1,373 research outputs found

    Coded Modulation Assisted Radial Basis Function Aided Turbo Equalisation for Dispersive Rayleigh Fading Channels

    No full text
    In this contribution a range of Coded Modulation (CM) assisted Radial Basis Function (RBF) based Turbo Equalisation (TEQ) schemes are investigated when communicating over dispersive Rayleigh fading channels. Specifically, 16QAM based Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) are evaluated in the context of an RBF based TEQ scheme and a reduced-complexity RBF based In-phase/Quadrature-phase (I/Q) TEQ scheme. The Least Mean Square (LMS) algorithm was employed for channel estimation, where the initial estimation step-size used was 0.05, which was reduced to 0.01 for the second and the subsequent TEQ iterations. The achievable coding gain of the various CM schemes was significantly increased, when employing the proposed RBF-TEQ or RBF-I/Q-TEQ rather than the conventional non-iterative Decision Feedback Equaliser - (DFE). Explicitly, the reduced-complexity RBF-I/Q-TEQ-CM achieved a similar performance to the full-complexity RBF-TEQ-CM, while attaining a significant complexity reduction. The best overall performer was the RBF-I/Q-TEQ-TTCM scheme, requiring only 1.88~dB higher SNR at BER=10-5, than the identical throughput 3~BPS uncoded 8PSK scheme communicating over an AWGN channel. The coding gain of the scheme was 16.78-dB

    Polynomial matrix decomposition techniques for frequency selective MIMO channels

    Get PDF
    For a narrowband, instantaneous mixing multi-input, multi-output (MIMO) communications system, the channel is represented as a scalar matrix. In this scenario, singular value decomposition (SVD) provides a number of independent spatial subchannels which can be used to enhance data rates or to increase diversity. Alternatively, a QR decomposition can be used to reduce the MIMO channel equalization problem to a set of single channel equalization problems. In the case of a frequency selective MIMO system, the multipath channel is represented as a polynomial matrix. Thus conventional matrix decomposition techniques can no longer be applied. The traditional solution to this broadband problem is to reduce it to narrowband form by using a discrete Fourier transform (DFT) to split the broadband channel into N narrow uniformly spaced frequency bands and applying scalar decomposition techniques within each band. This describes an orthogonal frequency division multiplexing (OFDM) based system. However, a novel algorithm has been developed for calculating the eigenvalue decomposition of a para-Hermitian polynomial matrix, known as the sequential best rotation (SBR2) algorithm. SBR2 and its QR based derivatives allow a true polynomial singular value and QR decomposition to be formulated. The application of these algorithms within frequency selective MIMO systems results in a fundamentally new approach to exploiting spatial diversity. Polynomial matrix decomposition and OFDM based solutions are compared for a wide variety of broadband MIMO communication systems. SVD is used to create a robust, high gain communications channel for ultra low signal-to-noise ratio (SNR) environments. Due to the frequency selective nature of the channels produced by polynomial matrix decomposition, additional processing is required at the receiver resulting in two distinct equalization techniques based around turbo and Viterbi equalization. The proposed approach is found to provide identical performance to that of an existing OFDM scheme while supporting a wider range of access schemes. This work is then extended to QR decomposition based communications systems, where the proposed polynomial approach is found to not only provide superior bit-error-rate (BER) performance but significantly reduce the complexity of transmitter design. Finally both techniques are combined to create a nulti-user MIMO system that provides superior BER performance over an OFDM based scheme. Throughout the work the robustness of the proposed scheme to channel state information (CSI) error is considered, resulting in a rigorous demonstration of the capabilities of the polynomial approach

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI

    A polynomial QR decomposition based turbo equalization technique for frequency selective MIMO channels.

    Get PDF
    In the case of a frequency flat multiple-input multiple-output (MIMO) system, QR decomposition can be applied to reduce the MIMO channel equalization problem to a set of decision feedback based single channel equalization problems. Using a novel technique for polynomial matrix QR decomposition (PMQRD) based on Givens rotations, we extend this work to frequency selective MIMO systems. A transmitter design based on Diagonal Bell Laboratories Layered Space Time (D-BLAST) encoding has been implemented. Turbo equalization is utilized at the receiver to overcome the multipath delay spread and to facilitate multi-stream data feedback. The effect of channel estimation error on system performance has also been considered to demonstrate the robustness of the proposed PMQRD scheme. Average bit error rate simulations show a considerable improvement over a benchmark orthogonal frequency division multiplexing (OFDM) technique. The proposed scheme thereby has potential applicability in MIMO communication applications, particularly for TDMA systems with frequency selective channels

    Nonlinear Channel Equalization Approach for Microwave Communication Systems

    Get PDF
    The theoretical principles of intersymbol interference (ISI) and channel equalization in wireless communication systems are addressed. Several conventional and well-known equalization techniques are discussed and compared such as zero forcing (ZF) and maximum likelihood (ML). The main section in this chapter is devoted to an abstract concept of equalization approach, namely, dual channel equalization (DCE). The proposed approach is flexible and can be employed and integrated with other linear and nonlinear equalization approaches. Closed expressions for the achieved signal-to-noise ratio (SNR) and bit error rate (BER) in the case of ZF-DCE and ML-DCE are derived. According to the obtained outcomes, the DCE demonstrates promising improvements in the equalization performance (BER reduction) in comparison with the conventional techniques

    Analog communication over selective fading channels Interim technical report

    Get PDF
    Demodulators for analog communication over slowly time varying, frequency selective fading channel

    Inter-carrier interference mitigation for underwater acoustic communications

    Get PDF
    Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF
    corecore