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Abstract

Multi-input multi-output (MIMO) technology is an emerging solution for high

data rate wireless communications. We develop soft-decision based equalization tech-

niques for frequency selective MIMO channels in the quest for low-complexity equal-

izers with BER performance competitive to that of ML sequence detection.

We first propose soft decision equalization (SDE), and demonstrate that decision

feedback equalization (DFE) based on soft-decisions, expressed via the posterior prob-

abilities associated with feedback symbols, is able to outperform hard-decision DFE,

with a low computational cost that is polynomial in the number of symbols to be

recovered, and linear in the signal constellation size. Building upon the probabilistic

data association (PDA) multiuser detector, we present two new MIMO equalization

solutions to handle the distinctive channel memory. With their low complexity, simple

implementations, and impressive near-optimum performance offered by iterative soft-

decision processing, the proposed SDE methods are attractive candidates to deliver

efficient reception solutions to practical high-capacity MIMO systems.

Motivated by the need for low-complexity receiver processing, we further present

an alternative low-complexity soft-decision equalization approach for frequency se-

lective MIMO communication systems. With the help of iterative processing, two

detection and estimation schemes based on second-order statistics are harmoniously
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put together to yield a two-part receiver structure: local multiuser detection (MUD)

using soft-decision Probabilistic Data Association (PDA) detection, and dynamic

noise-interference tracking using Kalman filtering. The proposed Kalman-PDA de-

tector performs local MUD within a sub-block of the received data instead of over

the entire data set, to reduce the computational load. At the same time, all the inter-

ference affecting the local sub-block, including both multiple access and inter-symbol

interference, is properly modeled as the state vector of a linear system, and dynam-

ically tracked by Kalman filtering. Two types of Kalman filters are designed, both

of which are able to track an finite impulse response (FIR) MIMO channel of any

memory length. The overall algorithms enjoy low complexity that is only polynomial

in the number of information-bearing bits to be detected, regardless of the data block

size.

Furthermore, we introduce two optional performance-enhancing techniques: cross-

layer automatic repeat request (ARQ) for uncoded systems and code-aided method

for coded systems. We take Kalman-PDA as an example, and show via simulations

that both techniques can render error performance that is better than Kalman-PDA

alone and competitive to sphere decoding.

At last, we consider the case that channel state information (CSI) is not perfectly

known to the receiver, and present an iterative channel estimation algorithm. Simu-

lations show that the performance of SDE with channel estimation approaches that

of SDE with perfect CSI.
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CHAPTER 1

Introduction

1.1 Research Goals

Wireless communications have brought great convenience and advances to all walks

of life. Despite the progresses that have been made, researchers are working hard

to further improve the data rate, capacity and quality of service that wireless sys-

tems can offer. Among many promising solutions, multiple-input-multiple-output

(MIMO) systems emerge as an attractive approach. It has been shown that enor-

mous increase in bandwidth efficiency is promised by the use of MIMO systems in

wireless radio frequency links [1], [5], [6]. MIMO systems also enjoy high array gains

and spatial diversity gains rendered by multiple receive antennas [8], [12]. Trans-

missions at high data rates typically encounter frequency selective channels, where

channel-induced inter-symbol interference (ISI) can be mitigated using high-speed,

low-cost equalization techniques such as decision feedback equalization (DFE) [2].

However, equalization in MIMO systems is remarkably challenging because of the

need for signal detection in the presence of both multiple access interference (MAI)

and inter-symbol interference (ISI) [11], [31], [32].
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In ISI environments, the BCJR a posteriori (MAP) [28] and Viterbi equalizers

perform optimum sequence detection to account for the channel memory, but incur

prohibitive complexity that is exponential in the number of inputs and the chan-

nel memory. Their equalization complexity can be reduced using standard reduced-

complexity methods for single-input channels (e.g., [29], [30]), but such methods do

not apply to MIMO channels. For complexity considerations, typical equalizers con-

sist of linear processing of the received signal, i.e., linear equalization (LE), and possi-

bly past symbol estimation, e.g., decision feedback equalization (DFE). The optimum

MIMO DFE settings in the minimum mean-square error (MMSE) sense have been

derived in [30], [31], [32], [33]. In these schemes, tentative decisions on both past

symbols and symbols from MAI sources are made by quantizing properly derived

decision statistics.

However, the approaches in [30], [31], [32], [33] are hard decision based approaches.

Such hard-decision based feedback approaches may suffer from catastrophic error

propagation, which in most cases incurs non-trivial performance degradation relative

to an optimal maximum likelihood (ML) detector, in terms of the bit error rate (BER)

performance. Recent advances include turbo detection and equalization [34] – [36],

in which low-complexity soft-input-soft-output (SISO) LE and DFE equalizers are

devised based on the MMSE criterion [35].

In this dissertation, we focus on rate-oriented MIMO systems in which no coding

is used at the transmitter. We assume that the receiver has perfect channel state

information (CSI). Targeting low-complexity equalization of finite impulse response
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(FIR) MIMO channels, we develop a set of soft-decision based approaches, in order

to overcome the performance-degrading drawback of hard-decision feedback equaliza-

tion. Our algorithms include soft-decision equalization (SDE), Kalman Probabilistic

Data Association (Kalman-PDA) approach, and soft-decision oriented performance

enhancement techniques. Firstly, this dissertation presents two SDE algorithms. The

first SDE algorithm adopts a zero-padded transmission structure to convert the chal-

lenging sequence detection problem into a block-by-block least-square formulation.

The second SDE algorithm takes advantage of the Toeplitz channel matrix structure

embodied in an equalization problem. It processes the data samples through a series

of overlapping sliding windows to reduce complexity, and at the same time performs

implicit noise tracking to maintain near-optimum performance. Secondly, this disser-

tation presents a Kalman-PDA approach, which dissects the equalization problem for

MIMO channels into two parts: local multi-user detection (MUD) using probabilis-

tic data association (PDA), and noise-interference tracking using Kalman-filtering.

Lastly, this dissertation discusses several performance enhancement strategies and

joint channel estimation and equalization.

Compared with hard-decision driven approaches, the proposed soft-decision based

algorithms have prominent advantages:

1. The overall complexity is reduced by invoking the Gaussian-forcing approxima-

tion. Different from the hard-decision multistage parallel interference cancella-

tion (PIC), the proposed SDE approach generates tentative decisions on ISI and

MAI symbols in the form of posterior probabilities instead of quantized bits,
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and the decision updating is simplified by forcing the composite effect of noise

and interference to be Gaussian, a strategy used in the PDA detector. The SDE

detection performance improves with additional iterations, and stabilizes fast

in 3-5 iterations for high signal-to-noise ratio (SNR), and 7-14 iterations for low

SNR.

2. Near-optimal detection performance is achieved via soft-decision based signal

processing. Compared with the sub-optimum hard-decision MMSE-DFE [31],

the SDE method demonstrates close-to-optimal equalization performance, at a

comparable low complexity. Compared with other quasi-ML methods such as

sphere decoding [21], the SDE is not only competitive in both performance and

complexity, but also applies to situations where sphere decoding does not work

well, such as the fat channel case in which there are more transmit antennas

than receive antennas.

3. As can be seen in Chapter 7, soft-decision approaches have the unique capability

of sensing error-prone bits on line, which facilitates joint transmitter-receiver

design to detect and correct unreliable transmissions.

The theme of this dissertation is to provide a set of soft-decision equalization

algorithms that can fully exploit the bandwidth and capacity of MIMO systems. We

also show the superiority of soft-decision based equalization algorithms compared with

hard-decision based approaches. In the next section, we will lay out the organization

of this dissertation.
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1.2 Organization

The organization of the rest of this dissertation is as follows. Chapter 2 first briefly

describes the background of MIMO wireless communication systems. The signal

model is then established. Existing symbol detection and equalization algorithms

based on this model are introduced. Pros and cons of these algorithms are discussed.

In Chapter 3 and 4, we present two soft-decision equalization (SDE) algorithms

based on the signal model established in Chapter 2, SDE-1 and SDE-2, respectively.

The first one is developed by way of PDA enhancement. The second one has a novel

sliding windowing structure that is tailored for the Toeplitz zero-padding channel

matrix, which is rendered by the signal model. Both of the two algorithms can

achieve near-optimum performance when doing symbol detection and equalization in

frequency selective MIMO channels.

In Chapter 5, we present simulation results and performance analysis of SDE algo-

rithms. We first simulate SDE in full-rank MIMO channels. The performance of both

SDE-1 and SDE-2 approaches that of the optimum ML detection. We then investigate

the performance of SDE in various rank-deficient channels. Rank-deficient channels

exist in many wireless systems, such as in the downlink of mobile transmission where

there are typically more transmit than receive antennas. Many detection techniques

either can not be applied to rank-deficient channels, or exhibit a large error floor. We

observe that SDE works for rank-deficient channels, especially for BPSK-modulated

systems.
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SDE algorithms presented in Chapter 3 and 4 perform multiuser detection and

equalization over all or multiple symbol periods. Motivated by the need for low-

complexity receiver processing, we proposed in Chapter 6 a MIMO equalization ap-

proach that performs MUD within a sub-block of the symbol vector (local MUD),

instead of doing it for the entire block (global MUD). The MIMO detection and

equalization problem is partitioned into two parts: local MUD using PDA and noise-

interference tracking using Kalman filtering. Simulations show that satisfactory per-

formance is achieved compared with sphere decoding and MIMO decorrelator.

In Chapter 7, we present two types of performance enhancement techniques for

soft-decision approaches. These two techniques are based on the observation that

soft-decisions have the capability of indicating their own reliability. Taking advantage

of this unique property, we devise two types of performance techniques, ARQ-aided

approach for uncoded systems and coding-aided approach for coded systems. We will

take Kalman-PDA as an example, and show that both enhancement techniques can

noticeably enhance the detection performance of Kalman-PDA itself.

In Chapter 8, we study a realistic scenario when perfect channel knowledge is not

available. We assume that the receiver can obtain a rough initial estimation of an

unknown channel by using training sequences. For each information-bearing symbol

block, the receiver performs symbol detection and channel equalization based on this

coarse initial channel estimate. The symbol decisions are fed to recursive least square

(RLS) based channel estimator to generate a refined channel estimate. This refined

channel estimate, in turn, is used for a new round symbol detection. The iteration

6



continues until convergence is reached. Simulations show that there is only a narrow

gap between the performance of SDE with perfect channel state information (CSI)

and SDE with estimated CSI.

Chapter 9 concludes the dissertation and gives some directions for future work. A

list of papers published during the course of this dissertation research is given in the

appendix.
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CHAPTER 2

Background and Signal Model

In this chapter, we first briefly introduce the background knowledge of multi-input

multi-output systems. Then we establish the signal model of a generic frequency-

selective MIMO channel. Our SDE and Kalman-PDA algorithms are both based on

this model. In the third part of the chapter, we review some existing approaches

to multiuser detection and channel equalization problems given this model, such as

sphere decoding (SD), semi-definite relaxation programming (SDP), and probabilistic

data association (PDA). Comparisons between these algorithms are provided.

2.1 Background of MIMO Systems

High data rate wireless communications is a rapid-growing business since it provide

the backbone for wireless local area networks (WLAN) and home audio/video (AV)

networks. Although IEEE 802.11g standard supports 54Mb/s data rate, people are

looking for 1Gb/s data rate for future high-speed high-definition television (HDTV)

data streams [3]. Practically speaking, a standard single-input single-output (SISO)

wireless link can not be used to render such a high data rate. MIMO systems, on the

8



other hand, are an exciting solution for making the high data rate WLAN reality. The

superior performance delivered by MIMO systems results from array gain, diversity,

spatial multiplexing gain and interference reduction [3].

Array gain is achieved by using multiple antennas and the received signals add up

coherently. Signal processing techniques are used at the transmitter or the receiver

to increase the average SNR due to the coherent combining effect. Transmit or

receive array gain requires knowledge of channel at the transmitter and the receiver

respectively. The receiver can obtain channel information through processing training

sequences, while the transmitter is supplied channel information in way of feedback.

In general, channel knowledge at the receiver is relatively easier to obtain.

The signal power fades randomly in wireless communications. Diversity helps

to mitigate the effect of fading by combining the arriving signals. MIMO systems

provide spatial diversity which does not cost extra transmission time or bandwidth.

Taking advantage of spatial diversity gains, the output signal demonstrates much

less power variability compared with a SISO wireless link. Ideally, the wireless links

in a MIMO channel are independent from each other, and the maximum order of

spatial diversity is achieved. For a MIMO system with Ni inputs and No outputs, the

maximum possible spatial diversity order is NiNo.

It has been shown the capacity of a MIMO system increases linearly in min(Ni, No)

without invoking additional power or bandwidth cost [4], [5], [6], [7]. This gain

in capacity referred to as spatial multiplexing gain. It is realized by transmitting

independent data streams from different antennas. Under the rich scattering channel
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condition, the receiver is able to separate the different data signals. Thus an increase

in channel capacity is obtained.

Cochannel interference (CCI) occurs when the frequency is reused in wireless

channels. In MIMO systems, the difference between the spatial signature of the de-

sired signal and that of the interfering signals can be exploited to reduce interference.

Interference reduction requires the desired user’s channel information, while the in-

terferers’ channel knowledge may be unnecessary. Interference reduction can also be

performed at the transmitter side. The transmitter can try to minimize the interfer-

ence energy when sending signals to the desired user. Overall, interference reduction

promised better frequency reuse and thus increase system capacity.

In practice, a key idea of MIMO systems is space-time signal processing in which

the time dimension is complemented with the spatial dimension resulted from the

use of multiple antennas. Such MIMO systems can be seen as an extension of the

technique of smart antennas, which has been around for years [9]. For frequency-

selective MIMO channels, Orthogonal Frequency Division Multiplexing (OFDM) can

be used to deal with frequency selectivity. With the help of this MIMO-OFDM,

a frequency-selective channel can be converted into a set of parallel frequency-flat

fading channels. Each flat fading channel has a bandwidth that is a fraction of

that of the original frequency-selective channel. MIMO-OFDM presents itself an

attractive approach that avoids temporal equalization at the cost of a minor decrease

in channel capacity [3], [10]. In the next section, we will establish the signal model of
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a baseband MIMO system. We will develop the soft-decision based algorithms based

on this model.

2.2 Signal Model

We consider the discrete-time block transmission equivalent model of a baseband

communication system with Ni inputs and No outputs. A generic diagram of such a

system is shown in Fig. 2.1. There are a total of NiNo links in this MIMO system,

wherein the link between each input-output pair is modeled as a linear finite impulse

response (FIR) dispersive channel with no greater than L+1 symbol-spaced taps in the

channel response. The sampled channel response from the ith input to the jth output,

including transmit and receive filters, is denoted by h(i,j) := [h(i,j)(0), · · · , h(i,j)(L)]T .

This channel response vector subsumes all the channel information from the ith input

to the jth output. Therefore, in the discussions hereafter, we develop soft-decision-

based equalization algorithms based on the perfect or partial knowledge of the channel

vectors. We adopt a block transmission structure with zero padding to eliminate inter-

block interference. This structure helps to alleviate the performance degradation due

to noise enhancement or error propagation [23]. Per the zero-padding structure, the

information-bearing symbols at each link are parsed into N -long blocks, with the

insertion of P ≥ L zeros at the end of each block. The input vector corresponding to

the kth block of all inputs is denoted as bk := [bT (kN), · · · ,bT (kN + N − 1)]T . It

consists of N sub-blocks, where the mth sub-block b(m) := [b(1)(m), · · · , b(Ni)(m)]T

11
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Figure 2.1: A generic MIMO system diagram

contains the information symbols from all Ni inputs at the mth sampling instant.

Here, Ni is the number of data streams transmitted from the transmitter, and N

is the number of symbols in each data stream. After padding PNi trailing zeros,

each N -long information-bearing symbol block bk forms a transmit symbol block b̄k

of block size K := N + P , where the first N entries convey messages, {b̄(i)(kK +

n)}N−1
n=0 = b(i)(kN + n), followed by P trailing zeros {b̄(i)(kK + n)}K−1

n=N = 0, for

any block index k and input i ∈ [1, Ni]. Correspondingly, the received data vector

at the kth block is a concatenation of K noise-contaminated sample vectors, yk :=

[yT (kK), · · · ,yT (kK + K − 1)]T , where y(m) := [y(1)(m), · · · , y(No)(m)]T consists of

the mth received signals at all No outputs. The redundancy per transmitted block

is measured by the ratio P/K, while at the receiver the data rate is reduced by the

same amount. We set P = L, and typically choose a large block size K (and N) to

maintain the transmission rate.
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In linear FIR channels, the received y(j)(kK + n) at the jth output is expressed

by

y(j)(kK + n) =

Ni∑
i=1

L∑

l=0

h(i,j)(l)b̄(i)(kK + n− l)

+v(j)(kK + n), n = 0, · · · , K − 1; j = 1, · · · , No, (2.1)

where v(j)(kK + n) denotes the additive zero-mean Gaussian stationary noise re-

ceived at the jth output. The noise terms at the kth transmission block are grouped

into a NoK × 1 vector vk := [vT (kK), · · · ,vT (kK + K − 1)]T , where v(m) :=

[v(1)(m), · · · , v(No)(m)]T , and the covariance of vk is denoted by Rv := E{vkv
H
k }.

With these definitions, the single-link input-output model (2.1), when assembled

into the vector-matrix format, results in a MIMO channel model in the form of

yk = Hbk+vk, where the MIMO channel matrix takes on a banded Toeplitz structure

[23]:

H :=




H(0) 0

...
. . .

H(L) H(0)

. . .
...

0 H(L)




, (2.2)

where H(l) :=




h(1,1)(l) · · · h(Ni,1)(l)

...
. . .

...

h(1,No)(l) · · · h(Ni,No)(l)




, (2.3)

l = 0, · · · , L.
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With this banded Toeplitz structure, the inter-block interference is eliminated at the

cost of transmission redundancy. Sequence detection incurred by the channel memory

can now be alternatively solved by block-by-block symbol detection, for which we can

focus on symbol detection within one single block. From now on, we will drop the

subscript k without raising confusion. This system model subsumes a broad range of

MIMO transmission scenarios. The multiple input could result from the combination

of three situations:

1. Multiple transmit antennas with a single user, e.g., the single-user space-time

coding case.

