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Abstract: 

Land surface temperature (LST) is an important environmental parameter that is 

significantly affected by land use and landscape composition. Despite the recent progress in LST 

retrieval algorithms and better knowledge of the relationship between LST and land coverage 

indices, predictive studies of future LST patterns are limited. Here, we project LST patterns in 

the Taihu Lake Basin to the year 2026 based on projected land use pattern and simulated land 

coverage indices that include normalized difference built-up index (NDBI), normalized 

difference vegetation index (NDVI) and normalized difference water index (NDWI). We derived 

the spatiotemporal LST patterns in the Taihu Lake Basin from 1996 to 2026 using thermal 

infrared data from Landsat imagery. A CA-Markov model was applied to project the 2026 land 

use pattern in the basin based on spatial driving factors, using the 2004 land use as the initial 

state. We simulated the NDBI, NDVI and NDWI indices for 2026 using the projected land use 

patterns, and then generated the 2026 LST in the study area. Our results showed that LST has 

been increasing and the warming areas have been expanding since 1996, especially in the 

Su-Xi-Chang urban agglomeration. The mean LST in Su-Xi-Chang has increased from less than 

30°C in 1996 to greater than 31°C in 2004 and has risen to about 33°C in 2016, and the 

projection suggests that LST will reach about 35°C in 2026. Our results also suggest that mean 

LST increased by 2°C per decade in this highly urbanized area between 1996 and 2026. We 

present a preliminary method to produce future LST patterns and provide reasonable LST 

scenarios in the Taihu Lake Basin, which should help develop and implement management 

strategies for mitigating the effects of urban heat island. 

 

Key words: land surface temperature (LST), land use change, future scenarios, CA-Markov, 

projection of LST; Taihu Lake Basin 
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1. Introduction 

Land surface temperature (LST) is the radiative skin temperature of the land surface, which 

is significantly affected by factors including terrain condition, landscape composition, land 

coverage, urbanization and global change (Asgarian et al., 2015; Connors et al., 2013; Hamstead 

et al., 2016; Song et al., 2014). Urbanization and land use change are the most important 

anthropogenic influences on local climate (Chen et al., 2018; Garuma, 2017) that lead to urban 

heat island effects. The effects of land use on LST have been extensively studied over the past 

two decades (Amiri et al., 2009; Maimaitiyiming et al., 2014; Rahman et al., 2017; Weng et al., 

2014), improving our understanding of the meteorological consequences of large-scale land use 

changes. However, few efforts have been made to evaluate the effects of future land use 

scenarios on LST or project future patterns of LST by considering potential land use changes. As 

a consequence, there is a need to develop new methods to project future LST distributions based 

on projections of future land use changes and land coverage indices. 

 

LST is an important environmental parameter derived from ground measurements and 

thermal infrared (TIR) data from satellite sensors (Islam et al., 2017; Jiménez-Muñoz et al., 

2014). Ground measurements cannot practically provide LSTs over large areas (Li et al., 2013) 

where the information can be derived from surface-outgoing radiance measurements from 

remote sensing (Jacob et al., 2017). The radiance measured by satellite radiometers depends on 

surface parameters and atmospheric effects (Guillevic et al., 2014). LST research has focused on 

the development of retrieval algorithms using TIR data from Landsat and Moderate Resolution 

Imaging Spectroradiometer (MODIS) and validation of LST-derived products. These algorithms 

can be categorized into two approaches: known and unknown land surface emissivity (LSE). 

Single-channel, multi-channel, and multi-angle are three widely applied LSE-known techniques. 

Stepwise retrieval of LST, and simultaneous retrieval of LSE and LST with known or unknown 

atmospheric information are two common LSE-unknown methods (Cristóbal et al., 2009; 

Gillespie et al., 2011; Li et al., 2013). These methods provide retrieval alternatives to obtain 
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relatively reliable LST information from TIR data, facilitating examination of land surface 

physical processes. 

 

It has been recognized that land use change and landscape dynamics substantially influence 

the climate system (Mahmood et al., 2014). Therefore, investigation of the effects of land use on 

LST is particularly important because land use change is a local environmental issue with global 

consequences (Foley et al., 2005). There is strong interest in examining the relationships between 

land use and LST across space using remote sensing, geographical information systems (GIS) 

and statistical techniques. Urban heat islands have been extensively studied during the past two 

decades to explicitly address the human- induced, environmental and meteorological drivers of 

urban heating (Chen et al., 2006; Santamouris et al., 2015; Zhang et al., 2016). Relationships 

between urban heat island effects and land coverage indicators such as impervious surface area 

(ISA) and normalized difference vegetation index (NDVI) have been examined using remote 

sensing imagery and GIS (Li et al., 2011; Yuan and Bauer, 2007). Landscape patterns measured 

using landscape metrics (Feng et al., 2018) also significantly affect local climate via urban heat 

islands (Buyantuyev and Wu, 2010; Connors et al., 2013; Li et al., 2011). Moreover, LST is 

highly correlated with land coverage indices such as normalized difference built-up index 

(NDBI), normalized difference water index (NDWI) and NDVI (Zhang et al., 2009). 

