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Abstract

The theoretical principles of intersymbol interference (ISI) and channel equalization in
wireless communication systems are addressed. Several conventional and well-known
equalization techniques are discussed and compared such as zero forcing (ZF) and maxi-
mum likelihood (ML). The main section in this chapter is devoted to an abstract concept of
equalization approach, namely, dual channel equalization (DCE). The proposed approach
is flexible and can be employed and integrated with other linear and nonlinear equaliza-
tion approaches. Closed expressions for the achieved signal-to-noise ratio (SNR) and bit
error rate (BER) in the case of ZF-DCE and ML-DCE are derived. According to the
obtained outcomes, the DCE demonstrates promising improvements in the equalization
performance (BER reduction) in comparison with the conventional techniques.

Keywords: channel equalization, intersymbol interference (ISI), zero forcing (ZF)
equalization, maximum likelihood (ML) equalization, bit error rate (BER), dual channel
equalization (DCE)

1. Introduction

All types of microwave wireless communication systems under different digital modulation

schemes and antennas configuration suffer from the channel effects and related problems such

as attenuation, signal amplitude and phase distortions, time-varying fading (Doppler shift),

multipath fading, and intersymbol interference (ISI). A common and well-known wireless

channel modeling method is based on the representation of the channel as a band-limited

digital filter, i.e., linear time-invariant (LTI) filter with specific transfer function (impulse

response). Thus, to alleviate and reduce the channel effects, especially for multipath fading

and ISI, it is possible to design a digital filter with transfer function that is inverse to the

transfer function of the associated wireless channel. This digital filter is called the equalizer

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[1, Chapter 10]. Additionally, the employment of multiple antennas can also help to mitigate

the multipath fading consequences (transmit/receive diversity) and increase the data rate

(spatial multiplexing).

In practice, the wireless transmission system sends a sequence of messages (one-shot transmis-

sion) where these successive transmissions should not interfere even if they are closely spaced

to increase the data rate. This interference between the successive transmissions is referred as

intersymbol interference (ISI) that is able to complicate and reduce the detection performance

[2, Chapter 4]. The simple symbol-by-symbol (SBS) detector (optimal in the case of additive

white Gaussian noise AWGN channel) cannot be the maximum likelihood estimator for a

sequence of message under ISI problem. A receiver for succession messages detection is shown

in Figure 1, where the matched filter outputs are processed by the receiver and SBS detector to

generate the estimate X̂k of the input symbol Xk at time k.

An equalizer or equalization method can be essentially embedded in the contents of the receiver

block presented in Figure 1. Different equalization techniques lead to different receiver struc-

tures that are not always optimal for detection, but rather are widely implemented as suboptimal

cost-effective solutions that alleviate the ISI. Any equalization approach converts the band-

limited channel with ISI into memory less appearing channel (AWGN-like) at the receiver

output. The wireless channel equalization forms a major challenge in current and future com-

munication networks.

In Section 2 of this chapter, the ISI between successive transmissions is modeled to prove that the

distortion caused by this overlapping is unacceptable and some corrective actions should be

applied. Some targeted and desired wireless channel responses that exhibit no ISI are discussed

in Section 3 with the corresponding Nyquist criterion for the ISI-free channels. In fact, the signal-

to-noise ratio (SNR) parameter used to quantify the receiver performance can be consistently

considered for equalization techniques evaluation as well. Several conventional and well-known

equalization approaches are presented in Section 4 such as zero-forcing equalizer (ZFE), mini-

mum mean square error (MMSE) equalizer, and decision feedback equalizer (DFE). In the last

section (Section 5), the proposed equalization approach and its performance are discussed and

compared to other equalization techniques under the same initial conditions.

2. Successive message transmission and ISI

The frequency or wireless channel reuse is a common technique to transmit several succession

messages separated by the symbol period (T units in time where 1=T is the symbol rate). For

Figure 1. The band-limited channel with receiver and SBS detector.
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sending one of M possible messages every T time units, the data rate of the communication

system is defined as:

R ¼ log2ðMÞ
T

: (1)

Increasing the data rate R can be achieved by decreasing Twhich reduces or narrows the time

between message transmissions and as a consequence increases ISI on the band-limited chan-

nel. The transmitted signal of K successive transmissions (conveying one of MK possible

messages) is given by

xðtÞ ¼ ∑
K�1

k¼0
xkðt−kTÞ: (2)

The detection of MK messages approach has a complexity that grows exponentially with the

block message length K (especially when K ! ∞). The SBS detection can be considered as an

alternative suboptimal solution that detects independently each of the successive K messages.