2. Single transmit antenna with multiple users, e.g., as encountered in the single-

channel multiuser detection problem.

3. Transmit-induced diversities including orthogonal frequency devision multiplex-

ing (OFDM) and CDMA.

Thus, the number of inputs Ni is determined by both the number of transmit antennas

and the number of multiple-access users. Meanwhile, multi-output is invoked when

there are multiple receive antennas, and/or when fractional sampling is used. Thus,

No is determined by the total number of distinct samplers operating within a symbol

period.

With this MIMO model, MIMO channel equalization can be viewed as a general

high-dimensional integer least-square (LS) problem in the form of y = Hb+v, where

b is an NNi× 1 input vector that takes on finite-alphabet vales. The channel matrix

14



is of size K̄ × N̄ , where K̄ := No(N + L) and N̄ := NiN . The optimal ML solu-

tion to the MIMO system described above faces a major implementation challenge,

as its complexity increases exponentially in Ni, No, N , and L. In this dissertation,

we propose a set of soft-decision-based symbol detection and channel equalization

schemes that achieve near-optimal BER performance at low polynomial complexity.

In Chapter 3, 4 and 6, we develop soft-decision equalization and Kalman-PDA algo-

rithms assuming that the receiver has perfect knowledge of channel information. In

Chapter 8, we consider a more realistic scenario in which the receiver obtain a coarse,

initial channel knowledge with the help of training sequences. Iterative channel esti-

mation and symbol detection are combined together, and near-optimal performance

is achieved. In the next section, we review the existing approaches to this MIMO

equalization problem. Pros and cons of each approach are summarized.

2.3 Existing Approaches

Per the block transmission structure with zero-padding, which is established in the

last section, we can express an L-tap FIR MIMO channel with Ni transmit antennas

and No receive antennas by a KNo×NNi block matrix, H, where K = N + L is the

number of output symbols after padding L trailing zeros in each input block of size

N . The general input-output MIMO model is given by

y = Hb + v, (2.4)
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where y and v are the output vector and the noise vector respectively, and b is

an unknown NNi × 1 block input vector made of N sub-blocks, each consisting of

the symbols transmitted by Ni transmit antennas at every sampling instant. The

optimal maximum likelihood (ML) solution to b in (2.4) incurs high computational

complexity that is exponential either in the block size N for block detection, or in the

channel length L for sequence detection via the Viterbi algorithm. Specifically, when

M -ary modulation is used for b, the complexity of a brute-force ML detector is on

the order of O(MNNi) per block of NNi symbols, while that of the Viterbi algorithm

is O(NNiM
LNi), which is still computationally ineffective when the channel memory

length is long.

To avoid such practically infeasible complexity, a number of near-optimal algo-

rithms have been proposed at polynomial-time complexity. In this section, we give

a review of the existing solutions, including sphere decoding (SD) [21], semi-definite

relaxation programming (SDP) [14], and probabilistic data association (PDA) [26].

The pros and cons of each algorithm are summarized. We also compare them with

the proposed SDE, Kalman-PDA algorithms.

2.3.1 Sphere Decoding

The sphere decoding algorithm was first presented in [38] to find lattice vectors of

short length. The complexity of sphere decoding was found to be polynomial in the

dimension of the lattice [21]. Sphere decoding made its debut in communications
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applications in [39]. For the years followed, it has been proposed as a near-optimum

method for multiuser detection problems in code-division multiple access (CDMA)

systems [41]. It has also been applied to space-time coded as well as uncoded multiple

antenna systems [42].

Given the input-output equation,

y = Hb + v, (2.5)

sphere decoding requires minimization of the metric ||y−Hb||2 over all valid b, i.e.,

all valid lattice points. The search for the optimum solution is restricted to the lattice

points within the sphere of radius
√

C that is centered at y. Each time a valid point

is found, the radius is shrunk so that the newly found point lies on the surface of the

sphere. This process continues until the last point within the sphere is reached, and

this last point is the optimum solution to (2.5), [43]. In other words, sphere decoding

is an exhaustive search algorithm with early pruning of search subtrees that have

been identified as impossible to contain an optimal solution by comparing with the

present best solution [44]. Although this approach may seem to be straightforward,

the implementation is sophisticated and ingenious. For a detailed description of the

algorithm, readers are referred to [40].

There exist several improved sphere decoding algorithms based on the original

one. One approach is to use near-orthogonal basis reduction as a preprocessing step,

and another method is to essentially choose the most promising branch to check first

[45].
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One of the disadvantages of sphere decoding is that its complexity and perfor-

mance are highly dependent on the choice of the initial radius of the sphere. This

makes sense intuitively: if the initial radius is very large, the searching process requires

huge computations; on the other hand, if the initial radius is small, the algorithm may

fail to find a valid lattice point within the sphere. In [43], an enhancement technique

was proposed to mitigate this problem. The search process was modified so that the

computational load is insensitive to the initial search radius. Thus, the initial search

radius can be sufficiently large to ensure the sphere encompasses the optimum solu-

tion (lattice point). However, sphere decoding still has another limitation when it is

applied to “fat” channels, which translates to the case that there are more columns

than rows in the channel matrix H. This is because the original SD judiciously uses

the lattice structure of the finite-alphabet input data to perform quasi-ML search at a

low complexity. Unfortunately, such a lattice search is infeasible for N̄ > K̄ [21], and

the generalized SD (GSD) does not preserve optimality due to a reduced-dimension

lattice projection [55]. The soft-decision equalization (SDE) algorithms proposed in

this work, on the contrary, can be applied to fat channels. We will give detailed

simulation results and discussions about the performance of SDE in fat channels in

Chapter 5.
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2.3.2 Semi-Definite Relaxation Programming

Although the maximum-likelihood (ML) detector is well known as the optimum so-

lution for the problem slated in (2.5), ML detection (MLD) is considered as a non-

deterministic polynomial-time hard (NP-hard) problem. The semi-definite relaxation

algorithm was presented in [14] as a quasi-maximum-likelihood multiuser detection

scheme. It is a sub-optimal, low-complexity substitute to the ML detector. Com-

pared with multistage detection [15], the coordinate ascent algorithm [16], and the

expectation-maximization (EM) approach [17], the semi-definite relaxation algorithm

does not utilize the interference cancellation approach. It avoids the error-propagation

that most interference cancellation algorithms suffer when the previous symbols are

incorrectly detected.

Relaxation is an effective approximation technique for some complicated optimiza-

tion problems. The basic idea of relaxation, namely, is to relax some constraints of

the optimization problems. Thus, the relaxed problem is easier to solve than the

original one [14]. However, for some finite alphabet detection problems, the solution

for the relaxed problem may not directly applicable because it may not exist in the

original alphabet. So some approximation algorithms are needed to convert the re-

laxation solution to an approximate solution for the original problem. For example,

we can lift the finite alphabet constraint on (2.5) to reach a relaxed problem, where

b can be any real vector. Suppose this is a antipodal synchronous CDMA case: H

is the correlation matrix, and v is the zero mean noise vector with covariance σ2H.

The minimum mean-square error (MMSE) solution for (2.5) is [H + σ2I]−1y. Then
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this solution needs to be converted to an approximate solution which lies in the finite

alphabet set. There is a simple way to do this by quantizing each element in the

vector.

There are many ways to relax the constraints. Semi-definite relaxation proposed

in [14] is an efficient and accurate alternative to the NP-hard ML detector. The

semi-definite relaxation algorithm stems from the solution for the Boolean quadratic

programming (QP) problem [18]. It can be applied to the MLD problem with anti-

podal data transmissions. There are some advantages of employing semi-definite

relaxation to solve the multiuser detection problem [14]:

1. The semi-definite relaxation algorithm is based on solving a convex optimization

problem. Hence, this method does not suffer from local maxima.

2. The relaxed problem is a semi-definite programming problem, which is known

to be efficiently solvable [19].

3. The semi-definite relaxation algorithm has a theoretical guarantee that the ap-

proximation accuracy is, at worst, moderate [18]. Moreover, the performance

of this algorithm in practice is substantially better than that of the worst case.

The semi-definite relaxation method [14] to the problem in (2.5) achieves BER

performance which is close to that of the ML detector. The complexity of semi-definite

relaxation is on the order of O(N̄3.5). Nevertheless, when compared with other detec-

tors, the computational load of the semidefinite programming algorithm is relatively

high in practice, even for small-sized problems [46]. In addition, the semi-definite
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relaxation algorithm in [14] focuses on antipodal signaling, which is not often used

in high-capacity wireless systems. Modulation schemes with large constellation sizes

are preferred to achieve high spectral efficiency. For example, quadrature phase shift

keying is used in the third-generation cellular communications and 16/64-quadrature

amplitude modulation (QAM) in IEEE 802.11a. Higher level modulation is one of

the primary reasons that obviate ML detection, but it has not been shown how

semi-definite relaxation handles this task. On the other hand, the SDE algorithms

proposed in this dissertation not only work for higher-level modulation schemes, but

also deliver near-optimal performance with low complexity. The performance of SDE

is verified via simulations in Chapter 5.

2.3.3 Probabilistic Data Association

The probabilistic data association (PDA) detector [26] provides a near-optimal so-

lution for the MIMO equalization problem in (2.5) at a low overall complexity of

O(N̄3). It employs a multistage detection structure, and replaces the intermediate

finite alphabet symbol decisions by soft decisions, expressed via their associated pos-

terior probabilities. The key assumption in PDA is that MAI is approximated to

obey a Gaussian probability distribution, which is an idea originated from the PDA

filter for target tracking [47]. This assumption and the soft-decision structure lead

to significant computation reduction as well as superior performance. Despite its im-

pressively low bit error rates, the PDA method in its original form [26] has limited
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applications. The original PDA detector was derived for multi-user detection (MUD)

within the framework of code-division multiple access CDMA in frequency flat fading

channels, in which case the channel matrices H are confined to be square matrices

made of users’ cross-correlation coefficients. Moreover, zero-forcing preprocessing via

square matrix inverse is performed in PDA, imposing an invertibility constraint on

H.

Symbol detection in practical MIMO systems encounters pronouncedly different

system parameters H and b, compared to those in MUD for single-channel CDMA.

The channel matrix is typically non-square, and possibly rank-deficient. For exam-

ple, downlink transmissions often face channels that are fat, that is, there are more

columns than rows in H. Such a channel matrix is no longer invertible, even though

the system may still be identifiable for digital inputs. A typical case is a BLAST

system [48] with a larger number of transmit than receive antennas. The original

PDA is unable to work in these cases.

As far as the channel memory is concerned, the PDA method can only handle

a short channel memory length of 2 induced by asynchronism [25], with the help of

Kalman filtering. This result cannot be straightforwardly extended to channels with

a longer memory length. On the contrary, SDE and Kalman-PDA proposed in this

dissertation can perform channel equalization for a frequency-selective MIMO channel

with an arbitrary length. In short, SDE has broader applications compared with the

original PDA:
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1. The SDE approach is tailored to handle near-optimum symbol sequence de-

tection in the presence of channel memory, which is difficult to accommodate

in PDA MUD. One of our main contributions is to adopt the block transmis-

sion structure via zero padding to enable block detection, and to apply sliding

windows for ISI cancellation and noise tracking to attain near-MAP detection

performance at a low complexity.

2. We propose an alternative implementation of the PDA principle that eliminates

the zero-forcing pre-processing. As a result, the restriction on full-rank square

channel matrices is lifted.

3. We extend the PDA algorithm to bandwidth-efficient higher-level modulation

schemes. Through this work, the potential of the iterative soft-decision PDA

philosophy can be fully enjoyed by practical wireless systems to achieve near-

optimal, low-complexity detection and equalization.

2.4 Summary

In this chapter, we have established the signal model for a generic frequency-selective

MIMO channel. This model embraces a broad range of situations, such as: multiple

transmit antennas with a single user, single transmit antenna with multiple users, and

transmit-induced diversities including OFDM and CDMA. The optimum solution to

this problem incurs prohibitively high complexity, which prompts the research of

some near-optimum solutions. We have introduced some of them in this chapter:
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sphere decoding, semi-definite relaxation and probabilistic data association. We have

provided brief reviews of these algorithms and compare them with the proposed SDE

and Kalman-PDA algorithms.
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CHAPTER 3

SDE by PDA Enhancement

Starting from this chapter, we will present the soft-decision equalization (SDE) algo-

rithm, the Kalman-PDA equalization algorithm, and the soft-decision based perfor-

mance enhancement techniques in detail. In this chapter, we first give a brief review

of the original PDA method and then develop the SDE algorithm I, SDE-1, in way

of PDA enhancement. We can see that the original PDA was developed for mul-

tiuser detection in synchronous CDMA, while SDE-1 can handle frequency-selective

channels, rank-deficient channels and higher level modulations.

3.1 A Brief Review of PDA

The PDA algorithm for multiuser detection in communications originated from the

probability data association filter used for target tracking [47]. PDA was applied to

multiuser detection problems in CDMA systems in [26]. We express the matched-filter

outputs at the receiver of a CDMA channel with N users as

y = RAb + n, (3.1)
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where R is the symmetric normalized signature cross-correlation matrix, and y =

[y1, · · · , yN ]T , b = [b1, · · · , bN ]T , A = diag{A1, · · · , AN}. bi denotes the anti-podal

bit transmitted by the ith users, and Ai denotes the corresponding amplitude. n

is a zero-mean Gaussian random vector with the covariance matrix equal to σ2R.

Premultiplying A−1R−1 on both sides of (3.1), we have

ỹ = b + ñ, (3.2)

where ỹ = A−1R−1y and ñ = A−1R−1n. Let µ and Σ denote the mean and

covariance of ñ. We have

µ = E{A−1R−1n} = 0 (3.3)

Σ = E{ññT} = σ2A−1R−1A−1. (3.4)

Focusing on the detection of the ith element of b, we rewrite (3.2) as

ỹ = biei +
∑

j 6=i

bjej + ñ, (3.5)

where ei, i = 1, · · · , N is the ith column of the N ×N identity matrix. Let us denote

the sum of noise and interference as Ni, i.e.,

Ni =
∑

j 6=i

bjej + ñ. (3.6)

Then

biei = ỹ −Ni. (3.7)

The key idea of PDA is that it assumes Ni to be Gaussian with matched mean and

covariance. The conditional mean and covariance of biei are then given by

gi := E{biei|ỹ} = ỹ − E{Ni|ỹ} = ỹ −
∑

j 6=i

(2Pbj − 1)ej (3.8)
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Ωi := Cov{biei|ỹ} = Cov{Ni|ỹ} =
∑

j 6=i

[4Pbj(1− Pbj)eje
T
j ] + Σ, (3.9)

where Pbj := Pr(bj = 1|ỹ), j = 1, · · · , N .

The conditional probability density function (pdf) of biei is given by

Pr(biei|ỹ) =
exp{−1

2
(biei − gi)

TΩ−1
i (biei − gi)}

(2π)N/2|Ωi|1/2
. (3.10)

We can compute Pbi using [26]

Pbi

1− Pbi

= exp{2gT
i Ω−1

i ei} (3.11)

From the derivation above, we can see that the finite-alphabet ISI symbols are

canceled out by their soft-decision alternative instead of tentative hard decisions.

On the other hand, parallel interference cancellation (PIC) used hard-decisions to

do cancellation which will generally suffer a 2dB performance loss compared with

soft-decision based algorithms [27].

3.2 SDE by PDA Enhancement

We now develop soft-decision equalization (SDE) methods based on the PDA-type

soft-decision multistage detection principle. We begin with enhancing the PDA detec-

tor to enable its applicability to a generic block transmission system with higher-level

modulation. A key modification is to associate each symbol with its channel response

vector when deriving its posterior probability density function (pdf) and updating

its soft decisions. This strategy eliminates the pre-processing of channel matrix in-

version, thus relaxes the constraint on channel invertibility. In addition, we present

27

























−




























=





























−

+
)1(

)(

)0(

)(0

0

)0()(

00

)0()(

0

0)0(

)1(

)(

)(

)0(

N

k

L

L

L

K

Lk

k

b

b

b

H

HH

HH

H

y

y

y

y

�

�

�

���

���

���

�

�

�

�

  

 
 
  
  
  

ihy
jh

ib

bj

Figure 3.1: Channel model: SDE-1.

efficient implementations of the iterative soft-decision updating rule to further reduce

the complexity.

In the general MIMO model y = Hb+v established in 2.2, we emphasize the ith

element bi of b by rewriting the received signal as

y = hibi +
N̄∑

j=1,j 6=i

hjbj + v, i = 1, · · · , N̄ , (3.12)

where hi and hj ∈ RK̄×1 are the i-th and j-th column of H respectively, denoting the

channel responses of bi and bj, ∀i, j ∈ [1, N̄ ], as shown in Figure 3.1. In Figure 3.1,

each vertical line represents the signature vector of the corresponding input denoted

by a horizontal line. The number of elements in each signature vector is K̄. The

transmitted bits {bj}N̄
j=1 take values from a finite alphabet set {a1, · · · , aM} upon

M -ary modulation, where the modulation format is typically chosen from PSK and

QAM. Given y, there are M posterior probability values associated with each digital

input, which we denote as ηi,m := Pr(bi = am|y), for m ∈ [1,M ] and i ∈ [1, N̄ ].
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Finite-alphabet symbol detection on bi can be alternatively carried out by esti-

mating ηi,m, giving rise to soft decisions. Unfortunately, direct evaluation of ηi,m

via the corresponding likelihood function p(y|bi) still incurs exponential complexity

in N̄ , considering that p(y|bi) is a Gaussian mixture with M N̄−1 modes [50]. To

avoid the combinatorial complexity, we adopt the PDA filtering idea and treat the

transmitted symbols {bi}N̄
i=1 as Gaussian random variables. Since the FIR MIMO

channel is a linear system, the posterior pdf of bi remains to be Gaussian, thus can

be fully characterized by its mean and variance, conditioned on the received signal y.

