawnPrefixes = parsePackedIp4Prefixes(withdrawnRoutesLength,

 message);

 } catch (BgpMessage.BgpParseException e) {

 // ERROR: Invalid Network Field

 log.debug("Exception parsing Withdrawn Prefixes from BGP peer {}: ",

 bgpSession.remoteInfo().bgpId(), e);

 actionsBgpUpdateInvalidNetworkField(bgpSession, ctx);

 return;

 }

 for (Ip4Prefix prefix : withdrawnPrefixes) {

 log.debug("BGP RX UPDATE message WITHDRAWN from {}: {}",

 bgpSession.remoteInfo().address(), prefix);

 BgpRouteEntry bgpRouteEntry = bgpSession.findBgpRoute(prefix);

 if (bgpRouteEntry != null) {

133

 decodedBgpRoutes.deletedUnicastRoutes4.put(prefix,

 bgpRouteEntry);

 }

 }

 //

 // Parse the Path Attributes

 //

 try {

 parsePathAttributes(bgpSession, ctx, message, decodedBgpRoutes);

 } catch (BgpMessage.BgpParseException e) {

 log.debug("Exception parsing Path Attributes from BGP peer {}: ",

 bgpSession.remoteInfo().bgpId(), e);

 // NOTE: The session was already closed, so nothing else to do

 return;

 }

 //

 // Update the BGP RIB-IN

 //

 for (Ip4Prefix ip4Prefix :

 decodedBgpRoutes.deletedUnicastRoutes4.keySet()) {

 bgpSession.removeBgpRoute(ip4Prefix);

 }

 //

 for (BgpRouteEntry bgpRouteEntry :

 decodedBgpRoutes.addedUnicastRoutes4.values()) {

 bgpSession.addBgpRoute(bgpRouteEntry);

 }

 //

 for (Ip6Prefix ip6Prefix :

 decodedBgpRoutes.deletedUnicastRoutes6.keySet()) {

 bgpSession.removeBgpRoute(ip6Prefix);

 }

 //

 for (BgpRouteEntry bgpRouteEntry :

 decodedBgpRoutes.addedUnicastRoutes6.values()) {

 bgpSession.addBgpRoute(bgpRouteEntry);

 }

 //

 // Push the updates to the BGP Merged RIB

 //

 BgpRouteSelector bgpRouteSelector =

 bgpSession.getBgpSessionManager().getBgpRouteSelector();

 bgpRouteSelector.routeUpdates(

 decodedBgpRoutes.addedUnicastRoutes4.values(),

 decodedBgpRoutes.deletedUnicastRoutes4.values());

 bgpRouteSelector.routeUpdates(

 decodedBgpRoutes.addedUnicastRoutes6.values(),

 decodedBgpRoutes.deletedUnicastRoutes6.values());

 // Start the Session Timeout timer

 bgpSession.restartSessionTimeoutTimer(ctx);

 }

 /**

 * Parse BGP Path Attributes from the BGP UPDATE message.

 *

 * @param bgpSession the BGP Session to use

134

 * @param ctx the Channel Handler Context

 * @param message the message to parse

 * @param decodedBgpRoutes the container to store the decoded BGP Route

 * Entries. It might already contain some route entries such as withdrawn

 * IPv4 prefixes

 * @throws BgpMessage.BgpParseException

 */

 // CHECKSTYLE IGNORE MethodLength FOR NEXT 300 LINES

 private static void parsePathAttributes(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 ChannelBuffer message,

 DecodedBgpRoutes decodedBgpRoutes)

 throws BgpMessage.BgpParseException {

 //

 // Parsed values

 //

 Short origin = -1; // Mandatory

 BgpRouteEntry.AsPath asPath = null; // Mandatory

 // Legacy NLRI (RFC 4271). Mandatory NEXT_HOP if legacy NLRI is used

 MpNlri legacyNlri = new MpNlri(

 BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV4,

 BgpConstants.Open.Capabilities.MultiprotocolExtensions.SAFI_UNICAST);

 long multiExitDisc = // Optional

 BgpConstants.Update.MultiExitDisc.LOWEST_MULTI_EXIT_DISC;

 Long localPref = null; // Mandatory

 Long aggregatorAsNumber = null; // Optional: unused

 Ip4Address aggregatorIpAddress = null; // Optional: unused

 Long communityAsNumber = null; // Optional

 Long communityLocalIdentifier = null; // Optional

 Pair<Long, Long> community = null; // Optional

 Long extCommunityValueOne = null; // Optional

 Long extCommunityValueTwo = null; // Optional

 Long extCommunityValueThree = null; // Optional

 Triple<Long, Long, Long> extCommunity = null; // Optional

 BgpRouteEntry.Communities communities = null; // Optional

 BgpRouteEntry.extCommunities extCommunities = null; // Optional

 Collection<MpNlri> mpNlriReachList = new ArrayList<>(); // Optional

 Collection<MpNlri> mpNlriUnreachList = new ArrayList<>(); // Optional

 //

 // Get and verify the Path Attributes Length

 //

 int pathAttributeLength = message.readUnsignedShort();

 if (pathAttributeLength > message.readableBytes()) {

 // ERROR: Malformed Attribute List

 actionsBgpUpdateMalformedAttributeList(bgpSession, ctx);

 String errorMsg = "Malformed Attribute List";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 if (pathAttributeLength == 0) {

 return;

 }

 //

 // Parse the Path Attributes

 //

 int pathAttributeEnd = message.readerIndex() + pathAttributeLength;

 while (message.readerIndex() < pathAttributeEnd) {

135

 int attrFlags = message.readUnsignedByte();

 if (message.readerIndex() >= pathAttributeEnd) {

 // ERROR: Malformed Attribute List

 actionsBgpUpdateMalformedAttributeList(bgpSession, ctx);

 String errorMsg = "Malformed Attribute List";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 int attrTypeCode = message.readUnsignedByte();

 // The Attribute Flags

 boolean optionalBit = ((0x80 & attrFlags) != 0);

 boolean transitiveBit = ((0x40 & attrFlags) != 0);

 boolean partialBit = ((0x20 & attrFlags) != 0);

 boolean extendedLengthBit = ((0x10 & attrFlags) != 0);

 // The Attribute Length

 int attrLen = 0;

 int attrLenOctets = 1;

 if (extendedLengthBit) {

 attrLenOctets = 2;

 }

 if (message.readerIndex() + attrLenOctets > pathAttributeEnd) {

 // ERROR: Malformed Attribute List

 actionsBgpUpdateMalformedAttributeList(bgpSession, ctx);

 String errorMsg = "Malformed Attribute List";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 if (extendedLengthBit) {

 attrLen = message.readUnsignedShort();

 } else {

 attrLen = message.readUnsignedByte();

 }

 if (message.readerIndex() + attrLen > pathAttributeEnd) {

 // ERROR: Malformed Attribute List

 actionsBgpUpdateMalformedAttributeList(bgpSession, ctx);

 String errorMsg = "Malformed Attribute List";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // Verify the Attribute Flags

 verifyBgpUpdateAttributeFlags(bgpSession, ctx, attrTypeCode,

 attrLen, attrFlags, message);

 //

 // Extract the Attribute Value based on the Attribute Type Code

 //

 switch (attrTypeCode) {

 case BgpConstants.Update.Origin.TYPE:

 // Attribute Type Code ORIGIN

 origin = parseAttributeTypeOrigin(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 break;

 case BgpConstants.Update.AsPath.TYPE:

 // Attribute Type Code AS_PATH

 asPath = parseAttributeTypeAsPath(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

136

 break;

 case BgpConstants.Update.NextHop.TYPE:

 // Attribute Type Code NEXT_HOP

 legacyNlri.nextHop4 =

 parseAttributeTypeNextHop(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 break;

 case BgpConstants.Update.MultiExitDisc.TYPE:

 // Attribute Type Code MULTI_EXIT_DISC

 multiExitDisc =

 parseAttributeTypeMultiExitDisc(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 break;

 case BgpConstants.Update.LocalPref.TYPE:

 // Attribute Type Code LOCAL_PREF

 localPref =

 parseAttributeTypeLocalPref(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 break;

 case BgpConstants.Update.AtomicAggregate.TYPE:

 // Attribute Type Code ATOMIC_AGGREGATE

 parseAttributeTypeAtomicAggregate(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 // Nothing to do: this attribute is primarily informational

 break;

 case BgpConstants.Update.Aggregator.TYPE:

 // Attribute Type Code AGGREGATOR

 Pair<Long, Ip4Address> aggregator =

 parseAttributeTypeAggregator(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 aggregatorAsNumber = aggregator.getLeft();

 aggregatorIpAddress = aggregator.getRight();

 break;

 case BgpConstants.Update.Community.TYPE:

 // Attribute Type Code COMMUNITY

 communities =

 parseAttributeTypeCommunity(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 break;

 case BgpConstants.Update.ExtendedCommunity.TYPE:

 // Attribute Type Code Extended COMMUNITY

 extCommunities =

 parseAttributeTypeExtCommunity(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 break;

137

 case BgpConstants.Update.MpReachNlri.TYPE:

 // Attribute Type Code MP_REACH_NLRI

 MpNlri mpNlriReach =

 parseAttributeTypeMpReachNlri(bgpSession, ctx,

 attrTypeCode,

 attrLen,

 attrFlags, message);

 if (mpNlriReach != null) {

 mpNlriReachList.add(mpNlriReach);

 }

 break;

 case BgpConstants.Update.MpUnreachNlri.TYPE:

 // Attribute Type Code MP_UNREACH_NLRI

 MpNlri mpNlriUnreach =

 parseAttributeTypeMpUnreachNlri(bgpSession, ctx,

 attrTypeCode, attrLen,

 attrFlags, message);

 if (mpNlriUnreach != null) {

 mpNlriUnreachList.add(mpNlriUnreach);

 }

 break;

 default:

 // NOTE: Parse any new Attribute Types if needed

 if (!optionalBit) {

 // ERROR: Unrecognized Well-known Attribute

 actionsBgpUpdateUnrecognizedWellKnownAttribute(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags,

 message);

 String errorMsg = "Unrecognized Well-known Attribute: " +

 attrTypeCode;

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // Skip the data from the unrecognized attribute

 log.debug("BGP RX UPDATE message from {}: " +

 "Unrecognized Attribute Type {}",

 bgpSession.remoteInfo().address(), attrTypeCode);

 message.skipBytes(attrLen);

 break;

 }

 }

 //

 // Parse the NLRI (Network Layer Reachability Information)

 //

 int nlriLength = message.readableBytes();

 try {

 Collection<Ip4Prefix> addedPrefixes4 =

 parsePackedIp4Prefixes(nlriLength, message);

 // Store it inside the legacy NLRI wrapper

 legacyNlri.nlri4 = addedPrefixes4;

 } catch (BgpMessage.BgpParseException e) {

 // ERROR: Invalid Network Field

 log.debug("Exception parsing NLRI from BGP peer {}: ",

 bgpSession.remoteInfo().bgpId(), e);

 actionsBgpUpdateInvalidNetworkField(bgpSession, ctx);

