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Abstract—Computer vision plays a significant role in mobile 

robot navigation due to the abundance of information extracted 

from digital images. On the basis of the captured images, mobile 

robots determine their location and proceed to the desired 

destination. Obstacle avoidance still requires a complex sensor 

system with a high computational efficiency requirement due to 

the complexity of the environment. This research provides a 

real-time solution to the issue of extracting corridor scenes from 

a single image. Using an ultra-fast semantic segmentation model 

to reduce the number of training parameters and the cost of 

computation. In addition, the mean Intersection over Union 

(mIoU) is 89%, and the high accuracy is 95%. To demonstrate 

the viability of the prosed method, the simulation results are 

contrasted to those of contemporary techniques. Finally, the 

authors employ the segmented image to construct the frontal 

view of the mobile robot in order to determine the available free 

areas for mobile robot path planning tasks.  

Keywords—Artificial Intelligence; Computer Vision; Sematic 

Segmentation; Mobile Robot; Path Planning.  

I. INTRODUCTION  

Mobile robots safely navigate their surroundings by 

identifying obstacles and moving objects in real time [1]. The 

sensor system in conjunction with the obstacle detection 

navigation algorithm consists of a laser scanner, sensor, and 

camera [2]. The use of lidar or digital cameras to provide 

information about a moving environment has become 

widespread in recent years [3, 4]. Despite the high cost and 

large number of computational steps [5, 6], it is still possible 

to perform the computations. Lidars provide depth 

information in all directions, preserving a world of perfect 

approximation. In addition, the camera provides inexpensive 

scene data for subject detection [7-14]. Due to the widespread 

availability of inexpensive, high-precision single cameras, 

the disadvantages that previously existed have been 

eradicated. Various forms of real-time image segmentation 

modeling and automatic navigation have been implemented 

successfully based on computer vision environment 

recognition techniques. 

Vision-based indoor mobile robot navigation has gained 

popularity as a sensing method for autonomous navigation 

due to its ability to provide detailed information about the 

environment [15-18] that may not be obtainable via 

combinations of other types of sensors. Semantic 

segmentation is a computer vision technique that involves the 

partitioning of an image into different regions or segments 

based on their semantic meaning. These partitions would help 

understanding the area around to improve the movement 

planning purposes. Semantic segmentation via deep learning 

(DL) is now a crucial task in computer vision, with 

applications including scene understanding, robotic 

perception, and image compression [19-26]. Semantic 

segmentation will precisely define semantic classifications 

such as buildings, transportation infrastructure, trees, and low 

vegetation as imaging technology advances [10-14]. Minae et 

al., [27] examined the interrelationships, advantages, and 

difficulties of these DL-based segmentation models. By 

contrasting the datasets, Li et al., [28] provided the essential 

methods of semantic segmentation for the fundamental 

datasets used in various structures. To remedy the lack of 

standard datasets for evaluating object segmentation. The 2D 

semantic labeling competition is recommended as a solution 

to this issue in [29]. In [30], Fusic et al. presented a DL 

algorithm for scene terrain categorization based on visual 

sensors. Even though the process obtains a high processing 

speed, its precision remains quite low when environmental 

factors change. Shelhamer et al., [31] converted modern 

classifier networks (AlexNet, VGG, and GoogLeNet) into 

fully convolutional networks (FCNs) to improve 

segmentation model performance and accuracy. Wang et al., 

used VGG-FCN models such as [30] or Unet [32] to address 

the image segmentation problem yields accurate results, but 

is unsuitable for infrastructure deployment due to their high 

computational cost. Rusli et al., [33] navigated mobile robot 

using the Canny edge algorithm and Hough line transform. 

There, boundary markers detected road markings and 

obstructions.  

Multiple binary masks could be combined as a result of 

segmentation to segment the input image into distinct classes. 

