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Abstract. Analogy is a fundamental component of the way we think
and process thought. Solving a word analogy problem, such as mason is
to stone as carpenter is to wood, requires capabilities in recognizing the
implicit relations between the two word pairs. In this paper, we describe
the analogy problem from a computational linguistics point of view and
explore its use to address relation extraction tasks. We extend a relational
model that has been shown to be effective in solving word analogies and
adapt it to the relation extraction problem. Our experiments show that
this approach outperforms the state-of-the-art methods on a relation
extraction dataset, opening up a new research direction in discovering
implicit relations in text through analogical reasoning.
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1 Introduction

Relation Extraction (RE) is a very important capability of Natural Language
Processing (NLP) systems. It identifies semantic relations between pre-identified
entities in text. RE is particularly useful for Knowledge Base Population (KBP),
which is the task of populating Knowledge Bases (KBs) whose schemata have
been previously defined by a set of types and relations exploiting information
from a text corpus, as well as for building KBs from scratch. For instance, if
the target relation is president0f, a RE system should be able to detect an
occurrence of this relation between the entities DONALD TRUMP and UNITED
STATES in the sentence “Trump issued a presidential memorandum for the US”.

Several methodologies have been proposed to face the RE problem [1,10—
12,18,20,21,26,27]. Recently, [6,15,32] propose neural-based models in an end-
to-end fashion through increasingly complex architectures.

Although the neural-based RE approaches show good performance, we con-
tend that they present two limitations. First, they do not fit well for limited
domains, where only few seed examples are available. Complex architectures
have many parameters, therefore they require a considerable amount of training
data in order to learn good representations. It is not surprising, because these
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approaches completely rely on the power of deep neural networks that consist of
a blind feature learning without considering the linguistic and cognitive insights
that this problem requires. Furthermore, the generalization capability of these
approaches is limited to the relation types seen during the training phase, thus
they are not applicable to discover relations in new domains or in building a new
relational data source from scratch.

We approach the RE task from a different angle by addressing it as an analogy
problem. Solving analogies, such as ITALY: ROME=FRANCE:PARIS, consists of
identifying the implicit relations between two pairs of entities. The research
hypothesis that we will be exploring throughout this work is that a method
used to recognizing analogies can be useful to discover relations in text. In other
words, relation extraction and word analogy are “two sides of the same coin”.

These concerns lead to the following research questions: [RQ1] How to
address relation extraction as an analogy problem? [RQ2] Can a relational model
be compared with the state-of-the-art RE methods? In order to answer these
questions, we propose an Analogy-based Relation Extraction System (ARES)
by exploiting a relational model [28] which still holds the best scores in solving
word analogies. Our method projects entity pairs in a relational vector space
built by embedding the implicit properties which are observed in the text about
how two entities are related.

In this paper, we formalize relation extraction as an analogy problem through
its geometric interpretation in the relational vector space. We show that follow-
ing this idea it is possible to face the RE in different scenarios (unsupervised,
semi-supervised, supervised) through the same relational representations. Then,
we measure the performance of our approach on a popular dataset designed for
distantly supervised RE. The evaluation shows that ARES, with a simple lin-
ear classifier, outperforms the previously known approaches. This achievement
opens up new promising research directions for relation extraction by exploiting
analogical reasoning.

The paper is structured as follows: Section 2.1 describes the state-of-the-
art and the recent progress in RE. In Sect.2.2 we introduce the word analogy
problem and the relative approaches. In Sect. 3 we describe ARES and we provide
an evaluation of it in contrast with the most popular distant supervised RE
approaches in Sect.4. Section concludes the paper, highlighting the possible
new directions for RE.

2 Related Work

2.1 Relation Extraction

Given two entities e; and o that occur in a sentence S, Relation Extraction (RE)
is the process to understand the meaning of S and extract a triple (e, e3), where
r represents the semantic relation between the two entities. In the literature
several paradigms have been proposed to address the RE problem which differ
in terms of input, output and technique adopted, such as pattern-based [10],
bootstrapping [1], supervised [12,21,26] or OpenlE [18].
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A promising idea, called distant supervision [20], consists in using existing
KBs, like Freebase [2], as source of supervision without any human intervention.
The pairs of entities that belong to a certain relation in the KB are linked
with their surface forms in the textual corpus given as input. For each pair, all
sentences in the corpus in which the two entities occur together are collected.
However, the wrong labeling caused by the automatic matching between the
entity pairs in the KB and in the textual content as well as the overlapping
relations due to the intrinsic multi-graph structure of the KBs, require more
complex training and prediction phases. This paradigm is commonly addressed
as a multi-instance [23] and multi-label [11,27] classification task.

