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ABSTRACT 

Gene regulatory network inference is a systems biology approach which predicts interactions between genes 
with the help of high-throughput data. In this review, we present current and updated network inference methods 
focusing on novel techniques for data acquisition, network inference assessment, network inference for interact-
ing species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs 
derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, 
we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed 
network inference and review advances in the evaluation of network inference methods by crowdsourcing. Final-
ly, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference 
of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.  
 
Keywords: gene regulatory networks, modeling, reverse engineering, network inference, prior knowledge, 
RNA-Seq 
 
 
 

INTRODUCTION 

One characteristic of life is that living 
organisms constantly adapt to environmental 
changes (Koshland, 2002). Higher organisms 
may use their brain for long term reactions or 
reflexes as nearly instant reactions in re-
sponse to stimuli. On a molecular basis, mi-
croorganisms as well as cells and tissues of 
higher organisms sense environmental 
changes (Groisman and Mouslim, 2006). 
This information is then transmitted into the 
cells and processed which finally leads to a 
reaction of the cells. Sensing, transmitting 
and processing of the information is per-

formed by complex molecular interactions 
(Miller and Bassler, 2001). While our 
knowledge of these interactions is still lim-
ited, it is obvious that errors in information 
processing may lead to diseases (Follo et al., 
2015; Compston and Coles, 2008; Wang et 
al., 2012; Glocker et al., 2006). 

Systems biology is a research area which 
aims to understand living systems as a 
whole, instead of focusing on single biologi-
cal entities (Ideker et al., 2001). Systems bio-
logy is often (but not exclusively) connected 
with omics. Here, researchers characterize 
and/or quantify (nearly) all biological mole-
cules of a specific type which allows us to 
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study the complete picture of the system. For 
example, transcriptomics measures the 
abundance of all transcripts in a sample, 
while proteomics measures the abundance of 
all proteins. One way of describing biologi-
cal systems are networks, i.e. graphical re-
presentations, where the nodes represent ob-
jects of interest and edges represent relations 
between these objects (Le Novère et al., 
2009). Network models do not only help to 
explain, understand and describe the func-
tioning of a cell (Barabási and Oltvai, 2004), 
but also to understand disease progression 
and to discover drugs (Butcher et al., 2004). 
In gene regulatory networks (GRNs) nodes 
are genes and edges represent interactions 
between genes, such as activation or repres-
sion. Genes do not necessarily interact di-
rectly with each other. In fact, the most di-
rect interaction is a gene coding for a tran-
scription factor (TF) which binds to the pro-
moter region of another gene and regulates 
its expression. A gene can also influence the 
expression of another gene more indirectly, 
via signaling cascades or whole pathways. 
For sake of simplicity these influences are 
also described with the word ‘interaction’. 

As the underlying structure of many net-
works is not (completely) known, one focus 
of systems biology is uncovering the com-
plex and dynamic interactions between genes 
(Hecker et al., 2009a). The research area 
called 'network inference (NI)' aims at the 
deduction of network structures utilizing 
high-throughput data with help of reverse 
engineering techniques. In most cases tran-
scriptome data is used. NI consists of three 
parts: the identification of potential regula-
tors, the prediction of target genes and the 
inference of the mode of interaction (e.g. ac-
tivation or repression). The number of genes 
may vary from only two genes to full-
genomic networks. A general problem in NI 
is the high dimensionality (thousands of 
genes) versus the limited number (tens to 
hundreds) of samples. Thus, GRN inference 
is underdetermined (‘curse of dimensionali-
ty’) implying that there could be many 
equivalent (indistinguishable) solutions 

(networks). Motivated by this fundamental 
problem, there exists a number of NI ap-
proaches, which are compared in outstanding 
review articles (de Jong, 2002; van Someren 
et al., 2002; Gardner and Faith, 2005; Bansal 
et al., 2007, Ay and Arnosti, 2011; Wu and 
Chan, 2012; Emmert-Streib et al., 2014). In 
2009, our group thoroughly reviewed NI ap-
proaches with a focus on data integration 
(Hecker et al., 2009a). In the review on hand, 
we present an update of the former review 
with a special focus on novel techniques for 
data acquisition, NI assessment and NI for 
interacting species. 

In what follows, we give an overview 
about the main NI approaches focusing on 
novel and updated methods introduced since 
2009. During that time, the NI community 
has emphasized the inference of large-scale 
or even full-genomic networks, the integra-
tion of additional data and the combination 
of NI methods. The integration of data from 
various (omics) experiments and knowledge 
databases into one general model is an im-
portant challenge in systems biology 
(Gomez-Cabrero et al., 2014). In the field of 
NI, additional data is often integrated with 
help of prior-knowledge, i.e. predicted or 
known interactions based on additional data 
or knowledge sources. Here, we give an 
overview of commonly used prior-know-
ledge sources.  

The advance of Next-Generation-
Sequencing of cDNAs derived from RNA 
samples (RNA-Seq) allows to study tran-
scriptomes with a so far unreachable depth 
and quality (Morin et al., 2008). On the other 
hand, data pre-processing poses new chal-
lenges. Here, we describe a work-flow com-
bining RNA-Seq data analysis with NI (Fig-
ure 1). In particular, the advance of RNA-
Seq allows researchers to perform transcrip-
tome studies of interacting (micro-) organ-
isms using the same technology without hav-
ing to separate RNA samples (‘dual RNA-
Seq’; Westermann et al., 2012). This allows 
to predict GRNs of organisms which interact 
with each other. Special interest is in patho-



EXCLI Journal 2015;14:346-378 – ISSN 1611-2156 
Received: January 29, 2015, accepted: February 10, 2015, published: March 02, 2015 

 

 

348 

gen-host interaction networks which we pre-
sent in this review. 

A particular challenge is the evaluation 
of predicted networks. Advances in the eval-
uation of NI methods by crowdsourcing 
within the DREAM initiative are described 
in this review.  
 

GENE REGULATORY NETWORK  
INFERENCE  

NI aims to determine the structure and 
parameters of GRNs. Due to various sources 
of perturbation, biological systems adapt 
gene expression and their functionality. The 
main biological processes and components 
as well as a model network representation 

are shown in Figure 2. To fulfill complex 
tasks and functionalities of living systems 
and to adapt to various perturbations gene 
expression changes with respect to their 
amount (concentration, activity) and influ-
ences the expression of other genes. The 
terminus ‘Gene Regulatory Network’ (GRN) 
refers to components of transcriptional regu-
lation, i.e. target genes and TF genes, specif-
ic products of gene expression allowing for a 
complex regulatory response. Understanding 
of GRNs means understanding of underlying 
mechanisms and the potential for targeted 
manipulation of biological systems (Figure 
2).

 

 
Figure 1: Workflow of GRN inference. Systems Biology Cycle of wet lab (experiment) and dry lab 
work: Experiments lead to RNA-Seq data, which need to be preprocessed and features have to be 
selected (more detailed steps are shown in grey boxes). A GRN is inferred for selected features. Pre-
dicted interactions are validated leading to more knowledge and new hypotheses. Both analysis of 
experimental data (data preprocessing and feature selection) and modeling (network inference) is 
supported by prior knowledge. 
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Figure 2: Regulated gene expression and model network representation. External stimuli (ligands 
binding to receptors on the cell’s surface) may trigger an alteration in gene expression. Via signal 
transduction, the most important regulators, the transcription factors, are influenced. They regulate the 
transcription of DNA to mRNA, which subsequently is translated to proteins. Those regulated biologi-
cal processes can be transformed to a network model (inference), whose main nodes represent genes 
or their products (typically on the level of regulated transcription). 
 
 
 

GRNs can be described by mathematical 
network models built up of nodes describing 
the components of gene expression, 
i.e. genes or their products, and edges, 
i.e. connections between nodes denoting an 
interacting effect. Nodes and edges together 
form a network that is primarily defined by 
its structure, which means existing or non-
existing connections between nodes. One 
important property of GRNs is the sparse-
ness, which refers to the fact that in biologi-
cal networks much less edges occur than 
theoretically possible, i.e. in a fully connect-
ed network (Leclerc, 2008). One additional 
specific property is the scale-freeness of 
GRNs. That means the number of edges per 
gene follows a power law distribution: Many 
nodes with a low number of connections and 
few nodes with a high number of connec-
tions (‘hubs’) exist. 

The interactions presented as edges in the 
graphical presentation of GRNs (Figure 2) 
may exhibit different strengths of interac-
tions or different molecular mechanisms. For 
describing those properties mathematical 

models are needed. Nonzero parameters of 
these models are represented in the graph. 
By identifying the nonzero parameters of a 
model, NI reveals the structure of the sys-
tem. Additionally, parameter optimization 
methods are applied to estimate the exact 
value of the parameters which can be inter-
preted as the strength of the interaction. To 
infer underlying GRNs of a biological sys-
tem, NI methods use data measuring the 
gene expression intensity and/or the abun-
dance/activity of proteins. In most cases 
transcriptome data is used. Advanced meth-
ods need to know the variance of a meas-
urement (via replicates) and temporal resolu-
tion. Different assumptions on underlying 
processes, prior knowledge about molecular 
mechanisms, available mathematical meth-
ods and many more constraints led to the de-
velopment of different NI methods. Most of 
the presented NI methods consider transcrip-
tional regulation, measure mRNA levels 
which shall reflect the major behavior of 
regulatory processes and not the mechanisms 
but only the existence of interactions is the 
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focus of NI, i.e. relatively large data sets are 
used for an automatic top-down modeling. 
 

RNA-SEQ DATA ANALYSIS FOR 
GENE REGULATORY NETWORK  

INFERENCE 

Data requirements 
NI often relies on transcriptome data. 