 // Rethrow the exception

 throw e;

138

 }

 // Verify the Well-known Attributes

 verifyBgpUpdateWellKnownAttributes(bgpSession, ctx, origin, asPath,

 localPref, legacyNlri,

 mpNlriReachList);

 //

 // Generate the deleted routes

 //

 for (MpNlri mpNlri : mpNlriUnreachList) {

 BgpRouteEntry bgpRouteEntry;

 // The deleted IPv4 routes

 for (Ip4Prefix prefix : mpNlri.nlri4) {

 bgpRouteEntry = bgpSession.findBgpRoute(prefix);

 if (bgpRouteEntry != null) {

 decodedBgpRoutes.deletedUnicastRoutes4.put(prefix,

 bgpRouteEntry);

 }

 }

 // The deleted IPv6 routes

 for (Ip6Prefix prefix : mpNlri.nlri6) {

 bgpRouteEntry = bgpSession.findBgpRoute(prefix);

 if (bgpRouteEntry != null) {

 decodedBgpRoutes.deletedUnicastRoutes6.put(prefix,

 bgpRouteEntry);

 }

 }

 }

 //

 // Generate the added routes

 //

 mpNlriReachList.add(legacyNlri);

 for (MpNlri mpNlri : mpNlriReachList) {

 BgpRouteEntry bgpRouteEntry;

 // The added IPv4 routes

 for (Ip4Prefix prefix : mpNlri.nlri4) {

 bgpRouteEntry =

 new BgpRouteEntry(bgpSession, prefix, mpNlri.nextHop4,

 origin.byteValue(), asPath, localPref,

 communities, extCommunities);

 bgpRouteEntry.setMultiExitDisc(multiExitDisc);

 if (bgpRouteEntry.hasAsPathLoop(bgpSession.localInfo().asNumber())) {

 log.debug("BGP RX UPDATE message IGNORED from {}: {} " +

 "nextHop {}: contains AS Path loop",

 bgpSession.remoteInfo().address(), prefix,

 mpNlri.nextHop4);

 continue;

 } else {

 log.debug("BGP RX UPDATE message ADDED from {}: {} nextHop {}",

 bgpSession.remoteInfo().address(), prefix,

 mpNlri.nextHop4);

 }

 // Remove from the collection of deleted routes

 decodedBgpRoutes.deletedUnicastRoutes4.remove(prefix);

 decodedBgpRoutes.addedUnicastRoutes4.put(prefix,

139

 bgpRouteEntry);

 }

 // The added IPv6 routes

 for (Ip6Prefix prefix : mpNlri.nlri6) {

 bgpRouteEntry =

 new BgpRouteEntry(bgpSession, prefix, mpNlri.nextHop6,

 origin.byteValue(), asPath, localPref,

 communities, extCommunities);

 bgpRouteEntry.setMultiExitDisc(multiExitDisc);

 if (bgpRouteEntry.hasAsPathLoop(bgpSession.localInfo().asNumber())) {

 log.debug("BGP RX UPDATE message IGNORED from {}: {} " +

 "nextHop {}: contains AS Path loop",

 bgpSession.remoteInfo().address(), prefix,

 mpNlri.nextHop6);

 continue;

 } else {

 log.debug("BGP RX UPDATE message ADDED from {}: {} nextHop {}",

 bgpSession.remoteInfo().address(), prefix,

 mpNlri.nextHop6);

 }

 // Remove from the collection of deleted routes

 decodedBgpRoutes.deletedUnicastRoutes6.remove(prefix);

 decodedBgpRoutes.addedUnicastRoutes6.put(prefix,

 bgpRouteEntry);

 }

 }

 }

 /**

 * Verifies BGP UPDATE Well-known Attributes.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param origin the ORIGIN well-known mandatory attribute

 * @param asPath the AS_PATH well-known mandatory attribute

 * @param localPref the LOCAL_PREF required attribute

 * @param legacyNlri the legacy NLRI. Encapsulates the NEXT_HOP well-known

 * mandatory attribute (mandatory if legacy NLRI is used).

 * @param mpNlriReachList the Multiprotocol NLRI attributes

 * @throws BgpMessage.BgpParseException

 */

 private static void verifyBgpUpdateWellKnownAttributes(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 Short origin,

 BgpRouteEntry.AsPath asPath,

 Long localPref,

 MpNlri legacyNlri,

 Collection<MpNlri> mpNlriReachList)

 throws BgpMessage.BgpParseException {

 boolean hasNlri = false;

 boolean hasLegacyNlri = false;

 //

 // Convenience flags that are used to check for missing attributes.

 //

 // NOTE: The hasLegacyNlri flag is always set to true if the

 // Multiprotocol Extensions are not enabled, even if the UPDATE

 // message doesn't contain the legacy NLRI (per RFC 4271).

140

 //

 if (!bgpSession.mpExtensions()) {

 hasNlri = true;

 hasLegacyNlri = true;

 } else {

 if (!legacyNlri.nlri4.isEmpty()) {

 hasNlri = true;

 hasLegacyNlri = true;

 }

 if (!mpNlriReachList.isEmpty()) {

 hasNlri = true;

 }

 }

 //

 // Check for Missing Well-known Attributes

 //

 if (hasNlri && ((origin == null) || (origin == -1))) {

 // Missing Attribute Type Code ORIGIN

 int type = BgpConstants.Update.Origin.TYPE;

 actionsBgpUpdateMissingWellKnownAttribute(bgpSession, ctx, type);

 String errorMsg = "Missing Well-known Attribute: ORIGIN";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 if (hasNlri && (asPath == null)) {

 // Missing Attribute Type Code AS_PATH

 int type = BgpConstants.Update.AsPath.TYPE;

 actionsBgpUpdateMissingWellKnownAttribute(bgpSession, ctx, type);

 String errorMsg = "Missing Well-known Attribute: AS_PATH";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 if (hasNlri && (localPref == null)) {

 // Missing Attribute Type Code LOCAL_PREF

 // NOTE: Required for iBGP

 int type = BgpConstants.Update.LocalPref.TYPE;

 actionsBgpUpdateMissingWellKnownAttribute(bgpSession, ctx, type);

 String errorMsg = "Missing Well-known Attribute: LOCAL_PREF";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 if (hasLegacyNlri && (legacyNlri.nextHop4 == null)) {

 // Missing Attribute Type Code NEXT_HOP

 int type = BgpConstants.Update.NextHop.TYPE;

 actionsBgpUpdateMissingWellKnownAttribute(bgpSession, ctx, type);

 String errorMsg = "Missing Well-known Attribute: NEXT_HOP";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 }

 /**

 * Verifies the BGP UPDATE Attribute Flags.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @throws BgpMessage.BgpParseException

 */

 private static void verifyBgpUpdateAttributeFlags(

141

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 //

 // Assign the Attribute Type Name and the Well-known flag

 //

 String typeName = "UNKNOWN";

 boolean isWellKnown = false;

 switch (attrTypeCode) {

 case BgpConstants.Update.Origin.TYPE:

 isWellKnown = true;

 typeName = "ORIGIN";

 break;

 case BgpConstants.Update.AsPath.TYPE:

 isWellKnown = true;

 typeName = "AS_PATH";

 break;

 case BgpConstants.Update.NextHop.TYPE:

 isWellKnown = true;

 typeName = "NEXT_HOP";

 break;

 case BgpConstants.Update.MultiExitDisc.TYPE:

 isWellKnown = false;

 typeName = "MULTI_EXIT_DISC";

 break;

 case BgpConstants.Update.LocalPref.TYPE:

 isWellKnown = true;

 typeName = "LOCAL_PREF";

 break;

 case BgpConstants.Update.AtomicAggregate.TYPE:

 isWellKnown = true;

 typeName = "ATOMIC_AGGREGATE";

 break;

 case BgpConstants.Update.Aggregator.TYPE:

 isWellKnown = false;

 typeName = "AGGREGATOR";

 break;

 case BgpConstants.Update.Community.TYPE:

 isWellKnown = false;

 typeName = "COMMUNITY";

 break;

 case BgpConstants.Update.MpReachNlri.TYPE:

 isWellKnown = false;

 typeName = "MP_REACH_NLRI";

 break;

 case BgpConstants.Update.MpUnreachNlri.TYPE:

 isWellKnown = false;

 typeName = "MP_UNREACH_NLRI";

 break;

 default:

 isWellKnown = false;

 typeName = "UNKNOWN(" + attrTypeCode + ")";

 break;

 }

142

 //

 // Verify the Attribute Flags

 //

 boolean optionalBit = ((0x80 & attrFlags) != 0);

 boolean transitiveBit = ((0x40 & attrFlags) != 0);

 boolean partialBit = ((0x20 & attrFlags) != 0);

 if ((isWellKnown && optionalBit) ||

 (isWellKnown && (!transitiveBit)) ||

 (isWellKnown && partialBit) ||

 (optionalBit && (!transitiveBit) && partialBit)) {

 //

 // ERROR: The Optional bit cannot be set for Well-known attributes

 // ERROR: The Transtive bit MUST be 1 for well-known attributes

 // ERROR: The Partial bit MUST be 0 for well-known attributes

 // ERROR: The Partial bit MUST be 0 for optional non-transitive

 // attributes

 //

 actionsBgpUpdateAttributeFlagsError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Flags Error for " + typeName + ": " +

 attrFlags;

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 }

 /**

 * Parses BGP UPDATE Attribute Type ORIGIN.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed ORIGIN value

 * @throws BgpMessage.BgpParseException

 */

 private static short parseAttributeTypeOrigin(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 // Check the Attribute Length

 if (attrLen != BgpConstants.Update.Origin.LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 message.markReaderIndex();

 short origin = message.readUnsignedByte();

 switch (origin) {

 case BgpConstants.Update.Origin.IGP:

 // FALLTHROUGH

143

 case BgpConstants.Update.Origin.EGP:

 // FALLTHROUGH

 case BgpConstants.Update.Origin.INCOMPLETE:

 break;

 default:

 // ERROR: Invalid ORIGIN Attribute

 message.resetReaderIndex();

 actionsBgpUpdateInvalidOriginAttribute(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message,

 origin);

 String errorMsg = "Invalid ORIGIN Attribute: " + origin;

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 return origin;

 }

 /**

 * Parses BGP UPDATE Attribute AS Path.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed AS Path

 * @throws BgpMessage.BgpParseException

 */

 private static BgpRouteEntry.AsPath parseAttributeTypeAsPath(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 ArrayList<BgpRouteEntry.PathSegment> pathSegments = new ArrayList<>();

 //

 // Parse the message

 //

 while (attrLen > 0) {

 if (attrLen < 2) {

 // ERROR: Malformed AS_PATH

 actionsBgpUpdateMalformedAsPath(bgpSession, ctx);

 String errorMsg = "Malformed AS Path";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // Get the Path Segment Type and Length (in number of ASes)

 short pathSegmentType = message.readUnsignedByte();

 short pathSegmentLength = message.readUnsignedByte();

 attrLen -= 2;

 // Verify the Path Segment Type

 switch (pathSegmentType) {

 case BgpConstants.Update.AsPath.AS_SET:

 // FALLTHROUGH

 case BgpConstants.Update.AsPath.AS_SEQUENCE:

 // FALLTHROUGH

144

 case BgpConstants.Update.AsPath.AS_CONFED_SEQUENCE:

 // FALLTHROUGH

 case BgpConstants.Update.AsPath.AS_CONFED_SET:

 break;

 default:

 // ERROR: Invalid Path Segment Type

 //

 // NOTE: The BGP Spec (RFC 4271) doesn't contain Error Subcode

 // for "Invalid Path Segment Type", hence we return

 // the error as "Malformed AS_PATH".

