9,372 research outputs found

    Climate change and transport infrastructures: State of the art

    Get PDF
    Transport infrastructures are lifelines: They provide transportation of people and goods, in ordinary and emergency conditions, thus they should be resilient to increasing natural disasters and hazards. This work presents several technologies adopted around the world to adapt and defend transport infrastructures against effects of climate change. Three main climate change challenges have been examined: Air temperatures variability and extremization, water bombs, and sea level rise. For each type of the examined phenomena the paper presents engineered, and architectural solutions adopted to prevent disasters and protect citizens. In all cases, the countermeasures require deeper prediction of weather and climate conditions during the service life of the infrastructure. The experience gained supports the fact that strategies adopted or designed to contrast the effects of climate change on transport infrastructures pursue three main goals: To prevent the damages, protect the structures, and monitor and communicate to users the current conditions. Indeed, the analyses show that the ongoing climate change will increase its impact on transport infrastructures, exposing people to unacceptable risks. Therefore, prevention and protection measures shall be adopted more frequently in the interest of collective safety

    Thermal comfort in the historical urban canyon: the effect of innovative materials

    Get PDF
    Urban heat island (UHI) can considerably affect the thermal quality of the urban environment, especially within urban canyons, that have typically low sky view factor and limited surface heat re-emission capability. A huge research effort has been registered to develop mitigation solutions for UHI, such as cool materials and greenery. Nevertheless, it is not always possible to apply such strategies in historical urban environments due to constrains for the preservation of their cultural value that do not allow to modify the exterior architectural appearance of heritage buildings. In this scenario, the present paper deals with the analysis of the potential of innovative cool materials characterized by the same appearance of historical ones in mitigating the UHI occurring in the context of a historical urban canyon located in central Italy selected as pilot case study. To this purpose, a preliminary experimental characterization of such innovative highly reflective materials has been performed. Afterwards, an experimental continuous monitoring campaign of the main outdoor microclimate parameters and a numerical modelling of the canyon have been carried out to evaluate the local mitigation capability of such materials when applied over the vertical and horizontal surfaces of the historical canyon. The results show the huge potential of the proposed innovative cool materials in mitigating the local microclimate of the historical urban canyon. In fact, a MOCI reduction up to 0.15 and 0.30 is detected by applying cool red envelope materials and cool red envelope materials plus cool grey paving materials, respectively, on the canyon surfaces

    Impacts of urban expansion on relatively smaller surrounding cities during heat waves

    Get PDF
    Urban-induced thermal stress can threaten human health, especially during heat waves (HWs). The growth of cities further exacerbates this effect. Here, weather research and forecasting (WRF) with an urban canopy model (UCM) is used to assess the effects of megacities and their growth on the thermal regime of proximal cities during heat waves. Analysis of the heat fluxes shows that advection impacts cities downwind. Results indicate that as urban areas change size (50%−100% and 100−150% of their current size), the local 2 m temperature increases by 2.7 and 1.7 °C, and the 2 m specific humidity decreases by 2.1 and 1.4 g kg−1, respectively. A small city downwind is impacted with a 0.3−0.4 °C increase in 2 m temperature. Green roof is a potential mitigation strategy for these regions (i.e., beyond the megacity). With 50% green roofs in an urban area, a 0.5 °C decrease in 2 m temperature and 0.6 g kg−1 increase in specific humidity is simulated. Urbanization upwind of a megacity will contribute to regional climate change

