21,356 research outputs found

    Correspondence between many-particle excitations and the entanglement spectrum of disordered ballistic one-dimensional systems

    Full text link
    Using exact diagonalization for non-interacting systems and density matrix renormalization group for interacting systems we show that Li and Haldane's conjecture on the correspondence between the low-lying many-particle excitation spectrum and the entanglement spectrum holds for disordered ballistic one-dimensional many-particle systems. In order to demonstrate the correspondence we develop a computational efficient way to calculate the ES of low-excitation of non-interacting systems. We observe and explain the presence of an unexpected shell structure in the excitation structure. The low-lying shell are robust and survive even for strong electron-electron interactions.Comment: 6 pages 4 figure

    Extremal spacings between eigenphases of random unitary matrices and their tensor products

    Full text link
    Extremal spacings between eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N = 4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N = n^k becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s_min) and P(s_max) reveal certain deviations from the Poissonian behavior

    Universal correlations and power-law tails in financial covariance matrices

    Get PDF
    Signatures of universality are detected by comparing individual eigenvalue distributions and level spacings from financial covariance matrices to random matrix predictions. A chopping procedure is devised in order to produce a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay

    Spectral statistics of random geometric graphs

    Get PDF
    We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short range correlations in the level spacings of the spectrum via the nearest neighbour and next nearest neighbour spacing distribution and long range correlations via the spectral rigidity Delta_3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdos-Renyi, Barabasi-Albert and Watts-Strogatz random graph.Comment: 19 pages, 6 figures. Substantially updated from previous versio

    Gaussian limits for generalized spacings

    Full text link
    Nearest neighbor cells in Rd,dNR^d,d\in\mathbb{N}, are used to define coefficients of divergence (ϕ\phi-divergences) between continuous multivariate samples. For large sample sizes, such distances are shown to be asymptotically normal with a variance depending on the underlying point density. In d=1d=1, this extends classical central limit theory for sum functions of spacings. The general results yield central limit theorems for logarithmic kk-spacings, information gain, log-likelihood ratios and the number of pairs of sample points within a fixed distance of each other.Comment: Published in at http://dx.doi.org/10.1214/08-AAP537 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An Efficient Coding Theory for a Dynamic Trajectory Predicts non-Uniform Allocation of Grid Cells to Modules in the Entorhinal Cortex

    Full text link
    Grid cells in the entorhinal cortex encode the position of an animal in its environment using spatially periodic tuning curves of varying periodicity. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trends seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder of the spikes. This readout scheme requires persistence over varying timescales, ranging from ~1ms to ~1s, depending on the grid cell module. Our results suggest that the brain employs an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory coding.Comment: 23 pages, 5 figures. Supplemental Information available from the authors on request. A previous version of this work appeared in abstract form (Program No. 727.02. 2015 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2015. Online.

    Energy levels and their correlations in quasicrystals

    Full text link
    Quasicrystals can be considered, from the point of view of their electronic properties, as being intermediate between metals and insulators. For example, experiments show that quasicrystalline alloys such as AlCuFe or AlPdMn have conductivities far smaller than those of the metals that these alloys are composed from. Wave functions in a quasicrystal are typically intermediate in character between the extended states of a crystal and the exponentially localized states in the insulating phase, and this is also reflected in the energy spectrum and the density of states. In the theoretical studies we consider in this review, the quasicrystals are described by a pure hopping tight binding model on simple tilings. We focus on spectral properties, which we compare with those of other complex systems, in particular, the Anderson model of a disordered metal.Comment: 15 pages including 19 figures. Review article, submitted to Phil. Ma
    corecore