 //

 actionsBgpUpdateMalformedAsPath(bgpSession, ctx);

 String errorMsg =

 "Invalid AS Path Segment Type: " + pathSegmentType;

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // 4-octet AS number handling.

 int asPathLen;

 if (bgpSession.isAs4OctetCapable()) {

 asPathLen = BgpConstants.Update.AS_4OCTET_LENGTH;

 } else {

 asPathLen = BgpConstants.Update.AS_LENGTH;

 }

 // Parse the AS numbers

 if (asPathLen * pathSegmentLength > attrLen) {

 // ERROR: Malformed AS_PATH

 actionsBgpUpdateMalformedAsPath(bgpSession, ctx);

 String errorMsg = "Malformed AS Path";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 attrLen -= (asPathLen * pathSegmentLength);

 ArrayList<Long> segmentAsNumbers = new ArrayList<>();

 while (pathSegmentLength-- > 0) {

 long asNumber;

 if (asPathLen == BgpConstants.Update.AS_4OCTET_LENGTH) {

 asNumber = message.readUnsignedInt();

 } else {

 asNumber = message.readUnsignedShort();

 }

 segmentAsNumbers.add(asNumber);

 }

 BgpRouteEntry.PathSegment pathSegment =

 new BgpRouteEntry.PathSegment((byte) pathSegmentType,

 segmentAsNumbers);

 pathSegments.add(pathSegment);

 }

 return new BgpRouteEntry.AsPath(pathSegments);

 }

 /**

 * Parses BGP UPDATE Attribute Type NEXT_HOP.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

145

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed NEXT_HOP value

 * @throws BgpMessage.BgpParseException

 */

 private static Ip4Address parseAttributeTypeNextHop(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 // Check the Attribute Length

 if (attrLen != BgpConstants.Update.NextHop.LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 message.markReaderIndex();

 Ip4Address nextHopAddress =

 Ip4Address.valueOf((int) message.readUnsignedInt());

 //

 // Check whether the NEXT_HOP IP address is semantically correct.

 // As per RFC 4271, Section 6.3:

 //

 // a) It MUST NOT be the IP address of the receiving speaker

 // b) In the case of an EBGP

 //

 // Here we check only (a), because (b) doesn't apply for us: all our

 // peers are iBGP.

 //

 if (nextHopAddress.equals(bgpSession.localInfo().ip4Address())) {

 // ERROR: Invalid NEXT_HOP Attribute

 message.resetReaderIndex();

 actionsBgpUpdateInvalidNextHopAttribute(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message,

 nextHopAddress);

 String errorMsg = "Invalid NEXT_HOP Attribute: " + nextHopAddress;

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 return nextHopAddress;

 }

 /**

 * Parses BGP UPDATE Attribute Type MULTI_EXIT_DISC.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed MULTI_EXIT_DISC value

 * @throws BgpMessage.BgpParseException

146

 */

 private static long parseAttributeTypeMultiExitDisc(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 // Check the Attribute Length

 if (attrLen != BgpConstants.Update.MultiExitDisc.LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 long multiExitDisc = message.readUnsignedInt();

 return multiExitDisc;

 }

 /**

 * Parses BGP UPDATE Attribute Type LOCAL_PREF.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed LOCAL_PREF value

 * @throws BgpMessage.BgpParseException

 */

 private static long parseAttributeTypeLocalPref(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 // Check the Attribute Length

 if (attrLen != BgpConstants.Update.LocalPref.LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 long localPref = message.readUnsignedInt();

 return localPref;

 }

 /**

 * Parses BGP UPDATE Attribute Type ATOMIC_AGGREGATE.

 *

147

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @throws BgpMessage.BgpParseException

 */

 private static void parseAttributeTypeAtomicAggregate(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 // Check the Attribute Length

 if (attrLen != BgpConstants.Update.AtomicAggregate.LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // Nothing to do: this attribute is primarily informational

 }

 /**

 * Parses BGP UPDATE Attribute Type AGGREGATOR.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed AGGREGATOR value: a tuple of <AS-Number, IP-Address>

 * @throws BgpMessage.BgpParseException

 */

 private static Pair<Long, Ip4Address> parseAttributeTypeAggregator(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 int expectedAttrLen;

 if (bgpSession.isAs4OctetCapable()) {

 expectedAttrLen = BgpConstants.Update.Aggregator.AS4_LENGTH;

 } else {

 expectedAttrLen = BgpConstants.Update.Aggregator.AS2_LENGTH;

 }

 // Check the Attribute Length

 if (attrLen != expectedAttrLen) {

 // ERROR: Attribute Length Error

148

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // The AGGREGATOR AS number

 long aggregatorAsNumber;

 if (bgpSession.isAs4OctetCapable()) {

 aggregatorAsNumber = message.readUnsignedInt();

 } else {

 aggregatorAsNumber = message.readUnsignedShort();

 }

 // The AGGREGATOR IP address

 Ip4Address aggregatorIpAddress =

 Ip4Address.valueOf((int) message.readUnsignedInt());

 Pair<Long, Ip4Address> aggregator = Pair.of(aggregatorAsNumber,

 aggregatorIpAddress);

 return aggregator;

 }

 /**

 * Parses BGP UPDATE Attribute Type COMMUNITY.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @throws BgpMessage.BgpParseException

 */

 private static BgpRouteEntry.Communities parseAttributeTypeCommunity(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 ArrayList<BgpRouteEntry.Community> communityList = new ArrayList<>();

 // Parse the message

 while (attrLen > 0) {

 // Check the Attribute Length

 if (attrLen < BgpConstants.Update.Community.MIN_COMM_LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 //The COMMUNITY AS Number

 long communityAsNumber = message.readUnsignedShort();

 //The COMMUNITY Local Identifier

 long communityLocalIdentifier = message.readUnsignedShort();

149

 attrLen -= 4;

 // The Community Attribute

 BgpRouteEntry.Community community = new BgpRouteEntry.Community(

 Pair.of(communityAsNumber, communityLocalIdentifier));

 communityList.add(community);

 }

 return new BgpRouteEntry.Communities(communityList);

 }

 /**

 * Parses BGP UPDATE Attribute Type EXTENDED COMMUNITY.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @throws BgpMessage.BgpParseException

 */

 private static BgpRouteEntry.extCommunities parseAttributeTypeExtCommunity(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 ArrayList<BgpRouteEntry.extCommunity> extCommunityList = new ArrayList<>();

 // Parse the message

 while (attrLen > 0) {

 // Check the Attribute Length

 if (attrLen < BgpConstants.Update.ExtendedCommunity.MIN_COMM_LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 //The EXTENDED COMMUNITY Value One

 long extCommunityValueOne = message.readUnsignedShort();

 //The EXTENDED COMMUNITY Value Two

 long extCommunityValueTwo = message.readUnsignedShort();

 //The EXTENDED COMMUNITY Value Three

 long extCommunityValueThree = message.readUnsignedInt();

 attrLen -= 8;

 // The Community Attribute

 BgpRouteEntry.extCommunity extCommunity =

 new BgpRouteEntry.extCommunity(Triple.of(extCommunityValueOne,

 extCommunityValueTwo,

 extCommunityValueThree));

 extCommunityList.add(extCommunity);

 }

 return new BgpRouteEntry.extCommunities(extCommunityList);

 }

150

 /**

 * Parses BGP UPDATE Attribute Type MP_REACH_NLRI.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed MP_REACH_NLRI information if recognized, otherwise

 * null

 * @throws BgpMessage.BgpParseException

 */

 private static MpNlri parseAttributeTypeMpReachNlri(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 int attributeEnd = message.readerIndex() + attrLen;

 // Check the Attribute Length

 if (attrLen < BgpConstants.Update.MpReachNlri.MIN_LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 message.markReaderIndex();

 int afi = message.readUnsignedShort();

 int safi = message.readUnsignedByte();

 int nextHopLen = message.readUnsignedByte();

 //

 // Verify the AFI/SAFI, and skip the attribute if not recognized.

 // NOTE: Currently, we support only IPv4/IPv6 UNICAST

 //

 if (((afi != BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV4) &&

 (afi != BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV6)) ||

 (safi != BgpConstants.Open.Capabilities.MultiprotocolExtensions.SAFI_UNICAST)) {

 // Skip the attribute

 message.resetReaderIndex();

 message.skipBytes(attrLen);

 return null;

 }

 //

 // Verify the next-hop length

 //

 int expectedNextHopLen = 0;

 switch (afi) {

 case BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV4:

 expectedNextHopLen = Ip4Address.BYTE_LENGTH;

 break;

151

 case BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV6:

 expectedNextHopLen = Ip6Address.BYTE_LENGTH;

 break;

 default:

 // UNREACHABLE

 break;

 }

 if (nextHopLen != expectedNextHopLen) {

 // ERROR: Optional Attribute Error

 message.resetReaderIndex();

 actionsBgpUpdateOptionalAttributeError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Invalid next-hop network address length. " +

 "Received " + nextHopLen + " expected " + expectedNextHopLen;

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 // NOTE: We use "+ 1" to take into account the Reserved field (1 octet)

 if (message.readerIndex() + nextHopLen + 1 >= attributeEnd) {

 // ERROR: Optional Attribute Error

 message.resetReaderIndex();

 actionsBgpUpdateOptionalAttributeError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Malformed next-hop network address";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 //

 // Get the Next-hop address, skip the Reserved field, and get the NLRI

 //

 byte[] nextHopBuffer = new byte[nextHopLen];

 message.readBytes(nextHopBuffer, 0, nextHopLen);

 int reserved = message.readUnsignedByte();

 MpNlri mpNlri = new MpNlri(afi, safi);

 try {

 switch (afi) {

 case BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV4:

 // The next-hop address

 mpNlri.nextHop4 = Ip4Address.valueOf(nextHopBuffer);

 // The NLRI

 mpNlri.nlri4 = parsePackedIp4Prefixes(

 attributeEnd - message.readerIndex(),

 message);

 break;

 case BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV6:

 // The next-hop address

 mpNlri.nextHop6 = Ip6Address.valueOf(nextHopBuffer);

 // The NLRI

 mpNlri.nlri6 = parsePackedIp6Prefixes(

 attributeEnd - message.readerIndex(),

 message);

 break;

 default:

 // UNREACHABLE

 break;

 }

 } catch (BgpMessage.BgpParseException e) {

 // ERROR: Optional Attribute Error

 message.resetReaderIndex();

 actionsBgpUpdateOptionalAttributeError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

152

 String errorMsg = "Malformed network layer reachability information";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 return mpNlri;

 }

 /**

 * Parses BGP UPDATE Attribute Type MP_UNREACH_NLRI.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message to parse

 * @return the parsed MP_UNREACH_NLRI information if recognized, otherwise

 * null

 * @throws BgpMessage.BgpParseException

 */

 private static MpNlri parseAttributeTypeMpUnreachNlri(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 int attributeEnd = message.readerIndex() + attrLen;

 // Check the Attribute Length

 if (attrLen < BgpConstants.Update.MpUnreachNlri.MIN_LENGTH) {

 // ERROR: Attribute Length Error

 actionsBgpUpdateAttributeLengthError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Attribute Length Error";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 message.markReaderIndex();

 int afi = message.readUnsignedShort();

 int safi = message.readUnsignedByte();

 //

 // Verify the AFI/SAFI, and skip the attribute if not recognized.

