10 research outputs found

    Influence of parameter selection in fixed sample entropy of surface diaphragm electromyography for estimating respiratory activity

    Get PDF
    Fixed sample entropy (fSampEn) is a robust technique that allows the evaluation of inspiratory effort in diaphragm electromyography (EMGdi) signals, and has potential utility in sleep studies. To appropriately estimate respiratory effort, fSampEn requires the adjustment of several parameters. The aims of the present study were to evaluate the influence of the embedding dimension m, the tolerance value r, the size of the moving window, and the sampling frequency, and to establish recommendations for estimating the respiratory activity when using the fSampEn on surface EMGdi recorded for different inspiratory efforts. Values of m equal to 1 and r ranging from 0.1 to 0.64, and m equal to 2 and r ranging from 0.13 to 0.45, were found to be suitable for evaluating respiratory activity. fSampEn was less affected by window size than classical amplitude parameters. Finally, variations in sampling frequency could influence fSampEn results. In conclusion, the findings suggest the potential utility of fSampEn for estimating muscle respiratory effort in further sleep studies.Peer ReviewedPostprint (published version

    Assessment of the non-linear response of the fSampEn on simulated EMG signals

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFixed sample entropy (fSampEn) is a promising technique for the analysis of respiratory electromyographic (EMG) signals. Its use has shown outperformance of amplitude-based estimators such as the root mean square (RMS) in the evaluation of respiratory EMG signals with cardiac noise and a high correlation with respiratory signals, allowing changes in respiratory muscle activity to be tracked. However, the relationship between the fSampEn response to a given muscle activation has not been investigated. The aim of this study was to analyze the nature of the fSampEn measurements that are produced as the EMG activity increases linearly. Simulated EMG signals were generated and increased linearly. The effect of the parameters r and the size of the moving window N of the fSampEn were evaluated and compared with those obtained using the RMS. The RMS showed a linear trend throughout the study. A non-linear, sigmoidal-like behavior was found when analyzing the EMG signals using the fSampEn. The lower the values of r, the higher the non-linearity observed in the fSampEn results. Greater moving windows reduced the variation produced by too small values of r.Peer ReviewedPostprint (author's final draft

    Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects

    Get PDF
    The current gold standard assessment of human inspiratory muscle function involves using invasive measures of transdiaphragmatic pressure (Pdi) or crural diaphragm electromyography (oesEMGdi). Mechanomyography is a non-invasive measure of muscle vibration associated with muscle contraction. Surface electromyogram and mechanomyogram, recorded transcutaneously using sensors placed over the lower intercostal spaces (sEMGlic and sMMGlic respectively), have been proposed to provide non-invasive indices of inspiratory muscle activation, but have not been directly compared to gold standard Pdi and oesEMGdi measures during voluntary respiratory manoeuvres. To validate the non-invasive techniques, the relationships between Pdi and sMMGlic, and between oesEMGdi and sEMGlic were measured simultaneously in 12 healthy subjects during an incremental inspiratory threshold loading protocol. Myographic signals were analysed using fixed sample entropy (fSampEn), which is less influenced by cardiac artefacts than conventional root mean square. Strong correlations were observed between: mean Pdi and mean fSampEn |sMMGlic| (left, 0.76; right, 0.81), the time-integrals of the Pdi and fSampEn |sMMGlic| (left, 0.78; right, 0.83), and mean fSampEn oesEMGdi and mean fSampEn sEMGlic (left, 0.84; right, 0.83). These findings suggest that sMMGlic and sEMGlic could provide useful non-invasive alternatives to Pdi and oesEMGdi for the assessment of inspiratory muscle function in health and disease.Peer ReviewedPostprint (published version

    Evaluation of a wearable device to determine cardiorespiratory parameters from surface diaphragm electromyography