Common technologies for high throughput 
transcriptome studies are microarrays and 
RNA-Seq where microarrays have been fre-
quently used. Advantages and disadvantages 
regarding their applications, costs and time 
consumption, sensitivity and dynamic range 
of detection, challenges in data analysis and 
data storage have been outlined in various 
publications (Mantione et al., 2014; Malone 
and Oliver, 2011; Wang et al., 2009). In gen-
eral, RNA-Seq allows researchers to study 
transcriptomes with a so far unreachable 
depth and quality (Morin et al., 2008). Fur-
thermore, RNA-Seq allows to study the tran-
scriptome of non-model organisms, since the 
expensive design and spotting of arrays is 
not necessary. In fact, RNA-Seq may be per-
formed even without having the genome se-
quence at hand (CUFFLINKS (Trapnell et 
al., 2012), TRINITY (Haas et al., 2013). Ob-
viously, in future there will be more NI ap-
proaches based on RNA-Seq data. For this 
reason, we summaries major steps in RNA-
Seq based network inference here. 

When studying interacting species it is of 
interest to monitor the transcriptome of all 
present species. Microarrays can be utilized, 
when it is known which species interact and 
microarrays are available for these species. 
These limitations do not apply for ‘dual 
RNA-Seq’, where RNA samples of two (all) 
species are sequenced together and tran-
scripts are separated in silico. This also pre-
vents a possible transcriptional change 
caused by the experimental separation of 
species. In the following we summarize 
RNA-Seq data properties, RNA-Seq plat-
forms that open new opportunities in GRN 
inference as well as ‘dual RNA-Seq’. 

RNA-Seq is a powerful technology for 
transcriptome profiling, but the understand-

ing of data properties is incomplete and 
standard protocols for data generation and 
analysis are lacking. Eukaryotic total RNA 
consists of ~80 % rRNA, ~15 % tRNA and 
only a small portion of mRNA (Lodish et al., 
2000). To increase the informative output of 
an RNA-Seq study, samples can be depleted 
for rRNA or enriched for RNA species of 
interest (e.g. polyadenylated RNAs) (Sims et 
al., 2014). Nevertheless, this results in a loss 
of information and has to be considered with 
caution especially when dual RNA-Seq is 
carried out. To mention a single example, 
let's assume one wants to study the transcrip-
tome of human cells infected with bacteria. 
In bacteria most mRNAs are not polyadenyl-
ated, only when they are tagged for degrada-
tion whereas in human cells mRNAs are 
polyadenylated. Consequently, an enrich-
ment for polyadenylated RNAs would result 
in a misleading RNA sample (Westermann et 
al., 2012). Furthermore, Lahens et al. (2014) 
concluded that rRNA depletion introduces a 
bias in coverage.  

Given a fixed budget, a trade-off between 
the number of sequenced reads and the num-
ber of replicates is needed. Based on mRNA 
enriched samples of the human cell line 
MCF7, Liu et al. (2013) found that lower 
sequencing depth, but a higher number of 
biological replicates increases the power and 
accuracy to detect differentially expressed 
genes. Sequencing a number of reads result-
ing in more than 10 million mapped reads 
led to a significantly smaller improvement 
than generating more replicates instead. 
Nevertheless, the sequencing depth has to be 
determined taking the research question into 
account, because an accurate identification 
of lowly expressed transcripts requires a suf-
ficient amount of reads (Sims et al., 2014).  

Another challenge arises from the nature 
of the human genome – approximately 50 % 
is constituted of repetitive elements. Typical-
ly, only 70-80 % of short reads map uniquely 
to the human genome depending on read 
length and availability of paired-end reads. 
Methods for assigning ambiguous reads have 



EXCLI Journal 2015;14:346-378 – ISSN 1611-2156 
Received: January 29, 2015, accepted: February 10, 2015, published: March 02, 2015 

 

 

351 

been briefly reviewed by Treangen and Salz-
berg (2011).  

Recently, the question whether RNA-Seq 
is reproducible was addressed. The 
GEUVADIS consortium (Genetic European 
Variation in Disease, a European Medical 
Sequencing Consortium) found small tech-
nical variation in samples sequenced with 
Illumina HiSeq2000 using the exact same 
protocols (‘t Hoen et al., 2013). Within the 
SEQC/MACQ-III (Sequencing Quality Con-
trol) project different sequencing platforms 
across multiple laboratory sites and analysis 
pipelines were examined for the detection of 
differential expression. They found repro-
ducibility when filters for p-value, fold-
change and expression level were applied 
(SEQC/MAQC-III Consortium 2014). 

Multiple sequencing platforms have been 
developed over 10 years of next-generation 
sequencing research. All second generation 
platforms, i.e. 454, SOLiD and Illumina, are 
light-based capturing a fluorescence signal. 
New approaches, termed ‘third generation’ 
are emerging such as the light-based PacBio, 
pH-based Ion Torrent and current-based Ox-
ford Nanopore. A good overview over sec-
ond and third generation sequencing plat-
forms is outlined in Liu et al. (2013). One 
advantage of third generation platforms are 
steadily increasing read lengths. Applying 
the PacBio system, read lengths > 1400 bp 
(Mosher et al., 2014), were reported recently. 
A first paper about the application of the Ox-
ford Nanopore sequencer reports average 
read lengths of 5 kb, but concludes that a 
dramatic decrease of error rates is required 
(Mikheyev and Tin, 2014). Increasing read 
lengths of third generation technologies will 
help to overcome problems such as ambigu-
ous mapping, but second generation plat-
forms are still dominating in application. 
 
RNA-Seq data trimming 

Typically, the first step of RNA-Seq data 
analysis (Figure 1) is clipping of sequencing 
adapters and removing low quality bases 
(‘trimming’), followed by read mapping and 
counting. Recently, nine trimming algo-

rithms were evaluated on Illumina RNA-Seq 
data sets (Del Fabbro et al., 2013). They 
found comparable performances of all tools 
(ConDeTri, Cutadapt, ERNE-FILTER, 
FASTX, PRINSEQ, Sickle, SolexaQA, So-
lexaQA-BWA, Trimmomatic) applying them 
to a high quality data set of Arabidopsis tha-
liana. Given a lower quality data set of Ho-
mo sapiens, SolexaQA performed best in 
terms of keeping the most reads and aligning 
a high percentage of them. In comparison, 
other tools such as FASTX did not show 
good performance. Some trimming tools 
have been developed for specific platforms, 
such as Trimmomatic (Bolger et al., 2014) 
for Illumina data. Besides, trimming tools 
include different properties regarding e.g. 
adapter removal or application to paired-end 
reads (Jiang et al., 2014). 
 
Read mapping 

A very important preprocessing step 
which has great influence at down-stream 
analysis is the alignment of reads to the ref-
erence genome (mapping). In a recent re-
view, ten alignment tools were evaluated re-
garding multiple properties such as align-
ment yield, spliced alignments, mismatches 
and accuracy (Engström et al., 2013). The 
aligners MapSplice, GSNAP, GSTRUCT 
and STAR were evaluated as favorable tools, 
even though the latter three reported many 
false exon junctions. It was concluded that 
TopHat2 is an effective tool, although only 
84 % of reads were aligned in comparison to 
90 % of reads aligned with MapSplice. 
Alignment tools like TopHat-Fusion, Fu-
sionSeq or SplitSeek have been developed to 
align reads generated from cancer cells, for 
which fusion genes caused by rearrangement 
events (e.g. chromosome breakage and re-
joining) are common (Treangen and Salz-
berg, 2011). When analyzing dual RNA-Seq 
data, the genomic landscape of interacting 
species has to be taken into account to de-
termine alignment tool parameters. For ex-
ample, potential host organisms such as hu-
man and mouse have a high percentage of 
intron-containing genes. On the other hand, 
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the percentage of intron-containing genes in 
pathogenic fungi varies a lot, e.g. Candida 
glabrata has ~1.5 % and Cryptococcus 
neoformans has ~97 % intronic genes (Iva-
shchenko et al., 2009), whereas bacteria do 
not have introns at all.  
 
Counting 

After the mapping step, the number of 
reads assigned to a feature (e.g. exon, tran-
script, gene) has to be counted to estimate 
the expression level. This data needs to be 
corrected for biases, but standard approaches 
usually depend on the feature length and the 
non-uniform distribution of reads to features. 
The new counting approach maxcounts is 
based on the maximum of the per-base 
counts and claims to reduce biases in RNA-
Seq data (Finotello et al., 2014). So far, 
maxcounts is only applicable to exon-level. 
Usually, counting on transcript- or gene-
level is of interest for GRN inference for 
which the very fast featureCounts tool can be 
applied (Liao et al., 2013). 
 
Differential expression analysis 

The main issue of small- and medium-
scale GRN inference is the feature selection, 
i.e. the identification of the ‘most important’ 
genes or proteins of interest for a certain sys-
tem or process. Identification of differential-
ly expressed genes is an important step for 
feature selection, i.e. to narrow down the 
number of network nodes.  

For RNA-Seq data, various statistical 
methods have been proposed and recently 
the performance of the common tools Cuff-
diff2, DESeq and edgeR were compared by 
Zhang et al. (2014). It was recommended to 
apply DESeq and edgeR preferably to Cuff-
diff2, especially when sequencing depth is 
low (< 10M). The more conservative DESeq 
detects less differentially expressed genes 
and shows a lower false positive rate than 
edgeR. On the other hand, edgeR is more 
liberal and tolerates unbalanced library sizes 
and low sequencing depth. Soneson and De-
lorenzi (2013) evaluated 11 differential ex-
pression analysis tools and found similar re-

sults regarding DESeq and edgeR. Further-
more, none of the 11 tools performed best 
under all circumstances and they provide a 
short overview about the main finding for 
every tool. Last year, Love et al. (2014) re-
leased the updated DESeq2 and compared 
DESeq2 to six other differential expression 
analysis tool including DESeq. They found 
that all algorithms control the false positive 
rate, whereas DESeq2 is less conservative 
than DESeq and Cuffdiff2 and more con-
servative than edgeR, voom and SAMseq. 
 