In addition, multi-class semantic segmentation achieved 

remarkable results for mobile robot path planning in 

environments with numerous obstacles and complex 

topologies [30-33]. Analyzed image datasets, the proposed 

classification algorithm distinguishes between terrain and 

obstacles [30]. However, scene terrain classification-based 

mobile robot navigation had not been demonstrated. In 

general, the semantic segmentation and the path planning are 

done with high-power computing devices, which limit the 

application to big robots or to purely computer simulations. 

In this paper, to conserve memory resources and guarantee 

processing speed, we segmented available and unavailable 

regions using binary semantics, which make the 

segmentation model's architecture is now more streamlined 

and rapid, suitable for small computer boards, with quality 

assured. The smaller size of computing unit would also help 
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to reduce the overall dimensions of the robot, or to leave more 

loading capability for other tasks given to the robot. 

Therefore, the authors devise a segmentation model using 

FCN as the decoder and MobilenetV2 as the encoder in order 

to solve the semantic segmentation problem [34, 35] and 

achieve efficient scene comprehension for autonomous 

driving. This combination will allow to perform the required 

tasks using only embedded computers while still achieving 

real-time performance quality. For the encoder, the authors 

employ a previously trained model from precursor networks. 

The authors then generate fractional predictions in the 

decoder block using multiscale fusion. The photography 

method captures authentic images of an indoor environment. 

Using published image data to compare with published 

segmentation methods, the proposed semantic segmentation 

model obtains an overall precision of 95%. In addition, the 

new image dataset from the Ducktown maintains its efficacy. 

The authors then effectively apply perspective correction to 

the segmented image to construct a frontal view of the general 

area, which detects the areas available for real-time 

movement. On the basis of the segmentation model's output, 

the authors can determine the areas that will serve as input for 

the autonomous mobile robot navigation system.  

II. PROPOSED METHOD  

A. Multi-class Semantic Segmentation based on 

MobilenetV2 Network 

The preceding architectural design has inspired numerous 

variations. Using models such as LeNet and AlexNet [36], 

convolutional neutral networks (CNNs) have been shown to 

produce the most advanced results for image classification 

problems. Successive enhancements, such as VGGNet, 

GoogleNet, and ResNet [36, 37], have increased efficiency 

and efficacy. Eventually, the convolutional neural networks 

were developed into a full convolutional network. The 

authors create a network based on a full convolutional neural 

network (FCN) [38-43] to accomplish instantaneous pixel-

by-pixel labeling while maintaining reliable segmentation 

results. VGG is preferred to AlexNet because the former 

model is more well-known but makes less accurate 

predictions. Semantic segmentation is a computer vision and 

image processing algorithm whose objective is to classify and 

segment each pixel in an image into classes corresponding to 

distinct semantic content. The authors implement a 

segmentation network for instant pixel-specific labeling that 

is primarily based on the FCN model's concept. The FCN 

network model for semantic segmentation is constructed as 

depicted in Fig. 1. 

B. MobilenetV2  

MobileNetV2's input channels are extended using 1 x 1 

point convolution, as shown in Fig. 2. Then, use depth 

convolution for input linear feature extraction and linear 

convolutional integration to combine output features while 

shrinking the size of the network. It replaces Relu6 with a 

linear function after size reduction so that the output channel 

size matches the input.  

In Fig. 3, In addition to Depthwise Separable 

Convolutions, Linear bottlenecks and Inverted Residual Block 

(shortcut links between bottlenecks) are suggested for usage 

in MobileNetV2 [34]. Since the input and output of a block in 

a conventional residual architecture typically have more 

channels than the intermediary layers, MobileNet v2's residual 

block is the inverse of this design. To reduce the number of 

model parameters, the authors employ a depth-separated 

convolution transform and an inverted residual block between 

the layers. The method allows for the MobileNet model to be 

simplified while maintaining its functionality. 

