20,227 research outputs found

    Dynamic User Role Assignment in Remote Access Control

    Get PDF
    The Role-Based Access Control (RBAC) model has been widely applied to a single domain in which users are known to the administrative unit of that domain, beforehand. However, the application of the conventional RBAC model for remote access control scenarios is not straightforward. In such scenarios, the access requestor is outside of the provider domain and thus, the user population is heterogeneous and dynamic. Here, the main challenge is to automatically assign users to appropriate roles of the provider domain. Trust management has been proposed as a supporting technique to solve the problem of remote access control. The key idea is to establish a mutual trust between the requestor and provider based on credentials they exchange. However, a credential doesn't convey any information about the behavior of its holder during the time it is being used. Furthermore, in terms of privileges granted to the requestor, existing trust management systems are either too restrictive or not restrictive enough. In this paper, we propose a new dynamic user-role assignment approach for remote access control, where a stranger requests for access from a provider domain. Our approach has two advantages compared to the existing dynamic user-role assignment techniques. Firstly, it addresses the principle of least privilege without degrading the efficiency of the access control system. Secondly, it takes into account both credentials and the past behavior of the requestor in such a way that he cannot compensate for the lack of necessary credentials by having a good past behavior

    Toward Semantics-aware Representation of Digital Business Processes

    Get PDF
    An extended enterprise (EE) can be described by a set of models each representing a specific aspect of the EE. Aspects can for example be the process flow or the value description. However, different models are done by different people, which may use different terminology, which prevents relating the models. Therefore, we propose a framework consisting of process flow and value aspects and in addition a static domain model with structural and relational components. Further, we outline the usage of the static domain model to enable relating the different aspects

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment

    Development and Performance Evaluation of a Connected Vehicle Application Development Platform (CVDeP)

    Get PDF
    Connected vehicle (CV) application developers need a development platform to build, test and debug real-world CV applications, such as safety, mobility, and environmental applications, in edge-centric cyber-physical systems. Our study objective is to develop and evaluate a scalable and secure CV application development platform (CVDeP) that enables application developers to build, test and debug CV applications in realtime. CVDeP ensures that the functional requirements of the CV applications meet the corresponding requirements imposed by the specific applications. We evaluated the efficacy of CVDeP using two CV applications (one safety and one mobility application) and validated them through a field experiment at the Clemson University Connected Vehicle Testbed (CU-CVT). Analyses prove the efficacy of CVDeP, which satisfies the functional requirements (i.e., latency and throughput) of a CV application while maintaining scalability and security of the platform and applications

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework

    ROSA: Realistic Open Security Architecture for active networks

    Get PDF
    Proceedings of IFIP-TC6 4th International Working Conference, IWAN 2002 Zurich, Switzerland, December 4–6, 2002.Active network technology enables fast deployment of new network services tailored to the specific needs of end users, among other features. Nevertheless, security is still a main concern when considering the industrial adoption of this technology. In this article we describe an open security architecture for active network platforms that follow the discrete approach. The proposed solution provides all the required security features, and it also grants proper scalability of the overall system, by using a distributed key-generation algorithm. The performance of the proposal is validated with experimental data obtained from a prototype implementation of the solution.Publicad

    I2PA : An Efficient ABC for IoT

    Get PDF
    Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preserving and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient ABC scheme for IoT devices. We use ECC without pairing, blind signing and zero knowledge proof. Our scheme supports block signing, selective disclosure and randomization. It provides data minimization and transactions' unlinkability. Our construction is efficient since smaller key size can be used and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints namely low energy power, small storage capacity and low computing power

    Modelling security properties in a grid-based operating system with anti-goals

    Get PDF

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US
    corecore