Gene enrichment analysis  

Another option for feature selection is 
Gene enrichment analysis. Here, genes are 
grouped based on their function or biological 
process. The user may identify processes 
mostly enriched with DEGs and focuses NI 
only on those genes. In 2009, Huang et al. 
(2009) listed 68 enrichment tools, classified 
them in three group and highlighted proper-
ties and limitations of each group. After-
wards, more enrichment tools have been 
published, e.g. KOBAS (Xie et al., 2011). 
KOBAS 2.0 incorporates knowledge across 
1,327 species from 5 pathway databases 
(KEGG PATHWAY, PID, BioCyc, Reac-
tome and Panther) and 5 human disease da-
tabases (OMIM, KEGG DISEASE, FunDO, 
GAD and NHGRI GWAS Catalog). For oth-
er species not or only weakly represented in 
these databases, there are more specific 
tools. For instance, the online resource and 
web tool FungiFun 2.0 was developed for 
functional analysis of lists of fungal genes 
and proteins (Priebe et al., 2015). Most en-
richment tools assume, that all genes are 
equally likely to be selected as differentially 
expressed. Contradictory to this assumption 
Oshlack and Wakefield (2009) found that 
long (or highly expressed) transcripts are 
more likely to be detected as differentially 
expressed, which also affects enrichment 
analysis. GOseq is one of the tools that inte-
grates a correction for this selection bias 
(Young et al., 2010; Rahmatallah et al., 
2014). 
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BASIC INFERENCE METHODS 

After summarizing how to gain raw data 
for NI, this chapter gives an overview of 
basic NI approaches. Please note, that most 
approaches do not only work on transcrip-
tome data but might also be applied on other 
(omics) data.  

Inference algorithms can be classified by 
their major properties (Table 1). These are 
(i) the underlying method, (ii) the result, 
(iii) the directionality of interactions, (iv) the 
consideration of dynamics and (v) the inte-
gration of prior knowledge (PK), i.e. putative 
or known interactions based on additional 
data sources such as literature.  

(i) The underlying method or framework 
describes the key aspect that characterizes 
the inference approach and can be: 
(a) Boolean modeling, (b) probabilistic mod-
eling, (c) Information theory-based methods 
(Mutual Information), (d) (linear) regression 
and (e) (complex) optimization. These main 
methods will be described in the subsequent 
paragraphs.  

(ii) The result strongly depends on the se-
lected method and can for example be a 
Bayesian network, a correlation network, a 
graphical model or a mathematical model 
consisting of algebraic or differential equa-
tions. 

(iii) The model network graph may con-
tain directed or undirected edges, i.e. in the 
former case cause and effect are clearly dis-
tinguished while in the latter case there is 
rather a general relationship.  

(iv) Whether the resulting model is dy-
namic, i.e. the state of the network at a cer-
tain time point also depends on its state at 
former time points) or static mainly depends 
on the consideration of time series or steady 
state data.  

(v) The integration of PK has been 
shown to improve the reliability of predicted 
novel interactions (Hecker et al., 2009a; 
Greenfield et al., 2013; Isci et al., 2014; Ha-
segawa et al., 2014; Olsen et al., 2014). 
Since reliable information about the experi-
mentally verified interaction is increasing, a 
NI methods integrate PK in different ways 

most nowadays (see below section ‘Integra-
tion of prior knowledge’). One major differ-
ence is whether PK is softly integrated, i.e. 
the NI method may neglect an interaction 
within the list of PK if it contradicts the 
measured data and model assumptions. 

Further properties of NI methods are the 
(vi) non-linearity or linearity, (vii) the ex-
plicit consideration of stimulation, (vii) the 
consideration of stochastics and application 
of probabilities, (viii) the network size, (ix) 
the number of required data and (x) the 
availability as a software tool.  

(vi) Mathematical models may be linear 
or non-linear depending on (a) how detailed 
and realistic molecular mechanisms are de-
scribed in the model and (b) whether only 
the behavior in the neighborhood of a per-
turbed (steady-state) operating point is con-
sidered.  

(vii) Although the change in gene ex-
pression is caused by one or more (external) 
stimuli only few methods do consider them 
explicitly.  

(viii) The application of probabilities is 
based on the information that repeated meas-
urements have the property to follow certain 
distributions originating from stochastic pro-
cesses of the biological and/or technical sys-
tem (measurement method). Finally, the 
network model size strongly correlates with 
the available data and assumptions that con-
dense that data, e.g. by clustering or focusing 
on certain pathways. 

The basic methods will be described in 
the following. 
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Table 1: GRN inference methods 

Algorithm Reference Main Methods Main Result Dir. Dyn. PK

REVEAL Liang et al., 1998 MI+BM Boolean Network + + - 

 Akutsu et al., 1999 BM Boolean Network + + - 

 Martin et al., 2007 BM Boolean Network + + - 

 Eduati et al., 2010 BM Boolean Network + + - 

BNT Murphy and Mian, 1999 PM Bayesian Network + + + 

BANJO Hartemink et al., 2001 PM Bayesian Network + + + 

DREM Ernst et al., 2007 PM Regulatory Graph - + + 

ebdbNet Rau et al., 2010 PM Bayesian Network + + - 

BMA Yeung et al., 2011 PM Bayesian Network + - + 

iBMA Lo et al., 2012 PM Bayesian Network + - + 

ScanBMA Young et al., 2014 PM Bayesian Network + - + 

GeneNet Schäfer et al., 2006 PC GGM +/- + - 

RELNET Butte and Kohane, 2000 MI Correlation Network - - - 

ARACNE Basso et al., 2005 MI Correlation Network - - + 

TD-ARACNE Zoppoli et al., 2010 MI Directed Graph + + + 

MRNET Meyer et al., 2007 MI Correlation Network - - - 

CLR Faith et al., 2007 MI Correlation Network - - - 

tlCLR Madar et al., 2010 MI Correlation Network + + - 

C3NET Altay & Emmert-Streib, 2010 MI Correlation Network - - - 

 Küffner et al., 2012 ANOVA Correlation network - - - 

NIR Gardner et al., 2003 Regression ODE + - + 

MNI di Bernardo et al., 2005 Regression ODE + - - 

LARS-EN Zou and Hastie, 2005 Regression AE + - - 

 Gustafsson et al., 2005 Regression ODE + + - 

TSNI Bansal et al., 2006 Regression ODE + + - 

GENLAB van Someren et al., 2006 Regression ODE + + - 

Inferelator Bonneau et al., 2006 Regression ODE + + - 

TlCLR+Inferelator Greenfield et al., 2010 MI+Regression Directed Graph + + - 

Inferelator+MEN+BBSR Greenfield et al., 2013 Regression Directed Graph + + + 

TILAR Hecker et al., 2009b Regression AE + - + 

exTILAR Vlaic et al., 2012 Regression ODE + + + 

TIGRESS Haury et al., 2012 Regression AE + - - 

 Kulkarni et al., 2012 Regression ODE + - + 

gp4grn Äijö & Lähdesmäki, 2009 PM+Regression Directed Graph + + - 

 Menéndez et al., 2010 PM+Regression Undirected Graph - - - 

 Holter et al., 2001 SVD ODE + + - 

 Yeung et al., 2002 SVD ODE + + - 

GNR Wang et al., 2006 SVD ODE + + - 

NetGenerator Guthke et al., 2005 Optimisation ODE + + + 

JCell Spieth et al., 2006 Optimisation ODE + + + 

 Nelander et al., 2008 Optimisation ODE + + - 

DPLSQ Nakajima et al., 2012 Optimisation ODE + + + 

 Hasegawa et al., 2014 Optimisation ODE + + + 

 Yip et al., 2010 PM+Opt. Directed Graph + + - 
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Table 1 (cont.): GRN inference methods 

Algorithm Reference Main Methods Main Result Dir. Dyn. PK 

NIMOO Gupta et al., 2011 MI+Opt. ODE + + + 

 Pinna et al., 2010 GA Directed Graph + - - 

 Flassig et al., 2013 GA Directed Graph + - + 

GENIE3 Huynh-Thu et al., 2010 TBEM Directed Graph + - + 

Abbreviations: TD-ARACNE – TimeDelay-ARACNE; Main categories: MI – Mutual Information; BM – Boolean Modelling; PM – 
Probabilistic Modelling; PC – Partial Correlation; SVD – Singular Value Decomposition; GA – Graph Analysis; TBEM – Tree-
based Ensemble Method; Main results: GGM – Graphical Gaussian Model; ODE – Ordinary Differential Equations; AE – 
Algebraic Equations; Opt. – Optimisation; Dir – Directed graph; Dyn. – Dynamic model; PK – Prior knowledge integration 

 
 
 
Boolean Modeling 

At each node (gene) of the dynamic net-
works resulting from Boolean modeling, the 
discretized input values are transformed to 
an output value by Boolean rules (operators) 
of which AND, OR and NOT are the sim-
plest and most widely used ones. Boolean 
networks were first introduced by Kauffman 
(1969), but have later been used as models of 
GRNs (Akutsu et al., 1999; Martin et al., 
2007; Eduati et al., 2010), in particular by 
the REVEAL algorithm (Liang et al., 1998), 
a method combining Boolean modeling and 
information theory elements (see below). 
The advantage of Boolean networks is their 
simplicity while drawbacks are the necessity 
of discretizing the continuous expression 
values and the limited coverage of real 
mechanisms given by the Boolean operators. 