 

 

 Fig. 1. The architecture of Multi-class Semantic Segmentation based on 

MobilenetV2 

 

 Fig. 2. The architecture of MobilenetV2 

                                                                   
 Fig. 3.  Model of separable convolutional blocks in MobilenetV2              

C. Model Training  

The study's experiments were conducted on a server with 

the following specifications using Python 3.11.0 with 

Tensorflow 1.4 framework: CoreI7 11th CPU 2.50 GHz - 

4.90 GHz, Nvidia 2080TI 12GB VRAM, 32 GB RAM, 64-

bit OS, and English Windows 10 Home. The training specific 

parameters [44, 45] are set as follows: batch size is 4, learning 

rate is 0.001 and epochs is 100. The training is done by 
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optimizing the Balanced Cross Entropy (BCE) loss function 

[45, 46] expressed in Equation (1). 

𝐿𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑−𝐶𝐸(𝑦, �̂�) = {𝛽 × 𝑦 𝑙𝑜𝑔(�̂�)
+ (1 − 𝛽) × (1 − 𝑦) 𝑙𝑜𝑔(1 − �̂�)} 

 (1) 

where �̂� is the class SoftMax probability and 𝑦is the ground 

truth of the corresponding prediction, 𝛽 = 1 −
𝑦

𝐻×𝑊
, and 

𝐻 × 𝑊presents the total of pixel in the image. The BCE loss 

function addresses the issue of class imbalance, where the 

number of samples from one class significantly outweighs the 

other class, leading to biased learning and poor performance 

on the minority class. Because of that,𝛽is used for adjusting 

in the number of false negatives and false positives such as 

follows: reducing the number of false negatives when 𝛽 >
1or reducing the number of false positives when 𝛽 < 1.  

Finally, network parameters are optimized using Adam's 

optimum function [47-51] with a learning rate of 0.001 and 

100 epochs in order to maximize the balanced cross-entropy 

[52-54] described by Equation (1). Gaussian blur [55, 56] and 

Gaussian noise [57, 58] are applied to the data set as pre-

processing to assure the quality of the raw images before they 

are fed into the suggested segmentation model (see Fig. 4). 

Using the aforementioned approaches to generate more 

generic datasets improves the quality of the segmentation 

model, but at the expense of image quality. 

 
(a) 

 
(b) 

 
(c) 

 Fig. 4. The suitable steps from (a) to (c) of pre-processed real images 

III. PROPOSED SYSEM  

A. Hardware   

The Jetson Nano 4GB developer AI includes the 

following components of the Artificial Intelligence 

Development Board: It has a 128-core Maxwell graphics 

processing unit, a quad-core ARM A57 at 1.43 GHz, 4GB of 

64-bit LPDDR4 at 25.6 GB/s of memory, and 16GB of 

EMMC for storage. A version of NVIDIA Jetson Nano 77-

Degree 1080p CSI Camera Module with 8-Megapixel 

IMX219 Camera is shown in Fig. 5. 

 

 Fig. 5. Jetson nano with 8MP Sony IMX219 77-degree CSI camera 

B. Mobile Robot 

The authors assess the transformation's efficacy and 

verify semantic segmentation's important function in building 

the frontal perspective of the floor. Then, the mobile robot's 

ideal path planning can be created. The experimental results 

support the effectiveness of the collision-free zone detection 

method. When the forward perspective is standardized, an all-

encompassing plan for navigation and obstacle avoidance can 

be developed. Experiments depicted in Fig. 6 were done to 

evaluate our suggested sematic segmentation for use with 

four-wheel mobile robot navigation. 

 

 Fig. 6. Wheeled mobile robot 

IV. EXPERIMENTAL RESULTS 

A. Practical Face Recognition 

The dataset used for training the semantic segmentation 

model is 1200 images from the library of Ducktown data set 

simulation software [59, 60]. In the Ducktown data set 

simulation software, there are full objects such as houses, 

cars, people, objects and roads, etc. Some images represent 

the environment moving around the robot as shown in Fig. 7. 
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 Fig. 7. The road, static obstacles and dynamic obstacles in Ducktown data 

set [59] 

With the superfast structure of the proposed semantic 

segmentation model, the model training parameters are 

shown as shown in Fig. 8. 