 

With our enhancing understanding of LST mechanism and the development of remote 

sensing technologies, researchers have paid much attention to the LST and urban heat island 

effects in mainland China during the past two decades (Guo et al., 2016; Li et al., 2011; Nie et al., 

2016; Sheng et al., 2017). Chinese megacities such as Beijing, Shanghai, Guangzhou and 

Hangzhou are the case areas that have often been studied. For example, Li et al. (2012) studied 

how the spatial pattern of green space affects LST in Beijing, broadening our understanding of 

the relationship between LST and vegetation coverage. Nie et al. (2016) investigated how the 

ISA-LST relationship evolves with urbanization and how the spatiotemporal change in ISA 
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quantitatively affects LST in Shanghai. Guo et al. (2016) summarized the impact of urban 

morphology heterogeneity on LST in Guangzhou, suggesting that medium building height and a 

lower building density significantly cause higher LST. Sheng et al. (2017) conducted a 

comparative study of the urban heat island effects between air temperature and LST in Hangzhou. 

Regarding the urban heat island effects, their results suggest that LST performs best on hot sunny 

days while air temperature performs better during the nighttime following a dry day. Despite the 

progress of LST research in China, more efforts should be made to project future LST patterns to 

inform the public and local authorities, based on simulated future land use scenarios (Rahman et 

al., 2017; Tran et al., 2017). 

 

New methods for LST projection from a spatial perspective are necessary and scientifically 

valuable. It is possible to assess the future LST pattern by establishing its relationships between 

land coverage indices including NDBI, NDVI and NDWI. Because these indices are closely 

associated with the land use patterns, we can project their future patterns if accurate projections 

of future land use are available. These scenarios can be simulated by cellular automata (CA), a 

widely applied dynamic geographical modeling framework. 

 

This paper projects LST patterns in the Taihu Lake Basin out to the year 2026, based on 

predicted land use patterns and simulated NDBI, NDVI and NDWI indices. We derived the LST 

patterns from TIR data of Landsat images and analyzed their temporal changes in the Taihu Lake 

Basin in 1996, 2004 and 2016. A CA-Markov model embedded in Clark Labs’ IDRISI® software 

(www.clarklabs.org) was applied to project the 2026 land use scenario based on spatial driving 

factors with the 2004 land use as the initial state. We then simulated NDBI, NDVI and NDWI 

indices for 2026 using the 2026 projected land use pattern. Finally, we generated the 2026 LST 

based on the relationships between the land coverage indices and LST in 2016, with the 

simulated 2026 land coverage indices as the input data. 
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The following section first briefly introduces the study area of the Taihu Lake Basin, then 

presents the spatial datasets used to derive and model LST. Section 3 describes the methodology 

applied in this paper, which includes land use classification, calculation of land coverage indices, 

LST derivation, CA-Markov modeling, and future LST projection. Section 4 presents the 

classified land use patterns and the observed land coverage indices, then examines the LST 

patterns from 1996 to 2016. The projected 2026 land use pattern and land coverage indices are 

presented in the same section 4, followed by the prediction of 2026 LST pattern and a discussion. 

Finally, the conclusions were drawn in Section 5. 

 

2. Study area and datasets 

2.1 Study area 

Taihu Lake is the largest freshwater lake in the Yangtze River Delta of eastern China 

(Figure 1a-b) and is administered by Suzhou and Wuxi of Jiangsu Province. The Taihu Lake 

Basin comprises an annular region that incorporates five cities: Suzhou, Wuxi, Changzhou (the 

Su-Xi-Chang urban agglomeration) and Yixing in Jiangsu Province, and Huzhou in Zhejiang 

Province (Figure 1c). Yixing City is a satellite city of Wuxi and is individually listed here 

because it is isolated from the main part of Wuxi by Taihu Lake. The basin under study covers 

27,513 km2 and is a highly developed region with a 2015 total population of 17.5 million 

(Statistics Bureau of Jiangsu Province, 2016). Over the past two decades, the developed urban 

areas of the basin quadrupled from 547 km2 in 1996 to 2,219 km2 in 2016, while the rural 

settlement areas have increased from 3,253 km2 to 4,145 km2, as measured based on the land use 

patterns classified using Landsat imagery. Rapid urbanization accompanied by rapid 

industrialization has had negative effects on the environment, especially land cover and LST. 

 

[Insert Figure 1 about here] 

Figure 1 Location of Taihu Lake Basin and its administrative boundaries. (a) Yangtze River 

Delta, and (b) Taihu Lake Basin. 
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2.2 Raw data 

Three Landsat images and a SRTM DEM v4 dataset were collected over the Taihu Lake 

Basin. The 1996 and 2004 Landsat images were from the Thematic Mapper (TM) while the 2016 

image was from the Operational Land Imager (OLI). The images were acquired in the same 

season (26 July  5 August) and were used to classify the land use patterns and derive LST. July 

and August are the hottest months of the year in the Taihu Lake Basin, and tend to have the 

highest LST. DEM was used to assist the classification and evaluate land development suitability.  

DEM reflects the topographical features of a region where the local organisms differ at different 

altitudes, implying soil type, temperature and humidity that are related to land cover. As such, 

DEM expands the attribute information of land cover to assist remote sensing classification. In 

the classification process, the elevation of a pixel is considered to adjust the land cover category 

defined by a classifier, hence improving the classification accuracy. 