    Get PDF
    Using wearable devices in clinical routines could reduce healthcare costs and improve the quality of assessment in patients with chronic respiratory diseases. The purpose of this study is to evaluate the capability of a Shimmer3 wearable device device to extract reliable cardiorespiratory parameters from surface diaphragm electromyography (EMGdi). Twenty healthy volunteers underwent an incremental load respiratory test whilst EMGdi was recorded with a Shimmer3 wearable device (EMGdiW). Simultaneously, a second EMGdi (EMGdiL), the inspiratory mouth pressure (Pmouth) and the lead-I electrocardiogram (ECG) were recorded via a standard wired laboratory acquisition system. Different cardiorespiratory parameters have been extracted from both EMGdiW and EMGdiL signals.: heart rate, respiratory rate, respiratory muscle activity and mean frequency of EMGdi signals. Alongside these, similar parameters were also extracted from reference signals (Pmouth and ECG). High correlations were found between the data extracted from the EMGdiW and the reference signal data: heart rate (R = 0.947), respiratory rate (R = 0.940), respiratory muscle activity (R = 0.877), and mean frequency (R = 0.895). Moreover, similar increments in EMGdiW and EMGdiL activity were observed when Pmouth was raised, enabling the study of respiratory muscle activation. In summary, the Shimmer3 device is a promising and cost-effective solution for ambulatory monitoring of respiratory muscle function in chronic respiratory diseases.Postprint (author's final draft

    Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation

    Get PDF
    Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians or through automated algorithms. However, detecting complex patient-ventilator interactions (CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a challenge. Sample Entropy (SE) of airway flow (SE-Flow) and airway pressure (SE-Paw) waveforms obtained from 27 critically ill patients was used to develop and validate an automated algorithm for detecting CP-VI. The algorithm’s performance was compared versus the gold standard (the ventilator’s waveform recordings for CP-VI were scored visually by three experts; Fleiss’ kappa = 0.90 (0.87–0.93)). A repeated holdout cross-validation procedure using the Matthews correlation coefficient (MCC) as a measure of effectiveness was used for optimization of different combinations of SE settings (embedding dimension, m, and tolerance value, r), derived SE features (mean and maximum values), and the thresholds of change (Th) from patient’s own baseline SE value. The most accurate results were obtained using the maximum values of SE-Flow (m = 2, r = 0.2, Th = 25%) and SE-Paw (m = 4, r = 0.2, Th = 30%) which report MCCs of 0.85 (0.78–0.86) and 0.78 (0.78–0.85), and accuracies of 0.93 (0.89–0.93) and 0.89 (0.89–0.93), respectively. This approach promises an improvement in the accurate detection of CP-VI, and future study of their clinical implications.This work was funded by projects PI16/01606, integrated in the Plan Nacional de R+D+I and co-funded by the ISCIII- Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER). RTC-2017-6193-1 (AEI/FEDER UE). CIBER Enfermedades Respiratorias, and Fundació Parc Taulí

    Evaluation of Respiratory Muscle Activity by Means of Concentric Ring Electrodes

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Surface electromyography (sEMG) can be used for the evaluation of respiratory muscle activity. Recording sEMG involves the use of surface electrodes in a bipolar configuration. However, electrocardiographic (ECG) interference and electrode orientation represent considerable drawbacks to bipolar acquisition. As an alternative, concentric ring electrodes (CREs) can be used for sEMG acquisition and offer great potential for the evaluation of respiratory muscle activity due to their enhanced spatial resolution and simple placement protocol, which does not depend on muscle fiber orientation. The aim of this work was to analyze the performance of CREs during respiratory sEMG acquisitions. Respiratory muscle sEMG was applied to the diaphragm and sternocleidomastoid muscles using a bipolar and a CRE configuration. Thirty-two subjects underwent four inspiratory load spontaneous breathing tests which was repeated after interchanging the electrode positions. We calculated parameters such as (1) spectral power and (2) median frequency during inspiration, and power ratios of inspiratory sEMG without ECG in relation to (3) basal sEMG without ECG (R-ins/noise), (4) basal sEMG with ECG (R-ins/cardio) and (5) expiratory sEMG without ECG (R-ins/exp). Spectral power, R-ins/noise and R-ins/cardio increased with the inspiratory load. Significantly higher values (p < 0.05) of R-ins/cardio and significantly higher median frequencies were obtained for CREs. R-ins/noise and R-ins/exp were higher for the bipolar configuration only in diaphragm sEMG recordings, whereas no significant differences were found in the sternocleidomastoid recordings. Our results suggest that the evaluation of respiratory muscle activity by means of sEMG can benefit from the remarkably reduced influence of cardiac activity, the enhanced detection of the shift in frequency content and the axial isotropy of CREs which facilitates its placement.This work was supported in part by the CERCA Program/Generalitat de Catalunya, in part by the Secretaria d'Universitats i Recerca de la Generalitat de Catalunya under Grant GRC 2017 SGR 01770, in part by the Spanish Grants RTI2018-098472-B-I00, RTI2018-094449-A-I00-AR (MCIU/AEI/FEDER, UE) and DPI2015-68397-R (MINECO/FEDER), and in part by the Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Instituto de Salud Carlos III/FEDER). The first author was supported by the IFARHU-SENACYT Scholarship Program from the Panama Government under Grant 270-2012-273.Estrada-Petrocelli, L.; Torres, A.; Sarlabous, L.; Ràfols-De-Urquía, M.; Ye Lin, Y.; Prats-Boluda, G.; Jané, R.... (2021). Evaluation of Respiratory Muscle Activity by Means of Concentric Ring Electrodes. IEEE Transactions on Biomedical Engineering. 68(3):1005-1014. https://doi.org/10.1109/TBME.2020.3012385S1005101468