Define gi := E{hibi|y} and Ri := Cov{hibi|y} as the conditional mean and covari-

ance of hibi, respectively. These definitions are different from [26], noting that each

symbol bi is now associated with its channel response vector hi, instead of a simple

unit vector. Such definitions eliminate the need to perform the channel decorrelat-

ing pre-processing in [26], which is not applicable for non-square channel matrices

and rank-deficient channels. When the transmitted symbols are independent and

identically distributed (i.i.d.), it follows from (3.12) that

gi = y −
N̄∑

j=1,j 6=i

E{bj|y}hj, (3.13)

Ri =
N̄∑

j=1,j 6=i

var{bj|y}hjh
H
j + Rv, (3.14)

Here we assume the noise v is zero mean and with covariance Rv. Thus,

E{bj|y} :=
∑

bj∈{a1,···,aM}
bjPr(bj|y) =

M∑
m=1

ηj,mam, (3.15)

var{bj|y} := E{|bj|2|y} − |E{bj|y}|2

=
M∑

m=1

ηj,m|am|2 − |E{bj|y}|2, (3.16)
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where | · | denotes the magnitude of a complex quantity.

In antipodal signaling, bj ∈ {±1}, which leads to E{bj|y} = 1·ηj +(−1)·(1−ηj) =

2ηj − 1, and var{bj|y} = 4ηj(1− ηj), which corroborates [26].

When hibi|y is approximated as a Gaussian vector with the matched mean and

covariance, its pdf can be described by gi and Ri as follows:

pbi|y(hibi|y) =
exp

{−1
2
(hibi − gi)

HR−1
i (hibi − gi)

}

(2π)K̄/2|Ri|1/2
. (3.17)

This pdf calibrates the posterior probabilities of all M possible constellation points of

bi, and the soft decisions can be derived from (3.17) by setting ηi,m = cipbi|y(hiam|y),

where ci is a normalization factor such that
∑M

m=1 ηi,m = 1,∀i. Note that the condi-

tional pdf in (3.17) is determined by gi and Ri, regardless of the constellation size

M . Therefore the overall complexity of evaluating all M soft decisions {ηi,m}M
m=1 is

linear in M .

To obtain ηi,m in an efficient manner, we introduce the ratios λi,m := ηi,m/ηi,1, for

m = 1, · · · ,M , which can be deduced from (3.17) as

λi,m = exp

{
−1

2
(amhi − gi)

HR−1
i (amhi − gi)

+
1

2
(a1hi − gi)

HR−1
i (a1hi − gi)

}
. (3.18)

Using the probability normalization condition
∑

m ηi,m = 1, we obtain

ηi,m =





1

1+
PM

m=2 λi,m
, m = 1;

λi,mηi,1, m = 2, · · · ,M.

(3.19)
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Subsequently, the maximum a posteriori (MAP) estimate of b̂i is decided to be the

am value that yields the largest ηi,m. The decision rule can be further simplified in

the special binary modulation case [2], [26].

For algorithm implementation, we note that computing {ηi,m}M
m=1 for one input

bi involves computing gi and Ri, both dependent on {ηj,m}M
m=1 of all other inputs

{bj}N̄
j=1,j 6=i. This intertwined relationship among all unknown inputs prompts an

iterative multi-stage procedure [26], where the (gi,Ri) pair is computed from (3.13)

and (3.14) based on tentative soft decisions {ηj,m}j 6=i obtained at a previous stage.

Each ηi,m can be updated from (3.19) successively until all {ηi,m}M
m=1 converge for all

i ∈ [1, N̄ ], followed by decision making on this block of symbols b via the MAP rule.

In the above iterative soft-decision updating procedure, the most computationally-

expensive operation is to compute the covariance matrix inverse R−1
i , which incurs

complexity on the 3rd order of the number of outputs K̄. Direct matrix inversion can

be avoided using the matrix inverse lemma, which will lower the overall complexity by

an order. This speed-up measure is discussed in [26], and it shares the same principle

with the widely-used recursive least-square (RLS) adaptive filtering [49]. We now

describe these results for our M -ary modulation case.

First, we form two auxiliary variables: g := y−∑N̄
j=1 E{bj|y}hj is the conditional

mean of the noise term v = y − Hb, and R :=
∑N̄

j=1 var{bj|y}hjh
H
j + Rv is the

conditional covariance matrix of y. Apparently,

gi = g + E{bi|y}hi, (3.20)

Ri = R− var{bi|y}hih
H
i . (3.21)
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Table 3.1: Soft Decision Equalization Algorithm: SDE-1

Initialization ηi,m = 1
M

,∀i,m; µa = 1
M

∑M
m=1 am; σ2

a = 1
M

∑M
m=1 |am − µa|2;

g = y − µa

∑N̄
i=1 hi; R = σ2

aHHH + Rv;

Do

Soft-decision for i = 1 : N̄

iterative – compute gi and R−1
i from (3.20) and (3.22);

updating – compute {ηi,m}M
m=1 from (3.18) – (3.19), and update

E{bi|y} and var{bi|y} from (3.15) – (3.16);

– update g and R−1 from (3.20) and (3.23);

end i

Until ηi,m converges for all i and m

MAP Detection b̂i = arg maxbi∈{a1,a2,···,aM} ηi,m(bi)

Applying the matrix inverse lemma on (3.21) yields [49]

R−1
i = R−1 +

var{bi|y}R−1hih
H
i R−1

1− var{bi|y}hH
i R−1hi

, (3.22)

and, conversely

R−1 = R−1
i − var{bi|y}R−1

i hih
H
i R−1

i

1 + var{bi|y}hH
i R−1

i hi

. (3.23)

By keeping the updated versions of g and R−1, {gi}N̄
i=1 and {R−1

i }N̄
i=1 can be

obtained from (3.20) and (3.22) at a low complexity of O(K̄2) for each input bi, and

an overall complexity of O(N̄K̄2) in one iteration. The overall soft-decision MIMO

equalization algorithm, enabled by zero-padded block transmission, is summarized in

Table 3.1.

32



3.3 Summary

In this chapter, we first review the original PDA algorithm briefly and then present

the SDE-1 algorithm. SDE-1 is superior than PDA in that it is applicable to not only

the synchronous CDMA scenario but also the frequency-selective MIMO channels

and higher level modulations. We will present in next chapter a novel SDE algorithm

that is tailored to the unique Toeplitz structure of the zero-padded frequency selective

channel matrix.
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CHAPTER 4

SDE by Sliding Windowing

The SDE-1 algorithm presented in the last chapter does not utilized the unique

Toeplitz structure of the channel matrix in the equalization problem. When the pdfs

in (3.17) are computed via matrix operations, the complexity of the Gaussian-forcing

MAP detection is determined by the length of each input’s channel response vector

hi, which is K̄ = (N + L)No in the SDE-1 algorithm. On the other hand, when the

block size K = N +L is chosen to be much larger than the channel length L to reduce

the transmission redundancy, there are a large number of zeros in the channel matrix,

which could be avoided to save computation. Next, we utilize the effective portion of

each channel response vector, and construct a soft decision approach that is tailored

to the equalization problem. The objective is to maintain the near-MAP detection

accuracy of SDE-1, and at the same time reduce the computational complexity to be

proportional to the channel memory L instead of the block size K À L.
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4.1 Algorithm Development

Revisiting the signal model (3.12) illustrated in Figure 4.1, we divide the symbol vec-

tor b into N sub-blocks {b(k)}N−1
k=0 , where each sub-block b(k) = [b(1)(k) · · · b(Ni)(k)]T

contains the information symbols from all Ni inputs at the kth sampling instant. Due

to the finite channel memory length, b(k) only affects (L + 1)No output elements,

which we group into yL,k := [yT (k), · · · ,yT (k +L)]T . This output block yL,k contains

the sufficient statistics of b(k), as well as contributions from residual ISI elements

{b(l)}l 6=k. Compared with y, the reduced-sized vector yL,k contains all the obser-

vations relevant to b(k). It is thus possible to construct an optimum detector for

b(k) from yL,k in lieu of y, provided that the contributions from other symbols to

this output block are properly accounted for, possibly through ISI cancellation and

noise tracking. Focusing on one input sub-block at a time, we will convert the signal

model in (3.12) into a set of N sub-models, each describing one of the N sufficient

statistics {yL,k}N−1
k=0 , such that each sub-model can be expressed by shorter channel

response vectors compared with (3.12). Each vertical line in Figure 4.1 represents the

signature vector of the corresponding input denoted by a horizontal line. Compared

with Figure 3.1, the number of elements in this vector is (L + 1)No for SDE-2. In

the k-th sub-model depicted by the shaded area in Figure 4.1, we denote the channel

response matrix from the l-th input sub-block b(l) to yL,k by HL(l|k), ∀l, which refers

to the sub-block matrix of H at the intersection of the k-th row sub-block and the l-th

column sub-block. To be exact, it is the portion of H bordered by the (lNi +1)-th to

the (l + 1)Ni-th columns, and the (kNo + 1)-th to the (k + L + 1)No-th rows. There
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Figure 4.1: Channel model: SDE-2.

are Ni columns in HL(l|k) =
[
h

(1)
L,(l|k) · · ·h(Ni)

L,(l|k)

]
, where h

(i)
L,(l|k) is the (L + 1)No × 1

channel response vector of b(i)(l) during the k-dependent observation window covering

the k-th to the (k + L)-th symbol periods. It is further observed that, when l = k,

HL(k|k) represents the non-zero portion of each column block, and is independent

of k. In fact, HL(k|k) = HL := [HT (0) · · ·HT (L)]T , ∀k, which happens to be the

(L + 1)-tap FIR MIMO channel impulse response. With these definitions, yL,k can

be obtained from the general signal model (3.12) by sliding over y a k-dependent

observation window of L + 1 symbol periods, yielding

yL,k = HLb(k) +
N−1∑

l=0,l 6=k

HL(l|k)b(l) + vL,k, k = 0, · · · , N − 1 (4.1)

where vL,k := [vT (k) · · ·vT (k+L)]T is the zero-mean white Gaussian noise component

that falls within the sliding window. Its covariance matrix Rv,k := E{vL,kv
H
L,k} is

readily available as a (L + 1) × (L + 1) sub-block of Rv. Hence we have established

N reduced-sized sub-models, resulted from overlapping sliding observation windows.
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Next, we will show how to utilize the enhanced PDA MUD detector within each

reduced-sized sub-model for symbol-by-symbol detection. Focusing on b(k) in the k-

th sliding window described by (4.1), we further dissect the channel matrix HL, and

represent the non-zero (effective) portion of the channel response vector for b(i)(k)

as hL,i, which is the ith column of HL, and is independent of k. Define ηi,m(k) :=

Pr(b(i)(k) = am|yL,k), m = 1, · · · ,M , as the posterior probabilities of the M -ary

modulated symbol b(i)(k). The conditional mean and variance of b(i)(k) are then

given by

µ
(i)
b (k) := E{b(i)(k)|yL,k} =

M∑
m=1

amηi,m(k), (4.2)

σ
(i)
b (k) := var{b(i)(k)|yL,k} =

M∑
m=1

|am|2ηi,m(k)− |µ(i)
b (k)|2, (4.3)

respectively. To make MAP detection on b(i)(k), the task now is to evaluate its

posterior probability distribution. We suppose the posterior pdf is Gaussian after the

Gaussian forcing approximation, hence can be fully characterized by its mean and

variance conditioned on yL,k.

Defining vL(k) :=
∑

l 6=k

∑Ni

j=1 h
(j)
L,(l|k)b

(j)(l)+vL,k, and emphasizing each individual

element b(i)(k) in b(k), we rewrite (4.1) as

yL,k = hL,ib
(i)(k) +

Ni∑

j 6=i

hL,jb
(j)(k) + vL(k), i = 1, · · · , Ni. (4.4)

Equation (4.4) follows the same structure as (3.12), hence the SDE-1 algorithm can

be applied within this local time window for detecting b(k). To do so, we express the

signal component from b(i)(k) by

hL,ib
(i)(k) = yL,k −

Ni∑

j 6=i

hL,jb
(j)(k)− vL(k). (4.5)
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The conditional mean and covariance of hL,ib
(i)(k) are thus given by

g
(i)
k := E{hL,ib

(i)(k)|yL,k}

= yL,k −
Ni∑

j 6=i

hL,jµ
(j)
b (k)− E{vL(k)|yL,k} (4.6)

R
(i)
k := Cov{hL,ib

(i)(k)|yL,k}

=

Ni∑

j 6=i

hL,jh
H
L,jσ

(j)
b (k) + Cov{vL(k)|yL,k} (4.7)

To obtain the conditional mean and covariance of vL(k), we adopt the following

approximations for all l 6= k and j ∈ [1, Ni]:

E{b(j)(l)|yL,k} ≈ E{b(j)(l)|yL,l} = µ
(j)
b (l), (4.8)

var{b(j)(l)|yL,k} ≈ var{b(j)(l)|yL,l} = σ
(j)
b (l). (4.9)

As a result, we have

E{vL(k)|yL,k} =
∑

l 6=k

Ni∑
j=1

h
(j)
L,(l|k)µ

(j)
b (l), (4.10)

Cov{vL(k)|yL,k} =
∑

l 6=k

Ni∑
j=1

h
(j)
L,(l|k)h

(j)H
L,(l|k)σ

(j)
b (l) + Rv,k. (4.11)

Now we are ready to use the enhanced PDA framework to compute the soft-

detection on b(i)(k). As a result of the Gaussian forcing approximation, the posterior

probabilities of b(i)(k) can be obtained as

Pr
(
hL,ib

(i)(k)|yL,k

)
=

exp
{
−1

2
(hL,ib

(i)(k)− g
(i)
k )HR

(i)−1
k (hL,ib

(i)(k)− g
(i)
k )

}

(2π)No(L+1)/2

∣∣∣R(i)
k

∣∣∣
1/2

(4.12)

where b(i)(k) ∈ {a1, · · · , aM}. Once the posterior probabilities ηi,m(k) = Pr(hL,iam|yL,k),

m = 1, · · · ,M , are established from (4.12), the MAP detection on {b(i)(k)}Ni
i=1 can be

made in the same manner as described in (3.18) and (3.19).
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4.2 Iterative Implementations

As discussed in SDE-1, the evaluation of posterior probabilities {ηi,m(k)}M
m=1 for each

input b(i)(k) involves computing g
(i)
k and R

(i)−1
k , which are dependent on not only

the unknown {ηj,m(k)} of MAI symbols {b(j)(k)}j 6=i at the k-th sampling time, but

also the unknown {ηj,m(l)} of ISI symbols {b(j)(l)}l 6=k, ∀j. Algorithm implementa-

tion via iterative multi-stage processing is thus in order. Similar to the speed-up

strategy described in (3.22) and (3.23), we introduce two auxiliary variables that are

instrumental to computational saving in updating the (g
(i)
k , R

(i)−1
k ) pair: one is the

conditional mean g(k) of the noise term vL,k = yL,k −HLb(k) −∑
l 6=k HL(l|k)b(l),

given by

g(k) := yL,k −
Ni∑
j=1

hL,jE{b(j)(k)|yL,k}

−
∑

l 6=k

Ni∑
j=1

h
(j)
L,(l|k)E{b(j)(l)|yL,k}. (4.13)

The other is the conditional covariance matrix R(k) of yL,k in the form of

R(k) :=

Ni∑
j=1

hL,jh
H
L,jvar{b(j)(k)|yL,k}+

∑

l 6=k

Ni∑
j=1

h
(j)
L,(l|k)h

(j)H
L,(l|k)var{b(j)(l)|yL,k}+ Rv,k. (4.14)

Both g(k) and R(k) take into account of the channel responses to all the elements in

b(k), and all the ISI components as well. For reasons that will be explained in Section

4.3, we term the updating of g(k) due to the ISI components as soft ISI cancellation,

and that of R(k) as noise tracking.
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Obvious contrast between (4.6)-(4.7) and (4.13)-(4.14) shows that

g(k) = g
(i)
k − µ

(i)
b (k)hL,i (4.15)

R(k) = R
(i)
k + σ

(i)
b (k)hL,ih

H
L,i. (4.16)

Therefore, for i = 1, · · · , Ni within each local window k, we have

R
(i)−1
k = R(k)−1 +

σ
(i)
b (k)R−1(k)hL,ih

H
L,iR

−1(k)

1− σ
(i)
b (k)hH

L,iR
−1(k)hL,i

, (4.17)

R−1(k) = R
(i)−1
k − σ

(i)
b (k)R

(i)−1
k hL,ih

H
L,iR

(i)−1
k

1 + σ
(i)
b (k)hH

L,iR
(i)−1
k hL,i

. (4.18)

During iterative processing, g
(i)
k and R

(i)−1
k are first updated via (4.15) and (4.17),

using tentative soft information µ
(i)
b (k) and σ

(i)
b (k) from the previous stage. Subse-

quently, the posterior pdf of b(i)(k) can be computed from (4.12), yielding updated

soft information µ
(i)
b,new(k) and σ

(i)
b,new(k) of the current stage. The auxiliary variables

g(k) and R(k) are then updated via (4.15) and (4.18) using the new values. Bear in

mind that yL,k in each sliding window only yields the soft information of one input

block b(k), but b(k) also affects L previous overlapping windows {yL,l}k−1
l=k−L and L fu-

ture overlapping windows {yL,l}k+L
l=k+1. Therefore, there are min(2L, N−1) additional

pairs of auxiliary variables {g(l),R−1(l)}l 6=k that need to be updated from the new

estimates of b(k). The updating of these ISI pairs can be carried out instantaneously

when any µ
(i)
b,new(k) and σ

(i)
b,new(k) become available, or after these soft-information

values are updated for all b(i)(k), i ∈ [1, Ni] and k ∈ [0, N − 1], resulting in two

implementation procedures of different computational loads.