 

Moreover, the shape datasets such as topography and road networks were utilized to define 

the administrative boundary of each city and calculate the proximity to city centers, main roads, 

railways and existing built-up areas. These proximity variables are the main drivers of land use 

change that were embedded in CA-Markov to project future land use out to 2026. 

 

[Insert Table 1 about here] 

Table 1 Remote sensing images and vector dataset used in this paper 

 

3. Methodology 

3.1 Land use classification 

The C5.0 decision tree classifier embedded in ENVI® 5.2 software (www.harris.com) was 

used to produce the land use patterns in 1996, 2004 and 2016. By integrating mathematical 

statistics and induction methods, a knowledge-based decision tree classifier considers the 
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spectral characteristics of ground objects and other spatial datasets (e.g. DEM) to construct 

classification rules, which are then used to classify remote sensing images. The C5.0 

classification rules are easy to understand, and the classification process also conforms to the 

human cognitive process. The C5.0 is superior to a few supervised classifiers because the latter 

depends on regions of interest (a priori knowledge) and once these regions of interest are not 

properly selected, the classification results will not be sufficiently reasonable. 

 

We first extracted brightness, greenness and wetness to interpret land use categories after 

radiation rectification and tasseled cap transformation (Figure 2). Brightness was used to 

discriminate between high and low-density built-up areas, while wetness and greenness were 

jointly applied to discriminate water bodies from forest (Wen et al., 2007). NDBI was utilized to 

discriminate low-density built-up areas from agricultural land. Landsat images from three 

periods in the Taihu Lake Basin were classified into five categories: high-density built-up areas, 

low-density built-up areas, agricultural lands, forests, and water bodies. The high-density 

built-up areas are highly impervious surfaces of urban areas, while the low-density built-up areas 

represent the rural residential lands. We collected the field survey (10% sampling) datasets of 

land use in 1996, 2004 and 2016 from local bureaus of planning and land resources, which were 

used to evaluate the land map categorization. The overall classification accuracies were 97.2% in 

1996, 96.8% in 1996, and 96.3% in 2016, indicating the good performance of the C5.0 decision 

tree classifier. 

 

[Insert Figure 2 about here] 

Figure 2 Decision tree classifier for identifying land use pattern in the Taihu Lake Basin 

 

3.2 Calculation and simulation of coverage indices 

We calculated three land coverage indices: NDBI, NDVI and NDWI, all of which range 

between -1.0 and 1.0. NDBI is a widely used indicator for extracting the built-up areas (Varshney, 
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2013). NDVI is the most commonly applied vegetation index for monitoring vegetation 

condition and/or vegetation health (Eastman et al., 2013). NDWI is an indicator of open water 

features to enhance their presence in remote sensing images (Pettorelli, 2013). Using Landsat 

images, the three indices can mathematically be calculated by (Bouhennache et al., 2016; 

Rahman et al., 2017): 

{
 
 

 
 NDBI =

𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
=
𝐵5− 𝐵4

𝐵5+ 𝐵4
(𝑇𝑀&𝐸𝑇𝑀+) =

𝐵6− 𝐵5

𝐵6+ 𝐵5
(𝑂𝐿𝐼)                (1)

NDVI =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
=
𝐵4−𝐵3

𝐵4+𝐵3
(𝑇𝑀&𝐸𝑇𝑀+) =

𝐵5−𝐵4

𝐵5+𝐵4
(𝑂𝐿𝐼)                    (2)

NDWI =
𝐺𝑅𝐸𝐸𝑁 −𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 −𝑁𝐼𝑅
=
𝐵2− 𝐵4

𝐵2+ 𝐵4
(𝑇𝑀&𝐸𝑇𝑀+) =

𝐵3− 𝐵5

𝐵3+ 𝐵5
(𝑂𝐿𝐼)           (3)

 

where NIR represents the near-infrared spectrum, SWIR represents the short-wavelength infrared 

spectrum, RED represents the red spectrum, and GREEN represents the green spectrum. 

 

To simulate future coverage indices, we used a method that reflects both structural and local 

variations of these indices. The simulation workflow is illustrated in Figure 3 using NDVI as an 

example. The structural component indicates the global change of the coverage indices over time, 

while the local component indicates the local index variations caused by land use change. After 

an integrated analysis of NDVI change during the past two decades from 19962016, we 

modeled the 2026 NDVI as an input layer for future LST projection. The NDBI and NDWI 

indices for the year 2026 were calculated using a similar method. 

 

[Insert Figure 3 about here] 

Figure 3 The method to simulate future coverage indices with an example of NDVI 

 

3.3 LST Derivation 

LST is derived using a complicated procedure related to land coverage, surface emissivity, 

atmospheric radiation correction, and radiation transmission. LST can be derived from Landsat-5 

TM and Landsat-8 OLI images by the following steps: 
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 Calculation of vegetation coverage  The NDVI maps are the basic data used to derive the 

surface vegetation coverage and deduce the land surface emissivity of various land use 

categories. The NDVI calculation is given by Equation (2) for TM and OLI images. Based 

on the calculated NDVI, the vegetation coverage can then be given by: 

𝑃𝑣 =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼soil

𝑁𝐷𝑉𝐼vegetation −𝑁𝐷𝑉𝐼soil
                                                   (4) 

where NDVI denotes the original value of NDVI, NDVIsoil (0.0) denotes the NDVI value of 

bare soil areas or areas with absolutely no vegetation coverage, and NDVIvegetation (0.7) 

denotes the NDVI value of areas completely covered by vegetation. 