 // NOTE: Currently, we support only IPv4/IPv6 UNICAST

 //

 if (((afi != BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV4) &&

 (afi != BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV6)) ||

 (safi != BgpConstants.Open.Capabilities.MultiprotocolExtensions.SAFI_UNICAST)) {

 // Skip the attribute

 message.resetReaderIndex();

 message.skipBytes(attrLen);

 return null;

 }

 //

 // Get the Withdrawn Routes

 //

 MpNlri mpNlri = new MpNlri(afi, safi);

153

 try {

 switch (afi) {

 case BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV4:

 // The Withdrawn Routes

 mpNlri.nlri4 = parsePackedIp4Prefixes(

 attributeEnd - message.readerIndex(),

 message);

 break;

 case BgpConstants.Open.Capabilities.MultiprotocolExtensions.AFI_IPV6:

 // The Withdrawn Routes

 mpNlri.nlri6 = parsePackedIp6Prefixes(

 attributeEnd - message.readerIndex(),

 message);

 break;

 default:

 // UNREACHABLE

 break;

 }

 } catch (BgpMessage.BgpParseException e) {

 // ERROR: Optional Attribute Error

 message.resetReaderIndex();

 actionsBgpUpdateOptionalAttributeError(

 bgpSession, ctx, attrTypeCode, attrLen, attrFlags, message);

 String errorMsg = "Malformed withdrawn routes";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 return mpNlri;

 }

 /**

 * Parses a message that contains encoded IPv4 network prefixes.

 * <p>

 * The IPv4 prefixes are encoded in the form:

 * <Length, Prefix> where Length is the length in bits of the IPv4 prefix,

 * and Prefix is the IPv4 prefix (padded with trailing bits to the end

 * of an octet).

 *

 * @param totalLength the total length of the data to parse

 * @param message the message with data to parse

 * @return a collection of parsed IPv4 network prefixes

 * @throws BgpMessage.BgpParseException

 */

 private static Collection<Ip4Prefix> parsePackedIp4Prefixes(

 int totalLength,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 Collection<Ip4Prefix> result = new ArrayList<>();

 if (totalLength == 0) {

 return result;

 }

 // Parse the data

 byte[] buffer = new byte[Ip4Address.BYTE_LENGTH];

 int dataEnd = message.readerIndex() + totalLength;

 while (message.readerIndex() < dataEnd) {

 int prefixBitlen = message.readUnsignedByte();

 int prefixBytelen = (prefixBitlen + 7) / 8; // Round-up

 if (message.readerIndex() + prefixBytelen > dataEnd) {

154

 String errorMsg = "Malformed Network Prefixes";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 message.readBytes(buffer, 0, prefixBytelen);

 Ip4Prefix prefix = Ip4Prefix.valueOf(Ip4Address.valueOf(buffer),

 prefixBitlen);

 result.add(prefix);

 }

 return result;

 }

 /**

 * Parses a message that contains encoded IPv6 network prefixes.

 * <p>

 * The IPv6 prefixes are encoded in the form:

 * <Length, Prefix> where Length is the length in bits of the IPv6 prefix,

 * and Prefix is the IPv6 prefix (padded with trailing bits to the end

 * of an octet).

 *

 * @param totalLength the total length of the data to parse

 * @param message the message with data to parse

 * @return a collection of parsed IPv6 network prefixes

 * @throws BgpMessage.BgpParseException

 */

 private static Collection<Ip6Prefix> parsePackedIp6Prefixes(

 int totalLength,

 ChannelBuffer message)

 throws BgpMessage.BgpParseException {

 Collection<Ip6Prefix> result = new ArrayList<>();

 if (totalLength == 0) {

 return result;

 }

 // Parse the data

 byte[] buffer = new byte[Ip6Address.BYTE_LENGTH];

 int dataEnd = message.readerIndex() + totalLength;

 while (message.readerIndex() < dataEnd) {

 int prefixBitlen = message.readUnsignedByte();

 int prefixBytelen = (prefixBitlen + 7) / 8; // Round-up

 if (message.readerIndex() + prefixBytelen > dataEnd) {

 String errorMsg = "Malformed Network Prefixes";

 throw new BgpMessage.BgpParseException(errorMsg);

 }

 message.readBytes(buffer, 0, prefixBytelen);

 Ip6Prefix prefix = Ip6Prefix.valueOf(Ip6Address.valueOf(buffer),

 prefixBitlen);

 result.add(prefix);

 }

 return result;

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Invalid Network Field Error: send NOTIFICATION and close the channel.

 *

155

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 */

 private static void actionsBgpUpdateInvalidNetworkField(

 BgpSession bgpSession,

 ChannelHandlerContext ctx) {

 log.debug("BGP RX UPDATE Error from {}: Invalid Network Field",

 bgpSession.remoteInfo().address());

 //

 // ERROR: Invalid Network Field

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.INVALID_NETWORK_FIELD;

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 null);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Malformed Attribute List Error: send NOTIFICATION and close the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 */

 private static void actionsBgpUpdateMalformedAttributeList(

 BgpSession bgpSession,

 ChannelHandlerContext ctx) {

 log.debug("BGP RX UPDATE Error from {}: Malformed Attribute List",

 bgpSession.remoteInfo().address());

 //

 // ERROR: Malformed Attribute List

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.MALFORMED_ATTRIBUTE_LIST;

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 null);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Missing Well-known Attribute Error: send NOTIFICATION and close the

 * channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param missingAttrTypeCode the missing attribute type code

 */

 private static void actionsBgpUpdateMissingWellKnownAttribute(

156

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int missingAttrTypeCode) {

 log.debug("BGP RX UPDATE Error from {}: Missing Well-known Attribute: {}",

 bgpSession.remoteInfo().address(), missingAttrTypeCode);

 //

 // ERROR: Missing Well-known Attribute

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.MISSING_WELL_KNOWN_ATTRIBUTE;

 ChannelBuffer data = ChannelBuffers.buffer(1);

 data.writeByte(missingAttrTypeCode);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Invalid ORIGIN Attribute Error: send NOTIFICATION and close the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 * @param origin the ORIGIN attribute value

 */

 private static void actionsBgpUpdateInvalidOriginAttribute(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message,

 short origin) {

 log.debug("BGP RX UPDATE Error from {}: Invalid ORIGIN Attribute",

 bgpSession.remoteInfo().address());

 //

 // ERROR: Invalid ORIGIN Attribute

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.INVALID_ORIGIN_ATTRIBUTE;

 ChannelBuffer data =

 prepareBgpUpdateNotificationDataPayload(attrTypeCode, attrLen,

 attrFlags, message);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

157

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Attribute Flags Error: send NOTIFICATION and close the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 */

 private static void actionsBgpUpdateAttributeFlagsError(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message) {

 log.debug("BGP RX UPDATE Error from {}: Attribute Flags Error",

 bgpSession.remoteInfo().address());

 //

 // ERROR: Attribute Flags Error

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.ATTRIBUTE_FLAGS_ERROR;

 ChannelBuffer data =

 prepareBgpUpdateNotificationDataPayload(attrTypeCode, attrLen,

 attrFlags, message);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Invalid NEXT_HOP Attribute Error: send NOTIFICATION and close the

 * channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 * @param nextHop the NEXT_HOP attribute value

 */

 private static void actionsBgpUpdateInvalidNextHopAttribute(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message,

158

 Ip4Address nextHop) {

 log.debug("BGP RX UPDATE Error from {}: Invalid NEXT_HOP Attribute {}",

 bgpSession.remoteInfo().address(), nextHop);

 //

 // ERROR: Invalid NEXT_HOP Attribute

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.INVALID_NEXT_HOP_ATTRIBUTE;

 ChannelBuffer data =

 prepareBgpUpdateNotificationDataPayload(attrTypeCode, attrLen,

 attrFlags, message);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Unrecognized Well-known Attribute Error: send NOTIFICATION and close

 * the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 */

 private static void actionsBgpUpdateUnrecognizedWellKnownAttribute(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message) {

 log.debug("BGP RX UPDATE Error from {}: " +

 "Unrecognized Well-known Attribute Error: {}",

 bgpSession.remoteInfo().address(), attrTypeCode);

 //

 // ERROR: Unrecognized Well-known Attribute

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.UNRECOGNIZED_WELL_KNOWN_ATTRIBUTE;

 ChannelBuffer data =

 prepareBgpUpdateNotificationDataPayload(attrTypeCode, attrLen,

 attrFlags, message);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

159

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Optional Attribute Error: send NOTIFICATION and close

 * the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 */

 private static void actionsBgpUpdateOptionalAttributeError(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message) {

 log.debug("BGP RX UPDATE Error from {}: Optional Attribute Error: {}",

 bgpSession.remoteInfo().address(), attrTypeCode);

 //

 // ERROR: Optional Attribute Error

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

 BgpConstants.Notifications.UpdateMessageError.OPTIONAL_ATTRIBUTE_ERROR;

 ChannelBuffer data =

 prepareBgpUpdateNotificationDataPayload(attrTypeCode, attrLen,

 attrFlags, message);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Attribute Length Error: send NOTIFICATION and close the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 */

 private static void actionsBgpUpdateAttributeLengthError(

 BgpSession bgpSession,

 ChannelHandlerContext ctx,

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message) {

 log.debug("BGP RX UPDATE Error from {}: Attribute Length Error",

160

 bgpSession.remoteInfo().address());

 //

 // ERROR: Attribute Length Error

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode =

BgpConstants.Notifications.UpdateMessageError.ATTRIBUTE_LENGTH_ERROR;

 ChannelBuffer data =

 prepareBgpUpdateNotificationDataPayload(attrTypeCode, attrLen,

 attrFlags, message);

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 data);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Applies the appropriate actions after detecting BGP UPDATE

 * Malformed AS_PATH Error: send NOTIFICATION and close the channel.

