665 research outputs found

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    LDPC codes associated with linear representations of geometries

    Get PDF
    We look at low density parity check codes over a finite field K associated with finite geometries T*(2) (K), where K is any subset of PG(2, q), with q = p(h), p not equal char K. This includes the geometry LU(3, q)(D), the generalized quadrangle T*(2)(K) with K a hyperoval, the affine space AG(3, q) and several partial and semi-partial geometries. In some cases the dimension and/or the code words of minimum weight are known. We prove an expression for the dimension and the minimum weight of the code. We classify the code words of minimum weight. We show that the code is generated completely by its words of minimum weight. We end with some practical considerations on the choice of K

    Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks

    Get PDF
    Error-correcting codes seek to address the problem of transmitting information efficiently and reliably across noisy channels. Among the most competitive codes developed in the last 70 years are low-density parity-check (LDPC) codes, a class of codes whose structure may be represented by sparse bipartite graphs. In addition to having the potential to be capacity-approaching, LDPC codes offer the significant practical advantage of low-complexity graph-based decoding algorithms. Graphical substructures called trapping sets, absorbing sets, and stopping sets characterize failure of these algorithms at high signal-to-noise ratios. This dissertation focuses on code design for and analysis of iterative graph-based message-passing decoders. The main contributions of this work include the following: the unification of spatially-coupled LDPC (SC-LDPC) code constructions under a single algebraic graph lift framework and the analysis of SC-LDPC code construction techniques from the perspective of removing harmful trapping and absorbing sets; analysis of the stopping and absorbing set parameters of hypergraph codes and finite geometry LDPC (FG-LDPC) codes; the introduction of multidimensional decoding networks that encode the behavior of hard-decision message-passing decoders; and the presentation of a novel Iteration Search Algorithm, a list decoder designed to improve the performance of hard-decision decoders. Adviser: Christine A. Kelle

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes

    Information Sets of Multiplicity Codes

    Get PDF
    We here provide a method for systematic encoding of the Multiplicity codes introduced by Kopparty, Saraf and Yekhanin in 2011. The construction is built on an idea of Kop-party. We properly define information sets for these codes and give detailed proofs of the validity of Kopparty's construction, that use generating functions. We also give a complexity estimate of the associated encoding algorithm.Comment: International Symposium on Information Theory, Jun 2015, Hong-Kong, China. IEE

    Cyclic Orbit Codes

    Full text link
    In network coding a constant dimension code consists of a set of k-dimensional subspaces of F_q^n. Orbit codes are constant dimension codes which are defined as orbits of a subgroup of the general linear group, acting on the set of all subspaces of F_q^n. If the acting group is cyclic, the corresponding orbit codes are called cyclic orbit codes. In this paper we give a classification of cyclic orbit codes and propose a decoding procedure for a particular subclass of cyclic orbit codes.Comment: submitted to IEEE Transactions on Information Theor
    • …
    corecore