 Calculation of land surface emissivity The spectral emissivity is the ratio between the 

radiance emitted by a natural object and that emitted by a blackbody at the same temperature. 

We followed (Sobrino et al., 2004) and (Jiménez-Muñoz et al., 2014) to define the spectral 

emissivity of various land surfaces given by: 

{

𝜀𝑤 = 0.995                                                                                                   (5)

𝜀𝑛 = 0.9625 + 0.0614𝑃𝑣 − 0.0461𝑃𝑣2                                               (6)

𝜀𝑏 = 0.9589 + 0.086𝑃𝑣 − 0.0671𝑃𝑣
2                                                 (7)

 

where  𝜀𝑤  denotes the spectral emissivity of water bodies, 𝜀𝑛  denotes the spectral 

emissivity of natural surfaces, and 𝜀𝑏  denotes the spectral emissivity of built-up areas. 

 Atmospheric radiation correction The thermal infrared radiation received by satellite 

sensors is complex and is composed of [1] the upwelling radiance (L↑) of the atmosphere, [2] 

the radiation (ε) that goes out from the surface through the atmosphere and ultimately 

reaches satellite sensors, and [3] the reflected downwelling irradiance (L↓) from the 

atmosphere. Therefore, the thermal infrared radiation [L(λ)] is given by: 

𝐿(𝜆) = (𝜀 ∙ 𝐵(𝑇𝑆) + (1 − 𝜀) ∙ 𝐿 ↓) ∙ 𝜏 + 𝐿 ↑                    (8) 

where ε is the land surface emissivity, TS is the real temperature of land surface, B(TS) is the 

thermal radiation of the blackbody at the TS temperature according to Planck's law, τ is the 

transmittance of the atmosphere within the infrared band. As a result, the thermal radiation 

B(TS) of the blackbody at the TS temperature is calculated as: 
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𝐵(𝑇𝑆) = (𝐿(𝜆) − 𝐿 ↑ −𝜏 ∙ (1 − 𝜀) ∙ 𝐿 ↓)/𝜏 ∙ 𝜀                 (9) 

where the parameters at the central point of the images (31.75°N, 120.30°E) are used in the 

calculation. For 5 August 1996, 𝜏 was 0.6, 𝐿 ↑ was 3.39 W/(m2·sr·μm), and 𝐿 ↓ was 5.12 

W/(m2·sr·μm); for 26 July 2004, 𝜏 was 0.54, 𝐿 ↑ was 3.97 W/(m2·sr·μm), and 𝐿 ↓ was 

5.84 W/(m2·sr·μm); for 27 July 2016, 𝜏 was 0.43, 𝐿 ↑ was 5.15 W/(m2·sr·μm), and 𝐿 ↓ 

was 7.39 W/(m2·sr·μm). 

 Calculation of LST After retrieving the thermal radiation B(TS) of the blackbody, the LST 

can be calculated using an inverse Planck law: 

𝐿𝑆𝑇 =
𝐾2

ln (𝐾1 𝐵(𝑇𝑆)⁄ + 1)
− 273                                               (10) 

where K1=666.09W/(m2·sr·μm) and K2=1282.71K for TM/ETM+ images while 

K1=774.89W/(m2·sr·μm) and K2=1321.08K for OLI images, with the LST expressed in °C. 

 

3.4 Modeling future land use using CA-Markov 

CA is a bottom-to-top modeling framework (Feng et al., 2016; Feng and Tong, 2018) whose 

ability to predict future land use is strengthened by integration with Markov model (Mitsova et 

al., 2011; Sang et al., 2011). The CA-Markov model is available in IDRISI® and is readily 

applicable to simulate multiple land use changes and project the future scenarios. In this hybrid 

model, Markov is used for calculation of the land transition area, a statistical method (e.g. 

logistic regression) is used to assess land transition suitability, and CA is used to allocate land 

cells. The three main components in the CA-Markov workflow are: 

 

 Markov transition estimation The Markov estimates transition probabilities, transition 

areas, and conditional probability images by comparing two land cover images. The 

transition probability matrix denotes the likelihood that one land use category will change 

state to another. The transition areas matrix identifies cells that are expected to change from 

one land use category to another during a specific time period. The conditional probability 

images provide the quantity of expected land use change from each existing category to 
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every other category in the next time period. 

 Land transition suitability The suitability maps are commonly generated using logistic 

regression and are based on the relationships between land use changes and their drivers. 

Each transition suitability map corresponds to a land use category produced using logistic 

regression modeling by DIRISI or by using statistical software modules and the Spatial 

Analyst tool in ArcGIS. 

