993 research outputs found

    Inferring context-sensitive probablistic boolean networks from gene expression data under multi-biological conditions

    Get PDF
    In recent years biological microarrays have emerged as a high-throughput data acquisition technology in bioinformatics. In conjunction with this, there is an increasing need to develop frameworks for the formal analysis of biological pathways. A modeling approach defined as Probabilistic Boolean Networks (PBNs) was proposed for inferring genetic regulatory networks [1]. This technology, an extension of Boolean Networks [2], is able to capture the time-varying dependencies with deterministic probabilities for a series of sets of predictor functions

    Defining a robust biological prior from Pathway Analysis to drive Network Inference

    Get PDF
    Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for inferring gene regulation networks using a robust biological prior on their structure in order to limit the set of candidate networks. Pathways, that represent biological knowledge on the regulatory networks, will be used as an informative prior knowledge to drive Network Inference. This approach is based on the selection of a relevant set of genes, called the "molecular signature", associated with a condition of interest (for instance, the genes involved in disease development). In this context, differential expression analysis is a well established strategy. However outcome signatures are often not consistent and show little overlap between studies. Thus, we will dedicate the first part of our work to the improvement of the standard process of biomarker identification to guarantee the robustness and reproducibility of the molecular signature. Our approach enables to compare the networks inferred between two conditions of interest (for instance case and control networks) and help along the biological interpretation of results. Thus it allows to identify differential regulations that occur in these conditions. We illustrate the proposed approach by applying our method to a study of breast cancer's response to treatment

    Inferring Gene Regulatory Networks from Time Series Microarray Data

    Get PDF
    The innovations and improvements in high-throughput genomic technologies, such as DNA microarray, make it possible for biologists to simultaneously measure dependencies and regulations among genes on a genome-wide scale and provide us genetic information. An important objective of the functional genomics is to understand the controlling mechanism of the expression of these genes and encode the knowledge into gene regulatory network (GRN). To achieve this, computational and statistical algorithms are especially needed. Inference of GRN is a very challenging task for computational biologists because the degree of freedom of the parameters is redundant. Various computational approaches have been proposed for modeling gene regulatory networks, such as Boolean network, differential equations and Bayesian network. There is no so called golden method which can generally give us the best performance for any data set. The research goal is to improve inference accuracy and reduce computational complexity. One of the problems in reconstructing GRN is how to deal with the high dimensionality and short time course gene expression data. In this work, some existing inference algorithms are compared and the limitations lie in that they either suffer from low inference accuracy or computational complexity. To overcome such difficulties, a new approach based on state space model and Expectation-Maximization (EM) algorithms is proposed to model the dynamic system of gene regulation and infer gene regulatory networks. In our model, GRN is represented by a state space model that incorporates noises and has the ability to capture more various biological aspects, such as hidden or missing variables. An EM algorithm is used to estimate the parameters based on the given state space functions and the gene interaction matrix is derived by decomposing the observation matrix using singular value decomposition, and then it is used to infer GRN. The new model is validated using synthetic data sets before applying it to real biological data sets. The results reveal that the developed model can infer the gene regulatory networks from large scale gene expression data and significantly reduce the computational time complexity without losing much inference accuracy compared to dynamic Bayesian network

    Integrating Quantitative Knowledge into a Qualitative Gene Regulatory Network

    Get PDF
    Despite recent improvements in molecular techniques, biological knowledge remains incomplete. Any theorizing about living systems is therefore necessarily based on the use of heterogeneous and partial information. Much current research has focused successfully on the qualitative behaviors of macromolecular networks. Nonetheless, it is not capable of taking into account available quantitative information such as time-series protein concentration variations. The present work proposes a probabilistic modeling framework that integrates both kinds of information. Average case analysis methods are used in combination with Markov chains to link qualitative information about transcriptional regulations to quantitative information about protein concentrations. The approach is illustrated by modeling the carbon starvation response in Escherichia coli. It accurately predicts the quantitative time-series evolution of several protein concentrations using only knowledge of discrete gene interactions and a small number of quantitative observations on a single protein concentration. From this, the modeling technique also derives a ranking of interactions with respect to their importance during the experiment considered. Such a classification is confirmed by the literature. Therefore, our method is principally novel in that it allows (i) a hybrid model that integrates both qualitative discrete model and quantities to be built, even using a small amount of quantitative information, (ii) new quantitative predictions to be derived, (iii) the robustness and relevance of interactions with respect to phenotypic criteria to be precisely quantified, and (iv) the key features of the model to be extracted that can be used as a guidance to design future experiments