 
Probabilistic Modeling / Bayesian Networks 

Probabilistic modeling is not restricted to 
infer GRNs, but is a common class of algo-
rithms in that field. Most popular, probabilis-
tic modeling infers Bayesian Networks (BN) 
in which the expression of each gene is con-
sidered to be a random variable following 
probability distributions. This major aspect 
also shows one of the disadvantages: the 
need for many data to determine the condi-
tional probabilities. Major advantages are 
their ability to find hidden variables and the 
common and easy integration of prior 
knowledge. BNs are typically displayed as 
directed graphs that can be either static or 
dynamic. The latter does not follow the con-
cept of feedback but describes the propaga-

tion of information from one time step to the 
next. There exist major toolboxes and pack-
ages like BNT (Bayes Net Toolbox) (Mur-
phy and Mian, 1999), BANJO (Hartemink et 
al., 2001), ebdbNet (Rau et al., 2010) and the 
family of BMA methods (Bayesian Model 
Averaging) (Yeung et al., 2011; Lo et al., 
2012; Young et al., 2014). Methods of prob-
abilistic modeling are also described by 
Friedman et al. (2000), Perrin et al. (2003), 
Markowetz et al. (2005) and Ernst et al. 
(2007). 
 
Mutual Information / Information Theory 
Models 

Information theory was applied to devel-
op inference methods for GRN by using mu-
tual information. This term measures the sta-
tistical dependency between the (discrete) 
states of two random variables, which repre-
sent the expression intensities of two genes. 
Inference methods then generate correlation-
like undirected graphs containing this de-
pendency information. Several algorithms 
have been developed: RELNET (Butte and 
Kohane, 2000), ARACNE (Basso et al., 
2005), MRNET (Meyer et al., 2007), CLR 
(Faith et al., 2007) and C3NET (Altay and 
Emmert-Streib, 2010). Typically, those 
methods are restricted to static networks, but 
TimeDelay- ARACNE (Zoppoli et al., 2010) 
or tlCLR (Madar et al., 2010) are able to 
generate directed graphs also considering 
time-dependent information. 
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Linear Models and Regression 
Mathematical models can be dynamic or 

steady state models depending on whether 
the problem formulation and solution is set 
up of algebraic or differential (difference) 
equations. A linear dynamic model can be 
written as  





M

k
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N

j
jjii ubxax

1
,

1
,  [1] 

that is the change (temporal deviation) of the 
ith gene expression intensity xi. The deriva-
tive ix  depends on the weighted sum of the 

expression intensity of all N genes (weights: 
ai,j, total number of genes: N) as well as po-
tentially the weighted sum of external stimuli 
or inputs uk (weights: bi,k). The ordinary dif-

ferential equations (ODE) [1] of all genes 
then form the network model. Possible vari-
ants of this description are the usage of dif-
ference equations (discrete time model) or 
non-linear ODEs. If the experiments, the da-
ta and thus the model are assumed to be de-
scribed by steady states, the left hand side of 
eq. (1) is set to zero: 
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resulting in a static linear model. Sometimes 
this equation is re-formulated as 





N

ijj
jjii xax

,1
,ˆ  [3] 

that describes the steady state expression 
value of the ith gene as the weighted sum 
(correlation) of all other genes neglecting the 
explicit formulation of stimulation.  

Linear Regression is applied to linear 
models described by eqs. [1-3]. By means of 
ordinary least squares (OLS) the solution 
(estimation ̂  of parameters  ) of the model 

  Xy  

with the (normally distributed) error  can be 
determined by 

yXXX T1T )(ˆ   

However, to satisfy the sparseness crite-
rion and other properties of GRNs, methods 
were developed that mostly comprise the in-

troduction of constraints. Widely used are 
the ridge regression (Tikhonov regulariza-
tion), the LASSO (Least Absolute Shrinkage 
and Selection Operator) regression (Tibshi-
rani, 1996) and LARS (Least-Angle Regres-
sion) (Efron et al., 2004). Multiple inference 
algorithms adapted to the properties of 
GRNs have been developed, which mostly 
differ in their ability to infer dynamic mod-
els: NIR (Gardner et al., 2003), MNI (di 
Bernardo et al., 2005), LARS-EN (Zou and 
Hastie, 2005), TILAR (Hecker et al., 2009b), 
TIGRESS (Haury et al., 2012) and Kulkarni 
et al. (2012) (static models) as well as by 
Gustafsson et al. (2005), TSNI (Bansal et al., 
2006), GENLAB (van Someren et al., 2006), 
Inferelator (Bonneau et al., 2006) and ex-
TILAR (Vlaic et al., 2012) (dynamic mod-
els). 

 
Complex Optimization 

The methods of complex, mostly non-
linear optimization extend the linear view of 
the regression mentioned before. The models 
are described by non-linear effects, which 
are the most realistic mechanisms, but many 
data are needed and high computational ef-
fort can be expected. Therefore, some meth-
ods have a structure and a parameter optimi-
zation step. That class of methods can be fur-
ther divided into the ones that heuristically 
try to minimize complexity / computational 
effort, e.g. NetGenerator (Guthke et al., 
2005; Weber et al., 2013) and the ones that 
pose no assumptions on the model, use so-
phisticated optimization routines but need 
many measurement data, e.g. DPLSQ 
(Nakajima et al., 2012). Further optimiza-
tion-based methods were described in the 
works by Mjolsness et al. (2000), Spieth et 
al. (2006), Nelander et al. (2008) and Hase-
gawa et al. (2014). 

 
Further Methods 

There are further methods that often 
combine the above mentioned formalisms – 
motivated by the recent finding that no indi-
vidual method performs best for all NI tasks 
(see section ‘Assessment of reverse engineer-
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ing methods by crowdsourcing’). A method 
that combines Boolean and probabilistic 
modeling is PBN (Shmulevich et al., 2002). 
The algorithm GeneNet (Schäfer et al., 2006) 
is related to probabilistic modeling but uses 
partial correlation to infer a Gaussian Graph-
ical Model, a network graph containing both 
directed and undirected edges. Küffner et al. 
(2012) developed a method that uses analysis 
of variance (ANOVA) to generate non-linear 
correlation networks. A different approach to 
linear models as the ones mentioned above is 
the transformation into a model containing 
the most important components by Singular 
Value Decomposition (SVD) (Holter et al., 
2001; Yeung et al., 2002) and GRN (Wang 
et al., 2006). The GENIE3 algorithm 
(Huynh-Thu et al., 2010) infers the GRN by 
applying tree-based ensemble methods for 
the selection of predicted interactions for 
each gene. The algorithm TRaCE performs 
an ensemble inference of GRNs, which takes 
into account inherent uncertainty associated 
with discriminating direct and indirect gene 
regulations from steady-state data of KO ex-
periments (Ud-Dean and Gunawan, 2014). 

Probabilistic modeling and regression 
was combined in quite different ways by 
Äijö and Lähdesmäki (2009) as well as 
Menéndez et al. (2010). While the former 
developed an algorithm that models the regu-
latory functions by Gaussian processes, the 
latter method uses the so-called Graphical 
LASSO to infer undirected relationships. Yip 
et al. (2010) presented an approach that uses 
two different kinds of data (knockout and 
perturbation), applies probabilistic modeling 
and optimization on differential equations, 
respectively and finally combines the results 
to directed graphs. 

The Inferelator introduced by Bonneau et 
al. (2006), lately was combined with the in-
formation theory approach tlCLR to yield 
dynamic models (Greenfield et al., 2010). It 
was further combined with other methods to 
an iterative approach that allows the consid-
eration of prior knowledge and finally gener-
ates a consensus networks out of a network 
ensemble (Greenfield et al., 2013). Mutual 

information was also combined with an op-
timization-based approach resulting in the 
framework NIMOO (Gupta et al., 2011).  

While many of the previous methods in-
tegrate several results to a final network, 
some algorithms that could be termed Graph 
Analysis focus on the elimination of false 
interactions (pruning of the network). Pinna 
et al. (2010) used knockout data to establish 
direct cause-effect relationships and to re-
move unnecessary feed-forward edges. 
Flassig et al. (2013) proposed a framework 
that determines an initial graph from geno-
type and phenotype correlations and after-
wards identifies and removes indirect effects. 
 

GENOME-WIDE VERSUS SMALL- 
AND MEDIUM-SCALE NETWORKS 

Genome-wide networks 
Using a holistic approach – in contrast to 

the reductionist approach – systems biology 
claims a genome-wide perspective in life 
sciences exploiting so-called omics data that 
became measurable by high-throughput 
techniques within the last decades (Sauer et 
al., 2007). However, genome-wide GRN in-
ference is rarely performed because in gen-
eral the number of genes and proteins and 
possible interactions between them in a liv-
ing organism is much greater than the num-
ber of samples and measured data. There are 
three approaches to tackle this ‘curse of di-
mensionality’: 

First, the number of measured data can 
be moderately increased. However, increase 
of data by interpolation (D’haeseleer et al., 
2000) does not introduce additional infor-
mation from the real biological system which 
could result in overfitted models. Thus, inte-
gration of different data, e.g. from the ge-
nome (genotyping, SNPs, TF binding sites, 
epigenetics), transcriptome, proteome, and 
interactome (protein-protein, protein-DNA 
interaction), in particular data from high in-
formative experiments such as external stim-
ulation, knock-out and knock-down experi-
ments, is the best way to tackle the dimen-
sionality problem. On the other hand, gen-
eration of more data is of course more ex-
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pensive in different extent (Meyer et al., 
2014). In addition, integration of heteroge-
neous data is challenging and requires suita-
ble bioinformatics tools.  

Second, knowledge and hypotheses can 
be introduced to restrict the degree of free-
dom for GRN modeling. This may be gener-
ic or specific. A widely used general as-
sumption is the sparseness of GRNs. This 
reflects that not all genes and proteins are 
interconnected. The number of interactions is 
assumed to be small or only the most im-
portant (e.g. strongest) edges are inferred. 
Next, the number of interactions is reduced 
in such a manner that the complexity of the 
inferred network fits to the provided meas-
urements. However, it is known, that there 
are regulators (e.g. transcription factors, TFs) 
– often called hubs – that are interlinked with 
many target genes, i.e. with a high outde-
gree. Therefore, an enhancement to sparse-
ness is the assumption of scale-freeness 
(Barabási and Albert, 1999). The outdegree 
distribution of a scale-free GRN follows a 
decreasing power law, i.e. the fraction P(k) 
of nodes having k connections to other nodes 
is proportional to a power term with the basis 
k and a negative exponent – (for a large to-
tal number of nodes): 

P(k) ~ k- 
Sparseness and scale-freeness are widely 

used assumptions. Further evolutionary and 
functional constraints of large- and medium-
scale networks are network motifs, robust-
ness, modularity and evolvability (Marbach 
et al., 2009b). Apart from these generic as-
sumptions, prior knowledge is available and 
should be exploited from both, databases and 
literature. Of course, structured information 
provided in molecular biological databases is 
preferred over unstructured data in journals 
and books (see section ‘Integration of prior 
knowledge’).  