The ISI problem is the main limitation of the SBS detection approach when the performance

degradation increases as T decreases (or R increases). The ISI can be analyzed by rewriting

Eq. (2) using the following form:

xðtÞ ¼ ∑
K�1

k¼0
∑
N

n¼1
xknϕnðt−kTÞ, (3)

where the original transmissions xkðtÞ are decomposed using a standard orthogonal basis set

{ϕnðtÞ}. For instance, in the case of quadrature amplitude modulation (QAM), the baseband basis:

ϕðtÞ ¼ 1
ffiffiffiffi

T
p sinc

t

T

� �

(4)

produces orthogonal functions for all integer-multiple of T time translations and the successive

transmissions sampled at time instants kT are ISI free. Owing to the channel filtering alter-

ations, the filtered basis functions at the channel output are no longer orthogonal and the ISI is

introduced.

The band-limited noise-free channel output used for successive transmission of data symbol

can be presented as

xpðtÞ ¼ ∑
K�1

k¼0
∑
N

n¼1
xknϕnðt−kTÞ � hðtÞ ¼ ∑

K�1

k¼0
∑
N

n¼1
xknpnðt−kTÞ, (5)

where pnðtÞ ¼ ϕnðtÞ∗hðtÞ and when hðtÞ≠δðtÞ, the functions pnðt−kTÞ do not form orthogonal

basis (see Figure 2). The equalization techniques try to convert the functions pnðt−kTÞ to an

orthogonal set of functions, thus the SBS detection approach can be applied at the equalized

channel output.

The Nyquist criterion [3, Chapter 1] can specify the conditions for ISI-free channel on which

SBS detector is optimal. This criterion helps to construct band-limited functions to reduce the
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ISI negative effects. Another way to explain the ISI problem is to relate it with the channel

frequency response. When consecutive symbols are transmitted using linear modulation over

a wireless channel, the frequency response (impulse response) of the channel makes a trans-

mitted symbol to be spread in the time domain. Thus, the ISI is generated because the

previously transmitted and currently received symbols are overlapped. The Nyquist theorem

could relate the time domain conditions to its equivalent frequency domain ones. Simply,

considering the channel impulse response hðtÞ and the symbol period hðtÞ, the condition of

ISI-free response can be expressed as:

hðnTÞ ¼
1; n ¼ 0
0; n≠0

for all integers n:

�

(6)

The last condition can be represented in another form as follows (the Nyquist ISI criterion):

1

T
∑
þ∞

k¼−∞

H f −
k

T

� �

¼ 1; ∀f , (7)

where Hðf Þ is the channel frequency response (Fourier transform of hðtÞ). Hence, the sin c

pulse shape allows eliminating the ISI at sampling instants and any filter with excess band-

width and odd-symmetry around Nyquist frequency can satisfy and meet the ISI-free require-

ments such as raised cosine filter (RCF).The raised cosine filter with bandwidth equal to

ð 1
2TÞð1þ αÞ can be presented using the following form [3]:

PRCðtÞ ¼
sin πt

T

� �

πt
T

cos απt
T

� �

1− 2αt
T

� �2
; 0≤α≤1, (8)

where α is the roll-off factor. The RCF impulse and frequency responses are shown in Figure 3

for different roll-off factor α values.

The eye diagram is a widely used convenient method to observe the effects of ISI and noise

introduced by the channel where the quality of the received signal (the ability to correctly

recover the symbols and timing) can be illustrated (oscilloscope presentation). The interpreta-

tion of the eye diagram gives important information such as:

Figure 2. The band-limited channel equivalent impulse response representation.
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• sensitivity to timing error or jitter (smaller is better);

• wasted power;

• amount of distortion at sampling instants;

• amount of noise tolerance (larger is better);

• best time for sampling;

• the matching degree between the transmitter and receiver filters;

• the presence of ISI; and

• measurement of eye opening is performed to estimate the achievable BER.

Figure 3. RCF impulse and frequency responses.

Figure 4. Raised cosine eye diagram for BPSK-modulated symbols.
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The eye diagram using raised cosine filtering is presented in Figure 4 for binary phase shift

keying (BPSK)-modulated symbols at two roll-off factor values α ¼ 0:5; 1. In general, the ideal

sampling instant is at the point where the vertical eye opening is maximum. Under the

presence of ISI, the vertical eye opening reduces which leads to higher probability of error

(BER). More sensitivity to timing error is presented by smaller horizontal eye opening. From

Figure 4, it can be observed that the horizontal eye opening is smaller at roll-off factor α ¼ 0:5

in comparison with the case when α ¼ 1 owing to that the tails of the RCF are stripped down

faster. It is important to mention here that higher values of roll-off factor require more trans-

mission bandwidth. Smaller values of roll-off factor α lead to larger errors if the best sampling

time (the center of the eye) is not achieved.