    Data- and knowledge-based modeling of gene regulatory networks: an update

    Get PDF
    Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions

    Microarray Data Mining and Gene Regulatory Network Analysis

    Get PDF
    The novel molecular biological technology, microarray, makes it feasible to obtain quantitative measurements of expression of thousands of genes present in a biological sample simultaneously. Genome-wide expression data generated from this technology are promising to uncover the implicit, previously unknown biological knowledge. In this study, several problems about microarray data mining techniques were investigated, including feature(gene) selection, classifier genes identification, generation of reference genetic interaction network for non-model organisms and gene regulatory network reconstruction using time-series gene expression data. The limitations of most of the existing computational models employed to infer gene regulatory network lie in that they either suffer from low accuracy or computational complexity. To overcome such limitations, the following strategies were proposed to integrate bioinformatics data mining techniques with existing GRN inference algorithms, which enables the discovery of novel biological knowledge. An integrated statistical and machine learning (ISML) pipeline was developed for feature selection and classifier genes identification to solve the challenges of the curse of dimensionality problem as well as the huge search space. Using the selected classifier genes as seeds, a scale-up technique is applied to search through major databases of genetic interaction networks, metabolic pathways, etc. By curating relevant genes and blasting genomic sequences of non-model organisms against well-studied genetic model organisms, a reference gene regulatory network for less-studied organisms was built and used both as prior knowledge and model validation for GRN reconstructions. Networks of gene interactions were inferred using a Dynamic Bayesian Network (DBN) approach and were analyzed for elucidating the dynamics caused by perturbations. Our proposed pipelines were applied to investigate molecular mechanisms for chemical-induced reversible neurotoxicity

    Gene Regulatory Network Reconstruction Using Dynamic Bayesian Networks

    Get PDF
    High-content technologies such as DNA microarrays can provide a system-scale overview of how genes interact with each other in a network context. Various mathematical methods and computational approaches have been proposed to reconstruct GRNs, including Boolean networks, information theory, differential equations and Bayesian networks. GRN reconstruction faces huge intrinsic challenges on both experimental and theoretical fronts, because the inputs and outputs of the molecular processes are unclear and the underlying principles are unknown or too complex. In this work, we focused on improving the accuracy and speed of GRN reconstruction with Dynamic Bayesian based method. A commonly used structure-learning algorithm is based on REVEAL (Reverse Engineering Algorithm). However, this method has some limitations when it is used for reconstructing GRNs. For instance, the two-stage temporal Bayes network (2TBN) cannot be well recovered by application of REVEAL; it has low accuracy and speed for high dimensionality networks that has above a hundred nodes; and it even cannot accomplish the task of reconstructing a network with 400 nodes. We implemented an algorithm for DBN structure learning with Friedman\u27s score function to replace REVEAL, and tested it on reconstruction of both synthetic networks and real yeast networks and compared it with REVEAL in the absence or presence of preprocessed network generated by Zou and Conzen\u27s algorithm. The new score metric improved the precision and recall of GRN reconstruction. Networks of gene interactions were reconstructed using a Dynamic Bayesian Network (DBN) approach and were analyzed to identify the mechanism of chemical-induced reversible neurotoxicity through reconstruction of gene regulatory networks in earthworms with tools curating relevant genes from non-model organism\u27s pathway to model organism pathway

    Modeling gene expression regulatory networks with the sparse vector autoregressive model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems.</p> <p>Results</p> <p>We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets.</p> <p>Conclusion</p> <p>The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any <it>a priori </it>information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.</p
    • …
    corecore