In the first procedure, we update the related ISI auxiliary pairs whenever µ
(i)
b,new(k)

and σ
(i)
b,new(k) become available for any i and k. Following (4.13), an auxiliary ISI mean
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can be updated by

gnew(l) = g(l) + h
(i)
L,(k|l)µ

(i)
b (k)− h

(i)
L,(k|l)µ

(i)
b,new(k),

l = k − L, · · · , k − 1, k + 1, · · · , k + L. (4.19)

To update R−1
new(l), l = k − L, · · · , k + L, it is observed from (4.14) that

Rnew(l) = Ri(l|k) + h
(i)
L,(k|l)h

(i)H
L,(k|l)σ

(i)
b,new(k), (4.20)

where Ri(l|k) := R(l)−h
(i)
L,(k|l)h

(i)H
L,(k|l)σ

(i)
b (k) is independent of b(i)(k). Based on (4.20),

we can apply the matrix inverse lemma twice to update R−1
new(l) from R−1(l) and

σ
(i)
b,new(k):

R−1
i (l|k) = R−1(l) +

σ
(i)
b (k)R−1(l)h

(i)
L,(k|l)h

(i)H
L,(k|l)R

−1(l)

1− σ
(i)
b (k)h

(i)H
L,(k|l)R

−1(l)h
(i)
L,(k|l)

. (4.21)

R−1
new(l) = R−1

i (l|k)−
σ

(i)
b,new(k)R−1

i (l|k)h
(i)
L,(k|l)h

(i)H
L,(k|l)R

−1
i (l|k)

1 + σ
(i)
b,new(k)h

(i)H
L,(k|l)R

−1
i (l|k)h

(i)
L,(k|l)

. (4.22)

The intermediate matrix inverse Ri(l|k) plays a similar role to the updating of R(l)

as R
(i)
k to R(k). The computational load of updating all the relevant auxiliary vari-

ables for each input is on the order of min(N, 2L + 1)(L + 1)2N2
o , which represents

an approximate L/K reduction compared with the SDE-1 algorithm. The overall

algorithm is summarized in Table 4.1.

In the above procedure, N overlapping time windows are processed in serial, re-

sulting in a total of N̄ ×min(N, 2L + 1) times of updating the auxiliary pairs inside

each stage. To reduce the number of covariance matrix inverse to be processed, we

may take an alternative procedure to update the auxiliary matrices {R−1(k)}N−1
k=0 . In

each stage, we first process the N local windows in parallel to update the soft deci-

sions of all inputs {b(k)}N−1
k=0 , using tentative decisions and auxiliary variables from
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Table 4.1: Soft Decision Equalization Algorithm: SDE-2 (I)

Initialization ηi,m(k)= 1
M

, µ
(i)
b (k)= 1

M

∑M
m=1 am, σ

(i)
b (k)= 1

M

∑M
m=1

∣∣∣am − µ
(i)
b (k)

∣∣∣
2

,

∀i,m, k; compute g(k), R(k) and R(k)−1 using (4.13) and (4.14).

Do

Soft-decision for k = 0 : N − 1, (for each input sub-block)

iterative for i = 1 : Ni, (for each symbol within a sub-block)

updating Step a. Soft-decision MUD on b(k)

– update g
(i)
k and R

(i)−1
k using (4.15) and (4.17);

– compute ηi,m(k) = Pr(hL,iam|yL,k) using (4.12), and steps

in (3.18)-(3.19);

– update µ
(i)
b (k) and σ

(i)
b (k) using (4.2) and (4.3);

Step b. Soft ISI cancellation and noise tracking of auxiliary

pairs

– update the related (2L + 1) auxiliary pairs

{g(l),R−1(l)}k+L
l=k−L using (4.19), (4.21), (4.22)

for l 6= k, and (4.15), (4.18) for l = k.

end i

end k

Until ηi,m(k) converges for all i, m, and k

Detection b̂(i)(k) = arg maxb(i)(k)∈{a1,a2,···,aM} ηi,m(k)
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the previous stage. When all the new soft-information values are available, we re-

calculate the N auxiliary pairs {g(k),R(k)}N−1
k=0 , possibly by using their definitions

in (4.13) and (4.14). On average, there are only N pairs of auxiliary variables to

be updated inside each stage, and the complexity order per symbol is the smaller of

min(N, 2L+1)(L+1)2N2
o (when the matrix inverse lemma is used), and (L+1)3N3

o /Ni

(when direct matrix inversion is used). This procedure is summarized in Table 4.2.

The implementations in both Tables 4.1 and 4.2 are expected to converge to the

SDE-1 algorithm, which have been verified in our simulations. The second procedure

offers a complexity advantage when the channel length is much less than the block

size, i.e., L ¿ N .

4.3 Comparisons with Existing Algorithms

The SDE-2 MIMO equalizer resembles a concatenation of a series of enhanced PDA/

SDE-1 detectors, each operating on a truncated sub-model to reduce the overall com-

plexity. It is worth emphasizing that the pdf estimators in (3.17) for SDE-1 and in

(4.12) for SDE-2 are equivalent, when both converge to the steady state. The only ap-

proximations involved are (4.8) and (4.9), which if at the steady state, does not incur

performance loss. The multi-stage iterative processing nature of the SDE algorithms

prompts their links with the parallel interference cancellation (PIC) [50], and the soft-

input-soft-output (SISO) MMSE detector that was developed for turbo detection. In

the next, we compare SDE with existing interference cancellation techniques.
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Table 4.2: Soft Decision Equalization Algorithm: SDE-2 (II)

Initialization same as in Table 4.1

Do

Step a. Soft ISI cancellation and noise tracking of N auxiliary

pairs

– update all {g(l),R−1(l)}N−1
l=0 using (4.13) and (4.14).

Step b. Soft-decision MUD over N overlapping truncated

Soft-decision windows:

iterative for k = 0 : N − 1 (for each input sub-block)

updating for i = 1 : Ni (for each symbol within a sub-block)

– update g
(i)
k and R

(i)−1
k using (4.15) and (4.17);

– compute ηi,m(k) from (4.12), and steps in (3.18)-(3.19);

– update µ
(i)
b (k) and σ

(i)
b (k) using (4.2) and (4.3);

– update g(k) and R−1(k) using (4.15) and (4.18).

end i

end k

Until ηi,m(k) converges for all i, m, and k

Detection b̂(i)(k) = arg maxb(i)(k)∈{a1,a2,···,aM} ηi,m(k)
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4.3.1 Comparison with Hard-Decision PIC

In each truncated output vector yL,k, {b(l)}l 6=k can be viewed as the interference to

the desired symbol block b(k), and the sub-model (4.4) can be written as yL,k −
∑

l 6=k HL(l|k)b(l) =
∑Ni

i=1 hL,ib
(i)(k) + vL,k. This appears to be deduced from (4.1)

using the PIC structure [50]. A close examination shows that the SDE-2 method

treats the tentative decisions on b(l) differently from PIC. An equivalent model for

SDE-2 is described below:

ỹL,k =

Ni∑
i=1

hL,ib
(i)(k) + ṽL,k (4.23)

where the observation vector is modified to ỹL,k in the form of

ỹL,k := yL,k −
∑

l 6=k

HL(l|k)E{b(l)|yL,k}, (4.24)

and the noise term ṽL,k is independent of b(k), and is assumed to be Gaussian with

zero-mean, and covariance R̃v,k being equal to Cov{vL(k)|yL,k} in (4.11), i.e.,

R̃v,k := Rv,k +
∑

l 6=k

Ni∑
j=1

h
(j)
L,(l|k)h

(j)H
L,(l|k)σ

(j)
b (l). (4.25)

The efficacy of (4.23) can be established by the fact that both g
(i)
k and R

(i)
k in (4.6)-

(4.7) that are required to fully characterize the posterior pdf of b(i)(k) can be equiva-

lently obtained from (4.23) – (4.25). Compared with PIC, our SDE-2 method entails

three major differences: (i) The finite-alphabet ISI symbols b(l) are canceled out by

their soft-decision alternative E{b(l)|yL,k} instead of tentative hard decisions; (ii)

In addition to the soft-decision interference cancellation, the conditional variances of

the soft estimates are tracked and lumped into the variance of noise ṽv,k, as seen
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in (4.25). In contrast, hard-decision PIC does not change the statistics of the noise

term vL,k during iterations. Due to this key noise tracking step, the formulation in

(4.23) retains optimality subject to the Gaussian forcing approximation, while the

conventional PIC is sub-optimum. (iii) The SDE-2 method performs interference

cancellation along overlapping blocks, using a sliding window of size (L + 1)No out-

puts, such that all the observations related to each input are retained within the

corresponding window. The conventional PIC receiver, on the other hand, operates

on a non-overlapping sliding window of size 1.

4.3.2 Comparisons between SDE, PDA and SISO-MMSE

Based Turbo Detection

The soft-decision iterative processing nature of our SDE algorithms prompts their

links to turbo signal processing. In turbo detection [34], soft information in the form

of log-likelihood ratios (LLR) is exchanged; interchangeably, the PDA, SDE-1, and

SDE-2 methods iteratively feedback the means and variances of Gaussian distributed

random symbols. We now compare the multi-stage Gaussian forcing principle used

in PDA, SDE-1 and SDE-2, with the SISO-MMSE based turbo principle for uncoded

systems. For different algorithms, we will explain the posterior probabilities derived

for bi in the general model y = hibi +
∑

j 6=i hjbj + v. The comparison will be based

on binary modulation.
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In SDE-1 for binary signaling, the posterior probability distribution of bi in (3.17)

is reduced to

Pr(bi = 1|y)

Pr(bi = −1|y)
= exp

{
2hH

i R−1
i gi

}
(4.26)

where gi and Ri are given by (3.13) and (3.14), respectively.

The PDA algorithm focuses on MUD in synchronous CDMA multiple access,

where H is a real-valued, square cross-correlation matrix, and the noise variance is

Rv = σ2
nH. Let N (µ, σ2

n) represent a Gaussian random variable with mean µ and

variance σ2
n. Under the special system setup, the PDA MUD establishes a Gaussian

model for bi in the form of [Ref. [26]]

eibi = ḡi +N (0, R̄i) (4.27)

where ḡi = y−∑
j 6=i E{bj|y}ej, R̄i =

∑
j 6=i eje

T
j var{bj|y}+σ2

nH
−1, and ei is a column

vector whose i-th element is 1 while all other components are 0. Pre-multiplying

eT
i R̄−1

i on both sides of (4.27) yields

eT
i R̄−1

i eibi = eT
i R̄−1

i ḡi +N (
0, eT

i R̄−1
i ei

)
. (4.28)

The soft decision made by PDA is thus given by

Pr(bi = 1|y)

Pr(bi = −1|y)
= exp

{
2eT

i R̄−1
i ḡi

}
. (4.29)

Using the equality hi = Hei, it can be established that hH
i R−1

i gi = eT
i R̄−1

i ḡi. There-

fore, the PDA result in (4.29) is the same as that of SDE-1 in (4.26) in this special

case. As an enhancement to PDA, our SDE-1 algorithm does not restrict Rv to be

proportional to H−1, and it applies even when H−1 does not exist.
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The SISO-MMSE method generates a MMSE filtered decision statistic zi for es-

timating bi, where zi boils down to [[34], (41) and (50)]

zk = eT
i R̄−1

i ḡi = eT
i R−1

i eibi +

N (
0, eT

i R̄−1
i ei − eT

i R̄−1
i eie

T
i R̄−1

i ei

)
. (4.30)

The LLR of bi is thus given by

p(y|bi = 1)

p(y|bi = −1)
= exp

{
2eT

i R̄−1
i gi

1− eiR̄
−1
i ei

}
. (4.31)

The comparison between SISO-MMSE and PDA (a special case of SDE-1) is clearly

illustrated by the similarities and differences between (4.28) – (4.29) and (4.30) –

(4.31).

As to the SDE-2 method, it is specially tailored to the equalization problem with

a Toeplitz channel structure, therefore is not directly comparable with the existing

turbo detectors. Interestingly, the iterative processing in SDE-2 suggests the flow

chart in Figure 4.2, which interprets the algorithm by a turbo structure in which

two major function blocks: MUD and ISI cancellation, exchange information in an

iterative manner. SDE-2 builds upon the Gaussian forcing idea, and incorporates

sliding windowing to reduce the overall complexity without sacrificing the detection

performance. The key to retain optimality after data truncation is to carry out the

noise tracking step (4.25) prior to each reduced-dimension local SDE-1 detection on

(4.23). Noise tracking via Kalman filtering has appeared in the context of PDA

detection for asynchronous CDMA under frequency flat fading [25]. Such a PDA-

Kalman tracker cannot be generalized to track the noise in a channel with a memory
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Figure 4.2: Turbo-like flow chart of the SDE-2 algorithm.

length L > 2, since the underlying dynamic model is no longer first-order, thus

obviating Kalman filtering. In our development, we interpret noise tracking as a

means to update the variance of the ISI estimates. This viewpoint allows us to

generalize the noise tracking method easily to channels with long memory length, and

there is no need to perform channel Cholesky decomposition and Kalman filtering as

in [25].

4.4 Summary

In this chapter, we present a novel soft decision approach that is tailored to fre-

quency selective MIMO channel equalization problem, taking advantage of the unique

Toeplitz structure. Near-optimum BER performance is maintained, and the compu-

tational complexity is reduced to be proportional to the channel memory length L

instead of the block size K À L. We also provide comparisons with parallel interfer-

ence cancellation (PIC), and the soft-input-soft-output (SISO) MMSE detector that
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was developed for turbo detection. We will provide simulation results and perfor-

mance analysis in the next chapter.
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CHAPTER 5

Simulations and Performance Analysis of SDE

In the last two chapters, we proposed two versions of soft-decision equalization algo-

rithms. Compared with sphere decoding and the original PDA algorithm, SDE does

not require computing the inverse of the channel matrix, the restriction of invertibility

of the channel matrix is lifted. Therefore, SDE can be applied to MIMO systems that

have less receive than transmit antennas [54], where many equalization algorithms fail.

In this chapter, we investigate the characteristics of our two soft-decision equalization

methods through computer simulations. In both the SDE-1 and SDE-2 algorithms,

the soft decisions are derived to converge to the sequence MAP estimates through

multi-stage iterations, therefore close-to-optimal symbol detection performance is an-

ticipated. On the other hand, Gaussian forcing explains the low-complexity feature

of these SDE methods. These claims will be verified here by comparisons with other

competing methods, including the optimum ML detection by brute-force enumera-

tion, quasi-ML by sphere decoding (SD) [21], [55], and the sub-optimal hard-decision

MIMO FIR MMSE-DFE method [31]. Performance metrics of interest are the bit-

error-rate (BER) performance in both full column-rank and rank-deficient channels,

51



and the computational complexity in terms of the number of operations versus the

frame data size N .

In Section 5.1, we present the simulation results of the SDE-1 and SDE-2 algo-

rithms in full rank channels. Then in Section 5.2, we try to probe the performance

of SDE in rank-deficient channels. We set up various channel parameters and use

SDE to do symbol detection. We plot out the performance in terms of bit-error-

rate (BER) and summarize our observations. Finally, the complexity analysis of

SDE-1 and SDE-2 is given in Section 5.3 to attest that SDE are low-complexity,

near-optimum algorithms for MIMO symbol detection and equalization.

5.1 BER Performance in Full-Rank MIMO Channels

In the simulated MIMO system, each input-output radio link is generated indepen-

dently from the broadband wireless High Performance European Radio LAN (HIPER-

LAN) model [56], [57]. The channels are complex-valued, and the noise is assumed to

be complex white Gaussian. The time-varying FIR channels are generated according

to the channel model A specified by ETSI for HiperLAN/2 [56], resulting in a maxi-

mum channel memory length of L = 8 symbols. Each channel tap varies according to

Jakes’ model with a maximum Doppler frequency of 52 Hz corresponding to a typical

terminal speed and a carrier frequency of 5.2 GHz.

We study the BER performance versus the signal-to-noise ratio (SNR) of various

detectors under different modulation schemes and numbers of antennas. The total
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transmit power is held constant irrespective of the number of transmit antennas. For

each given SNR, the simulation keeps running until the number of errors for the

(near-optimum) sphere decoding algorithm reaches 100 or greater. With this number

of errors, the simulated BER is within ±20% of the true BER.

We start with the case of more number of receive antennas than transmit antennas,

i.e., No > Ni. Due to the block transmission structure with a transmit redundancy

of L padded zeros, the Toeplitz channel matrix H in (2.2) has a full column-rank of

N̄ = NNi, and is guaranteed invertibility irrespective of channel nulls [23].

Figure 5.1 illustrates the performance comparison of SDE-1, SDE-2, SD, FIR

MMSE-DFE, and ML (by brute-force search) for Ni = 1 and No = 4. The symbol

block size N is chosen as 8. The results for both 16-QAM and 64-QAM are presented.

The same MIMO setup is considered in Figure 5.2, except that the number of transmit

antennas is increase to Ni = 2. In both figures, it can be seen that the BER curves

of SDE-1, SDE-2 and SD are nearly identical for different high-bandwidth-efficiency

modulation schemes. They all approach that of the optimum ML detection. This

corroborates the near-optimum property of the reduced-complexity SDE-2 technique.

FIR MMSE-DFE, however, experiences non-trivial performance degradation in all the

above scenarios. The performance gap in the Ni = 2 case is more pronounced than

that in the Ni = 1 case. As Ni increase, the information-theoretic capacity is expected

to grow linearly in Ni, given Ni ≤ No [1]. MMSE-DFE cannot deliver the desired

performance as capacity-driven MIMO systems exploit more transmit antennas. On
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Figure 5.1: Performance comparison under 16/64QAM, Ni = 1, No = 4

the other hand, our SDE methods, with their near-optimum performance, are very

promising candidates to bring the potency of MIMO systems to practice.

5.2 BER Performance in Rank-Deficient MIMO Channels

Rank-deficient MIMO channels exist in many wireless scenarios, such as in mobile

downlink transmission where there are typically more transmit than receive antennas.

A so-called fat channel matrix H arises when KNo < NNi, which means that H has

more columns than rows, and its pseudo-inverse H† no longer exists. This poses

a significant challenge for symbol detection, since a NNi × 1 input data vector is

projected onto an output/observation space of a smaller dimension KNo [55]. Such a
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Figure 5.2: Performance comparison under 16/64QAM, Ni = 2, No = 4

channel is identifiable only when each distinct finite-alphabet input b can be mapped

into a distinct and resolvable output y when free of noise. Even when the system

identifiability condition is satisfied, a rank-deficient channel is difficult to process.

