The introduction of remote attestation (RA) schemes has allowed academia and
industry to enhance the security of their systems. The commercial products
currently available enable only the validation of static properties, such as
applications fingerprint, and do not handle runtime properties, such as
control-flow correctness. This limitation pushed researchers towards the
identification of new approaches, called runtime RA. However, those mainly work
on embedded devices, which share very few common features with complex systems,
such as virtual machines in a cloud. A naive deployment of runtime RA schemes
for embedded devices on complex systems faces scalability problems, such as the
representation of complex control-flows or slow verification phase.
In this work, we present ScaRR: the first Scalable Runtime Remote attestation
schema for complex systems. Thanks to its novel control-flow model, ScaRR
enables the deployment of runtime RA on any application regardless of its
complexity, by also achieving good performance. We implemented ScaRR and tested
it on the benchmark suite SPEC CPU 2017. We show that ScaRR can validate on
average 2M control-flow events per second, definitely outperforming existing
solutions.Comment: 14 page