From the successful training of the semantic segmentation 

model, the robot vision system will generate the output after 

segmenting the acquired image to create two distinct regions, 

the area that allows movement (yellow) and the obstacle area 

(purple) as shown in Fig. 9. 

Applying the proposed method of scaling from the size of 

the images of the environment to the actual size of the moving 

robot environment, the authors can apply the control model. 

Integrated PID control with tracing control moves from the 

navigation plan generated from the image processing results 

area of the semantic segmentation model. 

The steering control plan for the control the mobile robot 

to drive two wheels at the same time, the remaining two 

wheels are responsible for balancing the mobile robot as 

shown in Fig. 10. With 𝑣𝑟(𝑡): linear velocity of the right 

wheel; 𝑣𝑙(𝑡): linear velocity of left wheel; 𝑟(𝑡): angular 

velocity of the right wheel; 1(𝑡): angular velocity of right 

wheel; 𝑟: radius of each wheel; 𝐿: distance between two 

rudders; 𝑅: instantaneous radius of curvature of the robot 

trajectory, relative to the mobile robot's center axis; 𝐼𝐶𝐶: 
instantaneous center of the orbital curve; 𝑅 − 𝐿/2: radius of 

curvature of the orbit described by the left wheel; 𝑅 + 𝐿/2: 
radius of curvature of the orbit described by the right wheel. 

  
(a) (b) 

 

(c) 

 Fig. 8. The diagrams of training process based on semantic segmentation model with (a): trained accuracy, trained loss and trained mIoU 
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 Fig. 9. The output image of the semantic segmentation model from the 

image obtained from the frontal view 

 

 Fig. 10. The kinematics of mobile robot 

Construct a linear state equation (2) describing the 

position of the vehicle. 

[

𝑣𝑥(𝑡)

𝑣𝑦(𝑡)

�̇�(𝑡)

] = [
𝑐𝑜𝑠 𝜃 0
𝑠𝑖𝑛 𝜃 0

0 1
] [

𝑣(𝑡)

𝜔(𝑡)
]

= [

𝑣(𝑡) 𝑐𝑜𝑠 𝜃

𝑣(𝑡) 𝑠𝑖𝑛 𝜃

𝜔(𝑡)
] [

𝑣(𝑡)

𝜔(𝑡)
]

[
 
 
 
 
1
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 (2) 

Fig. 11 shows the PID closed-loop control structure for a 

self-propelled robot. When input 𝜃𝑒 is specified, the PID 

controller will give a control signal to ensure that the self-

propelled robot can follow the path in the navigation strategy. 

The control kinematics then calculate the velocity values for 

the wheels. In the next stage, the deflection angle, 𝜃𝑒, will be 

feedback and compared with the set value, the deviation will 

be adjusted by the PID controller to ensure zero approach 

when the time t goes to infinity. 

 

 Fig. 11. PID control diagram for mobile robot tracking the path 

B. Control Management Procedure 

 Fig. 12 depicts the results of the comparison between the 

PID controller and P with the motion of the vehicle. The self-

propelled vehicle starts from the origin xOy to ensure that the 

motion follows the moving object. In Fig. 12, the changing of 

deflection angle corresponding to the PID controller has been 

really smaller than the P controller. With less than 0.12 rad, 

mobile robot has completely and smoothly tracked the path. 

 

 Fig. 12. The comparison between PID controller and P controller about the 

steering angle of mobile robot 

V. CONCLUSIONS 

This paper proposes an ultra-fast semantic segmentation 

model to reduce the number of training parameters and the 

cost of computation. In addition, the mean Intersection over 

Union (mIoU) is 89%, and the high accuracy is 95%. Based 

on segmentation results, the mobile robot’s path planning is 

constructed successfully. The proposed models outperform 

state-of-the-art methods, which necessitate larger datasets for 

training, while using fewer resources in the training model. 
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