Currently, both approaches to tackle the 
problem of dimensionality problem, the ex-
tension of measured data and of prior 
knowledge, may be sufficient for model mi-
croorganisms such as the archaeon Halobac-
terium NRC-1 (Bonneau et al., 2006), the 

prokaryote Escherichia coli (Faith et al., 
2007; Kaleta et al., 2010) and the eukaryote 
Saccharomyces cerevisiae (Gustafsson and 
Hörnquist, 2010). For example inferring the 
genome-wide GRN for E. coli, Kaleta et al. 
discovered the regulation of the lipoate syn-
thase coding gene (lipA) by the pyruvate-
sensing pyruvate dehydrogenase repressor 
(PdhR). First, they used approximately 1.7 
million data points from 380 microarray ex-
periments (76 time series with 5 time points 
each; N = 4,345 genes). Next, as the number 
of elements ai,j of the full interaction N x N 
matrix is 18.9 million and exceeds the num-
ber of data, they restricted their study to the 
interaction of the 316 TFs with their poten-
tial target gene. Third, the number of the 1.4 
million elements of the TF – target gene in-
teraction matrix was reduced to 878 most 
significant interactions. Among them, 166 
edges (19 %) were already known from the 
RegulonDB (Gama-Castro et al., 2008). 
Then, using prior knowledge, in this case 
study focusing on phylogenetic conserved 
TF binding sites, the percentage of known 
TF – target gene interactions could be in-
creased from 19 % to 60 % (65/109). Finally, 
prior knowledge about the metabolic path-
way was exploited to select the in silico pre-
dicted TF – target gene interaction for exper-
imental validation. In total, 23 new targets of 
the regulator PdhR were discovered by ge-
nome-wide NI (Kaleta et al., 2010; Göhler et 
al., 2011). This large-scale NI was reliable 
due to the large number of experimental data 
and the prior knowledge available in data-
bases, including the database RegulonDB as 
‘gold standard’ for assessment of the NI re-
sults.  

For non-model organisms either experi-
mental data and/or prior knowledge and/or 
the gold standard are not available in suffi-
cient quantity and/or quality. Thus, genome-
wide approaches may lead to GRN of low 
performance or the performance cannot be 
assessed. In fact, in most cases the gold 
standard is simply too small to access per-
formance (as described e.g. for Staphylococ-
cus aureus by Marbach et al., 2012). Never-
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theless, also in poorly conditioned problems, 
interesting insights can be gained from me-
dium-scale networks (comprising hundreds 
of functionally and regulatory characterized 
genes). Large- and medium-scale networks 
can also be used to predict potential drug 
targets and biomarkers for diagnostic pur-
poses and for comparative network analysis 
(Emmert-Streib et al., 2014 and references 
therein). For instance, large-scale networks 
(N > 6,000) for the worm Caenorhabditis 
elegans modeling the correlation between 
differentially expressed genes were used to 
study changes of global topological parame-

ters, e.g. the mean node degree under differ-
ent nutritional conditions during aging 
(Priebe et al., 2013). For the human patho-
genic fungus Candida albicans hubs of a 
503-gene-network were discussed as known 
and potential targets of antifungal treatment 
(Altwasser et al., 2012; Figure 3). 

For genome-wide, large-scale modeling, 
information theory-based methods (e.g. 
ARACNE) were found to be applicable, 
however the LASSO-based regression ap-
proaches seem to be superior (Altwasser et 
al., 2012; Meyer et al., 2014). 
 

 

 

Figure 3: Medium-scale network. 824 interactions inferred using the modified regression method 
LARS for 503 genes of the ‘gold standard’ of the human pathogenic fungus Candida albicans (Linde et 
al., 2011, and Altwasser et al., 2012). The red-coloured hubs represent the genes MAL2, SIR2, SNF1 
and STE11. 
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Small-scale networks 
In poorly conditioned cases (with respect 

to the amount of experimental data and prior 
knowledge), a preferable approach are small-
scale networks. The focus is on a subset of 
genes and proteins and has been demonstrat-
ed to be successful for intense interdiscipli-
nary research in biology and medicine. This 
approach tackles the dimensionality problem 
by focusing on a subset of genes and pro-
teins, i.e. small-scale modeling instead of the 
genome-wide approach. The NI of small-
scale GRNs is often applied for non-model 
organisms and tissues. Condensed small-
scale GRNs (with up to 50 genes or network 
nodes) are able to support the experimental 
design predicting hypotheses of so far un-
known mechanisms and interactions in 
GRNs. Thus, these condensed models could 
be useful to guide the experimental work 
(Emmert-Streib et al., 2014).  

The main issue of small-scale GRN in-
ference is the feature selection, i.e. the iden-
tification of the ‘most important’ genes or 
proteins of interest for a certain system or 
process. For this feature selection there are 
different approaches. One of them is the 
clustering of gene expression profiles to se-
lect ‘representative’ nodes (D'haeseleer et 
al., 2000; Wahde and Hertz, 2000; Mjolsness 
et al., 2000; Guthke et al., 2005). Alternative 
or complementary approaches focus on cer-
tain functional groups of genes and proteins. 
The functional groups of interest can be se-
lected by identification of differentially ex-
pressed genes (DEGs) followed by gene set 
enrichment analysis (see section ‘Gene en-
richment analysis’). Hypotheses predicted in 
silico using small-scale GRNs were experi-
mentally validated as shown for instance for 
GRNs describing pathogen-host interaction 
(Linde et al., 2012; Tierney et al., 2012), ad-
aptation of murine hepatocytes to nutritional 
change (Vlaic et al., 2012), and mesenchy-
mal stem cell differentiation (Weber et al., 
2013). The experimental validation of edges 
predicted in silico by GRN modeling is the 
best approach for the assessment of NI 
methods for small-scale GRNs. Here, ODE-

based methods such as NetGenerator have 
been proven to be successfully applicable. 
Using these tools, hypotheses were predicted 
in silico and validated experimentally after-
wards (e.g. Linde et al., 2012; Tierney et al., 
2012; Vlaic et al., 2012; Weber et al., 2013). 
However, these statements about the perfor-
mance of NI methods may be biased by the 
specific application. A more objective and 
generalizable approach has been performed 
by the so-called DREAM initiative that will 
be reviewed in the following.  

In future, multi-scale modeling by merg-
ing modular instead of condensed small- and 
medium-scale models will open the door to a 
more holistic approach as claimed in systems 
biology (Sorger, 2005; Ye et al., 2005).  
 

ASSESSMENT OF REVERSE  
ENGINEERING METHODS BY 

CROWDSOURCING  

In 2006, Stolovitzky, Monroe and Cali-
fano initiated the so-called ‘Dialogue for Re-
verse Engineering Assessment and Methods’ 
(www.dreamchallenges.org) (Stolovitzky et 
al., 2007; Prill et al., 2010; Marbach et al., 
2012; Bansal et al., 2014). From the 
DREAM initiative an annual research com-
petition is launched (Table 2) and annual 
DREAM conferences are organized since 
2007. Most recently, Califano et al. (2014) 
reported about the DREAM track of the RE-
COMB/ISCB Systems and Regulatory Ge-
nomics/DREAM Conference 2013. 
 
Community models achieve high  
performance 

Already as the result of the DREAM2 
competition, Stolovitzky et al. (2009) re-
sumed that community models, constructed 
by aggregating predictions across many 
models submitted by participants achieve 
performance on a par with the highest-
scoring individual models. Remarkably, this 
high performance is robust to the inclusion 
of low-scoring models into the ensemble. 
That finding is important as no individual NI 
method has been identified showing best per-
formance for all challenges. The superiority 
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of ensemble learning in GRN inference was 
confirmed by the following DREAM chal-
lenges (Prill et al., 2010, 2011; Marbach et 
al., 2010; Margolin et al., 2013). Also, sum-
marizing the results of evaluating the GRN 
inference methods within the DREAM5 
competition (Challenge 4 in 2010; Table 2), 
Marbach et al. (2012) stated that ‘the collec-
tive knowledge of a community is greater 
than the knowledge of any individual’. Con-
sequently, methods of combining the infor-
mation contained within an ensemble of in-
ferred networks were developed (Marbach et 
al., 2009a). 

The goal of the ‘DREAM5 – Challenge 
4’ (Table 2) was to infer an in silico bench-
mark network model (1,643 genes) as well as 
genome-scale GRN from gene expression 
microarray datasets for the well-studied mi-
croorganisms E. coli (4,297 genes, 805 ar-
rays), S. aureus (2,677 genes, 160 arrays) 
and S. cerevisiae (5,667 genes, 536 arrays). 
The evaluation of the S. aureus network was 
excluded from comparison because there are 
enough experimentally supported interac-
tions (‘Gold standard’) for network valida-
tion available. A total of 35 methods for 
GRN inference were applied and compared, 
including regression (8 methods), mutual 
information (5), correlation (3), Bayesian (6) 
and other (12) methods as well as combina-
tions of them. The main conclusions from 
this evaluation of GRN inference methods 
for genome-scale GRN are the following 
(Marbach et al., 2012): 

(i) After excluding S. aureus, the quality 
of the GRN for S. cerevisiae was lowest in-
dependent of the applied inference method 
due to the highest number of genes and rela-
tive low number of data.   