The deep neural network models proposed in [6,15,32] attempt to solve
the multi-label and/or multi-instance setting in an end-to-end fashion through
neural-based architectures with the aim to avoid the error propagation that could
be raised by the use of lexical and syntactic tools for feature extraction.

Another method, so-called universal schema [24,30], faces RE by combining
the OpenlE and KB relations. This method is related to our, in the sense that
a pair-relation matrix is built, but it differs from the idea. Indeed, the goal of
the universal schema is to address RE using a collaborative filtering approach
typically adopted in recommender systems.

2.2 Word Analogy

The word analogy task, namely the proportional analogy between two word pairs
such as a : b = ¢ : d, has been popularized by [19] with the aim to show the
capability of their neural-based model, so-called word2vec, in discovering the
“linguistic regularities” just using vector offsets (king — man + woman = queen
is the most cited example). Several studies [14, 16] have been proposed to deeply
analyze the use of word embeddings and vector operations in attempting to
achieve better performance on the same Google analogy dataset. The works in
[5,31] explore the use of word vectors to model the semantic relations.

However, the word analogy task has been originally addressed by [29]
who investigate several similarity measures on Scholastic Aptitude Test (SAT)
dataset, composed of 374 multiple-choice analogy questions. Given mason :
stone, this task consists of selecting the right analogy among 5 possible choices
(carpenter : wood in this case). The authors provide an interesting argumen-
tation regarding the different types of similarities, attributional and relational,
and their use in facing the word analogy problem. The lesson learned is that the
attributional similarity, typical of the word space models [13,22,25], is useful for
synonyms detection, word sense disambiguation and so on. Instead, the relational
similarity fits better in understanding word analogies. This intuition is confirmed
by [3] who shows that word2vec is less effective on the SAT dataset. Conversely,
the relational model proposed in [28] achieves a performance (56.1%) close to
the human level (57.0%) on the same benchmark. Therefore, in this work we
extend and adapt this relational model in order to address the relation extrac-
tion problem.
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3 Methodology

In this section we present ARES and we explore its use to face the RE problem
through analogical reasoning. First, we describe the Latent Relational Model
(LRM), the foundation of our method. Then, we show that an extensional rep-
resentation of the relations can be provided through the geometric interpretation
of analogy between entity pairs. Finally, we explore the application of ARES to
different RE scenarios.

3.1 Latent Relational Model

LRM provides an intensional representation of relations by embedding the
implicit properties observed in the text about how two entities are related. This
idea relies on the distributional hypothesis [9] which finds its roots in psychology,
linguistics and statistical semantics: “linguistic items with similar distributions
have similar meanings”.

Given a textual corpus 7T, the aim is to build a vocabulary V', composed of
the unique entity pairs extracted from T, and a lookup table M™* with n = V],
consisting of k-dimensional latent relational vectors associated to each element
of V. The idea to build a relational vector space model was originally proposed in
[28,29] to solve a word analogy task. We extend and adapt it to address the RE
problem. The main differences concern the use of an entity-entity vocabulary,
instead of a word-word one, and a different way to extract the contexts around
a pair as explained in the following paragraphs.

Entity Pair Vocabulary. Given a textual corpus T, the first step is to build a
vocabulary V = {(X1,Y1),...,(Xn, Ys)}, where (X;,Y;) are the distinct entity
pairs that occur together at least in one sentence. The question is how to identify
the atomic lexical units in 7' that are considered as entities (X;,Y;). This can
be done in different ways based on the specific RE scenario. For instance, in an
unsupervised RE a Named Entity Recognizer (NER) or, more generally, a noun
phrase chunker can be adopted. It depends from the types of relations to be
extracted. In a distant supervised RE, V' can be built using entities coming from
the KB linked in the text.

Entity Pair Contexts. Once the vocabulary V is built, the next step is to
extract the contexts around each entity pair when they occur together into the
same sentences across the corpus T'. A careful choice of the contexts is fundamen-
tal because they are the properties that define the intensional representation of a
relation. Differently from [28,29], we adopt a richer set of lexical and syntactical
features extracted from each sentence as proposed in [20].