 CA modeling The neighborhood effect represents local interactions among different land 

use categories. An extended Moore neighborhood configuration that contains 5× 5 

neighboring cells was used in this work. Moreover, the number of CA iterations is defined 

before implementation, where an iteration represents one year. 

 

3.5 Projection of future LST 

Land coverage indices including NDBI, NDVI and NDWI have a robust relationship with 

LST (Sun et al., 2012; Zhang et al., 2009). We therefore examined the relationships between the 

LST and the three indices for 2016 by exhaustive testing of all possible combinations (including 

interaction). Among the combinations, this expression exhibits the best goodness-of-fit R2 

(0.6875): 

LST = 33.48 + 8.66NDBI + 2.9NDVI− 4.01NDWI+ 13.34NDBI × NDVI      (11) 

 

Equation (11) was used to project future LST to the year 2026 using the three simulated 

land coverage indices in 2026. 

 

4. Results and discussion 

4.1 Land use patterns and land coverage indices 

The major change in land use and cover in the Taihu Lake Basin was linked to a significant 

increase in high and low-density built-up areas, sacrificing valuable agricultural land (Figure 4 

and Table 2). The urban extent (the high-density built-up area) of Su-Xi-Chang expanded by a 
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vast area of 3,466 km2 during the last decade, mainly due to the population increase, economic 

prosperity and booming housing market. The 1,871 km2 increase in rural settlement area (i.e. the 

low-density built-up area) is small, compared to the urban increase. We note that the urbanization 

rate in the Taihu Lake Basin has grown from below 30% in 1996 to nearly 50% in 2016 (Table 2). 

In contrast, the forested areas and water bodies experienced much less change as compared with 

built-up areas and agricultural lands. 

 

[Insert Figure 4 about here] 

Figure 4 Land use and land cover change in the Taihu Lake Basin during 1996 to 2016. (a) 1996 

land pattern, (b) 2004 land pattern, and (c) 2016 land pattern. 

 

[Insert Table 2 about here] 

Table 2 Land use change in area and percentage in the Taihu Lake Basin during 1996 to 2016 

 

To project land coverage indices for 2026, we derived land coverage indices in 2016 (Figure 

5) and identified their relationships with respect to LST (Equation 11). Except for water bodies, 

the NDBI and MDVI indices appear to be negatively correlated, but both indicate similar land 

use patterns (Figures 5a-b). Specifically, the Su-Xi-Chang areas show relatively high built-up 

density but low vegetation coverage, while the other regions (especially Huzhou) show relatively 

low built-up density and high vegetation coverage. The NDWI of water bodies is the highest, 

followed by moderate values in low-lying areas and the lowest values in high-slope areas (Figure 

5c). 

 

[Insert Figure 5 about here] 

Figure 5 Land coverage demonstrated by NDBI, NDVI and NDWI for 2016 in the Taihu Lake 

Basin. (a) 2016 NDBI, (b) 2016 NDVI, and (c) 2016 NDWI. 
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4.2 Spatiotemporal patterns of LST 

The spatial patterns show clearly that the high LST areas are mainly observed in the 

Su-Xi-Chang urban agglomeration, and have been expanding since 1996 (Figure 6). The highest 

LST continuously increased from 49.8°C in 1996 to 54.9°C in 2016, while the lowest LST 

showed a fluctuation during 1996-2016, with a higher value occurring in 2004. Among all land 

use categories, the built-up areas have the highest LST, followed by agricultural land, forest and 

water bodies, in descending order (Table 3). The mean LST in agricultural lands displayed the 

largest increase from 1996 to 2016 (4.4°C), while the mean LST increase in forest areas had the 

smallest increase (2.2°C), reflecting the effects of land use and cover change. In the spatial 

domain, Wuxi had the highest mean LST (29.6°C) in 1996, Wuxi and Suzhou had similar high 

mean LST (~ 31°C) in 2004, and the three cities in the Su-Xi-Chang urban agglomeration had 

similar high mean LSTs (above 33°C) in 2016. 

 

[Insert Figure 6 about here] 

Figure 6 Spatial patterns of LST in the Taihu Lake Basin from 1996 to 2016. (a) 1996 LST, (b) 

2004 LST, and (c) 2016 LST. 

 

[Insert Table 3 about here] 

Table 3 Summary statistics of LST in relation to land use categories and administrative regions 

 

The area and percentage of high LST continued to increase from 1996 to 2016 based on the 

groupings with an interval of 5°C (Table 4). In 1996, LSTs between 25° and 35°C occupied 85.3% 

of the study area, while only a few areas had LSTs below 20°C or above 40°C. In 2004, the 

dominant LST range (25°C-35°C) decreased to 77.2%, mainly attributed to the areal increases of 

both the lower (20°C-25°C) and higher (35°C-40°C) LST ranges. However, the LST areas and 

percentages less than 20°C are zero, while only a few land cells had the LST higher than 40°C. 

The 2016 LSTs were generally higher than in 1996 and 2004, which had a wider dominant LST 

range (25°C-40°C) covering 97.7% of the total area. Only a few land cells had LSTs between 
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45°C and 50°C, and those with LST higher than 50°C are effectively zero. 

