158 research outputs found

    latent relational model for relation extraction

    Get PDF
    Analogy is a fundamental component of the way we think and process thought. Solving a word analogy problem, such as mason is to stone as carpenter is to wood, requires capabilities in recognizing the implicit relations between the two word pairs. In this paper, we describe the analogy problem from a computational linguistics point of view and explore its use to address relation extraction tasks. We extend a relational model that has been shown to be effective in solving word analogies and adapt it to the relation extraction problem. Our experiments show that this approach outperforms the state-of-the-art methods on a relation extraction dataset, opening up a new research direction in discovering implicit relations in text through analogical reasoning

    Structure-based Models for Neural Information Extraction

    Get PDF
    Information Extraction (IE) is one of the important fields in Natural Language Processing. IE models can be exploited to obtain meaningful information from raw text and provide them in a structured format which can be used for downstream applications such as question answering. An IE system consists of several tasks including entity recognition, relation extraction, and event detection, to name a few. Among all recent advanced deep learning models proposed for IE tasks, one of the potential directions to improve performance is to incorporate structural information. Structural information refers to encoding any interactions between different parts of the input text. This information is helpful to overcome long distances between related words or sentences. In this dissertation, we study novel deep learning models that integrate structural information into the representation learning process. In particular, three major categories, i.e., existing structures, inferred structure at the sample level, and inferred structure at dataset levels are studied in this dissertation. We finally showcase the novel application of structure-based models for the less-explored setting of cross-lingual IE. This dissertation includes both previously published and co-authored material

    Cold-start universal information extraction

    Get PDF
    Who? What? When? Where? Why? are fundamental questions asked when gathering knowledge about and understanding a concept, topic, or event. The answers to these questions underpin the key information conveyed in the overwhelming majority, if not all, of language-based communication. At the core of my research in Information Extraction (IE) is the desire to endow machines with the ability to automatically extract, assess, and understand text in order to answer these fundamental questions. IE has been serving as one of the most important components for many downstream natural language processing (NLP) tasks, such as knowledge base completion, machine reading comprehension, machine translation and so on. The proliferation of the Web also intensifies the need of dealing with enormous amount of unstructured data from various sources, such as languages, genres and domains. When building an IE system, the conventional pipeline is to (1) ask expert linguists to rigorously define a target set of knowledge types we wish to extract by examining a large data set, (2) collect resources and human annotations for each type, and (3) design features and train machine learning models to extract knowledge elements. In practice, this process is very expensive as each step involves extensive human effort which is not always available, for example, to specify the knowledge types for a particular scenario, both consumers and expert linguists need to examine a lot of data from that domain and write detailed annotation guidelines for each type. Hand-crafted schemas, which define the types and complex templates of the expected knowledge elements, often provide low coverage and fail to generalize to new domains. For example, none of the traditional event extraction programs, such as ACE (Automatic Content Extraction) and TAC-KBP, include "donation'' and "evacuation'' in their schemas in spite of their potential relevance to natural disaster management users. Additionally, these approaches are highly dependent on linguistic resources and human labeled data tuned to pre-defined types, so they suffer from poor scalability and portability when moving to a new language, domain, or genre. The focus of this thesis is to develop effective theories and algorithms for IE which not only yield satisfactory quality by incorporating prior linguistic and semantic knowledge, but also greater portability and scalability by moving away from the high cost and narrow focus of large-scale manual annotation. This thesis opens up a new research direction called Cold-Start Universal Information Extraction, where the full extraction and analysis starts from scratch and requires little or no prior manual annotation or pre-defined type schema. In addition to this new research paradigm, we also contribute effective algorithms and models towards resolving the following three challenges: How can machines extract knowledge without any pre-defined types or any human annotated data? We develop an effective bottom-up and unsupervised Liberal Information Extraction framework based on the hypothesis that the meaning and underlying knowledge conveyed by linguistic expressions is usually embodied by their usages in language, which makes it possible to automatically induces a type schema based on rich contextual representations of all knowledge elements by combining their symbolic and distributional semantics using unsupervised hierarchical clustering. How can machines benefit from available resources, e.g., large-scale ontologies or existing human annotations? My research has shown that pre-defined types can also be encoded by rich contextual or structured representations, through which knowledge elements can be mapped to their appropriate types. Therefore, we design a weakly supervised Zero-shot Learning and a Semi-Supervised Vector Quantized Variational Auto-Encoder approach that frames IE as a grounding problem instead of classification, where knowledge elements are grounded into any types from an extensible and large-scale target ontology or induced from the corpora, with available annotations for a few types. How can IE approaches be extent to low-resource languages without any extra human effort? There are more than 6000 living languages in the real world while public gold-standard annotations are only available for a few dominant languages. To facilitate the adaptation of these IE frameworks to other languages, especially low resource languages, a Multilingual Common Semantic Space is further proposed to serve as a bridge for transferring existing resources and annotated data from dominant languages to more than 300 low resource languages. Moreover, a Multi-Level Adversarial Transfer framework is also designed to learn language-agnostic features across various languages

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing
    • …
    corecore