3. The equalization main concept

As mentioned before, the equalization technique is the design of a digital filter with inverse or

counter transfer function in accordance with the transfer function of the associated wireless

channel. This concept is shown in Figure 5 where the frequency responses of the wireless

channel and the equalizer are compared.

The equalizer design concept is presented in Figure 6 (a simple block diagram for the channel

effect and the equalizer transfer function). The discrete time model that should be considered

under the equalization technique designing process is presented using the following form:

Figure 5. The wireless channel and equalizer frequency responses.
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Ĉk ¼ ∑
L−1

i¼0
Eiuk, (9)

where Ĉk is the data sequence at the equalizer output, L is the number of symbols, Ei repre-

sents the coefficients of the causal impulse response of the equalizer HEQðf Þ, and uk is the input

of the equalizer given by

uk ¼ ∑
L−1

j¼0
hjCk þ nk, (10)

where Ck is the transmitted data sequence, the coefficients hj represents the equivalent causal

impulse response (transfer function) of the wireless channel, and nk is the discrete time addi-

tive noise. The channel transfer function Hchðf Þ can be presented as:

Hchðf Þ ¼ jHchðf Þj exp ½jθchðf Þ�, (11)

where jHchðf Þj is the amplitude response, and θchðf Þ is the phase response. The bit error rate

(BER) reduction is achieved when the value of the error given by

ek ¼ Ck−Ĉk (12)

is reduced using equalization.

It is useful at this point to demonstrate the effects of the equalization on the detection perfor-

mance or quality at the receiver side by presenting the difference between the received sym-

bols with and without applying equalization. This comparison is given in Figure 7 for the

quadrature phase shift keying (QPSK)-modulated symbols. When the equalization is not

applied, the uncertainty on the received signal constellation is very high (caused by the

channel effect) and as a consequence the detection quality is low (detection performance

degradation). Applying the equalization technique, the uncertainty level is lower and the

detection performance is improved.

As a last word in this section, the ISI can produce a bias in the SNR value at the receiver. The

error ek presented by Eq. (12) is identical to the additive noise nk in the case of unbiased

detection rule. However, in the case of biased receiver, the probability density function (PDF)

Figure 6. The equalizer main design model.
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of the error ek is a scaled and shifted version of the noise nk PDF (the mean value depends on

the actual data symbol Ck). The last condition can be formulated as follows:

E½ĈkjCk� ¼ Ck,Unbiased Receiver (13)

For a given unbiased receiver [4] for a detection decision rule on a general signal constellation

Ck, the maximum unconstrained SNR corresponding to the same receiver under any biased

decision rule is given by

SNRb ¼ SNRu þ 1, (14)

where SNRb and SNRu are the SNR for biased and unbiased receivers, respectively. The

previous apparent discrepancy is more understandable recalling that the error rate is a mono-

tone function of the SNR only. Thus, from Eq. (14), the negative effect of ISI on the SNR at the

receiver is observed.

4. Equalization techniques

In general, the channel equalization techniques are classified to linear and nonlinear algo-

rithms or to blind (without training sequence) and nonblind based on the degree of knowl-

edge. The earliest mentions of digital equalization techniques are made under different design

criterions, for example, zero forcing (ZF) equalization [5], minimum mean square error

(MMSE) equalization [6], maximum likelihood (ML) equalization [7], decision feedback equal-

ization (DFE) [8], and maximum a posteriori (MAP) equalization [9]. In this chapter, a new

nonlinear equalization approach is proposed based on the dual channel equalization (DCE)

idea with the purpose to improve the equalization performance, namely, the BER reduction, in

comparison with the other widely used equalizers under multiple input multiple output

(MIMO) wireless channel. The simulation results demonstrate considerable and promising

performance improvements applying the suggested equalization approach in comparison

Figure 7. QPSK received symbols with and without equalization.
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with the conventional techniques. In order to help the reader to acquire the basics of equaliza-

tion concepts, a few well-known and conventional equalization techniques will be reviewed

and discussed in the next subsections.

4.1. System model

The complex baseband MIMO wireless channel model is considered with number of transmit

antennas equal to N and number of receive antennas equal to M.