 

[Insert Table 4 about here] 

Table 4 Summary statistics of LSTs based on their ranges in relation to area and percentage 

 

4.3 Simulating land use pattern and coverage indices to the year 2026 

Land use patterns for the year 2026 (Figure 7a) were simulated using the calibrated 

CA-Markov model. Significant land use changes are forecast during 20162026, with major 

increases in high and low-density built-up areas and a noticeable decrease in agricultural lands 

(Figure 7b). Specifically, the high-density built-up areas will gain 1,857 km2 (6.8% of the study 

area) and the low-density built-up areas will gain 1,046 km2 (3.8%), whereas the agricultural 

land will lose 2,990 km2 (10.9%). Meanwhile, forested areas and water bodies will change by 

only about 1%. Such a dramatic land use change will lead to an increase in the total impervious 

surface area and major changes in the environment over the next ten years, leading to a 

continued general increase in LST. 

 

Based on the projected 2026 land use pattern, we modeled three land coverage indices 

(Figures 7c-e) using the workflow of Figure 3. The three 2026 coverage pattern indices are quite 

similar to the 2016 patterns, but visual inspection identifies smaller differences between 

sub-regions for all three 2016 indices when compared with those from 2016, suggesting reduced 

deviance for all indices. Specifically, NDBI increases slightly while NDVI decreases 

significantly, except in water bodies. NDWI decreases slightly for water bodies but increases 

slightly for all other land use categories. These drastic changes in land use and land coverage 

indicate that there will be a great change in LST for 2026. 

 

[Insert Figure 7 about here] 

Figure 7 The simulated land use pattern and land coverage indices for the year 2026. (a) 
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Projected land use pattern of 2026, (b) Land use change between 2016-2026, (c) 2026 NDBI, (d) 

2026 NDVI, and (e) 2026 NDWI. 

 

4.4 Projecting 2026 LST 

The projected 2026 LST (Figure 8a) was calculated using Equation (11) with three 

simulated land coverage indices as input layers. The result shows a significant LST increase 

during the 20162026 decade. The summary statistics presented in Table 5 show that the mean 

LSTs of high and low-density built-up areas are very high (40.7°C and 36.8°C, respectively), 

followed by those of agricultural land and forest (about 34°C) and that of water bodies (below 

30°C). The LST in the Su-Xi-Chang urban agglomeration will be higher than in other regions 

including Yixing, Huzhou and the Taihu Lake. Of all regions, Wuxi will have the highest LST in 

2026. The dominant LST range is 25°C45°C and the areas with LST between 35°C40°C 

represent approximately half of the study area with a significant increase in LST. The areas with 

LST lower than 25°C or higher than 45°C are very small. Compared with 2016, the mean LST in 

2026 will increase by about 6°C in high-density built-up areas, while it will increase by about 

3°C in low-density built-up area (Tables 4 and 5). LST in forested areas will be close to that of 

agricultural lands, while the LST of water bodies will increase by only about 1°C. In summary, 

land use change will have a greater effect on the temperature of land surfaces than on water 

bodies. 

 

Compared with the 2016 LSTs, 2026 LSTs below 25°C will effectively disappear. The 

highest LST areas will not change markedly (Tables 4 and 5). From 2016 to 2026, 89.4% of the 

study area will become significantly warmer while only 10.6% will become slightly cooler. 

Approximately 55% of the study area will see an LST increase of 05°C while about 31% of the 

study area will see a 510°C LST increase (Figure 8b), reflecting significant changes in land 

surfaces from 2016 to 2026. 
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[Insert Figure 8 about here] 

Figure 8 The projected LST for 2026 and its change between 20162026 in the Taihu Lake 

Basin. (a) Projected LST for the year 2026, and (b) Difference map of LST between 2016-2026. 

 

[Insert Table 5 about here] 

Table 5 Summary statistics of LSTs in 2026 and their ranges in relation to area and percentage 

 

4.5 Discussion 

Based on the assumption that land coverage is closely linked with LST, we can project 

future LST patterns using an accurate projection of future land use. The Markov chain integrated 

CA model is a robust modeling framework that is based on the relationships between land use 

change and its drivers, and on the land transition probabilities between multiple land use 

categories. It has been shown that CA-Markov can well simulate future land use scenarios (the 

overall accuracy is about 85%) and explore the possible patterns of land use in the future  

(Arsanjani et al., 2013; Moghadam and Helbich, 2013). As such, future LST projection depends 

principally on an accurate projection of the indicators. Our method of projecting land coverage 

indices is similar to the Kriging approach to interpolation of geostatistics, which decomposes the 

temporal change of indices into structural and local components. Using this method, we 

generated reasonable land coverage indices NDBI, NDVI and NDWI and used them to project 

LST to the year 2026. 