 *

 * @param bgpSession the BGP Session to use

 * @param ctx the Channel Handler Context

 */

 private static void actionsBgpUpdateMalformedAsPath(

 BgpSession bgpSession,

 ChannelHandlerContext ctx) {

 log.debug("BGP RX UPDATE Error from {}: Malformed AS Path",

 bgpSession.remoteInfo().address());

 //

 // ERROR: Malformed AS_PATH

 //

 // Send NOTIFICATION and close the connection

 int errorCode = BgpConstants.Notifications.UpdateMessageError.ERROR_CODE;

 int errorSubcode = BgpConstants.Notifications.UpdateMessageError.MALFORMED_AS_PATH;

 ChannelBuffer txMessage =

 BgpNotification.prepareBgpNotification(errorCode, errorSubcode,

 null);

 ctx.getChannel().write(txMessage);

 bgpSession.closeSession(ctx);

 }

 /**

 * Prepares BGP UPDATE Notification data payload.

 *

 * @param attrTypeCode the attribute type code

 * @param attrLen the attribute length (in octets)

 * @param attrFlags the attribute flags

 * @param message the message with the data

 * @return the buffer with the data payload for the BGP UPDATE Notification

 */

 private static ChannelBuffer prepareBgpUpdateNotificationDataPayload(

 int attrTypeCode,

 int attrLen,

 int attrFlags,

 ChannelBuffer message) {

 // Compute the attribute length field octets

161

 boolean extendedLengthBit = ((0x10 & attrFlags) != 0);

 int attrLenOctets = 1;

 if (extendedLengthBit) {

 attrLenOctets = 2;

 }

 ChannelBuffer data =

 ChannelBuffers.buffer(attrLen + attrLenOctets + 1);

 data.writeByte(attrTypeCode);

 if (extendedLengthBit) {

 data.writeShort(attrLen);

 } else {

 data.writeByte(attrLen);

 }

 data.writeBytes(message, attrLen);

 return data;

 }

 /**

 * Helper class for storing Multiprotocol Network Layer Reachability

 * information.

 */

 private static final class MpNlri {

 private final int afi;

 private final int safi;

 private Ip4Address nextHop4;

 private Ip6Address nextHop6;

 private Collection<Ip4Prefix> nlri4 = new ArrayList<>();

 private Collection<Ip6Prefix> nlri6 = new ArrayList<>();

 /**

 * Constructor.

 *

 * @param afi the Address Family Identifier

 * @param safi the Subsequent Address Family Identifier

 */

 private MpNlri(int afi, int safi) {

 this.afi = afi;

 this.safi = safi;

 }

 }

 /**

 * Helper class for storing decoded BGP routing information.

 */

 private static final class DecodedBgpRoutes {

 private final Map<Ip4Prefix, BgpRouteEntry> addedUnicastRoutes4 =

 new HashMap<>();

 private final Map<Ip6Prefix, BgpRouteEntry> addedUnicastRoutes6 =

 new HashMap<>();

 private final Map<Ip4Prefix, BgpRouteEntry> deletedUnicastRoutes4 =

 new HashMap<>();

 private final Map<Ip6Prefix, BgpRouteEntry> deletedUnicastRoutes6 =

 new HashMap<>();

 }

}

162

Appendix 3 – BgpRouteEntry Module

BgpRouteEntry.java

/*

 * Copyright 2017-present Open Networking Foundation

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.onosproject.routing.bgp;

import com.google.common.base.MoreObjects;

import org.apache.commons.lang3.tuple.Pair;

import org.apache.commons.lang3.tuple.Triple;

import org.javatuples.Quartet;

import org.onlab.packet.Ip4Address;

import org.onlab.packet.IpAddress;

import org.onlab.packet.IpPrefix;

import java.util.ArrayList;

import java.util.Objects;

import static com.google.common.base.Preconditions.checkNotNull;

/**

 * Represents a route in BGP.

 */

public class BgpRouteEntry extends RouteEntry {

 private final BgpSession bgpSession; // The BGP Session the route was

 // received on

 private final byte origin; // Route ORIGIN: IGP, EGP, INCOMPLETE

 private final AsPath asPath; // The AS Path

 private final long localPref; // The local preference for the route

 private long multiExitDisc = BgpConstants.Update.MultiExitDisc.LOWEST_MULTI_EXIT_DISC;

 //private final Pair<Long, Long> community;

 private final Communities communities;

 private final extCommunities extCommunities;

 /**

 * Class constructor.

 *

 * @param bgpSession the BGP Session the route was received on

 * @param prefix the prefix of the route

 * @param nextHop the next hop of the route

 * @param origin the route origin: 0=IGP, 1=EGP, 2=INCOMPLETE

 * @param asPath the AS path

 * @param localPref the route local preference

163

 * @param communities the basic community attribute

 * @param extCommunities the extended community attribute

 */

 public BgpRouteEntry(BgpSession bgpSession, IpPrefix prefix,

 IpAddress nextHop, byte origin,

 BgpRouteEntry.AsPath asPath, long localPref,

 Communities communities, extCommunities extCommunities) {

 super(prefix, nextHop);

 this.bgpSession = checkNotNull(bgpSession);

 this.origin = origin;

 this.asPath = checkNotNull(asPath);

 this.localPref = localPref;

 this.communities = communities;

 this.extCommunities = extCommunities;

 }

 /**

 * Gets the BGP Session the route was received on.

 *

 * @return the BGP Session the route was received on

 */

 public BgpSession getBgpSession() {

 return bgpSession;

 }

 /**

 * Gets the route origin: 0=IGP, 1=EGP, 2=INCOMPLETE.

 *

 * @return the route origin: 0=IGP, 1=EGP, 2=INCOMPLETE

 */

 public byte getOrigin() {

 return origin;

 }

 /**

 * Gets the route AS path.

 *

 * @return the route AS path

 */

 public BgpRouteEntry.AsPath getAsPath() {

 return asPath;

 }

 /**

 * Gets the route local preference.

 *

 * @return the route local preference

 */

 public long getLocalPref() {

 return localPref;

 }

 /**

 * Gets the route MED (Multi-Exit Discriminator).

 *

 * @return the route MED (Multi-Exit Discriminator)

 */

 public long getMultiExitDisc() {

 return multiExitDisc;

 }

164

 /**

 * Sets the route MED (Multi-Exit Discriminator).

 *

 * @param multiExitDisc the route MED (Multi-Exit Discriminator) to set

 */

 void setMultiExitDisc(long multiExitDisc) {

 this.multiExitDisc = multiExitDisc;

 }

 /**

 * Gets the route community.

 *

 * @return the route community

 */

 public BgpRouteEntry.Communities getCommunities() {

 return communities;

 }

 /**

 * Gets the route extended community.

 *

 * @return the route extended community

 */

 public BgpRouteEntry.extCommunities getExtendedCommunities() {

 return extCommunities;

 }

 /**

 * Tests whether the route is originated from the local AS.

 * <p>

 * The route is considered originated from the local AS if the AS Path

 * is empty or if it begins with an AS_SET (after skipping

 * AS_CONFED_SEQUENCE and AS_CONFED_SET).

 * </p>

 *

 * @return true if the route is originated from the local AS, otherwise

 * false

 */

 boolean isLocalRoute() {

 PathSegment firstPathSegment = null;

 // Find the first Path Segment by ignoring the AS_CONFED_* segments

 for (PathSegment pathSegment : asPath.getPathSegments()) {

 if ((pathSegment.getType() == BgpConstants.Update.AsPath.AS_SET) ||

 (pathSegment.getType() == BgpConstants.Update.AsPath.AS_SEQUENCE)) {

 firstPathSegment = pathSegment;

 break;

 }

 }

 if (firstPathSegment == null) {

 return true; // Local route: no path segments

 }

 // If the first path segment is AS_SET, the route is considered local

 if (firstPathSegment.getType() == BgpConstants.Update.AsPath.AS_SET) {

 return true;

 }

 return false; // The route is not local

165

 }

 /**

 * Gets the BGP Neighbor AS number the route was received from.

 * <p>

 * If the router is originated from the local AS, the return value is

 * zero (BGP_AS_0).

 * </p>

 *

 * @return the BGP Neighbor AS number the route was received from.

 */

 long getNeighborAs() {

 PathSegment firstPathSegment = null;

 if (isLocalRoute()) {

 return BgpConstants.BGP_AS_0;

 }

 // Find the first Path Segment by ignoring the AS_CONFED_* segments

 for (PathSegment pathSegment : asPath.getPathSegments()) {

 if ((pathSegment.getType() == BgpConstants.Update.AsPath.AS_SET) ||

 (pathSegment.getType() == BgpConstants.Update.AsPath.AS_SEQUENCE)) {

 firstPathSegment = pathSegment;

 break;

 }

 }

 if (firstPathSegment == null) {

 // NOTE: Shouldn't happen - should be captured by isLocalRoute()

 return BgpConstants.BGP_AS_0;

 }

 if (firstPathSegment.getSegmentAsNumbers().isEmpty()) {

 // NOTE: Shouldn't happen. Should check during the parsing.

 return BgpConstants.BGP_AS_0;

 }

 return firstPathSegment.getSegmentAsNumbers().get(0);

 }

 /**

 * Tests whether the AS Path contains a loop.

 * <p>

 * The test is done by comparing whether the AS Path contains the

 * local AS number.

 * </p>

 *

 * @param localAsNumber the local AS number to compare against

 * @return true if the AS Path contains a loop, otherwise false

 */

 boolean hasAsPathLoop(long localAsNumber) {

 for (PathSegment pathSegment : asPath.getPathSegments()) {

 for (Long asNumber : pathSegment.getSegmentAsNumbers()) {

 if (asNumber.equals(localAsNumber)) {

 return true;

 }

 }

 }

 return false;

 }

 /**

166

 * Compares this BGP route against another BGP route by using the

 * BGP Decision Process.

 * <p>

 * NOTE: The comparison needs to be performed only on routes that have

 * same IP Prefix.

 * </p>

 *

 * @param other the BGP route to compare against

 * @return true if this BGP route is better than the other BGP route

 * or same, otherwise false

 */

 boolean isBetterThan(BgpRouteEntry other) {

 if (this == other) {

 return true; // Return true if same route

 }

 // Compare the LOCAL_PREF values: larger is better

 if (getLocalPref() != other.getLocalPref()) {

 return (getLocalPref() > other.getLocalPref());

 }

 // Compare the AS number in the path: smaller is better

 if (getAsPath().getAsPathLength() !=

 other.getAsPath().getAsPathLength()) {

 return getAsPath().getAsPathLength() <

 other.getAsPath().getAsPathLength();

 }

 // Compare the Origin number: lower is better

 if (getOrigin() != other.getOrigin()) {

 return (getOrigin() < other.getOrigin());

 }

 // Compare the MED if the neighbor AS is same: larger is better

 medLabel: {

 if (isLocalRoute() || other.isLocalRoute()) {

 // Compare MEDs for non-local routes only

 break medLabel;

 }

 long thisNeighborAs = getNeighborAs();

 if (thisNeighborAs != other.getNeighborAs()) {

 break medLabel; // AS number is different

 }

 if (thisNeighborAs == BgpConstants.BGP_AS_0) {

 break medLabel; // Invalid AS number

 }

 // Compare the MED

 if (getMultiExitDisc() != other.getMultiExitDisc()) {

 return (getMultiExitDisc() > other.getMultiExitDisc());

 }

 }

 // Compare the peer BGP ID: lower is better

 Ip4Address peerBgpId = getBgpSession().remoteInfo().bgpId();

 Ip4Address otherPeerBgpId = other.getBgpSession().remoteInfo().bgpId();

 if (!peerBgpId.equals(otherPeerBgpId)) {

 return (peerBgpId.compareTo(otherPeerBgpId) < 0);

 }

167

 // Compare the peer BGP address: lower is better

 Ip4Address peerAddress = getBgpSession().remoteInfo().ip4Address();

 Ip4Address otherPeerAddress =

 other.getBgpSession().remoteInfo().ip4Address();

 if (!peerAddress.equals(otherPeerAddress)) {

 return (peerAddress.compareTo(otherPeerAddress) < 0);

 }

 return true; // Routes are same. Shouldn't happen?