The received signal at the input of the receiver (the I/O relation of the MIMO channel) can be

presented in the following form:

y ¼ Hxþ z, (15)

where y∈CM1 is the vector form of the received signal, H∈CMN is the matrix form of the

Rayleigh fading channel with independent and identically distributed (i.i.d) coefficients obey-

ing the circularly symmetric complex Gaussian distribution at zero mean and variance σ2h ¼ 1,

denoted as hijeCNð0, 1Þ for 1≤i≤M, 1≤j≤N, x∈CN1 is the vector form of the transmitted signal,

and z is the circularly symmetric complex white Gaussian noise with zero mean and variance

σ
2
n, i.e., zeCNð0, σ2nIÞ. It is assumed that the N data substreams have uniform power which

means x∈CN1 has a covariance matrix given by

E½xx�� ¼ σ
2
xIN , (16)

where E½:� represents the mathematical expectation, ð:Þ� is the conjugate transpose, and IN is

NN identity matrix. The signal-to-noise ratio (SNR) at the receiver input is expressed as:

SNR ¼
σ
2
x

σ
2
n

: (17)

The channel matrix H∈CMN is equalized or inverted by the weight matrix (the equalizer

matrix) W∈CMN . Thus, the obtained signal x̂ at the equalizer output is defined as follows:

x̂ ¼ Wy: (18)

4.2. ZF equalization

ZF is a linear equalization that applies the inverse of the wireless channel frequency response

to alleviate the channel effects on the received signal and restore the transmitted symbols. The

name is assigned based on the reduction of ISI down to zero in the noise-free channel case

(forcing the residual ISI to zero). The ZF equalizer can be designed using finite of infinite

impulse response filters (FIR or IIR filters).

Employing ZF equalization technique with matrix WZF, the equalizer directly applies the

inverse of the channel response to the received signal y. Thus, the ZF equalizer satisfies the

following condition:

WZFH ¼ IMN: (19)

The general form of the ZF equalizer matrix WZF is defined as:
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WZF ¼ ðHHHÞ−1HH, (20)

where ð:ÞH represents Hermitian transpose operation. The BER in the case of ZF equalization

technique and BPSK modulation can be defined using the following form [10]:

BERZF ¼
1

2
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNR

1þ SNR

r

 !" #M−Nþ1

∑
M−Nþ1

m¼0

 

M−N þm

m

!

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNR=1þ SNR
p

2

 !

, (21)

where m is the index of the received signal substream. The last equation is derived considering

the Neyman-Pearson (NP) detection criteria. Thus, the SNR of the obtained M decoupled

substreams is defined as [10]:

SNRZF,m ¼
SNR

½ðHHHÞ−1�
mm

; 1≤m≤M, (22)

where ½:�
mm

corresponds to the mth diagonal element. The denominator of the achieved partial

SNR given in Eq. (22) can be presented in terms of the mth column hm of H as follows:

½ðHHHÞ−1�
mm

¼
1

hH

m
hm−h

H

m
HmðH

H

m
HmÞ

−1HH

m
hm

: (23)

The ZF equalizer tries to null and cancel out all the interfering terms that are sometimes

accompanied with noise amplification, for this reason, ZF is not optimal under very noisy

channels. In the case of FIR filter use (to deal with noncausal components a decision delay is

applied), a complete elimination of ISI problem is not possible owing to the finite filter length.

Alternative criterion called peak-distortion criterion can be applied to minimize the maximum

possible signal distortion due to ISI at the equalizer output.

4.3. MMSE equalization

The main objective of MMSE equalizer is to minimize the variance of the error signal ek in

Eq. (12). The MMSE equalizer ensures the trade-off between residual ISI and noise enhance-

ment (reduce the total noise power). Under conditions more close to practice, MMSE equalizer

can achieve lower BER compared to ZF equalizer at low-to-moderate SNRs. Thus, the MMSE

equalization is applied to minimize the value of the mean given by

E½ðWMMSEy−xÞðWMMSEy−xÞ
H�, (24)

whereWMMSE is the MMSE equalizer matrix that is presented by the following expression [11]:

WMMSE ¼ HHHþ
1

SNR
I

� 	−1

HH: (25)

The MMSE matrix WMMSE is multiplied by the received signal vector y to obtain M decoupled

substreams with SNR equal to [11]:
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SNRMMSE,m ¼ SNR

HHHþ 1
SNR

I
� �−1
h i

mm

�1; 1≤m≤M, (26)

The BER for this equalizer considering the NP criterion and BPSK modulation can be approx-

imated using the following form [11]:

BERMMSE ¼ E½Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2SNRMMSE,m

p

�, (27)

where QðxÞ ¼ 1ffiffiffiffi
2π

p ∫∞x exp ð−t2=2Þdt is the standard Gaussian Q-function. The output SNRs of the

M decoupled substreams using ZF and MMSE equalizers are related as follows:

SNRMMSE,m ¼ SNRZF,m þ δSNR:m; 1≤m≤M, (28)

where δSNR,m is nondecreasing function of SNR (SNRZF,m and δSNR,m are statistically indepen-

dent). Moreover, the ratio of the output SNR gains for these two equalizers for any full rank

channel realization goes to unity (in dB) [11]:

10log10
SNRMMSE,m

SNRZF,m

� �

¼ 10log10 1þ δSNR,m

SNRZF,m

� �

! 0; as SNR ! ∞ (29)

Again the MMSE equalizer can be implemented with FIR and IIR filters and in both cases the

error signal ek in Eq. (12) depends on the estimated symbols Ĉk. According to the orthogonality

principle of MMSE optimization, the error ek and the input of the MMSE equalizer must be

orthogonal. The achieved SNR can be defined based on the error variance σ
2
e . For instance, in

the case of MMSE-IIR equalizer, the SNR is given by

SNRMMSE, IIR ¼ 1−σ2e
σ2e

(30)

which is more general form of SNR in comparison with the form in Eq. (26).