Given an entity pair, from each sentence in which the pair occurs we extract:

1. The entity types provided by the NER;
2. The sequence of words between the two entities;
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The part-of-speech tags of these words;

A flag indicating which entity came first;

An n-gram to the left of the first entity;

An n-gram to the right of the second entity;
A dependency path between the two entities.

N Otk w

If an entity pair occur in more than one sentence, we collect the features
extracted from each sentence into a single bag. It should be noted that this
may involve the wrong labeling issue using a distant supervised approach, which
requires a multi-instance setting to be addressed [23]. Instead, in our model the
context aggregation helps to provide a more accurate intensional representation
of the relations between an entity pair.

Relational Vector Space Model. In this step a sparse matrix X™™ is built by
mapping the n entity pairs in V' to the rows and the m distinct features/contexts
extracted in the previous step to the columns. Each element X; ; represents the
weight of the j-th context in relation to the i-th entity pair. This weight might be
computed using different well-known weighing schemes in information retrieval
[4] and distributional semantic models [13], such as binary, tf-idf, entropy and
so on. Indeed, our pair-context matrix is the relational version of the classic
document-term or term-term vector space models.

There is not a theoretical motivation about which weighing schema is better:
the choice is empirical, and depends on the specific purpose and on the distri-
bution of the information in the textual corpus. In our experiments we found
that when applied to the RE task, tf-idf weights tend to produce more precise
results, while the binary schema achieves a recall-oriented performance.

Matrix Factorization. Since X™™ is a highly sparse matrix, this representa-
tion is not able to catch the implicit meaning across the textual contexts which
express the same semantics. For instance, the phrases “A is the author of B”
and “C wrote D” have the same meaning w.r.t. the relation author0f, but the
patterns “is the author of” and “wrote” are represented as separate features
in X. As consequence, the vectors related to the pairs (A,B) and (C,D) in X
are orthogonal even if they convey the same concept. In line with [4,13,28], we
address this issue by applying Singular Value Decomposition (SVD) to the sparse
matrix X.

SVD decomposes a matrix X into a product of three matrices UX V7T, where
UTU =1 = VTV and ¥ is a diagonal matrix of sorted singular values having
the same rank r of X. Let X, with £ < r, be the truncated version of X
by considering only the first k£ singular values, the SVD finds the best matrix
X, = UkEkaT by minimizing the cost function || X — X||r. We adopt the fast
and scalable algorithm proposed in [8].

Thus, the SVD applied to X produces a low-rank approximation of X:

X~ Xy, = U S Vi (1)
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where k is a hyper-parameter. For our purpose, we are mainly interested in the
matrices (U X)™* and V¥™. Indeed, the lookup table M™* that we are looking
for is obtained by:

Mn,k _ (Ukzk)n,k (2)

Each i-th row in M is a k-dimensional latent relational vector associated to each
entity pair in V. SVD allows to take into account the global distribution of the
pair contexts in the corpus and to understand the implicit relationships among
them. This latent information is embedded into the k-dimensional dense vectors.

On the other hand, V*™ contains the latent vectors of each m fea-
ture/context. Thus, the SVD has the big advantage of projecting the pairs and
the contexts into the same vector space. The role of V%™ is crucial for two rea-
sons. Firstly, in a supervised RE the k-dimensional vectors of new entity pairs
in the test set are obtained by M™* = XV, without retraining the SVD. How-
ever, the most interesting aspect regards transfer learning domain adaptation:
the SVD can be applied to a pair-context matrix X"¢ build on a large web
scale corpus, so kaeb condenses a rich prior knowledge that can be infused into
a new domain just using a matrix multiplication [7].

Finally, many other techniques can be applied to solve the sparsity issue, such
as Non-negative Matrix Factorization (NMF) or deep neural network, like Auto-
Encoders (AE) that learn latent representation through a non-linear dimension-
ality reduction. A comprehensive comparison of all these methods as well as
the application of transfer learning for domain adaptation are out of the scope
of this work, but, surely, they represent a very promising directions for future
investigations.

3.2 Geometric Interpretation of Analogy

Through LRM, each entity pair occurring in the corpus is projected into a rela-
tional vector space, therefore it is possible to exploit its geometric interpretation
to measure similarities between entity pairs. Thus, we can assert that there is an
analogy between two pairs of entities (A4, B) and (C, D) iff their latent vectors are
close in the relational vector space. For instance, we can measure this proximity
with the angle between the relational vectors using the cosine similarity.