First, many detection techniques that require channel invertibility do not apply. This

includes the linear zero-forcing and MMSE detectors [50], and the original PDA MUD

filter [26]. Second, even when a detector does not face implementation difficulty,

its detection performance may exhibit an unacceptably large noise floor. Examples

include FIR MMSE-DFE and SD. In MMSE-DFE, a fat channel matrix severely

reduces the power efficiency of the feedforward filter, which in turn compromises

ISI cancellation in the feedback filter design. The original SD judiciously uses the

lattice structure of the finite-alphabet input data to perform quasi-ML search at a low

complexity. Unfortunately, such a lattice search is infeasible for NNi > KNo [21], and
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the generalized SD (GSD) does not preserve optimality due to a reduced-dimension

lattice projection [55].

To investigate the behavior of our SDE methods in the fat-channel case, we first

take a look at a simple example in which we choose a MIMO setup with No = 1 receive

antenna, Ni = 3 transmit antennas, and a block size of N = 5. The corresponding

channel matrix H is thus 13 × 15 in dimension. In Figure 5.3, the performance

of channel equalization by brute-force ML is plotted as a baseline, along that of

SDE-1, SDE-2, GSD, and MMSE-DFE. The BER values for both MMSE-DFE and

GSD stay above 10−1, even for high SNR. The SDE methods also incur considerable

performance degradation compared with the optimum ML, but do not seem to exhibit

an error floor. Intuitively, soft-decision based methods with Gaussian forcing track

the composite covariance of MAI components as noise. Even when there is a rank

reduction, or some MAI components are too close in the signal space, the composite

noise effect could still retain full rank under the ill-conditioned channel, thus leading

to convergence in symbol detection.

Next, we further investigate the performance of SDE in various fat channels. In

order to quantify the “shape” of the channel matrix, we define the dimension ratio as

ΛF =
Ni

No

. (5.1)

So for a system with a given number of receive antennas, the larger ΛF is, the more

transmit antennas it has. Because of the reasons listed in the beginning of this sec-

tion, symbol detection and channel equalization algorithms face greater challenges as

ΛF increases, and thus the performance of SDE is expected to become worse. We
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Figure 5.3: Performance comparison in fat channel case, Ni = 3, No = 1

would like to probe the trade-off between ΛF and the BER performance. Intuitively,

for a MIMO system with a fixed number of receive antennas, a higher ΛF means

more transmit antennas, which can accommodate more users, and thus offer a higher

data rate. The penalty for having a larger number of transmit antennas is the de-

graded BER performance, because there is more MAI for each user. In the following

simulations, we investigate the performance of SDE versus ΛF in various scenarios.

5.2.1 BPSK-Modulated MIMO Systems

We first simulate a MIMO setup with No = 4 receive antennas. The number of

transmit antennas ranges from 3 to 8. The modulation scheme used is binary phase
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Figure 5.4: BPSK, No=4, Ni=3 – 8, flat fading

shift keying (BPSK), and the transmitted signals are assumed to go through flat-

fading channels. We simulated the BER performance of SDE (SDE-1) along with

the optimal ML detector by way of brute-force searching. The BERs at different

SNRs are plotted versus ΛF in Fig 5.4. At a given SNR, we keep the total transmit

power same when increasing the number of transmit antennas. We can see that the

BER performance does degrade as ΛF increases, for a given SNR. But this can be

mitigated by increasing the SNR. With SNR increased by 2 dB, the performance of

SDE with Ni + 1 (Ni = 3 − 7) transmit antennas can be better than that of SDE

with Ni transmit antennas. This can be cost-effective in some applications.

We also simulate a BPSK-modulated MIMO system with No = 10 receive anten-

nas. We observed in Fig. 5.5 that the BER performance of SDE deteriorates again
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Figure 5.5: BPSK, No=10, Ni=8 – 14, flat fading

as ΛF increases. Similar to the No = 4 case, the performance degradation can be

alleviated or improved to even better by increasing SNR. In this setup, the BER is

approximately equal to 1.3 × 10−4, when Ni = 8, SNR=10dB. At the same SNR,

when Ni = 12, the BER goes up to 3.8 × 10−3. However, if we increase the SNR by

2dB, the BER is drastically lowered to 1.7 × 10−4. Thus, with the cost of 2dB in

SNR, the number of transmit antennas (users) can be increased from 8 to 12 while a

competitive level of BER performance is retained.

In both aforementioned setups, the system can accommodate a few additional

users at a reasonable cost of transmit power. It can be seen that ML also suffers

from performance loss as ΛF increases. We also notice that the performance gap

between SDE and ML is small when ΛF < 1, but grows larger as ΛF increases.

59



The performance gap also becomes more pronounced for higher SNRs. However,

we do not see any error floors in the plot, which implies we can always increase

transmit power to mitigate the performance loss caused by a increasing number of

antennas. This manifests that SDE has a prominent advantage in MIMO systems

that have a fat channel matrix. Among existing detection algorithms, some (such as

the linear zero-forcing, MMSE detection, the original PDA MUD filter, etc) simply

do not apply, while others, e.g. FIR MMSE-DFE and sphere decoding, may exhibit

an unacceptably large noise floor. Since fat channels exist widely in the downlink

of mobile communications, this application advantage of SDE is significant. So SDE

presents itself as a strong candidate for MIMO multiuser detection and equalization

algorithms.

5.2.2 16QAM-Modulated MIMO Systems

We continue simulating the performance of SDE in fat channel MIMO systems. In

this subsection, we focus on systems that adopt the 16-QAM (quadrature amplitude

modulation) scheme since high-capacity wireless systems typically require large signal

constellation size to improve spectral efficiency, and 16-QAM has been used in IEEE

802.11a. We simulate systems with 4, 6, 10 and 12 receive antennas. The results are

plotted in Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9. The BER performance of these

setups share the same trend. We observe that:
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Figure 5.6: 16-QAM, No=4, Ni=2 – 6, flat fading
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Figure 5.7: 16-QAM, No=6, Ni=2,4 – 8, flat fading
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Figure 5.8: 16-QAM, No=10, Ni=8 – 12, flat fading
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Figure 5.9: 16-QAM, No=12, Ni=10 – 14, flat fading
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1. For ΛF ≤ 1 cases, the BER can always be lowered below a reasonable level

(5 × 10−4). This means SDE performs well when the channel matrix is tall or

square. This corroborates what we claimed the previous sections.

2. However, when ΛF > 1, the BER performance of SDE improves little although

SNR increases up to 30 dB. This is different from BPSK cases. This implies that

in 16-QAM systems, the application of SDE is restricted to tall or square channel

to ensure a satisfactory performance. Although, SDE theoretically works for fat

channels, regardless of the modulation scheme used, it suffers from error floors

when applied to fat channels that use 16-QAM modulation.

3. We plot out the BER of the optimum ML detector for the No = 4 case. It can

be seen that the performance of ML also deteriorates as ΛF increases. But the

performance gap between SDE and ML is much more pronounced than that in

BPSK cases. For Ni = 5 and Ni = 6 cases, ML at SNR=15 dB outperforms

SDE at SNR=30 dB. This shows that fat channels are extremely challenging

for near-optimal detection algorithms.

In the simulations, we also observe that the posterior probabilities of each symbol

in 16QAM cases are closer to each other than in BPSK cases. In fact, the closer the

posterior probabilities locate to each other, the less reliable a decision is, so the more

liable a detection is to be wrong. This observation unveils a unique advantage of soft-

decision based detection algorithms: the detector/receiver can sense the reliability of

the decisions on line. So it is possible for the receiver to enhance performance by
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utilizing this property. We will discuss two categories of performance enhancement

techniques for soft-decision equalization algorithms in Chapter 7.

5.3 Complexity Evaluation

As we explained in Chapter 2, the input size N̄ = NNi in a MIMO system may

come from multiple access and/or multiple antennas, therefore is potentially very

large for a high-capacity MIMO system. The computational load of the optimum ML

detection is O(M N̄), where M is the alphabet size of the input data. Such complexity

is infeasible for a high-capacity (large N̄), high-throughput (large M) system, which

motivates the search for near-optimal, low-complexity symbol detection and channel

equalization solutions.

Quasi-ML by sphere decoding entails polynomial complexity on the order of

O((N̄)2 + (1 + N̄−1
4dC

)4dC), [21], where d−1 is a lower bound for the eigenvalues of

the Gram matrix G := HTH, and C is the square of the initial searching radius.

Choosing a large value for C improves the BER performance, but also incurs higher

complexity. Typically, close-to-optimal performance can be achieved at a polynomial

complexity index between 3–6.

The SDE algorithms are iterative routines that compute the posterior probabilities

of each input symbol in a sequential fashion. The number of iterations required for

convergence varies from one input to another. Based on our MIMO setups, we have

observed from simulations that the posterior probabilities typically converge in 3–5
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iterations for higher SNR (>10dB), and in 7–14 iterations for lower SNR (<10dB). In

each iteration, the computational load is mainly composed of two parts: one is resulted

from computing R
(i)−1
k , and the other from evaluating the posterior probabilities using

(3.17) or (4.12). If we define m as the sliding window length in terms of the number of

sub-blocks, then the number of symbols within the window is defined by m̄ := mNo.

The m̄ value is also the size of the covariance matrix R
(i)
k . In the following discussions,

we evaluate the performance-complexity tradeoff in choosing the window size m̄.
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5.3.1 Full-size Windowing m̄ = KNo

This case corresponds to the SDE-1 algorithm. There is only one full-size window,

therefore all the output sub-blocks are processed simultaneously. The dimension of

the covariance matrix R
(i)
k and the auxiliary matrix Rk are both determined by m̄.

Because the matrix inverse lemma is used, the complexity of computing R
(i)−1
k is

O(m̄2). The complexity involved in evaluating M posterior probabilities is O(Mm̄2)

per symbol. Hence the overall complexity per symbol is on the order of O(Mm̄2). The

complexity for detecting N̄ symbols in one iteration is then given by O(Mm̄2N̄). Not-

ing K = N + L, the complexity of SDE-1 per symbol is on the 2nd order polynomial

in the input size, and is only linear to the constellation size M .

5.3.2 Optimum Window Size m̄ = (L + 1)No

This case corresponds to the SDE-2 algorithm. SDE-2 takes advantage of the sparse

Toeplitz structure of the channel matrix to reduce the equalization complexity. The

sliding window only contains the non-zero part of the channel response vector. A sym-

bol can at most affect L+1 output blocks in a L-memory channel. These L+1 output

blocks form the sufficient statistics of each symbol. As a result, SDE-2 can retain

the near-optimum performance and at the same time save the computational cost. In

SDE-2, computing R
(i)
k and updating the auxiliary matrix Rk costs O(Nm̄2). Finding

the pdfs of each symbol takesO(Mm̄2) operations. The overall complexity per symbol
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Figure 5.11: Complexity vs. N

is then O(max(N,M)m̄2) and the complexity per iteration is O(max(N, M)N̄m̄2).

Compared with SDE-1, the dimension of each conditional covariance matrix R
(i)
k is

reduced from KNo (corresponding to Ri in SDE-1) to No(L + 1), thus lowering the

complexity order of N from 2 to 1 per input. More impressively, such a complexity

reduction does not induce noticeable BER performance loss.

5.3.3 Sub-optimum Window Size m̄ < (L + 1)No

The implementation procedures for SDE-2 can be used when the window size m̄ <

(L+1)No. As m̄ shrinks, the complexity O(max(N,M)m̄2) decreases. However, Since

the sliding window only covers a portion of the channel response for the intended
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input, the algorithm does not make full use of the sufficient statistics, leading to

performance degradation. In Figure 5.10, we plot the BER curve at a sliding window

size of m = 1, along with SDE-1 (m = K) and SDE-2 (m = L + 1). It is shown

that the small window size yields inferior performance to the other two near-optimum

schemes. In fact, (L + 1)No is the optimal window length, because a longer length

does not render better performance but the complexity increases, while a shorter

length sacrifices the performance. When m = 1, the algorithm becomes a symbol-by-

symbol equalization technique, therefore the performance cannot match up to that of

sequence detection in ISI channels.

The complexity evaluation results are further verified by simulations in Figure

5.11 and 5.12. The system parameters are set to Ni = 1, No = 4, L = 8, and M = 16
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and 64. The computational load in terms of the number of operations versus the data

block size N is depicted for each detection method in Figure 5.11. Our SDE methods,

along with SD and MMSE-DFE, avoid asymptotic computational explosion suffered

by the brute-force ML algorithm at a large data size. More detailed comparison of

these low-complexity algorithms are illustrated in Figure 5.12. In this simulation

setting, the sphere decoder has the same 3rd-order complexity in N as the SDE-1

algorithm. This is not always the case, as the complexity of SD could be higher if

the Gram matrix G has very small eigenvalues and the search radius C is chosen to

be large. The overall complexity of the SDE-2 algorithm is between SD and SDE-1,

but asymptotically its complexity order in N is only 2 instead of 3, as witnessed by

its close match with the function N2 at large N . Such a reduction in the complexity

order will pay off for high capacity MIMO systems.

5.4 Summary

In this chapter, we have provided simulation results that demonstrate the performance

of SDE algorithms in both full-rank and rank-deficient channels. In full-rank channels,

SDE approaches the performance of the ML detector. It also works for rank-deficient

channels where sphere decoding and PDA filter can not be applied. We further

investigate the performance of SDE in various fat channel scenarios. We observe that

SDE works better for BPSK modulation than 16-QAM when the channel is fat. By

defining the dimension ratio of a channel and based on the simulation results, we
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offer a qualitative guideline for the anticipated performance of SDE in a fat channel.

Finally, we provide complexity evaluation to show the theoretical computational load

that two SDE algorithms require.
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CHAPTER 6

Kalman-PDA Algorithms

In Chapter 3 and 4, we presented SDE by PDA enhancement and SDE by sliding

windowing. The performance of SDE algorithms has been attested by the simula-

tion results in Chapter 5. For the zero-padding transmission model established in

Chapter 2, SDE-1 performs multiuser detection (MUD) over all N symbol periods

in this block, while SDE-2 performs MUD over L + 1 symbol periods. Motivated

by the need for low-complexity receiver processing, we propose in this chapter a

MIMO equalization approach that performs MUD within only one sub-block of b

(local MUD), instead of doing it for multiple sub-blocks (global MUD). The number

of symbols within each sub-block is only Ni, representing only one sampling period.

This will lower the MUD complexity to only a small fraction of that of the global

MUD. Meanwhile, we perform noise-interference tracking within each sub-block to

mitigate all the MAI, ISI and noise that affect the current MUD sub-block. This

will help retain close-to-optimal reception performance. Together, the MIMO detec-

tion and equalization problem is partitioned into two parts: local MUD detection

and noise-interference tracking. It is possible to fulfill the local MUD subtask by

various (existing) techniques on an individual basis. A similar mechanism using trun-
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cated observation windows has been investigated in [13], but the overall performance

largely depends on the estimation reliability of the ISI by a single-user correlator,

which degrades as LNi increases. In this paper, we choose probabilistic data associa-

tion (PDA) detection for local MUD and Kalman filtering (KF) for noise-interference

tracking, for the following major considerations: (i) PDA produces soft decisions,

which can be useful in devising high-performance iterative receiver processing. (ii)

As will be shown later, soft-decision based PDA has attractive capability of sensing

error-prone bits on line, which facilitates joint transmitter-receiver design to detect

and correct unreliable transmissions. (iii) KF is known as the optimal linear esti-

mator of the state of a system given a set of known inputs and measurements. The

tracking procedure is mature and easy to implement. (iv) Both PDA detection and

KF estimation rely primarily on second-order statistics (in the forms of means and

variances) of the underlying random system; thus, structurally they can be blended

nicely thanks to the common theme of second-order statistics estimation. Although

neither PDA nor KF are optimum for communication systems with finite-alphabet

constraints on the input symbols, we combine them with the help of turbo-like iter-

ative processing along with enhancement strategies to enable overall low-complexity,

high-performance MIMO equalization.

Kalman filtering has been widely used in channel estimation and tracking [20],

[24], [52], [53]. Under known channel knowledge, a Kalman noise tracker in com-

bination with PDA detection is developed recently in [25] for MUD in decorrelated

asynchronous multiuser CDMA systems operating in flat fading channels. This algo-
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rithm not only yields detection performance that is close to the lower bound, but also

possesses low polynomial-time complexity. However, as this algorithm stands in its

current form, the channel memory length L is limited to 2 because the Kalman state

equation is formed after factorizing special-structured correlation matrices [25]. Our

Kalman-PDA proposed in this paper, in contrast, is tailored to equalization of fre-

quency selective MIMO channels with L > 2. Treating a general L-tap FIR channel

as an L-order Markovian process, we transform it into a first-order process so that

a KF can be generalized to track an MIMO FIR channel with an arbitrary number

of taps. The overall complexity of our Kalman-PDA for detecting NNi symbols is

on the order of O{N(LNi)
3}. We would like also to point out that the simplicity

and effectiveness of PDA is based on the assumption that the sum of the interfer-

ence and noise can be well approximated as a single-mode Gaussian random process,

so-called Gaussian-forcing assumption. The error performance is dependent on how

close this assumption models reality, and is subject to degradation induced by mod-

eling mismatch. To improve the posterior bit probabilities computed in PDA under

the Gaussian assumption, we also develop several performance-enhancement strate-

gies: iterative processing, automatic repeat request (ARQ) and/or erasure decoding.

The proposed Kalman-PDA approach achieves better performance than the MIMO

decorrelator in terms of bit error rate (BER), as will be shown in our algorithm

development and simulation results.

Focusing on the complexity-performance issue of MIMO channel equalization, we

confines the treatment to systems with perfect channel knowledge of H, for which
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No ≥ Ni is assumed. Under imperfect channel settings, it is possible to combine

our soft-decision based detectors with some channel estimators, such as recursive

least square (RLS) channel estimators. The detection BER can be comparable with

that under perfect channel knowledge, as long as a rough channel estimate is available

initially. We will elaborate this in Chapter 8. Similar approach in a turbo-like fashion

can be found in [44]. In developing the algorithms, the MIMO channel is assumed to

be frequency selective and slowly varying. It is time invariant within each block of

K symbol periods, but may change independently from block to block. We suppose

that the receiver has perfect knowledge of the channel state information H and the

noise variance Rv. It is also assumed that No ≥ Ni and all the MIMO taps {Hl}L
l=0

are full-column rank matrices.