    Approximate and Sample Entropy of Center of Pressure in Unperturbed Tandem Standing: Contribution of Embedding Dimension and Tolerance

    Get PDF
    Approximate entropy (ApEn) and sample entropy (SampEn) are statistical methods designed to quantify the regularity or predictability of a time series. Although ApEn has been a prominent choice for use, it is currently unclear as to which method and parameter selection combination is optimal for its application in biomechanics. The goal of this thesis was to examine the difference between ApEn and SampEn related to center of pressure (COP) data during standing balance tasks, while also refining tolerance r, to determine entropy optimization. Six participants completed five 30-second, feet together and tandem standing, trials under eyes-open and eyes-closed conditions. Ground reaction force platform data (1200 Hz) was collected and downsampled to provide a 60 Hz COP time series. ApEn and SampEn were calculated using a constant pattern length, i.e., m = 2, and multiple values of r (tolerance). Four separate one-way analysis of variance analyses (ANOVA) were conducted for ApEn and SampEn in the anterior posterior (AP) and medial lateral (ML) directions. Dunnett\u27s intervals were applied to the one-way ANOVA analyses to determine which conditions differed significantly. ApEn and SampEn provided comparable results in the predictability of patterns for different stability conditions, with increasing instability being associated with greater unpredictability. The selection of r had a relatively consistent effect on mean ApEn and SampEn values across r = 0.15 – 0.25*SD, where both entropy methods tended to decrease as r increased. Mean SampEn values were generally lower than ApEn values. The results suggest that both ApEn and SampEn indices were equally effective in quantifying the level of center of pressure signal regularity during quiet tandem standing postural balance tests

    Influence of Parameter Selection in Fixed Sample Entropy of Surface Diaphragm Electromyography for Estimating Respiratory Activity

    No full text
    Fixed sample entropy (fSampEn) is a robust technique that allows the evaluation of inspiratory effort in diaphragm electromyography (EMGdi) signals, and has potential utility in sleep studies. To appropriately estimate respiratory effort, fSampEn requires the adjustment of several parameters. The aims of the present study were to evaluate the influence of the embedding dimension m, the tolerance value r, the size of the moving window, and the sampling frequency, and to establish recommendations for estimating the respiratory activity when using the fSampEn on surface EMGdi recorded for different inspiratory efforts. Values of m equal to 1 and r ranging from 0.1 to 0.64, and m equal to 2 and r ranging from 0.13 to 0.45, were found to be suitable for evaluating respiratory activity. fSampEn was less affected by window size than classical amplitude parameters. Finally, variations in sampling frequency could influence fSampEn results. In conclusion, the findings suggest the potential utility of fSampEn for estimating muscle respiratory effort in further sleep studies

    Influence of parameter selection in fixed sample entropy of surface diaphragm electromyography for estimating respiratory activity

    No full text
    Fixed sample entropy (fSampEn) is a robust technique that allows the evaluation of inspiratory effort in diaphragm electromyography (EMGdi) signals, and has potential utility in sleep studies. To appropriately estimate respiratory effort, fSampEn requires the adjustment of several parameters. The aims of the present study were to evaluate the influence of the embedding dimension m, the tolerance value r, the size of the moving window, and the sampling frequency, and to establish recommendations for estimating the respiratory activity when using the fSampEn on surface EMGdi recorded for different inspiratory efforts. Values of m equal to 1 and r ranging from 0.1 to 0.64, and m equal to 2 and r ranging from 0.13 to 0.45, were found to be suitable for evaluating respiratory activity. fSampEn was less affected by window size than classical amplitude parameters. Finally, variations in sampling frequency could influence fSampEn results. In conclusion, the findings suggest the potential utility of fSampEn for estimating muscle respiratory effort in further sleep studies.Peer Reviewe
    corecore