 }

 /**

 * A class to represent a Single Community Attribute.

 */

 public static class Community {

 private final Pair<Long, Long> community;

 /**

 * Constructor.

 *

 * @param community the pair of community attribute (ASN and Local ID)

 */

 Community(Pair<Long, Long> community) {

 this.community = community;

 }

 /**

 * Gets the community attribute.

 *

 * @return the community attribute

 */

 public Pair<Long, Long> getCommunity() {

 return community;

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

 .add("CommunityAttribute", this.community)

 .toString();

 }

 }

 /**

 * A class to represent a List of Community Attributes.

 */

 public static class Communities {

 private final ArrayList<Community> communities;

 /**

 * Constructor.

 *

 * @param communities the list of community attribute pairs

 */

 Communities(ArrayList<Community> communities) {

 this.communities = communities;

 }

168

 /**

 * Gets the list of community attributes.

 *

 * @return the list of community attribute

 */

 public ArrayList<Community> getCommunities() {

 return communities;

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

 .add("CommunityList", this.communities)

 .toString();

 }

 }

 /**

 * A class to represent a Single Extended Community Attribute.

 */

 public static class extCommunity {

 private final Triple<Long,Long,Long> extCommunity;

 /**

 * Constructor.

 *

 * @param extCommunity the pair of community attribute (ASN and Local ID)

 */

 extCommunity(Triple<Long,Long,Long> extCommunity) {

 this.extCommunity = extCommunity;

 }

 /**

 * Gets the extended community attribute.

 *

 * @return the extended community attribute

 */

 public Triple<Long,Long,Long> getExtendedCommunity() {

 return extCommunity;

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

 .add("ExtendedCommunityAttribute", this.extCommunity)

 .toString();

 }

 }

 /**

 * A class to represent a List of Extended Community Attributes.

 */

 public static class extCommunities {

 private final ArrayList<extCommunity> extCommunities;

 /**

 * Constructor.

 *

169

 * @param extCommunities the list of extended community attribute pairs

 */

 extCommunities(ArrayList<extCommunity> extCommunities) {

 this.extCommunities = extCommunities;

 }

 /**

 * Gets the list of extended community attributes.

 *

 * @return the list of extended community attribute

 */

 public ArrayList<extCommunity> getExtendedCommunities() {

 return extCommunities;

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

 .add("ExtendedCommunityList", this.extCommunities)

 .toString();

 }

 }

 /**

 * A class to represent AS Path Segment.

 */

 public static class PathSegment {

 // Segment type: AS_SET(1), AS_SEQUENCE(2), AS_CONFED_SEQUENCE(3),

 // AS_CONFED_SET(4)

 private final byte type;

 private final ArrayList<Long> segmentAsNumbers; // Segment AS numbers

 /**

 * Constructor.

 *

 * @param type the Path Segment Type: AS_SET(1), AS_SEQUENCE(2),

 * AS_CONFED_SEQUENCE(3), AS_CONFED_SET(4)

 * @param segmentAsNumbers the Segment AS numbers

 */

 PathSegment(byte type, ArrayList<Long> segmentAsNumbers) {

 this.type = type;

 this.segmentAsNumbers = checkNotNull(segmentAsNumbers);

 }

 /**

 * Gets the Path Segment Type: AS_SET(1), AS_SEQUENCE(2),

 * AS_CONFED_SEQUENCE(3), AS_CONFED_SET(4).

 *

 * @return the Path Segment Type: AS_SET(1), AS_SEQUENCE(2),

 * AS_CONFED_SEQUENCE(3), AS_CONFED_SET(4)

 */

 public byte getType() {

 return type;

 }

 /**

 * Gets the Path Segment AS Numbers.

170

 *

 * @return the Path Segment AS Numbers

 */

 public ArrayList<Long> getSegmentAsNumbers() {

 return segmentAsNumbers;

 }

 @Override

 public boolean equals(Object other) {

 if (this == other) {

 return true;

 }

 if (!(other instanceof PathSegment)) {

 return false;

 }

 PathSegment otherPathSegment = (PathSegment) other;

 return Objects.equals(this.type, otherPathSegment.type) &&

 Objects.equals(this.segmentAsNumbers,

 otherPathSegment.segmentAsNumbers);

 }

 @Override

 public int hashCode() {

 return Objects.hash(type, segmentAsNumbers);

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

 .add("type", BgpConstants.Update.AsPath.typeToString(type))

 .add("segmentAsNumbers", this.segmentAsNumbers)

 .toString();

 }

 }

 /**

 * A class to represent AS Path.

 */

 public static class AsPath {

 private final ArrayList<PathSegment> pathSegments;

 private final int asPathLength; // Precomputed AS Path Length

 /**

 * Constructor.

 *

 * @param pathSegments the Path Segments of the Path

 */

 AsPath(ArrayList<PathSegment> pathSegments) {

 this.pathSegments = checkNotNull(pathSegments);

 //

 // Precompute the AS Path Length:

 // - AS_SET counts as 1

 // - AS_SEQUENCE counts how many AS numbers are included

 // - AS_CONFED_SEQUENCE and AS_CONFED_SET are ignored

 //

 int pl = 0;

 for (PathSegment pathSegment : pathSegments) {

171

 switch (pathSegment.getType()) {

 case BgpConstants.Update.AsPath.AS_SET:

 pl++; // AS_SET counts as 1

 break;

 case BgpConstants.Update.AsPath.AS_SEQUENCE:

 // Count each AS number

 pl += pathSegment.getSegmentAsNumbers().size();

 break;

 case BgpConstants.Update.AsPath.AS_CONFED_SEQUENCE:

 break; // Ignore

 case BgpConstants.Update.AsPath.AS_CONFED_SET:

 break; // Ignore

 default:

 // NOTE: What to do if the Path Segment type is unknown?

 break;

 }

 }

 asPathLength = pl;

 }

 /**

 * Gets the AS Path Segments.

 *

 * @return the AS Path Segments

 */

 public ArrayList<PathSegment> getPathSegments() {

 return pathSegments;

 }

 /**

 * Gets the AS Path Length as considered by the BGP Decision Process.

 *

 * @return the AS Path Length as considered by the BGP Decision Process

 */

 int getAsPathLength() {

 return asPathLength;

 }

 @Override

 public boolean equals(Object other) {

 if (this == other) {

 return true;

 }

 if (!(other instanceof AsPath)) {

 return false;

 }

 AsPath otherAsPath = (AsPath) other;

 return Objects.equals(this.pathSegments, otherAsPath.pathSegments);

 }

 @Override

 public int hashCode() {

 return pathSegments.hashCode();

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

172

 .add("pathSegments", this.pathSegments)

 .toString();

 }

 }

 /**

 * Compares whether two objects are equal.

 * <p>

 * NOTE: The bgpSession field is excluded from the comparison.

 * </p>

 *

 * @return true if the two objects are equal, otherwise false.

 */

 @Override

 public boolean equals(Object other) {

 if (this == other) {

 return true;

 }

 //

 // NOTE: Subclasses are considered as change of identity, hence

 // equals() will return false if the class type doesn't match.

 //

 if (other == null || getClass() != other.getClass()) {

 return false;

 }

 if (!super.equals(other)) {

 return false;

 }

 // NOTE: The bgpSession field is excluded from the comparison

 BgpRouteEntry otherRoute = (BgpRouteEntry) other;

 return (this.origin == otherRoute.origin) &&

 Objects.equals(this.asPath, otherRoute.asPath) &&

 (this.localPref == otherRoute.localPref) &&

 (this.multiExitDisc == otherRoute.multiExitDisc);

 }

 /**

 * Computes the hash code.

 * <p>

 * NOTE: We return the base class hash code to avoid expensive computation

 * </p>

 *

 * @return the object hash code

 */

 @Override

 public int hashCode() {

 return super.hashCode();

 }

 @Override

 public String toString() {

 return MoreObjects.toStringHelper(getClass())

 .add("prefix", prefix())

 .add("nextHop", nextHop())

 .add("bgpId", bgpSession.remoteInfo().bgpId())

 .add("origin", BgpConstants.Update.Origin.typeToString(origin))

 .add("asPath", asPath)

173

 .add("localPref", localPref)

 .add("multiExitDisc", multiExitDisc)

 .add("community", communities)

 .add("extCommunity", extCommunities)

 .toString();

 }

}

174

Appendix 4 – BgpRoutesListCommand Module

BgpRoutesListCommand.java

/*

 * Copyright 2017-present Open Networking Foundation

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.onosproject.routing.cli;

import com.fasterxml.jackson.databind.JsonNode;

import com.fasterxml.jackson.databind.ObjectMapper;

import com.fasterxml.jackson.databind.node.ArrayNode;

import com.fasterxml.jackson.databind.node.ObjectNode;

import org.apache.karaf.shell.commands.Command;

import org.apache.karaf.shell.commands.Option;

import org.onosproject.cli.AbstractShellCommand;

import org.onosproject.routing.bgp.BgpConstants;

import org.onosproject.routing.bgp.BgpInfoService;

import org.onosproject.routing.bgp.BgpRouteEntry;

import org.onosproject.routing.bgp.BgpSession;

import java.util.ArrayList;

import java.util.Collection;

/**

 * Command to show the routes learned through BGP.