Next, we are going to develop MIMO detectors that combine local PDA MUD

with Kalman filtering. The key step of Kalman filtering is to model the composite

noise and ISI as the state vector of a first-order dynamic linear system, so that the

ISI effect can be effectively tracked via state-vector updating. To this end, we offer

two dynamic system models with two different sets of Kalman state and measurement

equations. When introducing each of the two algorithms, we follow the steps below:

1. Construct the local PDA MUD structure;

2. Formulate the Kalman state and measurement equations that relate the local

ISI to the state vector;

3. Lay out the Kalman iteration procedure for tracking the ISI.
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6.1 The Kalman-PDA I Algorithm

The key idea in formulating a Kalman state vector is to set up a decorrelated re-

ceived signal model and use Kalman filtering to track the mean and covariance of

the interference. These statistics are furnished to PDA to facilitate local multiuser

detection.

6.1.1 Local PDA MUD Structure

According to the zero-padded signal model described in Chapter 2, the kth received

signal sub-block can be expressed by

y(k) =
L∑

l=0

Hlb(k − l) + v(k), (6.1)

where H0, . . . ,HL are the No×Ni FIR MIMO channel taps, b(m), m = k, . . . , k−L,

is the mth sub-block symbol vector with b(k − l) = 0 for l > k, and v(k) is white

Gaussian noise vector at the kth sampling period with zero mean and covariance

σ2INo×No .

Our goal is to construct a local MUD for detecting b(k) at the kth instant. To

this end, we define a transformed output ỹ(k) and a noise term ṽ(k) that satisfy

y(k) =
L∑

l=0

Hlỹ(k − l), (6.2)

v(k) =
L∑

l=0

Hlṽ(k − l), (6.3)
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respectively. Plugging these definitions into (6.1), it follows that

ỹ(k) = b(k) + ṽ(k), ∀k. (6.4)

Eq. (6.4) is a standard decorrelated PDA model similar to (3.2); hence the PDA

procedure in [26] can be applied directly, provided that ỹ(k) and the statistics of

ṽ(k) can be obtained. The posterior probabilities are initialized as 0.5 (for BPSK

modulation), and they are refined during iterations. Final decisions on b(k) are

made after the probabilities converge. Note that the dimension of b(k) is Ni×1; thus

the complexity of this local PDA MUD is only O(N3
i ). Meanwhile, ṽ(k) contains all

the ISI effect to this local block; thus there is little loss of optimality by this local

MUD, as long as the statistics of ṽ(k) can be tracked properly. On the other hand,

since (6.4) involves zero-forcing in obtaining b(k), it is subject to noise-interference

enhancement when the random channel tap H0 is not well conditioned1.

Before we show the process of tracking ṽ(k) in the next subsection, we now explain

how to obtain ỹ(k) from the observed data y(k). Let H†
0 denote the Moore-Penrose

pseudo-inverse of H0. Pre-multiplying (6.2) by H†
0 and re-arranging the elements in

(6.2) to emphasize ỹ(k), we reach

ỹ(k) = H†
0y(k)−

L∑

l=1

H†
0Hlỹ(k − l). (6.5)

Based on (6.5), we can compute ỹ(k) in an autoregressive (AR) manner, similar to

that in [20]. When calculating {ỹ(k)}N−1
k=0 from (6.5), we suppose ỹ(−1), . . . , ỹ(−L)

1The undesired noise enhancement effect can be alleviated by an algorithm enhancement strategy
we will present in Chapter 7, where an ill-conditioned channel may trigger an automatic repeat
request (ARQ).
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are all zeros, reflecting no data transmission prior to t = 0 and no inter-block inter-

ference.

It is worth pointing out that ỹ(k) in (6.5) satisfies (6.2) exactly only when No = Ni.

When No > Ni, (6.5) is the least square solution to ỹ(k), given ỹ(k−1), . . . , ỹ(k−L).

Similarly, the exact noise term ṽ(k) cannot be found from (6.3) when No > Ni.

Rather, we will use its least-square approximation in the form

ṽ(k) = H†
0v(k)−

L∑

l=1

H†
0Hlṽ(k − l), (6.6)

which also follows an AR structure similar to (6.5). It is the approximate ỹ(k)

and ṽ(k) constructed from (6.5) and (6.6) that will be used in (6.4) during local

PDA MUD. Despite of the approximations involved, the resulting Kalman-PDA I

algorithm will be shown (via simulations) to have competitive error performance at

slightly lower complexity compared to the Kalman-PDA II algorithm later developed

in Section 6.2, which will not involve any approximation during the construction of

its Kalman state equation.

6.1.2 Formulation of Kalman Equations

In order to carry out PDA MUD on (6.4), we need to know the conditional mean

and variance of ṽ(k) in (6.6) given the measurement ỹ(k). This task can be fulfilled

by a Kalman filter. We will lay out the formulation of Kalman state equation and

measurement equation in this subsection.
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To enable KF, it is necessary to convert (6.6) into a first-order linear dynamic

system. To this end, we define an NiL× 1 state vector x(k) in the form of

x(k) :=




ṽ(k)

ṽ(k − 1)

...

ṽ(k − L + 1)




. (6.7)

Defining H̃l := −H†
0Hl, (6.6) can be expressed as a state equation by

x(k) = Fx(k − 1) + Gv(k) (6.8)

where

F =




H̃1 H̃2 · · · H̃L−1 H̃L

I 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0




G =




H†
0

0

...

0




(6.9)

The measurement equation corresponding to (6.4) is thus given by

ỹ(k) = C1x(k) + b(k) (6.10)

where C1 = [I 0 · · ·0] is an Ni ×LNi matrix, and b(k) appears as the measurement

noise. In this set of KF equations, F and G can be easily obtained because the channel

H is known; v(k) is the Gaussian noise vector with zero mean and covariance Rv; and

the measurement noise b(k) can be substituted by its tentative soft decisions obtained

from the local MUD detector, when iterations between detection and tracking are in
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place. With the above state and measurement equation formulation, we can utilize

the standard Kalman update procedure to obtain the linearly optimum estimate of

the state variable, whose first element is the desired ṽ(k).

6.1.3 Kalman Update Procedure

With the state and measurement equations formulated in (6.8) and (6.10), we can

utilize the standard Kalman update procedure to obtain the linearly optimum esti-

mate of the state variable, whose first element is the desired ṽ(k) required by local

PDA detection in (6.4). Following the notational convention in KF, we let x̂(k|k− 1)

denote the prediction of x(k) from past measurements ỹ(k − 1), ỹ(k − 2),· · ·, and

let x̂(k|k) denote the updated estimate of x(k) given measurements ỹ(k), ỹ(k − 1),

· · ·. Likewise, P(k|k − 1) is the predicted covariance estimate of x(k) from ỹ(k − 1),

ỹ(k − 2), · · ·, and P(k|k) is the updated covariance matrix of x(k) estimated from

ỹ(k), ỹ(k − 1), · · ·. The overall equalization and detection procedure is outlined in

Table 6.1, while the equations involved are elaborated below.

6.1.3.1 Initialization

Since the information-bearing symbol transmission begins at k = 0, we can initialize

the estimate and covariance of x(k) by

x̂(0| − 1) = 0, (6.11)
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Table 6.1: Update Procedure for Kalman-PDA-I

Initialization Set x̂(0| − 1) and P(0| − 1); initialize the conditional probabilities

as Pi(k) = 0.5,∀i, k;

for k = 0 : N − 1

Kalman – perform iterative local PDA MUD on (6.4) based on x̂(k|k − 1)

interference and P(k|k − 1), which yields the converged posterior

tracking probabilities {Pi(k)},∀i, and the noise statistics µ(k)

and Σ(k) in (6.13), (6.14);

– decide b̂(k) from {Pi(k)}, and compute the mean µb(k)

and covariance Σb(k) of b(k) via (6.15), (6.16);

– compute the Kalman gain matrix M(k) via (6.17), and

estimates x̂(k|k) and P(k|k) via (6.18) and (6.19);

– compute the predicted x̂(k + 1|k) and P(k + 1|k) via

(6.20) and (6.21);

end k

80



P(0| − 1) = σ2GGT . (6.12)

6.1.3.2 Iteration

For any k ∈ [0, N − 1], x̂(k|k − 1) and P(k|k − 1) can be obtained either from

initialization or the last round of iteration. Since the interested ISI term ṽ(k) is the

first sub-block of x(k), its mean and covariance statistics can be deduced from the

first (diagonal) sub-blocks of x̂(k|k − 1) and P(k|k − 1), respectively. This step is

mathematically expressed by:

µ(k) = E{ṽ(k)} = C1x̂(k|k − 1), (6.13)

Σ(k) = Cov{ṽ(k)} = C1P(k|k − 1)CT
1 . (6.14)

Based on the Gaussian forcing principle, the mean and covariance of ṽ(k) are sufficient

statistics to enable local PDA detection on (6.4). The output of the PDA detector

includes the symbol decision b̂(k) and the mean and covariance of b(k), µb(k) and

Σb(k), which are given by:

µb(k) =

Ni∑
i=1

(2Pbi(k)− 1)ei, (6.15)

Σb(k) =

Ni∑
i=1

4Pbi(k)(1− Pbi(k))eie
T
i . (6.16)

Let M(k) denote the Kalman gain matrix. Since b(k) acts as the measurement

noise, its associated statistics µb(k) and Σb(k) can be used in updating x̂(k|k) and
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P(k|k) from x̂(k|k − 1) and P(k|k − 1). Thus, we can use the standard Kalman

update procedures to compute the state estimate and covariance. The following KF

equations describe the updating steps in Table 6.1, listed by their implementation

order:

We first compute the Kalman gain matrix,

M(k) = P(k|k − 1)CT
1 [Σ(k) + Σb(k)]−1 (6.17)

Then we update the state estimate and state covariance,

x̂(k|k) = x̂(k|k − 1) + M(k){ỹ(k)− µ(k)− µb(k)} (6.18)

P(k|k) = [I−M(k)C1]P(k|k − 1) (6.19)

Next, we compute the state prediction and state prediction covariance,

x̂(k + 1|k) = Fx̂(k|k) (6.20)

P(k + 1|k) = FP(k|k)FT + σ2GGT (6.21)

Once (6.20) and (6.21) are obtained, the noise-interference statistics of ṽ(k + 1)

can be predicted from (6.13) and (6.14), which enable local PDA MUD on b(k+1) in

the next iteration step. The overall flow of the Kalman-PDA I algorithm is illustrated

in Fig. 6.1.

6.2 The Kalman-PDA II Algorithm

In this subsection, we will briefly introduce an alternative way to construct the

Kalman equations and thus the updating procedure. This approach intuitively groups
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Figure 6.1: Diagram of Kalman-PDA I

all the ISI and noise components to form a new vector, v̄(k), k = 0, · · · , N −1, whose

mean and covariance are then tracked by a Kalman filter. It does not require the

autoregressive computing of the approximate ỹ(k).

6.2.1 Local MUD Structure

At the k-th sampling instant, the L-tap FIR MIMO-ISI channel model can be written

as:

y(k) = HLb(k − L) + HL−1b(k − L + 1) + · · ·+ H0b(k) + v(k). (6.22)

Targeting detection of b(k) only from y(k), we naturally construct a composite noise

term v̄(k) in the form of

v̄(k) = HLb(k − L) + HL−1b(k − L + 1) + · · ·+ H1b(k − 1) + v(k) (6.23)
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Thus (6.22) is simplified to

y(k) = H0b(k) + v̄(k), (6.24)

or equivalently,

ȳ(k) := H†
0y(k) = b(k) + H†

0v̄(k) (6.25)

upon which we can use the PDA detector to detect b(k) locally, after v̄(k) is tracked.

Note that we use HiperLAN-2 as the reference wireless application in our work [57].

The tap power of the power-delay profile decreases as the delay increases. This

implies that H0 on the average has the largest norm, compared with other channel

tap matrices. Hence we detect b(k) from y(k) in Kalman-PDA II. On the other hand,

a general MIMO channel does not always have its first MIMO tap as the strongest

one. In this case, b(k) might not be the best candidate to be extracted from y(k).

For example, suppose HD has the highest norm, then b(k−D) is the best candidate

to be detected from y(k) first. In such a case, the Kalman state and measurement

equations can be rearranged, and similar approaches can be used. More complicated

user ordering strategies are also possible [26].
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6.2.2 Formulation of Kalman Equations

To estimate the second-order statistics of v̄(k), we construct an No(L + 1)× 1 state

vector x̄(k) in the form of

x̄(k) =




HLb(k − L)

HL−1b(k − L + 1)

...

H1b(k − 1)

v(k)




. (6.26)

Defining C := [I I · · · I], we relate x̄(k) with the ISI term of interest, v̄(k), by

v̄(k) = Cx̄(k), (6.27)

By the definition of x̄(k), a natural state equation emerges:

x̄(k + 1) = Φx̄(k) + Γ1b(k) + Γ2v(k + 1) (6.28)

where

Φ :=




0 HLH
†
L−1 0 · · · 0 0

0 0 HL−1H
†
L−2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · H2H
†
1 0

0 0 0 · · · 0 0




(L+1)No×(L+1)No

,
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Γ1 :=




0

...

0

H1

0




(L+1)No×Ni

, Γ2 :=




0

...

0

I




(L+1)No×No

Substituting (6.27) into (6.25), we reach the measurement equation

ȳ(k) = H†
0Cx̄(k) + b(k) = C2x̄(k) + b(k), (6.29)

where we define C2 = H†
0C, and b(k) is treated as measurement noise in this setup.

Eq. (6.28) is a standard Kalman state equation with an input and plant noise, where

the input is what is to be detected, b(k). The value of b(k), as well as its mean and

covariance, are needed in the Kalman update. We use the a priori statistics to do the

PDA detection, and then use the output of the PDA detector to update the Kalman

estimates.

6.2.3 Kalman Equation Updating

The updating procedure is similar to that of Kalman-PDA-I. We summarize the

procedure in Table 6.2 and give the equations used as follows.

Prior to the k-th local PDA MUD, the ISI term in (6.25) is tracked by the (k|k−1)

prediction:

µ(k) = E{H†
0v̄(k)} = C2 ˆ̄x(k|k − 1) (6.30)
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Table 6.2: Update Procedures for Kalman-PDA-II

Initialization set ˆ̄x(0| − 1) = 0, P(0| − 1) = σ2Γ2Γ
T
2 ; initialize the conditional

probabilities as Pi(k) = 0.5,∀i, k;

for k = 0 : N − 1

Kalman – Perform iterative local PDA MUD on (6.25), which yields the

interference converged posterior probabilities {Pi(k)},∀i, and the noise

tracking statistics µ and Σ in (6.30) and (6.31);

– decide b̂(k) from {Pi(k)}, and compute the covariance of b(k)

via (6.32);

– compute the Kalman gain matrix M2(k) and then ˆ̄x(k|k) and

P(k|k) via (6.33), (6.34) and (6.35);

– compute the predicted ˆ̄x(k + 1|k) and P(k + 1|k)

using (6.36), (6.37);

end k

87



Σ(k) = Cov{H†
0v̄(k)} = C2P(k|k − 1)CT

2 (6.31)

The variance of b(k), Σ2(k), is computed from the a priori or tentative probabilities

Pbi(k), ∀i:

Σ2(k) =

Ni∑
i=1

4Pbi(k)(1− Pbi(k))eie
T
i (6.32)

The Kalman Gain matrix is given by

M2(k) = P(k|k − 1)CT
2 [Σ(k) + Σ2(k)]−1 (6.33)

From the (k|k − 1) prediction to the (k|k) estimate, we have

ˆ̄x(k|k) = ˆ̄x(k|k − 1) + M2(k)(ȳ(k)− µ(k)− b̂(k)) (6.34)

P(k|k) = [I−M2(k)C2]P(k|k − 1) (6.35)

From the (k|k) estimate to the (k + 1|k) prediction:

ˆ̄x(k + 1|k) = Φˆ̄x(k|k) + Γ1b̂(k) (6.36)

P(k + 1|k) = ΦP(k|k)ΦT + σ2Γ2Γ
T
2 (6.37)

The overall flow of the Kalman-PDA II algorithm is illustrated in Fig. 6.2.

6.3 Complexity Analysis

For the KNo×NNi channel matrix modeled in Chapter 2, the proposed Kalman-PDA

detection algorithms enjoy polynomial-time low complexity in contrast to an exact

ML solution with exponential-time complexity. Here we give a brief evaluation of the

complexity order of Kalman-PDA.
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Figure 6.2: Diagram of Kalman-PDA II

When detecting each Ni × 1 sub-block in the NNi × 1 block, the Kalman-PDA

I algorithm goes through three major steps: computing ỹ(k), local PDA MUD and

Kalman updating. The complexity involved for computing ỹ(k) and the local PDA are

on the orders of O((LNi)
2) and O(N3

i ), respectively. In Kalman updating, the highest

order of computational burden results from computing P(k|k) and P(k + 1|k), which

is on the order of O((LNi)
3). Since there are N sub-blocks, the overall complexity of

Kalman-PDA I for detecting NNi symbols is on the order of O{N(LNi)
3}. Similarly,

we deduce that the complexity of the Kalman-PDA II is O{N(L + 1)3N3
o }.
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Figure 6.3: Performance Comparison in an overloaded CDMA system
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Figure 6.4: Performance Comparison in a 5-tap FIR MIMO system
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6.4 Simulations

We simulate the Kalman-PDA I and II algorithms in order to test their performance.

We use sphere decoding (SD) as a near-optimal performance benchmark. In all tests,

the symbol block size is set to be2 N = 12. The MIMO channels are assumed to be

invariant within each symbol block, but are allowed to change independently from

block to block. Monte Carlo simulations run 100,000 times, with a new channel

realization generated in each simulation. The performance metric of interest is the

bit-error-rate (BER) versus the bit energy to noise ratio Eb/No (SNR).