Formally, given r(4 py and 7(c,p) the relational vectors in M related to the
entity pairs (A, B) and (C, D):

A:B=C:D <% cosine(ra,p),"c,p)) >t (3)

where

cosine(r(a,B),T(c,p)) = T(4.5) ° 7(C.0) (4)
lrca,mll - llre,p)ll
and ¢ is a threshold that establishes the breadth of the analogy between the two
pairs.
This intensional representation of the relations well models the fuzzy meaning
of relation between two entities. In fact, let us first consider the boundary cases
with the cosine similarity equal to 1 and 0. If 1 it means that (A, B) and (C, D)
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share exactly the same properties observed in the text, therefore the pairs are
strictly analogous. Instead, the value 0 means that their vectors are orthogonal,
so we can state that the pairs are not analogous at all'. However, since the range
of the cosine is [—1, 1], infinite degrees of analogy might be defined between two
entity pairs, and this aspect depends on the value of the threshold ¢ in Eq. (3).

This is useful to define the granularity of the type of a relation: higher values
of t mean fine-grained relations, otherwise lower values mean relations that are
more inclusive and coarse-grained. For instance, given the following sentences:
(1) ROME is the capital of ITALY; (2) The capital of FRANCE is PARIS; (3)
BROOKLYN is a borough of NEW YORK. Into a hypothetical vector space, the
latent vectors (ria1y, Rome) aNd T(France, Paris) are close because they share the
same context “capital of”. On the other hand, 7(yewyork, Brookiyn) 18 farther to
the other two vectors, but it is not orthogonal because the concept of “borough
of” is semantically related, in some way, to “capital of”. Indeed, both patterns
“borough of” and “capital of” express the meaning of inclusion between two
locations. Therefore, we can say that ITALY:ROME=FRANCE:PARIS. But what
about ITALY:ROME=NEW YORK:BROOKLYN? This depends on the granularity
of the relation that we are taking into account. If we want to model the relation
capital, then we can say that (ITALY, ROME) and (NEW YORK, BROOKLYN)
are not analogous. Instead, the result changes if we imagine a coarse-grained
relation like contains. The different scopes of capital and contains depend
on the value of the threshold .

3.3 Relation Extraction as Analogy Problem

Our aim is to use the geometric interpretation of analogy in attempting to emu-
late the task in identifying tuples in texts that share the same relations. Formally,
given as input a textual corpus 7" and a semantic relation R, the problem of RE
is to extract all pairs of entities that have the relation R in the corpus. Therefore,
the output of RE is an extensional representation of the relation R by listing all
entity pairs in the corpus that belong to R. The question is: how is R defined in
T? Let us consider Mp as the LRM built on the corpus T'. Based on the geomet-
ric interpretation of analogy described in Sect. 3.2, we can define the relation R
in an extensional way through the intensional vector representations in Mr as
follow:

Definition 1. A semantic relation R is a region in a relational vector space M
that outlines the boundaries among those entity-pair vectors that are analogous
to each other.

Since computing the analogy, hence the similarity, of all possible combination of
the entity pair vectors is infeasible, RE is reduced to an optimization problem
in finding the boundaries of that region in My. In the next paragraphs we show
the use of ARES to address the different RE scenarios.

! Based on the world described in the textual corpus.
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Unsupervised Relation Extraction. In absence of training examples, a clus-
tering algorithm can be applied on My in order to find C ..., centroids. For
instance, the k-means or DBSCAN algorithms can be used depending on if we
want to fix or not the number of the centroids. A centroid C; represents the
relational vector that condenses the meaning of a relation R;. Thus, given the
relational vectors of the entity pairs in My, the relation R; in the corpus T is
defined as follow:

R; = {(A, B) | cosine(r(a,py, Ci) >t} (5)

The value of ¢t is user-defined parameter that determines the scope of the region
around the centroid vector and so the granularity of the relation R;.

