47 research outputs found

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    The computation of blood flow waveforms from digital X-ray angiographic data

    Get PDF
    This thesis investigates a novel technique for the quantitative measurement of pulsatile blood flow waveforms and mean blood flow rates using digital X-ray angiographic data. Blood flow waveforms were determined following an intra-arterial injection of contrast material. Instantaneous blood velocities were estimated by generating a 'parametric image' from dynamic X-ray angiographic images in which the image grey-level represented contrast material concentration as a function of time and true distance in three dimensions along a vessel segment. Adjacent concentration-distance profiles in the parametric image of iodine concentration versus distance and time were shifted along the vessel axis until a match occurred. A match was defined as the point where the mean sum of the squares of the differences between the two profiles was a minimum. The distance translated per frame interval gave the instantaneous contrast material bolus velocity. The technique initially was validated using synthetic data from a computer simulation of angiographic data which included the effect of pulsatile blood flow and X-ray quantum noise. The data were generated for a range of vessels from 2 mm to 6 mm in diameter. Different injection techniques and their effects on the accuracy of blood flow measurements were studied. Validation of the technique was performed using an experimental phantom of blood circulation, consisting of a pump, flexible plastic tubing, the tubular probe of an electromagnetic flowmeter and a solenoid to simulate a pulsatile flow waveform which included reverse flow. The technique was validated for both two- and three-dimensional representations of the blood vessel, for various flow rates and calibre sizes. The effects of various physical factors were studied, including the distance between injection and imaging sites and the length of artery analysed. Finally, this method was applied to clinical data from femoral arteries and arteries in the head and neck

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Real-time tissue viability assessment using near-infrared light

    Get PDF
    Despite significant advances in medical imaging technologies, there currently exist no tools to effectively assist healthcare professionals during surgical procedures. In turn, procedures remain subjective and dependent on experience, resulting in avoidable failure and significant quality of care disparities across hospitals. Optical techniques are gaining popularity in clinical research because they are low cost, non-invasive, portable, and can retrieve both fluorescence and endogenous contrast information, providing physiological information relative to perfusion, oxygenation, metabolism, hydration, and sub-cellular content. Near-infrared (NIR) light is especially well suited for biological tissue and does not cause tissue damage from ionizing radiation or heat. My dissertation has been focused on developing rapid imaging techniques for mapping endogenous tissue constituents to aid surgical guidance. These techniques allow, for the first time, video-rate quantitative acquisition over a large field of view (> 100 cm2) in widefield and endoscopic implementations. The optical system analysis has been focused on the spatial-frequency domain for its ease of quantitative measurements over large fields of view and for its recent development in real-time acquisition, single snapshot of optical properties (SSOP) imaging. Using these methods, this dissertation provides novel improvements and implementations to SSOP, including both widefield and endoscopic instrumentations capable of video-rate acquisition of optical properties and sample surface profile maps. In turn, these measures generate profile-corrected maps of hemoglobin concentration that are highly beneficial for perfusion and overall tissue viability. Also utilizing optical property maps, a novel technique for quantitative fluorescence imaging was also demonstrated, showing large improvement over standard and ratiometric methods. To enable real-time feedback, rapid processing algorithms were designed using lookup tables that provide a 100x improvement in processing speed. Finally, these techniques were demonstrated in vivo to investigate their ability for early detection of tissue failure due to ischemia. Both pre-clinical studies show endogenous contrast imaging can provide early measures of future tissue viability. The goal of this work has been to provide the foundation for real-time imaging systems that provide tissue constituent quantification for tissue viability assessments.2018-01-09T00:00:00
    corecore