We first simulate both Kalman-PDA algorithms in an overloaded CDMA system.

There are 10 users, each using a spreading code length of 6 and BPSK modula-

tion. The channel model is the discrete-time asynchronous CDMA model described

in [50], whereas the signature correlation matrices are generated according to [58].

The time delays of asynchronous users are random and uniformly distributed within

a symbol duration. The spreading codes are used at the receiver to despread the

received waveform and generate symbol-rate sampled data. We can see from Fig.

6.3 that Kalman-PDA outperforms SD in the overloaded case. In the next scenario,

we assume a 5-tap FIR MIMO channel with one transmit antenna and four receive

antennas. The channel tap coefficients of each link are generated independently from

Rayleigh distributions with equal power, and the instantaneous tap gains are sorted

2We choose a relatively small block size N so that the simulation time is manageable for ML
detection, which is depicted for reference.
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in a descending order3. From Fig. 6.4, we can see that Kalman-PDA outperforms

the MIMO zero-forcing decorrelator by 1 dB. We also notice that there is about 1.5

dB gap between Kalman-PDA and SD, which makes Kalman-PDA less attractive.

The comparison between Kalman-PDA and SD in the above simulations confirms

the assessment that the more accurate the Gaussian-forcing assumption is, the better

Kalman-PDA performs. In an overloaded system, the sum of the interference and

noise can be well approximated as Gaussian by the law of large numbers; as a result,

both of the proposed Kalman-PDA algorithms render better performance than SD.

On the other hand, in a FIR MIMO system where the Gaussian assumption is less

accurate, the performance of Kalman-PDA may suffer, as seen in Fig. 6.4. Seeking to

alleviate this performance gap, we are motivated to devise some techniques to improve

the BER performance of Kalman-PDA. This is the topic of the next chapter.

6.5 Summary

For frequency selective MIMO channels, we have presented in this chapter low-

complexity soft-decision equalization techniques based on a two-part structure: local

MUD using soft-decision PDA detection, and dynamic noise-interference tracking us-

ing Kalman filtering. These two parts are combined naturally in our Kalman-PDA

approach, thanks to the common thread of second-order statistics estimation. By

constructing properly the state vector to incorporate the dynamic ISI information,

3Sorting the channel tap gains makes it convenient for simulations. However, this step is not nec-
essary, nor is it realistic. In practice under known channel knowledge, the receiver may alternatively
adjust the detection order by detecting b(k −D) from y(k), as suggested in Section 6.2.
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two types of Kalman filters are designed, both of which are able to track the ISI in

an FIR MIMO channel of any tap length. The computational complexity of Kalman-

PDA is less than (L/N)3 × 100% that of sphere decoding, which is quite notable for

a large block size N .
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CHAPTER 7

Performance Enhancement Techniques

The basic idea of performance enhancement stems from the soft decisions generated

by PDA MUD. According to the soft-decision principle of PDA in a BPSK system

[2], [26], the detector computes the a posteriori probabilities of a given symbol, i.e.,

Pi(k) = Pr(bi(k) = 1|ỹ(k)) in (6.4). Each symbol bi(k) is then decided to be 1 if

Pi(k) is greater than or equal to 0.5, or −1 otherwise. We observe in the simulations

that most Pi(k)’s converge to the vicinity of either 1 or 0. Wrong decisions occur

typically when Pi(k) is relatively close to 0.5. This makes sense intuitively: if Pi(k)

is very close to 1 or 0, the detector tends to have strong “confidence” in the decision

and the decision is reliable; on the other hand, if Pi(k) is closer to 0.5 rather than 1 or

0, this means that the decision is less reliable and might be in error. This observation

suggests that soft-decisions have the capability of indicating their own reliability. In

contrast, decisions made in hard-decision techniques do not possess this property,

because the reliability information is lost during quantization. Taking advantage of

this unique property, we devise two performance enhancement techniques, automatic

repeat request (ARQ) aided enhancement for uncoded transmissions and coding-aided

enhancement for coded systems. We will use Kalman-PDA as an example to show
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that both algorithms noticeably enhance the detection performance of Kalman-PDA

itself. For brevity, the enhancement discussed hereinafter is based on Kalman-PDA

I. However, all principles can be applied to Kalman-PDA II and other soft-decision

based detection algorithms in a straightforward manner.

7.1 Kalman-PDA with ARQ

In Kalman-PDA with ARQ, the receiver computes a threshold, γi(k), for each received

bit bi(k) according to a given retransmission rate, Rre. If the absolute value of the

a posteriori mean, |E{bi(k)|ỹ(k)}|, is less than the corresponding threshold, this bit

will be marked as an “error-suspect.” It is termed an “error-suspect” because it is

relatively more liable to be a detection error. We use an ARQ protocol according to

which a data block should be retransmitted whenever it contains an error-suspect.

We assume that there exists a reliable feedback channel from the receiver to the

transmitter so that the repeat request can be sent to the transmitter via this channel.

The retransmission ends when there is no error-suspect in the latest transmitted

data block. We develop a systematic procedure to compute the threshold for a given

retransmission rate. With this procedure, the retransmission rate can be preset to an

arbitrary value to ensure a desired performance and data-rate tradeoff.

We define the retransmission rate as

Rre =
Nre

Nf

, (7.1)
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where Nf is the number of data blocks to be transmitted and Nre is the number of

retransmissions incurred when transmitting Nf data blocks. Let us define α as the

probability of current block containing at least one error-suspect. Because retrans-

mission occurs as long as there is at least one error-suspect in the received block

according to the ARQ protocol, we have

α =
Rre

1 + Rre

. (7.2)

We assume that all bits in a block are independent and equally liable to be an error-

suspect. Letting β denote the probability of an error-suspect and Nb the data block

length, the probability of an error-liable block is related to an error-liable bit as,

α = 1− (1− β)Nb , i.e.,

β = 1− (1− α)
1

Nb . (7.3)

Using (7.2) and (7.3), the bit error-suspect probability β can be computed for any

given retransmission rate, Rre. Next, we will show how to compute the threshold

γi(k) using β.

For the purpose of illustration and derivation simplicity, we consider a BPSK

model with one transmit antenna. The extension to more than one antenna case can

be derived by analogy. With this assumption, (6.4) is reduced to

ỹ(k) = b(k) + ṽ(k), k = 0, 1, · · · , N − 1. (7.4)
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All terms in (7.4) are scalars, and ṽ(k) is assumed to be Gaussian with mean zero

and variance σ2. The conventional ML decision rule for (7.4) is

b̂(k) =





1, ỹ(k) > 0;

−1, ỹ(k) < 0.

(7.5)

The probability of detection error is given by Q(1/σ), where Q(x) = 1/
√

2π
∫∞

x
e−t2/2dt

is the complementary error function. After introducing error-suspects, the decision

rule is now

b̂(k) =





1, ỹ(k) > yc;

e, −yc < ỹ(k) < yc;

−1, ỹ(k) < −yc;

(7.6)

where yc > 0 is the threshold in terms of the amplitude of the received signal, and

e stands for an error-suspect. If we take measures to remove the error-suspects and

prevent them from becoming errors, the probability of detection error is reduced to

Q((1 + yc)/σ). Because the Q-function is monotonically decreasing, we can see that

introducing error-suspect does help to reduce the detection error probability.

Based on (7.6), β is given by the probability that {b̂(k) = e} occurs. With β

known from (7.1)-(7.3), we can compute yc by numerically solving

β = Q(
1− yc

σ
)−Q(

1 + yc

σ
). (7.7)

If we assume equi-probable transmissions, the corresponding soft-decision threshold

γp generated by PDA is given by an one-to-one mapping from yc:

γp
∆
=

Pr(b(k) = 1|yc)

Pr(b(k) = −1|yc)
=

Pr(yc|b(k) = 1)

Pr(yc|b(k) = −1)
= exp(2σ−2yc). (7.8)
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In the simulations, we apply this ARQ-aided enhancement technique to Kalman-PDA.

it is more convenient to set up a decision rule in terms of the absolute value of the

soft-decision mean, |µb(k)|. This is because µb(k) is furnished to the Kalman tracker

by PDA so that it is easily obtained. The decision rule is

b̂(k) =





1, µb(k) > γb;

e, −γb < µb(k) < γb;

−1, µb(k) < −γb;

(7.9)

where γb = γp−1

γp+1
. γb is guaranteed to be greater than zero because γp is greater than

one in (7.8).

So far we have established a systematic way to compute the decision threshold

γb (or γp) for a given retransmission rate. In Fig. 7.1, we simulate this ARQ-aided

Kalman-PDA with the same system setup as in Fig. 6.4. The performance of Kalman-

PDA is enhanced considerably by using ARQ. The larger the retransmission rate, the

better the performance. Nevertheless, the benefit of ARQ becomes more prominent

for higher SNRs: ARQ retransmissions result in faster BER fall-off slopes and thus

larger diversity orders compared with sphere decoding. Kalman-PDA with 5% re-

transmission rate is not as good as sphere decoding until the SNR reaches 8dB. This

is because retransmissions are still unreliable and contain error-suspects when the

SNR is low.

In Fig. 7.1, we did not take into account the fact that retransmission costs extra

signal energy and reduces the spectral efficiency. In order to present a fair comparison

among Kalman-PDA, Kalman-PDA with ARQ and sphere decoding, we plot their
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Figure 7.1: Kalman-PDA with ARQ

BER performances in Fig. 7.2, using the same effective data rate. The retransmission

rate in Kalman-PDA with ARQ is set to 20% as an example. Since Kalman-PDA

and SD do not perform retransmission, their curves in Fig. 7.2 are basically the

same as that in Fig. 7.1. On the other hand, retransmissions in Kalman-PDA with

ARQ reduce the effective power efficiency, which can be reflected by adjusting the

corresponding SNRs. In Fig. 7.2, the simulated BER curve of Kalman-PDA with

ARQ is shifted to the right by 10 log10 1.2 = 0.79dB. We can observe that Kalman-

PDA with ARQ still performs better than without ARQ, given the same effective

data rate and energy cost. As SNR increases, Kalman-PDA with ARQ becomes

competitive to or even better than SD.
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Figure 7.2: Performance comparison given same effective data rates

The average threshold is plotted versus the retransmission rate in Fig. 7.3. We

can see that for a given SNR, the higher the retransmission rate Rre, the higher

the threshold. This suggests that a higher threshold will mark more error-suspects

and thus requires more retransmissions. On the other hand, for a certain Rre, the

thresholds corresponding to higher SNRs are greater than that of lower SNRs. This

is because the a posteriori probabilities converge closer to 1 or 0 in the high SNR

region, in which case thresholds must be set more stringently in order to distinguish

the error-suspects from the reliable detections. We also plot in Fig. 7.4 the average

retransmission rate at different SNRs. We can see the simulated rates match well

with the preset rates.
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7.2 Coding-aided Kalman-PDA

The ARQ-aided enhancement technique improves the BER performance by invoking

a data-link layer protocol, which increases the system complexity. Alternatively, in

coded systems, the BER performance can be enhanced solely within the physical layer

via code puncturing. In this section, we derive a coding-aided enhancement technique

for coded systems. It can boost the BER performance of Kalman-PDA to approach

the performance of sphere decoding with coding.

The system structure of a coded system is shown in Fig. 7.5, where linear block

codes are used to fit our block transmission scheme. Suppose a binary information

sequence is denoted by a = [a1, a2, · · · , akc ], ai = {0, 1}, i = 1, · · · , kc. It is encoded

using a rate Rc = kc/nc (kc < nc) linear block code to generate a nc-tuple codeword (or

code vector) c = [c1, c2, · · · , cnc ], ci = {0, 1}, i = 1, · · · , nc. There are 2kc codewords

corresponding to 2kc kc-long information sequences. For a specific linear block code,

c can be computed for any given a via

c = aG, (7.10)

where G is the kc × nc generator matrix. The codeword c is then modulated by

antipodal signaling, and the modulated signal, b, is transmitted through the FIR

MIMO channel. At the receiver, Kalman-PDA outputs the detection of the modulated

symbols b̂, which is in turn demodulated to the binary sequence ĉ. Given ĉ, the

maximum-likelihood decoding (MLD) rule selects the optimal codeword ca from a
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Figure 7.5: Block diagram of code-aided Kalman-PDA

codeword set C via

ca = arg min
∀c∈C

||c− ĉ|| = arg min
∀c∈C

nc∑
i=1

|ci − ĉi|, (7.11)

where || · || denotes the Hamming distance. We can see that MLD always decodes ĉ to

the codeword with the smallest Hamming distance. The final output of the decoder,

â, is the data sequence that satisfies

âG = ca. (7.12)

MLD can decode correctly as long as the Hamming distance between c and the

correct codeword is smaller than that of any other codeword. However, when some

bits in ĉ are not reliable, the decoding performance will suffer. This can be mitigated

by using erasure decoding. The erasure decoding approach marks the unreliable

bits with “e”, and these bits do not count when computing the Hamming distance.

These erasures are the counterpart of the “error-suspects” in Kalman-PDA with ARQ.

They are picked for having relatively lower absolute mean, |E{bi|ỹ(k)}|. If we define

eM = [e1, e2, · · · , enc ], ei ∈ {0, 1} as the erasure mask, the decoding rule is now

ca = arg min
∀c∈C

nc∑
i=1

ei|ci − ĉi|, (7.13)
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Figure 7.6: Coding-aided Kalman-PDA

where ei = 0 indicates the ith bit is an erasure.

A code with a minimum distance dmin can correct up to dmin − 1 erasures [51].

If there are dmin − 1 erasures or less in ĉ, and all other bits are reliable, ĉ can still

be decoded to the right word using (7.13). It can be shown (see Appendix) that ĉ

can be always decoded to the correct codeword provided that all the unreliable bits

are covered by erasures. Under the same constraint, it follows that the decoding

performance associated with more erasures can be no worse than that with fewer

erasures. Therefore, codes with a larger dmin have an advantage over those with

smaller dmin in terms of their erasure correction capability. Nevertheless, a code that

can accommodate more erasures usually has a lower code rate, which means lower

data transmission efficiency.
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We simulate the performance of code-aided Kalman-PDA to investigate the benefit

of erasure coding. In the simulation, we choose the BCH(15, 5) (nc = 15, kc = 5)

code that has a minimum distance of 7; hence it can correct at most 6 erasures.

The generator matrix is given in [51]. We simulate the cases of Ne = 0, 2, 4 and 6

erasures, where Ne = 0 means there is no erasure. The system setup is the same as

Fig. 6.4 except that N is set to 15 to fit the codeword length. Among N soft-decisions

corresponding to the N bits in a received codeword, we mark the Ne decisions that

have the smallest |E{bi|ỹ(k)}| as erasures. The simulation result is plotted in Fig. 7.6.

We use sphere decoding (SD) with the same encoder as the performance benchmark.

The effective data rates of both algorithms are the same. SD is not enhanced with

erasure decoding though, because it is impossible to pick error-prone erasure bits

from the hard-decisions generated by SD. In contrast, erasure-marking is a handy by-

product of the soft-decision process used in Kalman-PDA, without incurring much

extra computation. Without erasure decoding, Kalman-PDA does not perform as

well as sphere decoding. However, with the aid of erasure decoding, its performance

improves noticeably as Ne increases. Kalman-PDA approaches SD when Ne = 2 and

outperforms SD when Ne reaches 4 or more. We also note that Ne = 6 does not render

significant improvement over Ne = 4, which means 6 erasures do not necessarily cover

more unreliable bits than 4 erasures.

As a final remark on coded systems, we note that the decoding approach proposed

in the paper in essence improves the performance of hard-decision decoding and keeps

the complexity low. It makes use of 1−bit reliability information at the decoder. On
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the other hand, the standard decoding methods for block codes such as syndrome de-

coding and Massey algorithm do not utilize this reliability information. Nevertheless,

the principle of the proposed decoder can be applied to any general block decoder. )

7.3 Summary

Two performance enhancement techniques have been presented in this chapter for

soft-decision based symbol detection algorithms: ARQ aided enhancement and coding

aided enhancement. We use Kalman-PDA as an example and construct Kalman-PDA

with cross-layer ARQ for uncoded systems as well as coding-aided Kalman-PDA for

coded systems. Simulations show that both techniques can render error performance

that is better than Kalman-PDA alone and competitive to sphere decoding.
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CHAPTER 8

SDE with Imperfect Channel Knowledge

In previous algorithm development and discussions, we have assumed that the receiver

has perfect knowledge of the channel. Both SDE and Kalman-PDA are developed

based on such an assumption, and satisfactory performance is achieved. Although this

assumption has been largely adopted in the literature, it is only an ideal scenario. In a

practical MIMO system, the receiver can not have perfect channel knowledge. What

the receiver has is only an estimate of the actual channel. The estimate is typically

obtained by transmitting a block of training symbols. Through processing the received

training sequences, the receiver can reach estimated knowledge of the underlying

channel, which is imperfect. There is enormous research interest in joint channel and

data decoding recently. For coded transmission systems, detection decisions output

from the decoder are used in lieu of additional tranining sequences to update the

channel estimate. The decisions obtained from decoding can be either hard or soft

[59] – [67].

A recursive least square (RLS) based iterative channel estimation combined with

MIMO minimum mean square (MMSE) equalizer was proposed in [68]. This algo-

rithm utilizes MMSE to perform channel equalization. In our research, we use SDE
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to do symbol detection and RLS to do channel estimation. We follow the uncoded

base band transmission structure established in Chapter 2. We focus on the scenario

in which the transmitter transmits a training sequence, and the receiver uses the RLS

method to estimate the channel, and obtains a “coarse” initial channel state informa-

tion (CSI). After the training sequence, information bearing symbols are transmit-

ted. In each sampling period, the receiver first uses the previously obtained channel

knowledge to perform soft-decision symbol detection, then feeds the detection results

to the RLS channel estimator to refine the channel knowledge. We chose RLS to

performance channel estimation due to the following considerations:

1. For every new piece of data, we only need to update the channel estimate rather

than to recompute the estimate over again, the latter of which is needed in the

least square (LS) method. Thus, RLS saves considerable computation compared

with LS.

