21 research outputs found

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    Dynamic Data Scaling Techniques for Streaming Machine Learning

    Get PDF
    This research delves into innovative dynamic data scaling techniques designed for streaming machine learning environments. In the realm of real-time data streams, conventional static scaling methods may encounter challenges in adapting to evolving data distributions. To overcome this hurdle, our study explores dynamic scaling approaches capable of adjusting and optimizing scaling parameters dynamically as the characteristics of incoming data shift over time. The objective is to augment the performance and adaptability of machine learning models in streaming scenarios by ensuring that the scaling process remains responsive to changing patterns in the data. Through empirical evaluations and comparative analyses, the study aims to showcase the efficacy of the proposed dynamic data scaling techniques in enhancing predictive accuracy and sustaining model relevance in dynamic and fast-paced streaming environments. This research contributes to the advancement of scalable and adaptive machine learning methodologies, particularly in applications where timely and accurate insights from streaming data are crucial

    A Secured, Multilevel Face Recognition based on Head Pose Estimation, MTCNN and FaceNet

    Get PDF
    Artificial Intelligence and IoT have always attracted a lot of attention from scholars and researchers because of their high applicability, which make them a typical technology of the Fourth Industrial Revolution. The hallmark of AI is its self-learning ability, which enables computers to predict and analyze complex data such as bio data (fingerprints, irises, and faces), voice recognition, text processing. Among those application, the face recognition is under intense research due to the demand in users’ identification. This paper proposes a new, secured, two-step solution for an identification system that uses MTCNN and FaceNet networks enhanced with head pose estimation of the users. The model's accuracy ranges from 92% to 95%, which make it competitive with recent research to demonstrate the system's usability

    An Ultra Fast Semantic Segmentation Model for AMR’s Path Planning

    Get PDF
    Computer vision plays a significant role in mobile robot navigation due to the abundance of information extracted from digital images. On the basis of the captured images, mobile robots determine their location and proceed to the desired destination. Obstacle avoidance still requires a complex sensor system with a high computational efficiency requirement due to the complexity of the environment. This research provides a real-time solution to the issue of extracting corridor scenes from a single image. Using an ultra-fast semantic segmentation model to reduce the number of training parameters and the cost of computation. In addition, the mean Intersection over Union (mIoU) is 89%, and the high accuracy is 95%. To demonstrate the viability of the prosed method, the simulation results are contrasted to those of contemporary techniques. Finally, the authors employ the segmented image to construct the frontal view of the mobile robot in order to determine the available free areas for mobile robot path planning tasks

    Social Network Optimization for WSN Routing: Analysis on Problem Codification Techniques

    Get PDF
    The correct design of a Wireless Sensor Network (WSN) is a very important task because it can highly influence its installation and operational costs. An important aspect that should be addressed with WSN is the routing definition in multi-hop networks. This problem is faced with different methods in the literature, and here it is managed with a recently developed swarm intelligence algorithm called Social Network Optimization (SNO). In this paper, the routing definition in WSN is approached with two different problem codifications and solved with SNO and Particle Swarm Optimization. The first codification allows the optimization algorithm more degrees of freedom, resulting in a slower and in many cases sub-optimal solution. The second codification reduces the degrees of freedom, speeding significantly the optimization process and blocking in some cases the convergence toward the real best network configuration

    The SOS Platform: Designing, Tuning and Statistically Benchmarking Optimisation Algorithms

    Get PDF
    open access articleWe present Stochastic Optimisation Software (SOS), a Java platform facilitating the algorithmic design process and the evaluation of metaheuristic optimisation algorithms. SOS reduces the burden of coding miscellaneous methods for dealing with several bothersome and time-demanding tasks such as parameter tuning, implementation of comparison algorithms and testbed problems, collecting and processing data to display results, measuring algorithmic overhead, etc. SOS provides numerous off-the-shelf methods including: (1) customised implementations of statistical tests, such as the Wilcoxon rank-sum test and the Holm–Bonferroni procedure, for comparing the performances of optimisation algorithms and automatically generating result tables in PDF and formats; (2) the implementation of an original advanced statistical routine for accurately comparing couples of stochastic optimisation algorithms; (3) the implementation of a novel testbed suite for continuous optimisation, derived from the IEEE CEC 2014 benchmark, allowing for controlled activation of the rotation on each testbed function. Moreover, we briefly comment on the current state of the literature in stochastic optimisation and highlight similarities shared by modern metaheuristics inspired by nature. We argue that the vast majority of these algorithms are simply a reformulation of the same methods and that metaheuristics for optimisation should be simply treated as stochastic processes with less emphasis on the inspiring metaphor behind them

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    This article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    Using Optimisation Meta-Heuristics for the Roughness Estimation Problem in River Flow Analysis

    Get PDF
    Climate change threats make it difficult to perform reliable and quick predictions on floods forecasting. This gives rise to the need of having advanced methods, e.g., computational intelligence tools, to improve upon the results from flooding events simulations and, in turn, design best practices for riverbed maintenance. In this context, being able to accurately estimate the roughness coefficient, also known as Manning’s n coefficient, plays an important role when computational models are employed. In this piece of research, we propose an optimal approach for the estimation of ‘n’. First, an objective function is designed for measuring the quality of ‘candidate’ Manning’s coefficients relative to specif cross-sections of a river. Second, such function is optimised to return coefficients having the highest quality as possible. Five well-known meta-heuristic algorithms are employed to achieve this goal, these being a classic Evolution Strategy, a Differential Evolution algorithm, the popular Covariance Matrix Adaptation Evolution Strategy, a classic Particle Swarm Optimisation and a Bayesian Optimisation framework. We report results on two real-world case studies based on the Italian rivers ‘Paglia’ and ‘Aniene’. A comparative analysis between the employed optimisation algorithms is performed and discussed both empirically and statistically. From the hydrodynamic point of view, the experimental results are satisfactory and produced within significantly less computational time in comparison to classic methods. This shows the suitability of the proposed approach for optimal estimation of the roughness coefficient and, in turn, for designing optimised hydrological models

    Differential Evolution Optimal Parameters Tuning with Artificial Neural Network

    Get PDF
    Differential evolution (DE) is a simple and efficient population-based stochastic algorithm for solving global numerical optimization problems. DE largely depends on algorithm parameter values and search strategy. Knowledge on how to tune the best values of these parameters is scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links between the algorithm performance and parameter values. To do so, first, a data-set is generated and normalized, then the ANN approach is performed, and finally, the best parameter values are extracted. The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise with the application of this method. For each case, specifications about the procedure to follow are given. Finally, a comparison with four tuning rules is performed in order to verify and validate the proposed method’s performance. This study provides a thorough insight into optimal parameter tuning, which may be of great use for users.The authors appreciate the support to the government of the Basque Country through research programs Grants N. ELKARTEK 20/71 and ELKARTEK: KK-2019/00099
    corecore