5,340 research outputs found

    Injecting continuous time execution into service-oriented computing

    Get PDF
    Service-Oriented Computing is a computing paradigm that utilizes services as fundamental elements to support rapid, low-cost development of distributed applications in heterogeneous environments. In Service-Oriented Computing, a service is defined as an independent and autonomous piece of functionality which can be described, published, discovered and used in a uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET integrated project. It provides a formal abstraction for services at the business level. Hybrid systems arise in embedded control when components that perform discrete changes are coupled with components that perform continuous processes. Normally, the discrete changes can be modeled by finite-state machines and the continuous processes can be modeled by differential equations. In an abstract point of view, hybrid systems are mixtures of continuous dynamics and discrete events. Hybrid systems are studied in different research areas. In the computer science area, a hybrid system is modeled as a discrete computer program interacting with an analog environment. In this thesis, we inject continuous time execution into Service-Oriented Computing by giving a formal abstraction for hybrid systems at the business level in a Service-Oriented point of view, and develop a method for formal verifications. In order to achieve the first part of this goal, we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Doubly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and develop a method for transforming the SENSORIA Reference Modeling Language specification of a certain service module into the respective Temporal Dynamic Logic formulas that could be verified. Moreover, we provide a case study of a simplified small part of the European Train Control System which is specified and verified with the approach introduced above. We also provide an approach of implementing the case study model with the IBM Websphere Process Server, which is a comprehensive Service-Oriented Architecture integration platform and provides support for the Service Component Architecture programming model. In order to realize this approach, we also provide functions that map models specified with the SENSORIA Reference Modeling Language to Websphere Process Server applications

    Injecting continuous time execution into service-oriented computing

    Get PDF
    Service-Oriented Computing is a computing paradigm that utilizes services as fundamental elements to support rapid, low-cost development of distributed applications in heterogeneous environments. In Service-Oriented Computing, a service is defined as an independent and autonomous piece of functionality which can be described, published, discovered and used in a uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET integrated project. It provides a formal abstraction for services at the business level. Hybrid systems arise in embedded control when components that perform discrete changes are coupled with components that perform continuous processes. Normally, the discrete changes can be modeled by finite-state machines and the continuous processes can be modeled by differential equations. In an abstract point of view, hybrid systems are mixtures of continuous dynamics and discrete events. Hybrid systems are studied in different research areas. In the computer science area, a hybrid system is modeled as a discrete computer program interacting with an analog environment. In this thesis, we inject continuous time execution into Service-Oriented Computing by giving a formal abstraction for hybrid systems at the business level in a Service-Oriented point of view, and develop a method for formal verifications. In order to achieve the first part of this goal, we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Doubly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and develop a method for transforming the SENSORIA Reference Modeling Language specification of a certain service module into the respective Temporal Dynamic Logic formulas that could be verified. Moreover, we provide a case study of a simplified small part of the European Train Control System which is specified and verified with the approach introduced above. We also provide an approach of implementing the case study model with the IBM Websphere Process Server, which is a comprehensive Service-Oriented Architecture integration platform and provides support for the Service Component Architecture programming model. In order to realize this approach, we also provide functions that map models specified with the SENSORIA Reference Modeling Language to Websphere Process Server applications

    ScaRR: Scalable Runtime Remote Attestation for Complex Systems

    Full text link
    The introduction of remote attestation (RA) schemes has allowed academia and industry to enhance the security of their systems. The commercial products currently available enable only the validation of static properties, such as applications fingerprint, and do not handle runtime properties, such as control-flow correctness. This limitation pushed researchers towards the identification of new approaches, called runtime RA. However, those mainly work on embedded devices, which share very few common features with complex systems, such as virtual machines in a cloud. A naive deployment of runtime RA schemes for embedded devices on complex systems faces scalability problems, such as the representation of complex control-flows or slow verification phase. In this work, we present ScaRR: the first Scalable Runtime Remote attestation schema for complex systems. Thanks to its novel control-flow model, ScaRR enables the deployment of runtime RA on any application regardless of its complexity, by also achieving good performance. We implemented ScaRR and tested it on the benchmark suite SPEC CPU 2017. We show that ScaRR can validate on average 2M control-flow events per second, definitely outperforming existing solutions.Comment: 14 page

    Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive

    Get PDF
    Customization is a widely adopted practice on enterprise software applications such as Enterprise resource planning (ERP) or Customer relation management (CRM). Software vendors deploy their enterprise software product on the premises of a customer, which is then often customized for different specific needs of the customer. When enterprise applications are moving to the cloud as mutli-tenant Software-as-a-Service (SaaS), the traditional way of on-premises customization faces new challenges because a customer no longer has an exclusive control to the application. To empower businesses with specific requirements on top of the shared standard SaaS, vendors need a novel approach to support the customization on the multi-tenant SaaS. In this paper, we summarize our two approaches for customizing multi-tenant SaaS using microservices: intrusive and non-intrusive. The paper clarifies the key concepts related to the problem of multi-tenant customization, and describes a design with a reference architecture and high-level principles. We also discuss the key technical challenges and the feasible solutions to implement this architecture. Our microservice-based customization solution is promising to meet the general customization requirements, and achieves a balance between isolation, assimilation and economy of scale

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions
    corecore