2. RLS is a well-established algorithm that works fairly well. The SDE method can

be blended with RLS channel estimation harmoniously. The overall performance

loss due to the imperfect channel knowledge is small, which will be shown later

in the simulations.

The rest part of this chapter is organized as follows. The MIMO system setup with

training sequences is described in Section 8.1. The RLS channel estimation algorithm

is developed in Section 8.2. Simulation results of SDE with RLS channel estimation

is presented in Section 8.3.
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8.1 MIMO System with Training Sequence

In this section we briefly describe the setup of the MIMO system with training se-

quences. The transmitter first transmit NT training symbols followed by L padding

zeros. Then the information-bearing transmission begins. We still adopt the block

transmission structure used in Chapter 2. The information-bearing symbols are

parsed into N -long blocks with the insertion of L zeros at the end of each block.

We assume the channel remains invariant for NB consecutive symbol blocks, but may

vary from one NB-block cluster to another.

As in previous chapters, the channel has L+1 FIR taps, and each link is modeled

as Rayleigh fading. For each information-bearing symbol cluster, there is a preceding

NT long training symbol block. BPSK modulation scheme is used throughout this

paper.

8.2 SDE+RLS Channel Estimation Algorithm Development

The basic structure of the algorithm contains two parts. First, use the training symbol

sequence to obtain a “coarse” estimate of the channel. This is fulfilled by the RLS

channel estimation method. Next, perform iterative SDE+RLS channel estimation

for each information-bearing symbol block. The coarse channel estimate obtained

from the training sequence is used to compute a tentative decision on the symbols

transmitted. This tentative decision is then fed to the RLS channel estimator as
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new data to update the channel estimate. The updated output of the RLS channel

estimator is then fed to SDE again, and an updated symbol detection is computed.

This iteration continues until a pre-defined cost metric can not be lowered any more.

This iteration process takes place within each sampling period. The whole process is

illustrated in Fig. 8.1.

Next, we derive the LS equations for MIMO channel estimation, and then migrate

to RLS MIMO channel estimation. The FIR MIMO channel model in Chapter 2 can

be depicted mathematically as follows:

y(k) =
L∑

l=0

Hlb(k − l) + n(k), k = 0, 1, 2, · · · (8.1)

where y(k), b(k) and n(k) are the received signal vector, transmitted signal vector

and white Gaussian noise vector, respectively. {Hl}L
l=0 are the FIR MIMO chan-

nel taps. In the channel estimation phase, {Hl}L
l=0 is unknown, and a training se-

quence is transmitted to facilitate estimation. so the objective of LS channel esti-

mation is to compute the estimation of the channel taps, {Hl}L
l=0, given a set of

know inputs b(−L), · · · ,b(0), · · · ,b(N − 1) and the corresponding received signals,

y(0), · · · ,y(N − 1).

If we define

Y := [y(0),y(1), · · · ,y(N − 1)] (8.2)

H := [H0,H1, · · · ,HL], (8.3)
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B :=




b(0) b(1) · · · b(N − 1)

b(−1) b(0) · · · b(N − 2)

...
...

. . .
...

b(−L) b(−L + 1) · · · b(N − L− 1)




= [B(0),B(1), · · · ,B(N − 1)],

(8.4)

N := [n(0),n(1), · · · ,n(N − 1)] (8.5)

Then the batched form of (8.1) can be expressed as:

Y = HB +N . (8.6)

We denote the estimate of the channel taps {Ĥ}L
l=0, and define Ŷ := ĤB. The

difference between Y and Ŷ is denoted as:

E := Y − Ŷ . (8.7)

This can be seen as the estimation error. The LS method is to find the channel

estimate that minimizes the sum of the square errors, i.e.,

Ĥ = arg min
H

Tr{ETE}. (8.8)

In order to obtain H that satisfies (8.8), we compute the derivative of Tr{ETE} with

respect to Ĥ. We have

∂

∂Ĥ{Tr(ETE)}

=
∂

∂Ĥ{Tr[(YT − ŶT )(Y − Ŷ)]}

=
∂

∂Ĥ{Tr(YTY − ŶTY − YT Ŷ + ŶT Ŷ)}. (8.9)
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In (8.9), YTY is independent of Ĥ, which implies that

∂

∂Ĥ{Tr(YTY)} = 0. (8.10)

In the following discussions, we consider a real-valued transmission-detection scenario

at the baseband. Correspondingly, we have

Tr(ŶTY) = Tr(YT Ŷ) (8.11)

Tr(ŶT Ŷ) = Tr(ŶŶT ). (8.12)

Thus, (8.9) can be reduced to

∂

∂Ĥ{Tr(ETE)}

=
∂

∂Ĥ{−2Tr(YT Ŷ) + Tr(ŶŶT )}

=
∂

∂Ĥ{−2Tr(YT ĤB) + Tr(ĤBBT ĤT )} (8.13)

Noting the following properties of the matrix trace [69],

∂

∂X
{Tr(ATXBT )} = AB (8.14)

∂

∂X
{Tr(XAXT )} = X(A + AT ) (8.15)

we further simplify (8.13) to

∂

∂Ĥ{Tr(ETE)} = −2YBT + 2ĤBBT . (8.16)

At the minimum of Tr{ETE}, we have

∂

∂Ĥ{Tr(ETE)} = 0. (8.17)

112



Substituting (8.16) into above, we have

Ĥ = YBT (BBT )−1 (8.18)

Recalling Y = [y(0),y(1), · · · ,y(N − 1)], B = [B(0),B(1), · · · ,B(N − 1)], and

defining

θ = YBT =
N−1∑
i=0

y(i)B(i)T , (8.19)

Φ = BBT =
N−1∑
i=0

B(i)B(i)T , (8.20)

we have

Ĥ = θΦ−1. (8.21)

Thus we have derived the algorithm to compute the channel estimate in the LS

sense. The problem of the LS solution is that Φ−1 has to be recomputed whenever

a new data piece is available. This becomes cumbersome when the block length is

large, since the computational load is on the third order of the matrix size. Recursive

least square (RLS) algorithm has been widely used [70] to reduce the complexity in

computing Φ−1. The basic idea of RLS is to form a recursive update for the weights

so that we do not have to recompute Φ−1 for each new data piece. This will greatly

reduce the computational load, and lower the complexity order by 1.

In RLS channel estimation, θ and Φ are defined as functions of n, where n is the

timing index, i.e.,

Φ(n) =
n∑

i=0

λn−iB(i)B(i)T , (8.22)

θ(n) =
n∑

i=0

λn−iy(i)B(i)T . (8.23)
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λ ∈ (0, 1] is the forgetting factor, which is usually close to 1. Thus θ(n) and Φ(n)

can be updated recursively,

Φ(n) =
n∑

i=1

λn−iB(i)B(i)T (8.24)

= λ

n−1∑
i=1

λ(n−1)−iB(i)B(i)T + B(n)B(n)T (8.25)

= λΦ(n− 1) + B(n)B(n)T . (8.26)

Likewise,

θ(n) = λθ(n− 1) + y(i)B(i)T . (8.27)

Using the matrix inversion lemma [70], we deduce from (8.26) that,

Φ(n)−1 = λ−1Φ(n− 1)−1 − λ−2Φ(n− 1)−1B(n)B(n)TΦ(n− 1)−1

1 + λ−1B(n)TΦ(n− 1)−1B(n)
. (8.28)

Define

P(n) := Φ(n)−1 (8.29)

k(n) :=
λ−1P(n− 1)B(n)

1 + λ−1B(n)TP(n− 1)B(n)
(8.30)

where k(n) is conventionally called the gain vector. Eq. (8.28) can be rewritten

as

P(n) = λ−1P(n− 1)− λ−1k(n)B(n)TP(n− 1). (8.31)

Given a new pair of data piece, the RLS channel estimation algorithm can be imple-

mented via updating the gain vector. This can be summarized as follows:

1. Compute the new gain vector,

k(n) =
λ−1P(n− 1)B(n)

1 + λ−1B(n)TP(n− 1)B(n)
, (8.32)
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Figure 8.1: SDE + RLS joint symbol detection and channel estimation

2. Update the inverse correlation matrix,

P(n) = λ−1P(n− 1)− λ−1k(n)B(n)TP(n− 1). (8.33)

3. Update

θ(n) = λθ(n− 1) + y(n)B(n)T . (8.34)

4. Compute

Ĥ(n) = θ(n)P(n). (8.35)

So far we have developed the RLS channel estimation algorithm. It is blended

with SDE in the way shown in Fig. 8.1. The simulation results are presented in the

next section.

8.3 Simulation Results: SDE+RLS Channel Estimation

We simulate the aforementioned SDE + RLS channel estimation algorithm in order

to test its performance. We consider a 5-tap FIR MIMO channel with two trans-

mit antennas and four receive antennas. The channel tap coefficients of each link

are generated independently from Rayleigh distribution with equal power. We sim-

ulate 2,000 channel realizations for each SNR. For each channel realization, NT -long
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training symbols are transmitted to compute a “coarse” channel estimate. The RLS

channel estimation algorithm presented in the previous section is used to compute

this estimate. The NT -long training symbols are followed by L trailing zeros to elim-

inate ISI. Then NB information-bearing, zero-padded symbol blocks are transmitted.

The channel estimate is first fed to the SDE detector. The decisions output from the

SDE detector are utilized by RLS estimator to update the channel estimate until con-

vergence is reached. Then the updated channel estimate is used to do SDE detection

on next symbol block.

In Fig. 8.2, we plot the performance of SDE with perfect channel knowledge as

a benchmark. The gap between SDE + RLS channel estimation and SDE + perfect

channel is about 1dB. We also plot the SDE with the coarse channel estimate for the

purpose of comparison. The coarse channel estimate is the estimate based only on

the NT training symbol vectors. It is not updated in the following SDE detection. We

can see that the performance of SDE with coarse channel estimate is inferior to SDE

+ RLS channel estimation by more than 2dB. It shows that the channel estimate is

improved over decision-feedback updating.

In the simulations we also adjust the values NT and NB, and observe the following:

1. It is possible to feed either hard decisions or soft decisions at the output of

SDE to the RLS channel estimator. In the simulations, we try both cases. It

makes little difference in the sense of BER performance whether to feed hard

decisions or soft decisions to the RLS channel estimator. This is because reliable
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soft decisions are very close to +1/-1. The difference is little between reliable

decisions and the correct hard decisions.

2. The longer the training sequence, the better the coarse performance.

3. The longer the information-bearing data sequence, the better the iterated per-

formance, especially for higher SNRs. For higher SNRs, the detections are fairly

accurate, they are used to direct RLS, which acts as training symbols.

Fig. 8.2 shows the scenario of NT = 20 and NB = 50.
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CHAPTER 9

Summary and Future Research

9.1 Summary

Our work focuses on exploiting the advantages of soft-decision based detection and

equalization algorithms for frequency selective MIMO multipath channels. Relying

on iterative posterior probability updating and PDA-type Gaussian forcing, the pro-

posed SDE algorithms attain remarkable near-ML performance at low complexity

that is polynomial (on the 3rd-order) in the input and output sizes, and linear in the

modulation constellation size. Unlike existing MUD algorithms, our development for

MIMO channel equalization relies on zero-padded block transmission to enable block

detection for a sequence detection problem, and capitalizes on the distinct Toeplitz

channel structure to simplify the equalization complexity. Near-optimum symbol

detection in the presence of channel memory is attained by virtue of soft-decision

MAP multiuser detection, multistage ISI cancellation, and implicit noise tracking.

SDE algorithms also apply to rank-deficient channels, provided that the channels are

identifiable for the signal constellation. In addition, we have also presented in this

dissertation low-complexity soft-decision Kalman-PDA equalization techniques based
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on a two-part structure: local MUD using soft-decision PDA detection, and dynamic

noise-interference tracking using Kalman filtering. These two parts are combined nat-

urally in our Kalman-PDA approach, thanks to the common thread of second-order

statistics estimation. By constructing properly the state vector to incorporate the

dynamic ISI information, two types of Kalman filters are designed, both of which are

able to track the ISI in an FIR MIMO channel of any tap length. The computational

complexity of Kalman-PDA is less than (L/N)3×100% that of sphere decoding, which

is quite notable for a large block size N . We further offer two algorithms to enhance

the BER performance of soft-decision based detection algorithms: cross-layer ARQ

and the code-aided approach. We take Kalman-PDA as an example and show that

both performance enhancement algorithms can render BER performance much bet-

ter than the original Kalman-PDA. Finally, we present an iterative channel estimate

algorithm for the case where perfect CSI is not available at the receiver. Utilizing

training sequences, SDE with iterative channel estimation achieves BER performance

which approaches that of SDE with perfect CSI.

9.2 Future Research

In this section, we briefly lay out possible future research directions to extend the

work presented in this dissertation.
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9.2.1 Convergence and Performance Analysis of SDE/PDA

Both SDE and Kalman-PDA use iterative updating of a posteriori probabilities to

achieve near-optimum BER performance. The iteration plays a key role in delivering

correct decisions. In the simulations, we observe that the SDE detection performance

improves with additional iterations and stabilizes quickly in three to five iterations for

high SNR, and seven to 14 iterations for low SNR. Similar observations are found for

Kalman-PDA. However, it has never been proved the condition and rate of conver-

gence. It is a very interesting topic to find out under what conditions the process of

iterative posterior probabilities updating will converge. It is also important to analyt-

ically define the convergence rate given the SNR and channel state information. It is

helpful to refer to the convergence analysis of expectation-maximization (EM) prob-

lem [71]. The EM algorithm is a well-known iterative algorithm for finding modes of

a likelihood function and is characterized by simple implementation and stability [72].

If we can cast the structure of SDE/PDA to a model analgous to EM, we may then

provide analysis of the SDE/PDA convergence problem. Other potential approaches

include belief propagation methods used in analyzing (soft-decision) turbo codes.

Convergence analysis will also shed light on the steady state performance of the

proposed algorithms. Steady state performance helps to understand the performance

gap from an optimal (yet impractically complex) MIMO detector, under various op-

erating conditions. These results will in turn help system designers strike a desired

performance-complexity tradeoff.
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9.2.2 Application in MIMO-OFDM

OFDM [10] is a promising approach that can convert a frequency selective channel into

a set of narrow-band parallel subchannels. Each subchannel experiences flat fading,

thus alleviating the need for channel equalization. OFDM has been used in digital

audio and video broadcasting in Europe [73]. It is also an attractive scheme for future

high data rate wireless communications. MIMO-OFDM can further improve system

performance and capacity. In [10], MMSE-based successive interference cancellation

(SIC) is proposed for signal detection at the receiver. Since we have seen from the

simulations that SDE has better BER performance than the MMSE method, we

can expect that using SDE for signal detection in MIMO-OFDM systems can render

superior performance than what SIC can offer. The feasibility of applying SDE for

MIMO-OFDM is confirmed by the generality of our signal model adopted in Section

2.2, which can subsume a MIMO-OFDM system. It is also of interest to compare

in the future the detection performance and computational efficiency of an MIMO

system with SDE equalization, and an OFDM system with SDE soft detection (but

no need for equalization).
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APPENDIX A

Erasure Decoding Proof

In Fig. 7.5, ĉ denotes the demodulated binary sequence. Given a code with a mini-

mum distance dmin, it can correct up to dmin− 1 erasures. So if there are dmin− 1 or

less erasures in ĉ, and all other bits are reliable, ĉ can still be decoded to the right

codeword. We would like to show here that a received data sequence can always be

decoded to the correct codeword by using maximum-likelihood decoding (MLD) if we

assume that all the unreliable bits are covered by erasures. Suppose c1 and c2 are

two 1 × nc codewords, where c1 is the codeword transmitted while c2 is any other

codeword in the set. Let us denote the received codeword as ĉ, which contains both

reliable and unreliable bits. The erasure mask is given by em, in which ei = 0 if the

ith bit is unreliable (an erasure). Subject to the erasure correction ability of a given

code, the number of erasures in em, Ne, should be no more than dmin − 1. Denoting

⊙
as the element-by-element array multiplication, we can see

em ¯ c1 = em ¯ ĉ, (A.1)

if all unreliable bits are marked by erasures. As a result the Hamming distance

between em

⊙
c1 and em

⊙
ĉ is 0. Thus, ĉ is decoded correctly. On the other hand,

em

⊙
c1 differs from em

⊙
c2 by at least 1 bit. This is because c1 differs from c2 by
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dmin bits while em only contains at most dmin − 1 erasures. Thus, ĉ is decoded to c1

by MLD and this decoding is unique.
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Journal Articles:

1. S. Liu, Z. Tian, “Near-Optimal Soft Decision Equalization for Frequency Selec-

tive MIMO Channels,” IEEE Transactions on Signal Processing, vol. 52, no.

3, pp. 721-733, March 2004.

2. S. Liu, Z. Tian, “A Kalman-PDA Approach to Soft-Decision Equalization for

Frequency Selective MIMO Channels,” accepted to IEEE Transactions on Sig-

nal Processing.

Conference papers:

1. S. Liu, Z. Tian, “Performance Analysis of Adaptive Constrained Filtering,”

IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP’2002),

Orlando, FL, vol. 4, pp. 4173, May 2002.

2. S. Liu, Z. Tian, “A Soft-Decision Approach for BLAST Systems with Less

Receive than Transmit Antennae,” Proceedings of IEEE Global Communications

Conference (Globecom’2003), San Francisco, CA, vol. 2, pp. 834-838, December

1-5, 2003.
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ization for FIR MIMO Channels,” Proceedings of IEEE Wireless Communi-

cations and Networking Conference (WCNC’2004), Atlanta, GA, vol. 4, pp.

2307-2312, March 21-25, 2004.

4. S. Liu, Z. Tian, “A Kalman-PDA Approach to Soft-Decision Equalization for

Frequency Selective MIMO Channels,” Proceedings of IEEE Signal Processing

Workshop on Advances in Wireless Communications (SPAWC2004), Lisbon,

July 11-14, 2004.

5. S. Liu, Z. Tian, “Sliding-window based Soft Decision Equalization for Frequency

Selective MIMO Channels,” Proceedings of IEEE Sensor Array and Multichan-

nel Signal Processing Workshop (SAM’2004), Barcelona, July 2004.
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