Semi-supervised Relation Extraction. ARES can be adopted also when a
small set of few seed pairs that express a relation R is provided as input. Let
Ry ={(X1,Y1),...,(X,,Y,)} aset of seed pairs with n small, then the centroid
vector is obtained by averaging the relational vectors in Mr related to each input
pair as follow:

Ly )

CR = — T(X;,Y;

o i=1 ( :
In this few-shot setting, ARES can be applied in an information retrieval style
by finding the nearest neighbors of the centroid Cg, used as a query. Thus, the
pairs of entities in the corpus T that have the relation R are extracted as follow:

Ro = {(A, B) | cosine(r(a,p), Cr,) > t} (7)

The entity pairs are ranked based on the similarity with the centroid/query Cg,
and a user can fix the value of ¢ in order to cut the pairs that have a similarity
below that threshold.

Supervised Relation Extraction. In a supervised RE setting a bigger train-
ing set of seed entity pairs is available. In particular, the distant supervision
ensures a large amount of training data by exploiting existing relational data
sources, like Freebase, without any human intervention. Since an entity pair
can belong to more relations at the same time, the distant supervised RE is
commonly addressed as a multi-label classification task where each relation is a
class.

In this setting, ARES exploits the training set in order to find that region
where the entity-pair vectors are analogous to each other, as stated in Definition
(1). For instance, a Support Vector Machine (SVM) classifier trained on the
relational vectors of the entity pairs in the training set finds a hyperplane into
the hyperspace defined by Myp. In fact, the hyperplane splits the region into
the vector space M by grouping the analogous entity pair vectors for a specific
relation. During the test phase, a new entity pair is projected into Mr and the
classifier predict at which region the new instance belong.
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4 Experiment

This section describes our evaluation by providing a comparison with the state-
of-the-art methods and a further analysis in order to show the flexibility of our
approach.

4.1 Experimental Setting

We evaluate ARES on the real-world dataset NYT10 [23], that is commonly used
by the community to evaluate the distant supervised RE methods. This dataset
was created by aligning Freebase tuples with the New York Times (NYT) corpus
from the years 2005-2007.

We adopt the original held-out setting that consists of 51 relations/classes.
The training set has 4700 positive and 63596 negative relation instances. While
the test set has 1950 positive and 94917 negative examples. We build our LRM
using only the sentences in the training set. For LRM we adopt the binary weights
and we fix to 2000 the dimension of the relational vectors. The pair contexts are
extracted as explained in Sect. 3.1.

We train a set of linear SVM on LRM in a one-vs-rest multi-label setting
with a penalty equal to 10, chosen with a 3-fold stratified cross validation on
the training set. In the prediction phase, we first project the unseen entity pairs
into the latent space using LRM as described in Sect. 3.1, then we predict the
scores for each relations/classes based on the decision functions of the SVMs.

We evaluate the performance using Precision-Recall curve and P@n metrics.
However, during our experiments we tried also other non-linear functions, such
as polynomial and rbf kernels, and a Multi-Layer Perceptron (MLP) with a
sigmoid function as last layer to avoid the one-vs-rest strategy. These classifiers
show more stable performance across the classes compared with a linear SVM
when learned on our LRM. However, using a simple classifier, without many
(hyper)parameters, allow us to evaluate more easily the quality of our relational
representations, that is the research question of this study.

4.2 Results and Discussion

We compare ARES with the popular feature-based and neural-based distant
supervised RE approaches. MINTZ++ [20] is the first distant supervised
method for open domain KB that uses a logistic regression classifier. We adopt
the multi-label version. MIML-RE [27] is a multi-instance multi-label app-
roach using a probabilistic graphical model to address the wrong labeling issue.
PCNN+ONE [32] uses a convolutional neural network for sentence represen-
tations with the at-least-one strategy for multi-instance. PCNN-+ATT [15]
improves the previous deep architecture by adding a sentence-level attention to
face the multi-instance learning.

Figure 1 shows the precision-recall curves of each model. The curves proof
clearly that our approach outperforms consistently all the state-of-the-art meth-
ods with a particular emphasis on the boosted precision at the first part of the
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Fig. 1. Precision-Recall curves comparison on NYT10 dataset.

Table 1. Precision values for the top extracted entity pairs.