(ii) Best performance and highest robust-
ness (against poorly performing inference 
methods) were obtained by community NI 
approach. In particular, this approach should 
be preferred for non-model organisms such 
as S. aureus with scarce prior knowledge.  

(iii) In general, BN inference methods 
were outperformed by regression and mutual 

information approaches (for both E. coli and 
in silico GRN). It is known that BN need 
more data than other NI methods. Integration 
of prior knowledge, which is an important 
advantage of BN, was not requested in the 
‘DREAM5 – Challenge 4’.  

(iv) Certain regression methods show a 
performance similar to the best-performing 
community NI. The well-established mutual 
information NI methods CLR and ARACNE 
are outperformed by certain LASSO/LARS-
based regression methods. The method TI-
GRESS (Haury et al., 2012) combined 
LARS with a novel feature selection method 
(‘stability selection’). However, LASSO 
combined with bootstrapping, which was 
found to be the best performing individual 
method for the in silico NI, achieved only a 
low score for the E. coli GRN.  

(v) A specific inference method (Küffner 
et al., 2012) outperformes the community NI 
– but only for the E. coli GRN inference: 
Here, co-dependencies between TFs and tar-
get genes are detected by two-way ANOVA 
method. In addition, TF perturbation data are 
up-weighted. For the E. coli NI also very 
good results were obtained using the LASSO 
toolbox GENLAB with default parameters 
(http://genlab.tudelft.nl/genlab.html; van 
Someren et al., 2006). 

(vi) The random forest-based method 
GENIE3 was the best performer in the 
‘DREAM4 – Challenge 2’ for in silico NI 
inference (Huynh-Thu et al., 2010) and 
reached also a high score in the DREAM5 – 
4 challenge for both in silico and E. coli NI. 
The random forest-based method GENIE3 
was ranked with highest overall score in the 
evaluation of the ‘DREAM 5 - Challenge 4’ 
(Marbach et al., 2012). Here, decision trees 
are used to produce prioritized lists of TFs 
regulating each target gene. 
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Table 2: DREAM Challenges. DREAM#: Running number of challenge; Short Title and ref-
erence if any; Data given for the challenge  

Year 
DREAM# -  
Challenge# 

Short Title 
(Reference) 

Data Task/ Goal 

2006 
1 

Stolowitzky et al., 2007 

2007 
2 

Stolowitzky et al., 2009 

2007 
2 - 1 

Transcriptional 
target prediction 

ChIP-on-chip data of 
200 genes after per-
turbation of BCL2-
pathway in B-cells  

Predict the genes for TF 
binding 

2007 
2 – 2 

Protein-Protein 
interaction net-
work  

Y2H data Predict a PPI network of 47 
proteins 

2007 
2 – 3 

Synthetic five-
gene network in-
ference 
Cantone et al., 
2009 
Marbach et al., 
2009a, b 
Äijö and 
Lähdesmäki, 2009 

QPCR and gene ex-
pression time series 
after 2 treatments 
(588*10*2) Chip data 
of in vivo model or-
ganism 

Infer a gene regulation net-
work from qPCR and micro-
array measurements 

2007 
2 – 4 

In silico network 
Gustafsson et al., 
2009 

Simulated time se-
ries from three in sil-
ico 50-gene-GRNs 
(50*26*23) 

Infer various network topolo-
gies and connectivity of the 
three GRNs  

2007 
2 - 5 

Gene-scale net-
work 

Microarray data from 
a microorganism 

Reconstruct a genome scale 
regulatory network from a 
large collection of micro-
arrays 

2008 
3 

Prill et al., 2010 

2008 
3 - 1 

Signaling cascade 
identification 

Incomplete flow  
cytometry data 

Infer a signaling network  

2008 
3 – 2 

Signaling re-
sponse prediction 
Prill et al., 2011 
Guex et al., 2010 
Clarke et al., 2010 

Phosphoproteomics 
data 

Predict missing protein con-
centrations from a large cor-
pus of measurements 

2008 
3 – 3 

Gene expression 
prediction 
Gustafsson and 
Hörnquist, 2010 
Ruan, 2010 

Gene expression 
time course data for 
four different strains 
of yeast (S. cere-
visiae), after pertur-
bation of the cells 

Predict missing gene  
expression measurements 
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Table 2 (cont.): DREAM Challenges. DREAM#: Running number of challenge; Short Title 
and reference if any; Data given for the challenge  

Year 
DREAM# -  
Challenge# 

Short Title 
(Reference) 

Data Task/ Goal 

2008 
3 - 4 

In silico network 
Marbach et al., 
2010 
Yip et al., 2010 
Madar et al., 2010 

10, 50, 100 gene 
time series with 21 
time points 

Infer simulated gene  
regulation networks 

2009 
4 – 1 

Peptide Recogni-
tion Domain Spec-
ificity prediction 

5 human SH3 do-
main sequences, 3 
serine/threonine ki-
nase sequences and 
5 synthetic PDZ do-
main sequences 
modeled on Erbin 
(Erbb2 interacting 
protein) 

Predict protein-protein inter-
actions at the level of binding 
domains and peptides 

2009 
4 – 2 

In silico network 
challenge 
Huynh-Thu et al., 
2010 
Menéndez et al., 
2010 
Pinna et al., 2010 

Simulated steady-
state and 10 time-
series data 
(10 and 100 genes; 
21 time points; wild-
type, knockouts, 
knockdowns, multi-
factorial perturba-
tions) 

Infer in silico GRN and  
predict gene expression 
measurements in response 
to perturbations 

2009 
4 – 3 

Predictive signal-
ing network mod-
eling  
Eduati et al., 2010 
Prill et al., 2011 

Activity levels of sig-
naling proteins in 
HepG2 cell lines 

Predict phosphoprotein 
measurements using an in-
terpretable, predictive net-
work 

2010 
5 

Marbach et al., 2012 

2010 
5 – 1 

Epitope-Antibody 
Recognition 

Sequences of pep-
tides that either bind 
intravenous immuno-
globulin antibodies 
or do not 

Predict the binding specificity 
of peptide antibody interac-
tions 

2010 
5 – 2 

TF-DNA Motif 
Recognition 
Weirauch et al., 
2013 

Protein Binding  
Microarray data 
(41,000 60-base 
probe sequences) 

Predict the specificity of a 
TF-binding to a 35-mer 
probe 

2010 
5 – 3 

Systems Genetics 
Loh et al., 2011 
Vignes et al., 
2011 

In silico (1000 gene- 
networks) and exper-
imental (soybean) 
genotype and gene 
expression data 

Predict disease phenotypes 
and infer gene networks 
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Table 2 (cont.): DREAM Challenges. DREAM#: Running number of challenge; Short Title 
and reference if any; Data given for the challenge  

Year 
DREAM# -  
Challenge# 

Short Title 
(Reference) 

Data Task/ Goal 

2010 
5 - 4 

Network inference 
Marbach et al., 
2012 
Haury et al., 2012 

Four microarray data 
sets (hundreds ex-
periments each), 
three from pathogen-
ic microorganims 
after perturbation 
with drugs etc, one 
from in silico network

Infer simulated and in vivo 
GRNs 

2011 
6 – 1 

Alternative  
Splicing 

Short-read mRNA-
Seq data 

Reconstruct Alternative 
Splicing mRNA transcripts  

2011 
6 – 2 

Estimation of 
Model Parameters 
Meyer et al., 2014 

Three GRNs Iterative optimization of ki-
netic parameter values 
and experimental design 

2011 
6 – 3 

Gene Expression 
Prediction 

Promoter sequences 
in eukaryotes 

Predict gene expression lev-
els 

2011 
6 – 4 

Molecular classifi-
cation of AML 

Patient samples  
using flow cytometry 
data 

Diagnose AML 

2012 
7 –1 

Network Topology 
& Parameter In-
ference 
Meyer et al., 2014 

Structure of 9-gene 
GRN, incomplete  
11-gene GRN 

Parameter values; missing 
links; predict outcomes of 
perturbations 
 

2012 
7 –2 

Breast cancer 
prognosis 
Margolin et al., 
2013 

Clinical information 
about the tumor and 
genome-wide mo-
lecular profiling data 
including gene ex-
pression and copy 
number profiles of 
1981 patients 

Assess the accuracy of 
computational models de-
signed to predict breast can-
cer survival 

2012 
7 –3 

ALS prediction 
Küffner et al., 
2015 

1,822 ALS patient’s 
disease status dur-
ing 3 months after 
diagnosis: de-
mographics, medical 
and family history 
data, functional 
measures, vital 
signs, and lab data 

Predict the future progres-
sion of disease in ALS pa-
tients 12 months after the 
diagnosis 

2012 
7 –4 

Drug Sensitivity 
Prediction  
Costello et al., 
2014 
 
 

Genomic, epige-
nomic and proteomic 
profiling data sets 
measured in human 
breast cancer cell 
lines 

Predict drug sensitivity and 
synergies in breast cancer 
cell lines 
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Table 2 (cont.): DREAM Challenges. DREAM#: Running number of challenge; Short Title 
and reference if any; Data given for the challenge  

Year 
DREAM# -  
Challenge# 

Short Title 
(Reference) 

Data Task/ Goal 

2013 
8 – 1 

Breast cancer 
Network Inference 

45 proteomics and 
125 protein time-
course datasets on 
four breast cancer 
cell lines 

NI and prediction of 
timecourse  

2013 
8 – 2 

Toxicogenetics Genetics and tran-
scriptomics infor-
mation of the 1000 
Genomes Project; 
cytotoxicity 
measures for > 100 
toxic agents 

Model cytotoxicity across cell 
lines; predict absolute cyto-
toxicity for which cytotoxicity 
data are not provided; pre-
dict median, 5%-quantile, 
and 95%-quantile EC10 
across the population for 
each of 50 unknown com-
pounds 