    中国における都市化総合評価及び環境への影響に関する研究

    Get PDF
    In Chapter one, research background and significance is investigated. In addition, previous studies and current situation in the research fields was reviewed and discussed. In Chapter two, an in-depth review of prior studies associated with the research topic was conducted. The literature review was carried out from three aspects: urbanization and eco-environment evalution and coordination, urban sprawl assessment and urban heat island investigation. In Chapter three, maximum entropy method was applied to help generate the evaluation system of eco-environment level and urbanization level at provincial scale. Comparison analysis and coordinate analysis was carried through to assess the development of urbanization and eco-environment as well as the balance and health degree of the city develops. In Chapter four, DMSP/OLS stable nighttime light dataset was used to measure and assess the urban dynamics from the extraction of built up area. Urban sprawl was evaluated by analyzing the landscape metrics which provided general understanding of the urban sprawl and distribution pattern characteristics could be got from the evaluation. In Chapter five, the investigation of surface urban heat island effects in Beijing city which derive from land surface temperature retrieval from remote sensing data of Landsat TM was carried out. In addition, spatial correlation and relationship between the urbanization level, vegetation coverage and surface urban heat island was carried out in this chapter. In Chapter six, all the works have been summarized and a conclusion of whole thesis is deduced.北九州市立大

    Master plan : Greenport Shanghai Agropark

    Get PDF
    Greenport Shanghai is the innovative and ambitious exploration of how Chinese metropolitan agriculture will jump into the 21st century: circular, sustainable and profitable

    CHARACTERISTICS OF TEMPORAL AND SPATIAL VARIATION OF NDVI IN BEIJING AND THE RELATIONSHIP WITH URBAN HEAT ISLAND EFFECT

    Get PDF
    Vegetation is an important part of ecosystems, and the use of vegetation coverage as an indicator to study the spatio-temporal dynamics of regional vegetation is necessary for ecosystem health evaluation. The urban heat island effect can change the structure and functions of urban ecosystems, and affect the climate, hydrology, atmospheric environment, and energy metabolism of cities, as well as the health of residents. Using Beijing as a case study, this research generates vegetation coverage maps using remote sensing imagery from 1998, 2003, 2008, 2013 and 2018. This study indirectly analyzes the urban heat island effect through spatio-temporal changes in vegetation cover. These analyses offer three key findings. First, vegetation coverage in Beijing from 1998 to 2018 experienced an oscillating upward trend, indicating that the urban heat island effect was weakening. Second, the vegetation coverage in Beijing exhibited a concentric structure, which increased from the central area to the surrounding area, indicating that the urban heat island effect gradually weakens from the inside to the outside of the city. Third, from 1998 to 2008, the normalized difference vegetation index (NDVI) of the areas outside the Sixth Ring Road and inside the Third Ring Road was increasing, therefore the urban heat island effect in these areas was weakening. Conversely, NDVI was decreasing between Sixth Ring Road and Third Ring Road; these areas experienced an increase in the urban heat island effect

    Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China

    Get PDF
    AbstractYangtze River Delta (YRD) region has experienced a remarkable urbanization during the past 30years, and regional climate change and air pollution are becoming more and more evident due to urbanization. Impacts of urban canopy on regional climate and air quality in dry- and wet-season are investigated in this paper, utilizing the Weather Research and Forecasting/Chemistry (WRF/Chem) model. Four regimes of urban canopy schemes with updated USGS land-use data in actual state of 2004 base on MODIS observations are examined: (1) SLAB scheme that does not consider urban canopy parameters (the control experiment in this paper); (2) a single-layer urban model with a fixed diurnal profile for anthropogenic heat (UCM); (3) multilayer urban canopy model (BEP-Building effect parameterization); (4) multilayer urban models with a building energy model including anthropogenic heat due to air conditioning (BEP+BEM). Results show that, compared with observations, the best 2-m temperature estimates with minimum bias are obtained with SLAB and BEP+BEM schemes, while the best 10-m wind speed predictions are obtained with BEP and BEP+BEM scheme. For PM10 and ozone predictions, BEP+BEM scheme predicted PM10 well during January, while the best estimate of PM10 is obtained with UCM scheme during July, BEP+BEM and SLAB schemes best estimated ozone concentrations for both the two months. Spatial differences of meteorological factors between canopy schemes and control scheme show that compared with SLAB scheme, BEP and BEP+BEM schemes cause an increase of temperature with differences of 0.5°C and 0.3°C, respectively, UCM scheme simulates lower temperature with decrease of 0.7°C during January. In July, all the canopy experiments calculates lower air temperature with reduction of 0.5°C–1.6°C. All the canopy experiments compute lower 10-m wind speed for both January and July. Decreases were 0.7m/s (0.8m/s) with UCM, 1.7m/s (2.6m/s) with BEP, and 1.8m/s (2.3m/s) with BEP+BEM schemes in January (July), respectively. For chemical field distributions, results show that, compared with SLAB scheme, UCM scheme calculates higher PM10 concentration in both January and July, with the differences of 22.3% (or 24.4μg/m3) in January, and 31.4% (or 17.4μg/m3) in July, respectively. As large as 32.7% (or 18.3 μg/m3) of PM10 increase is found over Hangzhou city during July. While 18.6% (or 22.1 μg/m3) and 16.7% (or 24.6 μg/m3) of PM10 decreases are fund in BEP and BEP+BEM schemes during January. Compared with control experiment during January, 6.5% (or 2.6ppb) to 10.4% (4.2ppb) increases of ozone are computed over mage-cities by canopy experiments. All the three canopy schemes predict lower ozone concentrations and as large as 30.2% (or 11.2ppb) decrease is obtained with UCM scheme, and 16.5% (6.2ppb) decrease with BEP scheme during July. The SLAB scheme is suitable for real-time weather forecast while multiple urban canopy scheme is necessary when quantify the urbanization impacts on regional climate

    Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China

    Get PDF
    Land surface temperature (LST) is an important environmental parameter that is significantly affected by land use and landscape composition. Despite the recent progress in LST retrieval algorithms and better knowledge of the relationship between LST and land coverage indices, predictive studies of future LST patterns are limited. Here, we project LST patterns in the Taihu Lake Basin to the year 2026 based on projected land use pattern and simulated land coverage indices that include normalized difference built-up index (NDBI), normalized difference vegetation index (NDVI) and normalized difference water index (NDWI). We derived the spatiotemporal LST patterns in the Taihu Lake Basin from 1996 to 2026 using thermal infrared data from Landsat imagery. A CA-Markov model was applied to project the 2026 land use pattern in the basin based on spatial driving factors, using the 2004 land use as the initial state. We simulated the NDBI, NDVI and NDWI indices for 2026 using the projected land use patterns, and then generated the 2026 LST in the study area. Our results showed that LST has been increasing and the warming areas have been expanding since 1996, especially in the Su-Xi-Chang urban agglomeration. The mean LST in Su-Xi-Chang has increased from 31 degrees C in 2004 and has risen to about 33 degrees C in 2016, and the projection suggests that LST will reach about 35 degrees C in 2026. Our results also suggest that mean LST increased by 2 degrees C per decade in this highly urbanized area between 1996 and 2026. We present a preliminary method to produce future LST patterns and provide reasonable LST scenarios in the Taihu Lake Basin, which should help develop and implement management strategies for mitigating the effects of urban heat island

    Downscaling landsat land surface temperature over the urban area of Florence

    Get PDF
    A new downscaling algorithm for land surface temperature (LST) images retrieved from Landsat Thematic Mapper (TM) was developed over the city of Florence and the results assessed against a high-resolution aerial image. The Landsat TM thermal band has a spatial resolution of 120 m, resampled at 30 m by the US Geological Survey (USGS) agency, whilst the airborne ground spatial resolution was 1 m. Substantial differences between Landsat USGS and airborne thermal data were observed on a 30 m grid: therefore a new statistical downscaling method at 30 m was developed. The overall root mean square error with respect to aircraft data improved from 3.3 °C (USGS) to 3.0 °C with the new method, that also showed better results with respect to other regressive downscaling techniques frequently used in literature. Such improvements can be ascribed to the selection of independent variables capable of representing the heterogeneous urban landscape

    Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh

    Get PDF
    This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies
    corecore