P@10 | P@100 | P@1000 | AvgPr
MINTZ++ 0.55 |0.46 0.32 0.08
MIML-RE 0.64 |0.55 0.34 0.10
PCNN+ONE 0.64 |0.55 0.33 0.10
PCNN+ATT 0.64 |0.55 0.37 0.12
ARES (only syntactical) | 0.38 |0.55 0.29 0.10
ARES (only lexical) 0.82 |0.66 0.33 0.13
ARES 0.70 0.68 |0.36 0.14

curve. Table1 shows this aspect with more detail. In fact, ARES achieves a
P@100 equal to 0.68, while the other multi-instance methods obtain 0.55.
However, this improvement remains constant along the curve as showed by
the average precision in Table 1. ARES achieves these performances just using a
simple linear classifier against more complex deep learning architectures. There-
fore, our latent relational vectors promote the generalization capability of a
classifier. We performed an ablation test over the lexical and syntactical fea-
tures groups and their combination. As showed in Table1, the SVM classifier
trained only on the lexical group has an average precision very close to that
obtained by training the classifier on the full set of features. This result suggests
that our approach can be applied also on web-scale corpora since the extraction
of the lexical features can be done efficiently.
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Fig. 2. Learning curves by training the SVMs on different size on the training set.

Moreover, this dataset is highly unbalanced, therefore an end-to-end model
trained on this setting tends to overfit on the most frequent relations, like
contains, and provides a poor representation for the others. Our model allevi-
ates the overfitting because LRM learns the entity pairs vectors in a unsuper-
vised way by taking in account the global distribution of the contexts across the
entire corpus. That means better representations also for those relations with
few examples, therefore better generalization capability for the classifier.

To confirm this aspect, Fig. 2 shows the learning curves obtained by training
the SVMs on different size of training set. We performed this analysis on four fre-
quent relations of the NTY10 dataset by randomly choosing the different buckets
of the training instances for each relation. For relations, such as contains and
company, our model reaches almost the best Fl-scores just using about the 20%
of training examples.

However, it is worth to note that the attention mechanism of PCNN+ATT
shows a robust behavior when the recall increases. This suggests that a combi-
nation of our LRM with deep neural networks represents an interesting direction
for future investigations.
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/location/location/contains
/people/person/place_lived
/people/person/nationality
/business/person/company

Fig. 3. 2D visualization, using t-SNE [17], of entity pair embeddings learned on the
textual corpus of the NYT10 [23] dataset. Each point represents an entity pair vector
learned from text through LRM. The entity pairs are aligned with the relation types
in Freebase. Each marker represents a different relation type. The distribution of the
entity pair embeddings in the vector space approximates the relational structure of the
knowledge graph. (Color figure online)

4.3 Unsupervised Relational Analysis

Since LRM is an unsupervised model we can exploit the relational vectors to
understand the distribution of the relations in a given textual corpus. Figure 3
shows the 2D projection of the relational representations using t-SNE [17] a
techniques used to visualize high-dimensional embeddings. We built a LRM on
the whole NYT10 corpus (train+test) and each point in the space is a entity
pair vector. For instance, a (red) point marker in Fig. 3 refers to an instance of
the relation location/location/contains, such as (NEW YORK, BROOKLYN).

Since the entity pairs are aligned with those in Freebase, we can label them
with their relations used as ground truth. As we can see from the figure, the
distribution of the entity pair clusters is very close to the ground truth. For
instance, the cluster consisting of the (purple) triangle markers represents a
group of entity pair vectors with well-defined boundaries and with a strong
overlap with the instances of the relation business/person/company. Similar
behavior occurs for the (red) point markers and the instances of the relation
location/location/contains. This shows that the LRM is able to produce
latent vectors for each entity pair, learned from a corpus, which approximate
the relational structure of a knowledge graph like Freebase.
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However, there is a strong overlap for certain relations, such as
people/person/nationality and people/person/place_lived. In fact, they
are strongly related, but this does not necessary mean that LRM provides poor
representations. Instead, we can conclude that the properties in the text are not
enough to discriminate the semantics of these relations, hence those in overlap
can be removed or merged. In summary, this study shows that LRM is a flexible
tool, e.g., also to analyze a corpus and to establish if it is proper or not in
application to distant supervision paradigm.

5 Conclusion and Future Work

In this work we explored the use of analogical reasoning to address the problem
of extracting relations from textual corpora. We extended a model proposed
to solve word analogies in order to provide relational representations that have
been proven to be effective for a relation extraction system. Indeed, our approach,
using a simple linear classifier, achieves promising results when compared with
state-of-the-art deep neural-based models. In our research agenda, we plan to
learn non-linear relational representations from text using unsupervised deep
neural networks, such as auto-encoders, as well as to explore the use of analogy in
transfer learning in order to address more challenging problems, such as domain
adaption and automatic ontology construction.
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