680 research outputs found

    A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data

    Full text link
    Deducing the structure of neural circuits is one of the central problems of modern neuroscience. Recently-introduced calcium fluorescent imaging methods permit experimentalists to observe network activity in large populations of neurons, but these techniques provide only indirect observations of neural spike trains, with limited time resolution and signal quality. In this work we present a Bayesian approach for inferring neural circuitry given this type of imaging data. We model the network activity in terms of a collection of coupled hidden Markov chains, with each chain corresponding to a single neuron in the network and the coupling between the chains reflecting the network's connectivity matrix. We derive a Monte Carlo Expectation--Maximization algorithm for fitting the model parameters; to obtain the sufficient statistics in a computationally-efficient manner, we introduce a specialized blockwise-Gibbs algorithm for sampling from the joint activity of all observed neurons given the observed fluorescence data. We perform large-scale simulations of randomly connected neuronal networks with biophysically realistic parameters and find that the proposed methods can accurately infer the connectivity in these networks given reasonable experimental and computational constraints. In addition, the estimation accuracy may be improved significantly by incorporating prior knowledge about the sparseness of connectivity in the network, via standard L1_1 penalization methods.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS303 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Model-free reconstruction of neuronal network connectivity from calcium imaging signals

    Get PDF
    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically unfeasible even in dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct approximations to network structural connectivities from network activity monitored through calcium fluorescence imaging. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time-series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the effective network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (e.g., bursting or non-bursting). We thus demonstrate how conditioning with respect to the global mean activity improves the performance of our method. [...] Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good reconstruction of the network clustering coefficient, allowing to discriminate between weakly or strongly clustered topologies, whereas on the other hand an approach based on cross-correlations would invariantly detect artificially high levels of clustering. Finally, we present the applicability of our method to real recordings of in vitro cortical cultures. We demonstrate that these networks are characterized by an elevated level of clustering compared to a random graph (although not extreme) and by a markedly non-local connectivity.Comment: 54 pages, 8 figures (+9 supplementary figures), 1 table; submitted for publicatio

    Spike train statistics and Gibbs distributions

    Get PDF
    This paper is based on a lecture given in the LACONEU summer school, Valparaiso, January 2012. We introduce Gibbs distribution in a general setting, including non stationary dynamics, and present then three examples of such Gibbs distributions, in the context of neural networks spike train statistics: (i) Maximum entropy model with spatio-temporal constraints; (ii) Generalized Linear Models; (iii) Conductance based Inte- grate and Fire model with chemical synapses and gap junctions.Comment: 23 pages, submitte

    The Effect of Nonstationarity on Models Inferred from Neural Data

    Full text link
    Neurons subject to a common non-stationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished, with machine learning techniques, provided the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a non-stationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the non-stationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as function of their rank (Zipf plots) are well-explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the non-stationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot.Comment: version in press in J Stat Mec

    Forward and Backward Modelling: From Single Cells to Neural Population and Back

    Get PDF
    Some aspects of forward and backward neural modelling are discussed, showing, that the neural mass models may provide a “golden midway” between the detailed conductance based neuron models and the oversimplified models, dealing with the input–output transformations only. Our analysis combines historical perspectives and recent developments concerning neural mass models as a third option for modelling large neural populations and inclusion of detailed anatomical data into them. The current source density analysis and the geometrical assumption behind the different methods, as an inverse modelling tool for determination of the sources of the local field potential is discussed, with special attention to the recent results about source localization on single neurons. These new applications may pave the way to the emergence of a new field of micro-electric imaging

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    Inferring Synaptic Structure in presence of Neural Interaction Time Scales

    Get PDF
    Biological networks display a variety of activity patterns reflecting a web of interactions that is complex both in space and time. Yet inference methods have mainly focused on reconstructing, from the network's activity, the spatial structure, by assuming equilibrium conditions or, more recently, a probabilistic dynamics with a single arbitrary time-step. Here we show that, under this latter assumption, the inference procedure fails to reconstruct the synaptic matrix of a network of integrate-and-fire neurons when the chosen time scale of interaction does not closely match the synaptic delay or when no single time scale for the interaction can be identified; such failure, moreover, exposes a distinctive bias of the inference method that can lead to infer as inhibitory the excitatory synapses with interaction time scales longer than the model's time-step. We therefore introduce a new two-step method, that first infers through cross-correlation profiles the delay-structure of the network and then reconstructs the synaptic matrix, and successfully test it on networks with different topologies and in different activity regimes. Although step one is able to accurately recover the delay-structure of the network, thus getting rid of any \textit{a priori} guess about the time scales of the interaction, the inference method introduces nonetheless an arbitrary time scale, the time-bin dtdt used to binarize the spike trains. We therefore analytically and numerically study how the choice of dtdt affects the inference in our network model, finding that the relationship between the inferred couplings and the real synaptic efficacies, albeit being quadratic in both cases, depends critically on dtdt for the excitatory synapses only, whilst being basically independent of it for the inhibitory ones

    Linear response for spiking neuronal networks with unbounded memory

    Get PDF
    We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allows us to predict the influence of a weak amplitude time-dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how linear response is explicitly related to neuronal dynamics with an example, the gIF model, introduced by M. Rudolph and A. Destexhe. This example illustrates the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike statistics. We illustrate our results with numerical simulations.Comment: 60 pages, 8 figure
    corecore