4.4. ML equalization

The ML equalization technique tests all the possible data symbols and chooses the one that has

the maximum probability of correctness at the output (optimal in the sense of minimizing the

probability of error Pe ¼ Pðx ≠ x̂Þ, where x̂ is the estimated or chosen signal at the equalizer

output). The Euclidian distance between the received signal vector and the products of all

possible transmitted signal vectors is calculated, and the signal with minimum distance is

considered. The ML estimation of x takes the following form [12]:

x̂ML ¼ arg min
x̂∈x

‖y−Hx̂‖2

J
|fflfflfflfflffl{zfflfflfflfflffl}

(31)

As follows, the ML-based equalizer selects the data sequence x̂ that yields the smallest distance

Jmin between the received signal vector y and the estimated or hypothesized message Hx̂. For

NP-based receiver, the obtained SNR at ML equalizer output is related to Jmin and given by
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SNRML ¼
Jmin

4σ2n
: (32)

The achieved BER of ML equalizer is based on Jmin as well as defined as [12]:

BERML ¼ Q

ffiffiffiffiffiffiffiffi

Jmin

4σ2n

s !

: (33)

In Figure 8, a comparison between the ZF, MMSE, and ML equalizer performances in terms of

BER as a function of energy per bit Eb to the noise power spectral density N0 ratio (Eb

N0
) is

presented in the case of BPSK modulation and for MIMO antenna configuration with

N ¼ M ¼ 2 and Rayleigh fading channel. As shown in Figure 8, the ML equalizer has the best

performance and ZF equalizer has the worst one.

4.5. Other equalization techniques

The main linear equalization drawback is that the equalizer filter enhances the noise at the

output (increases the noise variance), and additionally, the noise is colored (especially for

severely distorted channels). Employing noise prediction technique helps to avoid the

described problem. The last short discussion leads to the basic idea about decision feedback

equalization (DFE). The DFE structure consists of two filters: a feed forward-filter whose input

is the channel output signal and a feedback-filter that feeds back the previous decisions for

noise prediction process. This can be achieved by combining linear equalization technique like

ZF or MMSE with noise variance prediction (ZF-DFE and MMSE-DFE). A simple block dia-

gram for DFE is presented in Figure 9.

The maximum a posteriori (MAP) equalizer [13] estimates the transmitted symbol x½n� at

discrete-time index n that maximize the a posteriori probability Pðx½n� ¼ xjyÞ as follows:

Figure 8. ZF, MMSE, and ML equalizer performances comparison.
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x̂½n� ¼ arg max Pðx½n� ¼ xjyÞ: (34)

The MAP equalizer can be used as SBS detector with maximum-likelihood sequence estima-

tion (MLSE) for transmission over rapidly time-varying (TV) wireless channel as shown in

Ref. [13].

When some signal properties are used for the determination of the instantaneous error

which updates the adaptive filter coefficients or weights, the fractionally spaced equaliza-

tion (FSE) is an effective approach under the absence of the training sequences (blind

equalization) [14]. The FSE receives number of input samples equal to NFSE before it pro-

duces one output sample. The adaptive filter weights are updated employing a special

algorithm such as constant modulus algorithm (CMA) which uses the constant modularity

as the desired signal property. Thus, if the output rate is 1=T, the input sample rate is

NFSE=T. Thus, the tap spacing of the FSE is a fraction of the baud spacing or the transmitted

period. The FSE can be modeled as a parallel combination of several baud spaced equalizers

known as multichannel model of FSE where the oversampling factor defines the tap spacing

as follows:

Tap Spacing ¼
T

Oversampling Factor
: (35)

In Ref. [15], a brief discussion about the recent equalization requirements and approaches is

presented along with some important related references.

In optical communication field, a novel and efficient multiplier-less finite impulse response

filter (FIR) based on chromatic dispersion equalization (CDE) is proposed for coherent

receivers [16]. An iterative receiver is designed [17] for joint phase noise estimation, equaliza-

tion, and decoding in a coded communication system with combined belief propagation, mean

field, and expectation propagation (BP-MF-EP). In the frequency domain-based equalization,

many important contributions are made recently, for example, in Ref. [18] and for single carrier

frequency domain equalization (SC-FDE) in broadband wireless communication systems, a

robust design under imperfect channel knowledge is considered based on a statistical channel

estimation model where the equalization coefficients are defined under mean square error

minimization criterion.