 

Our results show that the past and future rises of LST in the basin are remarkable. Although 

the increases might be influenced by many factors, the rapid urbanization, industrialization, and 

human activities caused by highly concentrated population should probably be considered as the 

dominant factors. The urban growth rate (from 28.9% in 1996 to 48.3% in 2016) in the basin is 

comparable to many other rapidly urbanizing areas of China such as Beijing, Shanghai, 

Hangzhou and Guangzhou (Li et al., 2011). For example, the built-up area in Beijing expanded 
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from 18% in 2001 to 32% in 2010 while the urbanized area in Shanghai grown from 18% in 

2005 to 38% in 2015 (Feng and Tong, 2017; Li et al., 2012); the built-up area in Hangzhou 

increased from 17% in 2005 to 27% in 2015 while the urbanized area in Guangzhou raised from 

14% in 2003 to 36% in 2010 (Sheng et al., 2017; Sun et al., 2012). In these regions, the negative 

impacts of urbanization may outweigh the benefits, which can be manifested by the increasing 

LST and ecological degradation. Previous studies have shown that the impervious surface area 

(built-up area) is an accurate indicator of urban heat island effects, defined by a strong linear 

relationship with LST (Mathew et al., 2016; Zhang et al., 2009). In economically developed 

regions such as Su-Xi-Chang in the basin, our research shows that the impervious surface areas 

have continuously expanded due to large-scale urban construction, a vigorous housing market, 

and strong demand for industrial land, resulting in changes in the land surface environment, and 

hence increasing LST. 

 

In the Su-Xi-Chang urban agglomeration of the basin, LST has been increasing and the 

warming areas have been expanding since 1996. Mean LST in Su-Xi-Chang increased from less 

than 30°C in 1996 to greater than 31°C by 2004, and increased further to 33°C by 2016. Our 

projection suggests that mean LST in Su-Xi-Chang will reach about 35°C in 2026. This result 

suggests the mean LST increases of 2°C per decade over the highly urbanized area, with LST 

increasing by about 5°C10°C in few sub-regions. Areas covered by vegetation and water bodies 

show lower increases in LST than urbanized areas.  By 2026, about 18% of our study area is 

envisaged to have mean LST over 40°C, lower than those in Dammam of Saudi Arabia and 

Hanoi of Vietnam (Rahman et al., 2017; Tran et al., 2017). A projection of future LST in 

Dammam shows that, by 2026, the urban area is expected to encompass 55% of the city and 98% 

of the land cover is envisioned to have mean LST over 41°C (Rahman et al., 2017). The LST 

prediction in Hanoi inner city shows that, by 2023, 56% of Hanoi area is envisaged to have mean 

LST above 40.5°C (Tran et al., 2017). This may be because Dammam has a desert climate with 

low vegetation coverage (~5%) while Hanoi has a warm, humid subtropical climate with hot 
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summers. In contrast, our study area has a typical subtropical monsoon climate with high 

vegetation coverage (~28%) and high freshwater coverage (~23%). 

 

The LST derivation from remote sensing and the projection by modeling should be able to 

alert us the future LST scenario, and have important implications for land use management to 

mitigate the urban heat islands. The Taihu Lake Basin is an important area in eastern China, not 

only because of its geographical advantages in transportation and its natural environment, but 

also because of the proximal location of three highly developed prefecture-level cities (the 

Su-Xi-Chang urban agglomeration). From a macroscopic perspective, the factors that drive LST 

change can be roughly expressed as a top-to-bottom process beginning with management 

strategies to urban expansion and vegetation cover reduction, producing LST increases with 

concomitant urban heat island effects. Our research suggests that implementing management 

strategies to control the urban built-up extent is a solution for mitigating urban heat island effects. 

Construction and optimization of urban green spaces should also be a feasible solution to reduce 

the effects of heat islands, hence improving the environmental quality and enhancing the 

self-adjusting ability of urban ecological systems. 

 

5. Conclusions 

We have examined the spatiotemporal dynamics of LST in relation to land use change in the 

Taihu Lake Basin using Landsat imagery. We show that LST in the study area has been 

increasing since 1996 in response to major changes in land use. The high-density built-up areas 

are the warmest land surfaces, followed in decreasing order by low-density built-up areas, 

agricultural lands, forests, and water bodies. Apart from a better understanding of LST in the 

basin, we confirmed complex relationships between LST and the land coverage indices NDBI, 

NDVI and NDWI using interactive linear modeling. Two important outcomes of our work are [1] 

simulation of future land coverage indices based on projected future land cover, and [2] 

projection of future LST signaling the effect of land use change on a key land surface parameter. 
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Limitations of our work should be noted. First, the ground temperature measurements have 

not been validated and the summary statistics of LST for each land use category may be affected 

by land use classification. Second, the projection of LST for 2026 was realized using an 

empirical function built from the relationships between LST and land coverage indices only in 

2016, which may compromise the accuracy of LST. As a consequence, the deviance of the 

projected LST for 2026 is smaller than those of the LSTs derived from Landsat images in earlier 

years. We will further analyze these limitations in future studies. 