2013 
8 – 3 

Whole-cell  
parameter estima-
tion 

Whole cell model of 
Mycoplasma genita-
lium; 
simulated data 

Estimating the model  
parameters for specific  
biological processes from 
simulated data 

2014 
9 - 1 

Essentiality  
Prediction 

Gene expression 
and/or gene copy 
number features 

predictive models to infer 
genes that are essential to 
cancer cell viability 

2014 
9 - 2 

AML Outcome 
prediction 

Clinical cytogenetics, 
known genetics 
markers and phos-
phoproteomic data 

Predict the outcome of 
treatment of AML patients 

2014 
9 - 3 

Alzheimer’s  
Disease Big Data 

Clinical data of a 
longitudinal multicen-
ter study, >1600 par-
ticipants 

Predict the best biomarkers 
for early AD-related cognitive 
decline and for the mismatch 
between high amyloid levels 
and cognitive decline 

2014 
9 - 4 

Somatic mutation 
calling 

Whole-genome se-
quencing data from 
tumor and normal 
samples 

Predict mutation calls asso-
ciated with cancer; identify 
the most accurate mutation 
detection algorithms 

2014 
9 - 5 

Rheumatoid  
Arthritis  
Responder 
Plenge et al., 
2013 

Clinical, genotyping 
(by Affymetrix chips) 
and drug dosage  
data from 2,706 indi-
viduals 

Predict anti-TNF response in 
Rheumatoid Arthritis 

 
 
Integration of heterogeneous data  

Both, the ‘DREAM7 – Challenge 1’ and 
the ‘DREAM6 – Challenge 2’, aim to evalu-
ate methods for model structure discrimina-
tion and for the estimation of parameters in 

non-linear biochemical models that charac-
terize the dynamics of molecular processes 
(Meyer et al., 2014). In the ‘DREAM7 – 
Challenge 1’, an 9-gene network composed 
in silico was used as gold standard for pa-
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rameter estimation. Additionally, an incom-
plete 11-gene network model was used as 
gold standard to assess methods for identifi-
cation of three missing links. A virtual bud-
get was provided in this challenge to ‘buy’ 
experimental data generated (in silico) by 
model simulations. The expense of different 
experimental techniques, such as transcrip-
tome profiling measured by microarrays as 
well as abundance of all proteins measured 
by mass spectrometry, both with low and 
high temporal resolution (500 and 100 cred-
its, respectively) and protein abundance for 2 
proteins of choice with highest temporal re-
solution (for 400 credits) was mimicked. 
Furthermore, perturbation experiments, such 
as knock-out, knock-down and decrease of 
ribosome binding site experiments are of-
fered for choice (for 800, 350, and 450 cred-
its, respectively). The analysis of the results 
from 19 competing teams suggests that the 
combination of state-of-the-art parameter 
estimation and a varied set of experimental 
methods using a few datasets, mostly prote-
ome (fluorescence imaging) data, can accu-
rately determine parameters of biochemical 
models of gene regulation.  

The identification of the missing links in 
the incomplete 11-gene network was more 
challenging. For identifying the missing 
links of the 11-gene network, the best-
performing team first used credits on wild 
type fluorescence data, to cheaply obtain a 
setting with qualitative disagreement be-
tween data and model, and then used mass 
spectroscopy experiments with perturbations 
to test for potential missing links. For dis-
crimination between the alternative model 
structures, Meyer et al. (2014) applied clas-
sical maximum likelihood methods. Howev-
er, only the consensus obtained by majority 
voting to select the most submitted links had 
a top performing score. Only one of the three 
consensus links was correctly inferred, while 
the direction and nature of the regulatory 
link of the two others were incorrect. This 
demonstrates the difficulty to correctly iden-
tify the topology also of small-scale GRNs 
based solely on limited experimental data 

and perturbations. Thus, integration of prior 
knowledge is indispensable also for small-
scale GRN inference. Again, it was found 
that aggregating independent parameter pre-
dictions and network topologies across sub-
missions created a solution that can be better 
than the one from the best-performing sub-
mission (Meyer et al., 2014). 

The DREAM challenges were not only 
focused on the assessment of GRN inference 
methods. As the consequence of the conclu-
sion that genome-wide GRN modeling is re-
liable only for well-conditioned problems 
and that the identification of the GRN topol-
ogy may be wrong also for small-scale GRN 
(if no prior knowledge was included), more 
simplified but useful computational prob-
lems were addressed by the DREAM compe-
tition. Thus, there were also challenges to 
evaluate methods for gene expression and 
biomarker prediction as well as to assess the 
performance of classifiers for diagnosis of 
diseases. Ruan (2010) showed for the predic-
tion of gene expression values that the sim-
ple k-nearest-neighbor method led to almost 
the same performance as a much more so-
phisticated method.  

In the following, three examples from 
DREAM7 will be discussed that provide 
recommendations for inference of predictive 
models in a clinical perspective. 

In the ‘DREAM7 – Challenge 2’ (Table 
2), the results of breast cancer survival pre-
diction by more than 1,400 computational 
models from 354 research groups were eval-
uated. The models were trained on the data 
set of 1,000 samples including clinical in-
formation (for example, age, tumor size and 
histological grade), mRNA expression data 
and DNA copy number data. The models 
were validated on data sets of 981 samples. 
The predictive value of each model was 
scored by calculating the concordance index 
(CI) of predicted death risk. In a final phase, 
the data of all 1,981 samples were used for 
model refinement and the retrained models 
were validated on a further data set from 184 
women diagnosed with breast cancer. The 
best-performing model combined clinical 
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features and molecular features selected by 
prior knowledge. A machine learning meth-
od (boosted regression) was applied to a 
combination of clinical features, expression 
levels of genes selected by data-driven crite-
ria and by their involvement in breast cancer 
(Ravasi et al., 2010) and, finally, an aggre-
gated “genomic instability” index calculated 
from the copy number data (Bilal et al., 
2013). Margolin et al. (2013) found that the 
top-scoring models used a methodology that 
minimized overfitting to the training set by 
defining a “Metagene” feature space based 
on robust gene expression patterns observed 
in multiple external cancer data sets. Long-
time survivors are better predicted than 
short-time survivors. 

The goal of the ‘DREAM7 – Challenge 
3’ was to predict the future progression of 
disease in Amyotrophic Lateral Sclerosis 
(ALS), a neurodegenerative disease. The re-
sults of 37 algorithms were submitted for 
evaluation. Interestingly, the two best algo-
rithms outperformed predictions by ALS cli-
nicians. Küffner et al. (2015) estimated that 
using both winning algorithms in future trial 
designs could reduce the required number of 
patients by at least 20 %. In addition, several 
potential non-standard predictors of ALS 
progression were identified including uric 
acid, creatinine and blood pressure. Thus, 
this DREAM challenge contributed to a bet-
ter understanding of ALS pathobiology. 

The ‘DREAM7 – Challenge 4’ dealt with 
prediction of the drug response from multi-
omics data (CNV, RPPA, Methylation, Ex-
ome sequencing, gene expression microar-
ray, RNA-seq) measured in human breast 
cancer cell lines, a total of 44 drug sensitivi-
ty prediction algorithms were analyzed (Cos-
tello et al., 2014). The best results were ob-
tained using nonlinear relationships and in-
corporating the biological pathway infor-
mation. In addition, they found that gene ex-
pression microarrays provided the best pre-
dictive power, however, the performance in-
creased including further data sets. The top-3 
approaches used Bayesian multitask Multiple 
Kernel Learning, weighted nonlinear regres-

sion trees and weighted features from Pear-
son’s correlation. 
 

CHALLENGES 

Integration of prior knowledge 
The prediction of GRNs is a great com-

binatorial challenge usually based on a lim-
ited amount of data. Some inference tools 
integrate prior knowledge to support the in-
ference process. Supportive interaction 
knowledge is usually of positive nature, 
meaning that the existence of an interaction 
was predicted or experimentally observed. 
Negative prior knowledge about non existing 
interactions is equally important for network 
inference, but hardly available. One reason is 
that the experimental proof that two genes 
never interact is very hard to do. Some jour-
nals publish negative results (Journal of 
Negative Results in Biomedicine; New Neg-
atives in Plant Science (Elsevier); Journal of 
Negative Results – Ecology & Evolutionary 
Biology) from which negative prior 
knowledge can be extracted. Nevertheless, to 
our knowledge no databases exist that allow 
easy access to negative prior knowledge.  

There is an increasing number of mo-
lecular biological databases. Currently, the 
Nuclear Acid Research Online Molecular 
Biology Database Collection has been ex-
panded to 1,552 databases (Fernández-
Suárez et al., 2014). Olsen et al. (2014) as-
sessed the relevance of different prior 
knowledge sources for inferring GRNs in 
cancer research. The most direct interactions 
that can be obtained as prior knowledge for 
GRNs are TFs interacting with promoters. 
Promoters can be analyzed for known TF 
binding profiles (free JASPAR database 
(Mathelier et al., 2013), commercial 
TRANSFAC database (Matys et al., 2006)) 
or motifs can be elicited (e.g. MEME (Bailey 
et al., 2009)). Experimentally, TF-DNA in-
teractions are determined by ChIP-Seq re-
sulting in p-values of interactions. These p-
values are inversely correlated to the proba-
bility of an edge being present in a GRN 
(Bernhard and Hartemink, 2005). 
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Various databases have been established 
to provide knowledge about genes and inter-
actions. Some include many organisms (e.g. 
STRING (Szklarczyk et al., 2015)), others 
are species specific such as the Candida Ge-
nome Database (Binkley et al., 2014). Over 
the last years, pathogen-host interaction da-
tabases emerged and are listed in Mukherjee 
et al. (2013). One example is PHISTO (Tekir 
et al., 2013), which includes >16,000 virus-
host interactions, > 8,000 bacteria-host inter-
actions but only few fungus-host interactions 
(<10). Especially for not well studied organ-
isms available knowledge can be limited and 
insufficient. One option would be to extract 
knowledge of homologous genes in closely 
related organisms. 