 */

@Command(scope = "onos", name = "bgp-routes",

 description = "Lists all BGP best routes")

public class BgpRoutesListCommand extends AbstractShellCommand {

 @Option(name = "-s", aliases = "--summary",

 description = "BGP routes summary",

 required = false, multiValued = false)

 private boolean routesSummary = false;

 @Option(name = "-n", aliases = "--neighbor",

 description = "Routes from a BGP neighbor",

 required = false, multiValued = false)

 private String bgpNeighbor;

 @Option(name = "-c", aliases = "--show-community",

 description = "Community attribute from BGP routes",

 required = false, multiValued = false)

 private boolean showCommunity;

175

 private static final String FORMAT_SUMMARY_V4 =

 "Total BGP IPv4 routes = %d";

 private static final String FORMAT_SUMMARY_V6 =

 "Total BGP IPv6 routes = %d";

 private static final String FORMAT_HEADER =

 " Network Next Hop Origin LocalPref MED BGP-ID ";

 private static final String FORMAT_ROUTE_LINE1 =

 " %-18s %-15s %6s %9s %9s %-15s ";

 private static final String FORMAT_ROUTE_LINE2 =

 " AsPath %s";

 @Override

 protected void execute() {

 BgpInfoService service = AbstractShellCommand.get(BgpInfoService.class);

 // Print summary of the routes

 if (routesSummary) {

 printSummary(service.getBgpRoutes4(), service.getBgpRoutes6());

 return;

 }

 if (showCommunity) {

 printCommunity(service.getBgpRoutes4(), service.getBgpRoutes6());

 return;

 }

 BgpSession foundBgpSession = null;

 if (bgpNeighbor != null) {

 // Print the routes from a single neighbor (if found)

 for (BgpSession bgpSession : service.getBgpSessions()) {

 if (bgpSession.remoteInfo().bgpId().toString().equals(bgpNeighbor)) {

 foundBgpSession = bgpSession;

 break;

 }

 }

 if (foundBgpSession == null) {

 print("BGP neighbor %s not found", bgpNeighbor);

 return;

 }

 }

 // Print the routes

 if (foundBgpSession != null) {

 printRoutes(foundBgpSession.getBgpRibIn4(),

 foundBgpSession.getBgpRibIn6());

 } else {

 printRoutes(service.getBgpRoutes4(), service.getBgpRoutes6());

 }

 }

 /**

 * Prints summary of the routes.

 *

 * @param routes4 the IPv4 routes

 * @param routes6 the IPv6 routes

 */

 private void printSummary(Collection<BgpRouteEntry> routes4,

 Collection<BgpRouteEntry> routes6) {

 if (outputJson()) {

 ObjectMapper mapper = new ObjectMapper();

176

 ObjectNode result = mapper.createObjectNode();

 result.put("totalRoutes4", routes4.size());

 result.put("totalRoutes6", routes6.size());

 print("%s", result);

 } else {

 print(FORMAT_SUMMARY_V4, routes4.size());

 print(FORMAT_SUMMARY_V6, routes6.size());

 }

 }

 /**

 * Prints all routes.

 *

 * @param routes4 the IPv4 routes to print

 * @param routes6 the IPv6 routes to print

 */

 private void printRoutes(Collection<BgpRouteEntry> routes4,

 Collection<BgpRouteEntry> routes6) {

 if (outputJson()) {

 ObjectMapper mapper = new ObjectMapper();

 ObjectNode result = mapper.createObjectNode();

 result.set("routes4", json(routes4));

 result.set("routes6", json(routes6));

 print("%s", result);

 } else {

 // The IPv4 routes

 print(FORMAT_HEADER);

 for (BgpRouteEntry route : routes4) {

 printRoute(route);

 }

 print(FORMAT_SUMMARY_V4, routes4.size());

 print(""); // Empty separator line

 // The IPv6 routes

 print(FORMAT_HEADER);

 for (BgpRouteEntry route : routes6) {

 printRoute(route);

 }

 print(FORMAT_SUMMARY_V6, routes6.size());

 }

 }

 /**

 * Prints a BGP route.

 *

 * @param route the route to print

 */

 private void printRoute(BgpRouteEntry route) {

 if (route != null) {

 print(FORMAT_ROUTE_LINE1, route.prefix(), route.nextHop(),

 BgpConstants.Update.Origin.typeToString(route.getOrigin()),

 route.getLocalPref(), route.getMultiExitDisc(),

 route.getBgpSession().remoteInfo().bgpId());

 print(FORMAT_ROUTE_LINE2, asPath4Cli(route.getAsPath()));

 }

 }

 /**

 * Prints routes BGP community.

 *

 * @param routes4 the IPv4 routes to print

177

 * @param routes6 the IPv4 routes to print

 */

 private void printCommunity(Collection<BgpRouteEntry> routes4,

 Collection<BgpRouteEntry> routes6) {

 // The IPv4 routes

 print(" IPv4 Network BGP Community BGP Extended Community");

 for (BgpRouteEntry route : routes4) {

 if (route.getCommunities() == null) {

 print("%-18s null null",

 route.prefix().toString());

 } else {

 print("%-18s %-32s %-32s",

 route.prefix().toString(),

 communityCli(route.getCommunities()),

 extCommunityCli(route.getExtendedCommunities()));

 }

 }

 print (""); // Empty separator line

 // The IPv6 routes

 print(" IPv6 Network BGP Community BGP Extended Community");

 for (BgpRouteEntry route : routes6) {

 if (route.getCommunities() == null) {

 print("%-18s null null",

 route.prefix().toString());

 } else {

 print("%-18s %-32s %-32s",

 route.prefix().toString(),

 communityCli(route.getCommunities()),

 extCommunityCli(route.getExtendedCommunities()));

 }

 }

 }

 /**

 * Formats the AS Path as a string that can be shown on the CLI.

 *

 * @param asPath the AS Path to format

 * @return the AS Path as a string

 */

 private String asPath4Cli(BgpRouteEntry.AsPath asPath) {

 ArrayList<BgpRouteEntry.PathSegment> pathSegments =

 asPath.getPathSegments();

 if (pathSegments.isEmpty()) {

 return "[none]";

 }

 final StringBuilder builder = new StringBuilder();

 for (BgpRouteEntry.PathSegment pathSegment : pathSegments) {

 String prefix = null;

 String suffix = null;

 switch (pathSegment.getType()) {

178

 case BgpConstants.Update.AsPath.AS_SET:

 prefix = "[AS-Set";

 suffix = "]";

 break;

 case BgpConstants.Update.AsPath.AS_SEQUENCE:

 break;

 case BgpConstants.Update.AsPath.AS_CONFED_SEQUENCE:

 prefix = "[AS-Confed-Seq";

 suffix = "]";

 break;

 case BgpConstants.Update.AsPath.AS_CONFED_SET:

 prefix = "[AS-Confed-Set";

 suffix = "]";

 break;

 default:

 builder.append(String.format("(type = %s)",

 BgpConstants.Update.AsPath.typeToString(pathSegment.getType())));

 break;

 }

 if (prefix != null) {

 if (builder.length() > 0) {

 builder.append(" "); // Separator

 }

 builder.append(prefix);

 }

 // Print the AS numbers

 for (Long asn : pathSegment.getSegmentAsNumbers()) {

 if (builder.length() > 0) {

 builder.append(" "); // Separator

 }

 builder.append(String.format("%d", asn));

 }

 if (suffix != null) {

 // No need for separator

 builder.append(prefix);

 }

 }

 return builder.toString();

 }

 /**

 * Formats the BGP Communities as a string that can be shown on the CLI.

 *

 * @param communities the community attributes to format

 * @return the community attributes as a string

 */

 private String communityCli(BgpRouteEntry.Communities communities) {

 ArrayList<BgpRouteEntry.Community> communityList = communities.getCommunities();

 final StringBuilder builder = new StringBuilder();

 for (BgpRouteEntry.Community community : communityList) {

 builder.append(community.getCommunity().getLeft().toString() + ":"

 + community.getCommunity().getRight().toString() +" ");

 }

179

 return builder.toString();

 }

 /**

 * Formats the BGP Extended Communities as a string that can be shown on the CLI.

 *

 * @param extCommunities the extcommunity attributes to format

 * @return the extcommunity attributes as a string

 */

 private String extCommunityCli(BgpRouteEntry.extCommunities extCommunities) {

 log.info(extCommunities.getExtendedCommunities().toString());

 ArrayList<BgpRouteEntry.extCommunity> extCommunityList =

 extCommunities.getExtendedCommunities();

 final StringBuilder builder = new StringBuilder();

 for (BgpRouteEntry.extCommunity extCommunity : extCommunityList) {

 builder.append(extCommunity.getExtendedCommunity().getLeft().toString() + ":"

 + extCommunity.getExtendedCommunity().getMiddle().toString() + ":"

 + extCommunity.getExtendedCommunity().getRight().toString() + " ");

 }

 return builder.toString();

 }

 /**

 * Produces a JSON array of routes.

 *

 * @param routes the routes with the data

 * @return JSON array with the routes

 */

 private JsonNode json(Collection<BgpRouteEntry> routes) {

 ObjectMapper mapper = new ObjectMapper();

 ArrayNode result = mapper.createArrayNode();

 for (BgpRouteEntry route : routes) {

 result.add(json(mapper, route));

 }

 return result;

 }

 /**

 * Produces JSON object for a route.

 *

 * @param mapper the JSON object mapper to use

 * @param route the route with the data

 * @return JSON object for the route

 */

 private ObjectNode json(ObjectMapper mapper, BgpRouteEntry route) {

 ObjectNode result = mapper.createObjectNode();

 result.put("prefix", route.prefix().toString());

 result.put("nextHop", route.nextHop().toString());

 result.put("bgpId",

180

 route.getBgpSession().remoteInfo().bgpId().toString());

 result.put("origin", BgpConstants.Update.Origin.typeToString(route.getOrigin()));

 result.set("asPath", json(mapper, route.getAsPath()));

 result.put("localPref", route.getLocalPref());

 result.put("multiExitDisc", route.getMultiExitDisc());

 return result;

 }

 /**

 * Produces JSON object for an AS path.

 *

 * @param mapper the JSON object mapper to use

 * @param asPath the AS path with the data

 * @return JSON object for the AS path

 */

 private ObjectNode json(ObjectMapper mapper, BgpRouteEntry.AsPath asPath) {

 ObjectNode result = mapper.createObjectNode();

 ArrayNode pathSegmentsJson = mapper.createArrayNode();

 for (BgpRouteEntry.PathSegment pathSegment : asPath.getPathSegments()) {

 ObjectNode pathSegmentJson = mapper.createObjectNode();

 pathSegmentJson.put("type",

 BgpConstants.Update.AsPath.typeToString(pathSegment.getType()));

 ArrayNode segmentAsNumbersJson = mapper.createArrayNode();

 for (Long asNumber : pathSegment.getSegmentAsNumbers()) {

 segmentAsNumbersJson.add(asNumber);

 }

 pathSegmentJson.set("segmentAsNumbers", segmentAsNumbersJson);

 pathSegmentsJson.add(pathSegmentJson);

 }

 result.set("pathSegments", pathSegmentsJson);

 return result;

 }

}

181

Appendix 5 – Indopronos Module

Indopronos.java

/*

 * Copyright 2018-Franciscus Ari Wibowo

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.onosproject.indopronos;

import org.apache.felix.scr.annotations.Activate;

import org.apache.felix.scr.annotations.Component;

import org.apache.felix.scr.annotations.Deactivate;

import org.apache.felix.scr.annotations.Reference;

import org.apache.felix.scr.annotations.ReferenceCardinality;

import org.onosproject.app.ApplicationService;

import org.onosproject.core.ApplicationId;

import org.onosproject.core.CoreService;

import org.onosproject.intentsync.IntentSynchronizationService;

import org.onosproject.net.intent.IntentService;

import org.onosproject.routeservice.RouteService;

import org.onosproject.routing.bgp.BgpInfoService;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

/**

 * Application component for Inter-Domain Provisioning for Policy Routing in ONOS (Indopronos)

 */

@Component(immediate = true)

public class Indopronos {

 public static final String INDOPRONOS_APP = "org.onosproject.indopronos";

 private final Logger log = LoggerFactory.getLogger(getClass());