Figure 9. Basic DFE structure.
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Another work deals with frequency domain equalization for faster-than-Nyquist (FTN) signal-

ing is presented in Ref. [19] for doubly selective channels (DSCs) based on low complexity

receivers with variational methods implemented in order to handle the interference of fre-

quency domain symbols instead of using MMSE equalizer that involves high complexity in

DSCs.

The frequency domain equalization is also proposed to be employed for broadband power line

communications (PLC) as in Ref. [20]. PLC performance can benefit from frequency domain

equalization techniques in the context of a cyclic-prefix single carrier modulation schemes. The

study in Ref. [20] presents an equalization algorithm based on the properties of complemen-

tary sequences (CSs) to reduce the complexity by performing all the operations in the fre-

10 quency domain without the necessity of noise variance estimator.

5. The new nonlinear equalization approach

12 5.1. Channel equalization with DCE

13 The proposed new nonlinear equalization approach applying dual channel equalization (DCE)

14 is presented in this section. The DCE idea can be implemented and coupled with any standard

15 channel equalizers such as ZF or ML equalizers. Figure 10 shows a simple flow chart for the

16 DCE idea presented as a coupling process between two digital filters. These filters can have the

17 same or different transfer functions and for simplicity of analysis, the similarity case is consid-

18 ered. The topology in Figure 10 is flexible and able to work with various equalization tech-

19 niques. The squaring device block ð:Þ2 and the transfer function of the equalization filter

20 HEQðf Þ are the sources of the nonlinearity in this approach. The band-stop filter HEQðf Þ main

function is to filter out the received signal in order to obtain the reference colored noise ψ at the

22 output of the second equalization filter. In fact, the squaring device and the equalization filter

23 form a familiar preliminary design for square-law demodulation or square-law envelop detec-

24 tor.

25 5.2. ZF equalization with DCE

26 The systemmodel presented in Section 4.1 is valid in the analysis of ZF-DCE. The signal matrix

27 XDCE at the output can be presented using the following form:

Figure 10. The DCE flow chart.
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XDCE ¼ WDCE−ZFy
2 þ ψ ¼ X̂2 þ ψ, (36)

where WDCE−ZF is the DCE matrix that takes the following form:

WDCE−ZF ¼ ðHHHÞ−2ðHHÞ2: (37)

Taking into consideration Eq. (37), the given form in Eq. (36) can be rewritten as:

XDCE ¼ X̂2 þ ψ ¼ X̂2 þ ðHHHÞ−2ðHHÞ2ZBS, (38)

where ZBS is the matrix form of the noise at the stopband filter. To derive the closed expres-

sions for the achieved SNR and BER under the use of ZF-DCE, a complete description for the

noise component ψ forming at the output is required (the error performance is strongly related

to the power of ψ). Using the standard complex matrix decomposition (singular value decom-

position SVD), the complex channel matrix ψ can be decomposed as follows:

H ¼ UTVH

HHH ¼ UTTHUH ¼ UΛUH
;

�

(39)

where U is MM complex unitary matrix that contains the HHH eigenvectors (UHU ¼ IM,

UH ¼ U−1), V is NN complex unitary matrix that contains the HHH eigenvectors,

T ¼ diagðλ1, :::,λNÞ is MN real diagonal matrix of the positive square roots of the

corresponding eigenvalues, and Λ is MM diagonal matrix. The diagonal elements of T and Λ

are defined by the following form:

λi ¼
d2
i ; i ¼ 1, 2, :::,minðN,MÞ

0; i ¼ minðN,MÞ þ 1;:::;M

�

(40)

where the squared singular values {d2i } are the channel matrix H eigenvalues. The squared

Euclidian norm ‖:‖ of the channel matrix H is given by

‖H‖
2 ¼ trðΛÞ ¼ ∑

minðN,MÞ

i¼1
λi ¼ ∑

minðN,MÞ

i¼1
d2i , (41)

where trð:Þ is the matrix trace. Based on Eqs. (39) and (41), the power of the noise ψ at the ZF-

DCE output can be presented using the expression:

‖ψ‖2 ¼ ‖ðHHHÞ−2ðHHÞ2ZBS‖
2 ¼ ‖ðVT2VHÞ−2ðVTUHÞ2ZBS‖

2

¼ ‖V−2T−4ðVHÞ−2V2T2ðUHÞ2ZBS‖
2 ¼ ‖V−2T−2ðUHÞ2ZBS‖

2

¼ ‖ðV−1T−1UHÞ2ZBS‖
2
:

(42)

The mathematical expectation of the noise power given by Eq. (42) is defined as follows:

E{‖ψ‖2} ¼ Ef‖ðV−1T−1UHÞ2ZBS‖
2g ¼ Ef‖ðVTUÞ−2ZBS‖

2g (43)

The unitary matrix lemma states that the multiplication with a unitary matrix will not change

the vector norm. Thus, owing to the fact that is V a unitary matrix, the presented form in

Eq. (43) can be simplified:
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E{‖ψ‖2} ¼ Ef‖ðVTUÞ−2ZBS‖
2g ¼ Ef‖T−2U−2ZBS‖

2g
¼ E{tr½ðT−2U−2ÞZBSZ

H
BSðU

2T−2Þ�} ¼ tr½ðT−2U−2ÞE{ZBSZ
H
BS}ðU

2T−2Þ�
¼ tr½σ2zðT

−2U−2ÞðU2T−2Þ� ¼ σ2z tr½ðT
−2U−2ÞðU2T−2Þ� ¼ σ2z tr½T

−4�

¼ σ2n ∑
N

i¼1
λ−2
i :

(44)

where σ2z is the variance of the noise ZBS at the bandstop filter output. The last form is obtained

considering that σ2z ¼ σ2n (in the frequency band of interest, the noise power spectral density is

constant). The SNR at the ZF-DCE output can be defined based on Eq. (44) as follows:

SNRZF−DCE ¼
σ2x

σ2n ∑
N

i¼1
λ−2
i

: (45)

The general form used to determine the BER in the case of ZF equalization technique under

BPSK modulation can be defined as [10]:

BERZF ¼ ∫
∞

0
Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2SNRZFx
p

Þ
1

ðM−NÞ!
xM−Ne−xdx (46)

The BER form in Eq. (21) [10] is the solution of the last integral in Eq. (46) and together with

Eq. (45) can present the final BER closed expression of ZF-DCE as follows:

BERZF ¼
1

2
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2x

σ2x þ σ2n ∑
N

i¼1
λ−2
i

v

u

u

u

t

0

B

B

B

@

1

C

C

C

A

2

6

6

6

4

3

7

7

7

5

M−Nþ1

∑
M−Nþ1

m¼0
ð
M−N þm

m
Þ

1

2
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2x

σ2x þ σ2n ∑
N

i¼1
λ−2
i

v

u

u

u

t

0

B

B

B

@

1

C

C

C

A

: (47)

As noticed in Eqs. (45) and (47), the derived forms are based on λi that also considered as the

ith eigenvalue of the sample covariance matrix Ry given by

Ry ¼
1

Ns
yyH: (48)

where Ns is the number of samples received by each antenna. The direct relation between λi

and y can be illustrated using the following form:

1

2σ2n
∑

Ns−1

k¼0
yðkÞHyðkÞ ¼

Ns

2σ2n
∑
M

i¼1
λi (49)

5.3. ML equalization with DCE

For this case, the DCE flow chart presented in Figure 10 can be considered for ML-DCE design

excluding the squaring device. The corresponding equalizer or channel matrix takes the fol-

lowing format:
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WML−DCE ¼ H ¼ ðx̂Hx̂Þ−1x̂Hy (50)

Based on Eq. (31), the ML-DCE estimation is defined as:

x̂ML−DCE ¼ arg min
x̂∈x

‖y−x̂ðx̂Hx̂Þ−1x̂Hy‖2 (51)

The presented form in Eq. (51) can be simplified by the following operations:

x̂ML−DCE ¼ arg min
x̂∈x

½y−x̂ðx̂Hx̂Þ−1x̂Hy�H½y−x̂ðx̂Hx̂Þ−1x̂Hy�

¼ arg min
x̂∈x

½yH−yHx̂ðx̂Hx̂Þ−1x̂H�½y−x̂ðx̂Hx̂Þ−1x̂Hy�

¼ arg min
x̂∈x

½yHy−yHx̂ðx̂Hx̂Þ−1x̂Hy−yHx̂ðx̂Hx̂Þ−1x̂Hyþ yHx̂ðx̂Hx̂Þ−1x̂Hx̂ðx̂Hx̂Þ−1x̂Hy�

¼ arg min
x̂∈x

½yHy−2yHx̂ðx̂Hx̂Þ−1x̂Hyþ yHx̂ðx̂Hx̂Þ−1x̂Hy�

¼ arg min
x̂∈x

½yHy−yHx̂ðx̂Hx̂Þ−1x̂Hy�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

JDCE

:

(52)

It is obvious that to minimize the form in Eq. (52), the term
�

yHx̂ðx̂Hx̂Þ−1x̂Hy
�

should be

maximized as follows:

JML ¼ arg max
x̂∈x

�

yHx̂ðx̂Hx̂Þ−1x̂Hy
�

¼ arg max
x̂∈x

½yHx̂ðx̂Hx̂Þ−1x̂Hx̂ðx̂Hx̂Þ−1x̂Hy�

¼ arg max
x̂∈x

½
�

x̂ðx̂Hx̂Þ−1x̂Hy
�H�

x̂ðx̂Hx̂Þ−1x̂Hy
�

� ¼ arg max
x̂∈x

‖x̂ðx̂Hx̂Þ−1x̂Hy‖2
:

(53)

The related SNR at the ML-DCE output is determined using Jmin,DCE as in the presented form

Eq. (32) and the covariance matrix of the reference noise ZBS forming at the bandstop filter

given by

CZBS
¼E½ZH

BSZBS�¼σ
2
z I¼σ

2
nI (54)

Defining the achieved SNR for ML-DCE, it is possible to calculate the BER using the same form

in Eq. (33). Taking into account the sample covariance matrix Ry in Eq. (48), Eq. (52) can be

represented as:

x̂ML−DCE ¼ arg min
x̂∈x

½NsRy−y
H
x̂ðx̂Hx̂Þ−1x̂Hy� (55)

The use of two equalization filters and the bandstop filter (the main DCE idea) helps us to

construct new equalization matrices and convert linear equalizers such as ZF equalizer to

nonlinear one. Additionally, the reference noise forming at the second equalizer output contrib-

utes in the definitions of achieved BER and SNR and can be employed to estimate the noise

variance (power) at the equalizer input. In this section, two equalizers are introduced, namely,

Nonlinear Channel Equalization Approach for Microwave Communication Systems
http://dx.doi.org/10.5772/65969

393



ZF-DCE and ML-DCE. The DCE concept can be implemented with other equalization tech-

niques like MMSE and DFE as well. The proposed DCE performance is evaluated in the follow-

ing subsection.

5.4. Simulation process and results

In this section, NM MIMO channel is considered where the number of transmit antennas N= 2

and the number of receive antennas M= 2 under Rayleigh fading channel and for BPSK

modulation. The overall simulation process for this system employing the conventional and

DCE types of equalization techniques are presented in Figure 11. The evolution and compar-

ison criterion is based on the BER (probability of error) as a function of energy per bit Eb to the

noise power spectral density N0 ratio (Eb

N0
). The relation between Eb

N0
and the SNR can be simply

presented as:

SNR ¼
Eb

N0

DR

BW
, (56)

where DR is the data rate and BW is the bandwidth.

In Figure 12, a comparison between the conventional ZF equalization technique and the

modified ZF using dual channel equalization (DCE) is presented. The ZF-DCE approach

demonstrates better performance (lower BER) comparing with the conventional ZF at the same
Eb

N0
(or SNR) range. The two equalizers have the same performance under relatively lower SNR

(Eb

N0
≤5½dB�).

The ML-DCE and the conventional ML equalizer performances are compared in Figure 13 under

the same initial conditions but for different SNR (Eb

N0
) range with the purpose of demonstrating the

Figure 11. The simulation and evaluation processes.
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effective and efficient SNR values for DCE employment. Once again the ML-DCE outperforms

the conventional ML in performance and for lower SNR compared with the case of ZF equaliza-

tion where the two equalizers present asymptotic performance for SNR less than 0 dB or Eb

N0
≤0½dB�

(roughly speaking, the ML-DCE performance is slightly better at Eb

N0
≤0½dB�).

6. Conclusion remarks

The discussion of this chapter can be ended by making several remarks. The new equalization

approach (DCE) shows promising outcomes in terms of improving the equalization performance

Figure 12. The comparison between conventional ZF and the ZF-DCE.

Figure 13. The comparison between conventional ML and the ML-DCE.
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by reducing the BER (sequence error probability).The obtained results can be simply generalized

for other equalization techniques and for frequency domain equalization as well. Additionally, it

is easy to prove that the DCE symbol error performance can be better than that of the conven-

tional equalizers. The type of filters used to design the DCE equalizer is not mentioned or

discussed but both FIR and IIR filters are possible and reasonable candidates.

Although the design and implementation complexity issues (the computational cost to design

the equalizer and to equalize the channel, respectively) for the proposed above equalization

structure are not discussed in this chapter, an ostensible comments can be made. The DCE

design relies on other equalization approaches and does not exhibit significant overhead

complexity. Thus, the complexity increases employing DCE but not with overwhelming

degree. Finally, a complete analysis based on practical conditions and for time-invariant (TIV)

and time-varying (TV) channel models under specific scenarios is required before addressing

the feasibility of the presented DCE approach.
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