Human database curation teams cannot 
keep up with volume and pace of literature 
production (Baumgartner et al., 2007). Thus, 
text mining needs to close this gap by ex-
tracting structured knowledge from unstruc-
tured information such as scientific literature 
(Hahn et al., 2007). Text-mining tools as for 
instance the commercial Pathway Studio for 
mammals (Nikitin et al., 2003) or the free 
Gene Interaction Miner (Ikin et al., 2010) 
facilitate automatic knowledge extraction 
from literature databases. For well studied 
organisms this can result in a lot of interac-
tions, for which manual curation might not 
be feasible anymore.  

Furthermore, more knowledge is availa-
ble for well studied genes which has to be 
taken into account when predicted GRNs are 
interpreted. Also, web applications exist that 
retrieve knowledge from various sources 
(Haibe-Kains et al., 2012; Horn et al., 2014). 
Given a set of genes, the web platform 
GeneMANIA (Mostafavi et al., 2008; Mon-
tojo et al., 2014) queries biological data-
bases, published articles and co-expression 
from published data sets. It returns a network 
of interactions distinguishable by source and 
is available for H. sapiens and eight model 
organisms (e.g. Mus musculus, S. cere-
visiae).  
 

Pathogen-host GRNs 
Next Generation Sequencing techniques 

paved the way for advanced genomic and 
transcriptomic studies of interacting species, 
in particular for metagenomic and infection 
research (Pallen et al., 2010). Dual RNA-Seq 
is an approach, where transcriptomes of two 
or more species are sequenced together. 
Westermann et al. (2012) reviewed various 
aspects that have to be considered when dual 
RNA-Seq samples are prepared and se-
quenced.  

One application of dual RNA-Seq is to 
study pathogens interacting with their host, 
e.g. filarial worm – mosquito interactions 
(Choi et al., 2014) and Azospirillum bra-
silense colonizing wheat roots (Camilios-
Neto et al., 2014). Furthermore, Tierney et 
al. (2012) published a dual RNA-Seq time 
series data set of mouse dendritic cells in-
fected with C. albicans. Six pathogen genes 
and five host genes were selected and the 
small-scale NI tool NetGenerator was ap-
plied. Two of the predicted interactions were 
experimentally validated demonstrating the 
applicability of GRN inference to model 
pathogen-host interactions. Recently, 
NetGenerator was extended and its applica-
tion to infer pathogen-host GRNs was out-
lined (Schulze et al., 2015). The focus was 
on accounting for pathogen-host interaction 
data characteristics, such as changing envi-
ronmental conditions, temporally different 
onsets of transcriptional responses and pos-
sible missing data points (e.g. only one or-
ganism survives). Furthermore, they give an 
overview of basic requirements and main 
steps of acquisition and analysis of dual 
RNA-Seq data. 
 
Non-linear models 

Based on fundamental knowledge from 
thermodynamics of irreversible processes 
and self-organization (Prigogine and Nicolis, 
1971) it is known that living systems have to 
be modeled using non-linear functions. 
However, adequate non-linear modeling re-
quires more experimental data or/and prior 
knowledge, which is in most cases already 
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insufficient for linear modeling (problem of 
dimensionality). The DREAM2 challenge 
provided an in silico network with 50 genes 
and a ‘comfortable’ set of 50 x 26 x 23 data 
without noise and the result showed that also 
the best-performing LASSO-based NI with a 
set of non-linear basis functions does not 
correctly infer the non-linear relations (Gus-
tafsson et al., 2009). To include non-linearity 
in the GRN but apply the benefits of linear 
modeling, piecewise linear models were pro-
posed (Westra et al., 2011), but they are not 
extensively studied for GRN inference so 
far. Thus, linear models are often applied 
despite the knowledge that the assumption of 
linearity is not ‘true’. Linear models may be 
wrong, but useful for prediction of hypothe-
ses (e.g. regulator – target gene relations) or 
the behavior of the system close to the steady 
state (e.g. outcome of a disease). However, 
in general, such modeling is insufficient to 
predict a molecular mechanism in detail and 
for simulation of the dynamic behavior with 
multiple attractors (e.g. multiple steady 
states; Milnor, 1985). Small- and medium-
scale models are helpful to support and de-
sign experiments. To overcome the reduc-
tionistic view and go ahead to a more holistic 
one, multi-scale modeling merging various 
validated small-scale models will be the fu-
ture in systems biology of gene expression 
network modeling. 
 
Model validation 

Most important, GRN results have to be 
validated experimentally. Typically, this is 
an iterative process in systems biology form-
ing a cycle of wet-lab and dry-lab research 
(Figure 1). Based on experimental data and 
prior knowledge at hand, an initial network 
model can be inferred. Then, hypotheses 
have to be generated based on the draft mod-
el and should be experimentally tested or 
checked by literature search. In general, this 
experimental validation or deep literature 
search will give rise to refined network mod-
eling. For this second round of network 
modeling, the results of experimental valida-
tion or literature search can be included as 

improved prior knowledge. Of course, some 
prior knowledge relations can be contradicto-
ry to each other or to the experimental data. 
Contradictory prior knowledge can be han-
dled by ranking it with a score according to 
the experimental method and setup used for 
drawing the respective conclusion. The score 
can also reflect how close the experimental 
setup of the referenced system is to the cur-
rently studied system (with respect to exper-
imental conditions, tissues, organisms). Such 
scoring systems are in its infancy (e.g. Linde 
et al., 2010).  
 

CONCLUSION 

The mathematical and computational 
modeling of networks is of great importance 
in biomedical research to understand molec-
ular mechanisms, e.g. pathogen-host interac-
tion. To tackle the complexity inherent in 
large networks of interacting biomolecules, 
many different approaches and methods have 
been established. They include methods 
based on Boolean networks, Bayesian Net-
works, information theory, differential or 
difference equations, graphical Gaussian 
models and/or supervised machine learning 
methods. In general due to the high dimen-
sionality (thousands of genes and proteins) 
versus the limited number of samples (not 
more than hundreds), the GRN inference is 
underdetermined implying that there could 
be many equivalent (indistinguishable) solu-
tions. To cope with this fundamental prob-
lem, there are various approaches for GRN 
inference. Some of them are widely used and 
powerful, such as the information theory-
based methods (like the ARACNE or Con-
text Likelihood of Relatedness – CLR meth-
od) and the regression-based LASSO method 
for large-scale network models, whereas 
ODE-based methods, such as Inferelator and 
NetGenerator, for dynamical medium- and 
small-scale models, respectively. During the 
last decade the scientific community im-
proved the understanding when and how to 
apply them. As a trend of the last five years, 
different methods of NI and different data 
types, including prior knowledge, were com-
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bined and integrated to improve the perfor-
mance. 

First of all, no individual GRN modeling 
approach performs best for all problems. The 
DREAM competition showed that ensemble 
learning, i.e. ‘community models’ construct-
ed by aggregating predictions across many 
models, allows NI with high performance 
and robustness against the inclusion of low-
performance models. Integration of predic-
tions from multiple inference methods is ro-
bust and has high performance across diverse 
datasets (Marbach et al., 2009a; 2012). For 
instance, the algorithm TRaCE performs an 
ensemble inference of GRNs (Ud-Dean and 
Gunawan, 2014). 

Second, NI should not be based only on 
the limited number of gene expression data. 
GRN inference should integrate prior 
knowledge (see section ‘Integration of prior 
knowledge’) or further, heterogeneous exper-
imental data sets (Greenfield et al., 2010). In 
particular, GRN inference using gene ex-
pression data should be supported by infor-
mation about already known TF – target 
gene interaction, TF binding sites or their 
motifs, composites of TFs and signaling 
pathways from receptors to TFs. Marbach et 
al. (2009b) won the synthetic five-gene net-
work challenge of the reverse engineering 
competition inference DREAM2 by integra-
tion of prior knowledge mimicking the evo-
lutionary process. 

Third, to infer networks with directed 
edges, data should be exploited that repre-
sent cause–effect relations. Typically, these 
are time series data of response to known 
perturbations (interventions), steady state 
data from knock-out (KO) experiments or 
assigned with Singular Nucleotide Polymor-
phism (SNP) or other genotype data. The 
type of these data is essential for the choice 
of inference method. For small-scale net-
work modeling using time series data and 
prior knowledge, ODE-based inference tools, 
such as NetGenerator (Weber et al., 2013), 
should be preferentially applied. For medi-
um-scale models based on time series and 
mixed data including steady state data, the 

ExTILAR algorithm (Vlaic et al., 2012) was 
developed. For large-scale network modeling 
using time series data, TimeDelay-ARACNE 
is applicable (Zoppoli et al., 2010). Howev-
er, for genome-wide and other large-scale 
networks the regression-based method LAS-
SO (GENLAB, van Someren et al., 2006) 
seems to be best situated if it is well config-
ured and the experimental data and prior 
knowledge are of sufficient quantity and 
quality (Marbach et al., 2012). Boolean and 
static network modeling should be preferred 
if the data are mainly steady state gene ex-
pression data from KO experiments or for 
modeling of signaling pathways, respectively 
(Eduati et al., 2010; Klamt et al., 2010; 
Flassig et al., 2013; Samaga and Klamt, 
2013; Pinna et al., 2013; Ryll et al., 2014; 
Nakajima and Akutsu, 2014). 

Today, large-scale models for model or-
ganisms (e.g. E. coli and S. cerevisiae) re-
flect some general properties such as the ro-
bustness and stability of the system or they 
give information about hubs, e.g. most im-
portant transcriptional regulators and target 
genes. However, they do not comprehensive-
ly represent all interactions and their dynam-
ics. Currently, for non-model organisms, 
small-scale networks with a certain focus, is 
a useful approach. However, we expect that 
in future also for non-model organisms ge-
nome-wide GRN models with improved pre-
dictive power will be established based on 
extended experimental data compendia and 
molecular interactome databases. 
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