 @Reference(cardinality = ReferenceCardinality.MANDATORY_UNARY)

 protected BgpInfoService bgpService;

 @Reference(cardinality = ReferenceCardinality.MANDATORY_UNARY)

 protected CoreService coreService;

 @Reference(cardinality = ReferenceCardinality.MANDATORY_UNARY)

 protected IntentService intentService;

 @Reference(cardinality = ReferenceCardinality.MANDATORY_UNARY)

 protected IntentSynchronizationService intentSyncService;

182

 @Reference(cardinality = ReferenceCardinality.MANDATORY_UNARY)

 protected ApplicationService applicationService;

 @Reference(cardinality = ReferenceCardinality.MANDATORY_UNARY)

 protected RouteService routeService;

 private IndopronosConnectivityManager IndopronosConnectivity;

 private ApplicationId appId;

 @Activate

 protected void activate() {

 appId = coreService.registerApplication(INDOPRONOS_APP);

 IndopronosConnectivity = new IndopronosConnectivityManager(appId,

 bgpService,

 coreService,

 intentService,

 intentSyncService,

 routeService);

 IndopronosConnectivity.start();

 applicationService.registerDeactivateHook(appId,

 () -> intentSyncService.removeIntentsByAppId(appId));

 log.info("Started");

 }

 @Deactivate

 protected void deactivate() {

 IndopronosConnectivity.stop();

 log.info("Stopped");

 }

}

183

Appendix 6 – IndopronosConnectivityManager

Module

IndopronosConnectivityManager.java

/*

 * Copyright 2018-Franciscus Ari Wibowo

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.onosproject.indopronos;

import org.onlab.packet.MacAddress;

import org.onosproject.core.ApplicationId;

import org.onosproject.core.CoreService;

import org.onosproject.intentsync.IntentSynchronizationService;

import org.onosproject.net.ConnectPoint;

import org.onosproject.net.DeviceId;

import org.onosproject.net.FilteredConnectPoint;

import org.onosproject.net.PortNumber;

import org.onosproject.net.flow.DefaultTrafficSelector;

import org.onosproject.net.flow.DefaultTrafficTreatment;

import org.onosproject.net.flow.TrafficTreatment;

import org.onosproject.net.intent.Intent;

import org.onosproject.net.intent.IntentService;

import org.onosproject.net.intent.Key;

import org.onosproject.net.intent.MultiPointToSinglePointIntent;

import org.onosproject.net.intent.PointToPointIntent;

import org.onosproject.routeservice.ResolvedRoute;

import org.onosproject.routeservice.RouteEvent;

import org.onosproject.routeservice.RouteListener;

import org.onosproject.routeservice.RouteService;

import org.onosproject.routing.bgp.BgpInfoService;

import org.onosproject.routing.bgp.BgpRouteEntry;

import org.onosproject.routing.bgp.RouteEntry;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.ArrayList;

import java.util.Collection;

/**

 * FIB component of INDOPRONOS Application.

 */

public class IndopronosConnectivityManager {

184

 // Condition to execute policy routing

 private static final String ACTION_COMMUNITY_LOCAL_ID = "100";

 // Intent Priority to override MP2SP of SDN-IP

 private static final Integer PRIORITY = 250;

 // Premium Link / Private Peer Definition

 private static final String SWITCH_DPID = "of:0000000000000001";

 private static final Integer PORT_NUMBER = 6;

 private static final FilteredConnectPoint EGRESS_POINT_PRIVATE =

 new FilteredConnectPoint

 (new ConnectPoint(

 DeviceId.deviceId(SWITCH_DPID),

 PortNumber.portNumber(PORT_NUMBER)));

 private static final MacAddress NEXT_HOP_MAC_PRIVATE =

 MacAddress.valueOf("00:00:00:00:00:A3");

 private final BgpInfoService bgpService;

 private final IntentService intentService;

 private final CoreService coreService;

 private final IntentSynchronizationService intentSyncService;

 private final RouteService routeService;

 private static final Logger log = LoggerFactory.getLogger(

 IndopronosConnectivityManager.class);

 private final ApplicationId appId;

 private final InternalRouteListener routeListener = new InternalRouteListener();

 /**

 * Creates a new Indopronos ConnectivityManager.

 *

 * @param appId the application ID

 * @param bgpService the BGP service

 * @param coreService the core Service

 * @param intentService the intent service

 * @param intentSyncService the intent synchronizer service

 */

 public IndopronosConnectivityManager(ApplicationId appId,

 BgpInfoService bgpService,

 CoreService coreService,

 IntentService intentService,

 IntentSynchronizationService intentSyncService,

 RouteService routeService) {

 this.appId = appId;

 this.bgpService = bgpService;

 this.coreService = coreService;

 this.intentService = intentService;

 this.intentSyncService = intentSyncService;

 this.routeService = routeService;

 }

 /**

 * Starts the Indopronos connectivity manager.

 */

 public void start() {

 routeService.addListener(routeListener);

185

 Collection<BgpRouteEntry> routes4 = bgpService.getBgpRoutes4();

 Collection<BgpRouteEntry> routes6 = bgpService.getBgpRoutes6();

 for (BgpRouteEntry route : routes4) {

 setUpConnectivity(route);

 }

 for (BgpRouteEntry route : routes6) {

 setUpConnectivity(route);

 }

 }

 /**

 * Stops the Indopronos connectivity manager.

 */

 public void stop() {

 routeService.removeListener(routeListener);

 }

 /**

 * Stops the Indopronos connectivity manager.

 */

 public void update(ResolvedRoute resolvedRoute) {

 log.info("Resolved route: {}", resolvedRoute.prefix());

 Iterable<Intent> intents = intentService.getIntents();

 for (Intent intent : intents) {

 if (intent.appId().equals(appId)) {

 intentSyncService.withdraw(intent);

 }

 }

 Collection<BgpRouteEntry> routes4 = bgpService.getBgpRoutes4();

 Collection<BgpRouteEntry> routes6 = bgpService.getBgpRoutes6();

 for (BgpRouteEntry route : routes4) {

 if (route.prefix().equals(resolvedRoute.prefix())) {

 setUpConnectivity(route);

 }

 }

 for (BgpRouteEntry route : routes6) {

 if (route.prefix().equals(resolvedRoute.prefix())) {

 setUpConnectivity(route);

 }

 }

 }

 /**

 * Sets up paths to override the connectivity between BGP router who send the

 * community and private peer BGP router.

 * @param route

 */

 private void setUpConnectivity(BgpRouteEntry route) {

186

 //Collection<BgpRouteEntry> routes4 = bgpService.getBgpRoutes4();

 //Collection<BgpRouteEntry> routes6 = bgpService.getBgpRoutes6();

 Iterable<Intent> intents;

 intents = intentService.getIntents();

 if (route.getCommunities() == null) {

 log.info("No communities found in prefix {}", route.prefix());

 return;

 }

 if (route.getExtendedCommunities() == null) {

 log.info("No extended communities found in prefix {}", route.prefix());

 return;

 }

 BgpRouteEntry.PathSegment firstPathSegment =

 route.getAsPath().getPathSegments().get(0);

 long originatingAsn = firstPathSegment.getSegmentAsNumbers().get(0);

 log.info("Prefix {} originated from AS {}", route.prefix(), originatingAsn);

 ArrayList<BgpRouteEntry.Community> routeCommunities =

 route.getCommunities().getCommunities();

 ArrayList<BgpRouteEntry.extCommunity> routeExtCommunities =

 route.getExtendedCommunities().getExtendedCommunities();

 for (BgpRouteEntry.Community routeCommunity : routeCommunities) {

 Long communityAsn = routeCommunity.getCommunity().getLeft();

 Long communityLocalId = routeCommunity.getCommunity().getRight();

 for (BgpRouteEntry.extCommunity routeExtCommunity : routeExtCommunities) {

 if (String.valueOf(communityAsn).equals(String.valueOf(originatingAsn)) &&

 (String.valueOf(communityLocalId).equals(ACTION_COMMUNITY_LOCAL_ID)) &&

 (routeExtCommunity.getExtendedCommunity().getMiddle().equals(communityAsn)) &&

 (routeExtCommunity.getExtendedCommunity().getRight().equals(communityLocalId))) {

 log.info("Matched both communities ASN and Local ID for prefix {}", route.prefix());

 MultiPointToSinglePointIntent routeIntent = getRouteIntent(route, intents);

 // Build treatment: rewrite the destination MAC address

 TrafficTreatment.Builder treatment = DefaultTrafficTreatment.builder()

 .setEthDst(NEXT_HOP_MAC_PRIVATE);

 String intentKeyOne = String.valueOf(communityAsn) + ":"

187

 + String.valueOf(communityLocalId) + "-One";

 PointToPointIntent newIntentOne = PointToPointIntent.builder()

 .appId(appId)

 .key(Key.of(intentKeyOne, appId))

 .filteredIngressPoint(routeIntent.filteredEgressPoint())

 .filteredEgressPoint(EGRESS_POINT_PRIVATE)

 .selector(DefaultTrafficSelector.builder().build())

 .treatment(treatment.build())

 .priority(PRIORITY)

 .build();

 log.info("Intent to be installed {}", newIntentOne);

 intentSyncService.submit(newIntentOne);

 String intentKeyTwo = String.valueOf(communityAsn) + ":"

 + String.valueOf(communityLocalId) + "-Two";

 PointToPointIntent newIntentTwo = PointToPointIntent.builder()

 .appId(appId)

 .key(Key.of(intentKeyTwo, appId))

 .filteredIngressPoint(EGRESS_POINT_PRIVATE)

 .filteredEgressPoint(routeIntent.filteredEgressPoint())

 .selector(DefaultTrafficSelector.builder().build())

 .treatment(routeIntent.treatment())

 .priority(PRIORITY)

 .build();

 log.info("Intent to be installed {}", newIntentTwo);

 intentSyncService.submit(newIntentTwo);

 } else {

 log.info("Both communities ASN and Local ID in prefix {} are not matched",

 route.prefix());

 }

 }

 }

 }

 /**

 * Get route multi-point-to-single-point intent from SDN IP.

 *

 * @param intents the community attribute to format

 * @return the Community as a string with colon

 */

 private MultiPointToSinglePointIntent getRouteIntent(BgpRouteEntry route,

 Iterable<Intent> intents) {

 MultiPointToSinglePointIntent routeIntent = null;

 for (Intent intent : intents) {

 if (intent instanceof MultiPointToSinglePointIntent) {

 if (route.prefix().toString().equals(intent.key().toString())) {

 routeIntent = (MultiPointToSinglePointIntent) intent;

 }

 }

 }

 return routeIntent;

 }

188

 private class InternalRouteListener implements RouteListener {

 @Override

 public void event(RouteEvent event) {

 switch (event.type()) {

 case ROUTE_ADDED:

 update(event.subject());

 break;

 case ROUTE_UPDATED:

 update(event.subject());

 break;

 case ROUTE_REMOVED:

 update(event.subject());

 break;

 default:

 break;

 }

 }

 }

}