 

Our research presents a method to predict future LST patterns using remote sensing and GIS, 

and provides plausible scenarios for both land use and LST in the Taihu Lake Basin that are 

useful in developing regulations and management strategies to migrate urban heat island effects, 

thereby contributing to more sustainable and environmentally healthy cities. 
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Table 1 Remote sensing images and vector dataset used in this paper 

 

Type Source Date 
Spatial 

resolution 
Operation Purpose 

Remote 

sensing 

Landsat-5 TM 1996-08-05 30 m Classify land use categories and 

derive LST 

Mapping 

LST and 

projecting 

future land 

use 

Landsat-5 TM 2004-07-26 30 m Classify land use categories and 

derive LST 

Landsat-8 OLI 2016-07-27 30 m Classify land use categories, extract 

shorelines and derive LST 

SRTM DEM v4 2008-11-25 90 m Calculate land slope 

Vector 

dataset 

Topographic 

map 

2015 1:5000 Define boundaries, city and county 

centers 

Projecting 

future land 

use Road networks 2015 1:5000 Derive main roads and railways 
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Table 2 Land use change in area and percentage in the Taihu Lake Basin during 1996 to 2016 

Land use category 
1996 2004 2015 

Area (km
2
) Percent Area (km

2
) Percent Area (km

2
) Percent 

High-density built-up area 1,156 4.2 3,081 11.2 4,622 16.8 

Low-density built-up area 6,796 24.7 8,502 30.9 8,667 31.5 

Agricultural land 10,895 39.6 6,768 24.6 5,750 20.9 

Forest 2,641 9.6 2,916 10.6 2,036 7.4 

Water body 6,025 21.9 6,273 22.8 6,438 23.4 

Total 27,513 100 27,513 100 27,513 100 
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Table 3 Summary statistics of LST in relation to land use categories and administrative regions 

Land use and administrative 

region 

1996 (°C) 2004 (°C) 2016 (°C) 

Min Mean Max Min Mean Max Min Mean Max 

L
an

d
 u

se
 

High-density built-up 

area 
24.3 31.4 49.8 25.0 32.3 53.3 25.1 34.8 54.9 

Low-density built-up 

area 
21.3 30.2 48.8 22.2 31.0 50.3 22.3 33.6 52.1 

Agricultural land 23.8 28.3 38.8 25.1 28.8 49.1 25.1 32.7 49.8 

Forest 20.0 26.2 37.5 21.3 27.6 39.5 21.0 28.4 44.9 

Water body 18.2 24.3 36.8 20.0 25.1 39.2 19.0 28.0 43.5 

A
d
m

in
is

tr
at

iv
e 

R
eg

io
n

 

Taihu Lake 20.1 24.0 36.8 22.0 24.9 40.9 19.0 28.1 49.4 

Yixing 20.0 28.7 41.7 21.3 29.9 45.8 19.2 31.8 54.5 

Changzhou 18.2 28.1 43.7 20.3 29.3 45.9 19.2 33.3 48.3 

Wuxi 20.8 29.6 42.5 22.3 30.9 45.4 19.1 33.3 54.9 

Suzhou 20.3 28.3 43.6 20.1 30.7 53.3 19.1 33.9 54.5 

Huzhou 20.2 28.9 49.8 20.0 28.6 47.7 19.0 31.7 51.3 
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Table 4 Summary statistics of LSTs based on their ranges in relation to area and percentage 

LST range (°C) 
1996 2004 2016 

Area (km
2
) Percent Area (km

2
) Percent Area (km

2
) Percent 

<20 ~0 ~0.0 0 0.0 ~0 ~0 

20 to 25 3,604 13.1 4,952 18.0 275 1.0 

25 to 30 17,718 64.5 11,941 43.4 8,969 32.6 

30 to 35 5,750 20.9 9,299 33.8 13,069 47.5 

35 to 40 413 1.5 1,266 4.6 4,842 17.6 

40 to 45 ~0.0 ~0.0 83 0.2 275 1.0 

45 to 50 ~0.0 ~0.0 ~0.0 ~0.0 83 0.3 

>50 0 0 ~0.0 ~0.0 ~0.0 ~0.0 

Total 27,513 100.0 27,513 100.0 27,513 100.0 
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Table 5 Summary statistics of LSTs in 2026 and their ranges in relation to area and percentage 

Land use and administrative 

region 

Min 

(°C) 

Mean 

(°C) 

Max  

(°C) 

 

 

LST range 

(°C) 

Area 

(km
2
) 

Percent 

High-density built-up area 25.0 40.7 55.0  <20 0 0.0 

Low-density built-up area 22.4 36.8 53.5  20 to 25 1 ~0 

Agricultural land 26.9 34.7 50.9  25 to 30 6083 22.1 

Forest 22.5 34.0 48.9  30 to 35 3982 14.5 

Water body 20.0 29.2 47.9  35 to 40 12544 45.6 

Taihu lake 23.7 29.5 48.8  40 to 45 4899 17.8 

Yixing 22.1 36.5 49.7  45 to 50 5 0.0
*
 

Changzhou 21.9 37.2 52.6  >50 ~0 ~0 

Wuxi 23.0 38.3 49.0  Total 27513 100.0 

Suzhou 20.8 37.4 54.9 

  Huzhou 20.0 35.9 55.0 
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Highlights 

 

 We derived the spatiotemporal LST patterns in the Taihu Lake Basin from 1996 to 2026; 

 A CA-Markov model was applied to project the 2026 land use pattern; 

 We simulated the NDBI, NDVI and NDWI indices for 2026 and projected the 2026 LST pattern; 

 LST has been increasing and the warming areas have been expanding since 1996; 

 Mean LST increased by 2°C per decade in Su-Xi-Chang urban agglomeration between 1996 and 2026. 
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