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ABSTRACT

Who? What? When? Where? Why? are fundamental questions asked when gather-

ing knowledge about and understanding a concept, topic, or event. The answers to these

questions underpin the key information conveyed in the overwhelming majority, if not all,

of language-based communication. At the core of my research in Information Extraction

(IE) is the desire to endow machines with the ability to automatically extract, assess, and

understand text in order to answer these fundamental questions. IE has been serving as

one of the most important components for many downstream natural language processing

(NLP) tasks, such as knowledge base completion, machine reading comprehension, machine

translation and so on. The proliferation of the Web also intensifies the need of dealing with

enormous amount of unstructured data from various sources, such as languages, genres and

domains.

When building an IE system, the conventional pipeline is to (1) ask expert linguists to

rigorously define a target set of knowledge types we wish to extract by examining a large

data set, (2) collect resources and human annotations for each type, and (3) design features

and train machine learning models to extract knowledge elements. In practice, this process

is very expensive as each step involves extensive human effort which is not always available,

for example, to specify the knowledge types for a particular scenario, both consumers and ex-

pert linguists need to examine a lot of data from that domain and write detailed annotation

guidelines for each type. Hand-crafted schemas, which define the types and complex tem-

plates of the expected knowledge elements, often provide low coverage and fail to generalize

to new domains. For example, none of the traditional event extraction programs, such as

ACE (Automatic Content Extraction) and TAC-KBP, include “donation” and “evacuation”

in their schemas in spite of their potential relevance to natural disaster management users.

Additionally, these approaches are highly dependent on linguistic resources and human la-

beled data tuned to pre-defined types, so they suffer from poor scalability and portability

when moving to a new language, domain, or genre.

The focus of this thesis is to develop effective theories and algorithms for IE which not

only yield satisfactory quality by incorporating prior linguistic and semantic knowledge, but

also greater portability and scalability by moving away from the high cost and narrow

focus of large-scale manual annotation. This thesis opens up a new research direction called

Cold-Start Universal Information Extraction, where the full extraction and analysis

starts from scratch and requires little or no prior manual annotation or pre-defined type
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schema. In addition to this new research paradigm, we also contribute effective algorithms

and models towards resolving the following three challenges:

• How can machines extract knowledge without any pre-defined types or any human

annotated data? We develop an effective bottom-up and unsupervised Liberal Infor-

mation Extraction framework based on the hypothesis that the meaning and underlying

knowledge conveyed by linguistic expressions is usually embodied by their usages in

language, which makes it possible to automatically induces a type schema based on

rich contextual representations of all knowledge elements by combining their symbolic

and distributional semantics using unsupervised hierarchical clustering.

• How can machines benefit from available resources, e.g., large-scale ontologies or ex-

isting human annotations? My research has shown that pre-defined types can also be

encoded by rich contextual or structured representations, through which knowledge

elements can be mapped to their appropriate types. Therefore, we design a weakly

supervised Zero-shot Learning and a Semi-Supervised Vector Quantized Variational

Auto-Encoder approach that frames IE as a grounding problem instead of classifica-

tion, where knowledge elements are grounded into any types from an extensible and

large-scale target ontology or induced from the corpora, with available annotations for

a few types.

• How can IE approaches be extent to low-resource languages without any extra human

effort? There are more than 6000 living languages in the real world while public gold-

standard annotations are only available for a few dominant languages. To facilitate

the adaptation of these IE frameworks to other languages, especially low resource

languages, a Multilingual Common Semantic Space is further proposed to serve as a

bridge for transferring existing resources and annotated data from dominant languages

to more than 300 low resource languages. Moreover, a Multi-Level Adversarial Transfer

framework is also designed to learn language-agnostic features across various languages.
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CHAPTER 1: INTRODUCTION

The majority of the current information sources are based on natural language text, rang-

ing from books, news articles, social media posts, scientific journals, to a wide range of

textual information from various domains and languages, such as electronic medical records,

financial or government reports. Understanding who did what to whom, when and where

from such a massive unstructured text corpora is quite painstaking as human needs to read

and understand a huge amount of information. Structured data, such as a graph consist-

ing of entities, events and their relationships, is serving as an important source for human

to understand the world. It allows people to quickly understand the text and retrieve the

information that they need in an efficient and unambiguous manner. The bulk of this the-

sis is devoted to the problem of automatically turning unstructured text into structured

knowledge.

Information Extraction (IE) is the task of automatically extracting concepts (e.g., entities

and events) and their relations from unstructured texts. It has been a popular research topic

in natural language processing (NLP) since 1990s, when the series of Message Understanding

Conferences (MUCs) [1] were introduced. The input to an IE system is a set of texts, e.g.,

news-wire articles, tweets, and the output is a set of structured and unstructured facts.

According to the types of these facts, IE can be divided into multiple downstream sub-

tasks, e.g., named entity recognition, relation extraction which determines the relationship

between two or more entities, and event extraction that detects event triggers as well as

their participants with particular roles. To help researchers better understand the task and

algorithms, we provide a detailed definition for each term involved all the sub-tasks of IE.

• An Entity is an object or set of objects in the real world and a Mention is a reference

to a particular entity. Entities can be referenced in a text by their name or pronoun.1

• A Relation defines a semantic relationship between two entities. Relations are usually

characterized based on orderd pairs of entities.2

• An Event is a specific occurrence involving participants, which is frequently described

as a change of state. An Event Trigger is the word that most clearly expresses

the occurrence of an event, and an Event Argument is a concept that serves as a

participant in an event. Each argument also plays an Argument Role, which specifies

the function or purpose of an argument.3

1https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf
2https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v5.8.3.pdf
3https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
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Figure 1.1 shows three example sentences and their IE outputs. For example, in E3, troops

is recognized as a mention of a Person entity and Himalayan is identified as a mention

of a Location entity. They hold a semantic relationship named Located. In addition, a

Transport-Person event mention is also detected which is triggered by dispatching and has

multiple arguments involved, e.g., the Government of China is the Agent argument, troops

is a Person argument, Himalayan is the Destination and 1950 is the Time.

The Government of China has ruled Tibet since 1951 after dispatching troops to the Himalayan region in 1950.

[Transport-Person]

Person

Time
Agent

Destination

[Organization] [Person] [Location]

Located

[Location]

The News Agency reports that the police has transferred Tran to Ho Chi Minh city.

[Transport-Person]

PersonAgent

Destination

[Organization] [Person] [Location]

Ayman Sabawi Ibrahim was arrested in Tikrit and was sentenced to life in prison.

[Arrest-Jail]
Place Place

[Person] [Location]

Person

Defendant

[Sentence]

E1:

E2:

E3:

Figure 1.1: Example of Information Extraction Output. The upper annotations show event
extraction output while the lower annotations show entity and relation extraction output.

Given a natural language sentence, an IE system should be able to identify multi-level

structured information. For example, for sentence E3, it should first recognize what types

of names are included, e.g., the organization name The Government of China, the location

name Tibet, or the nominal mention troops, and then determine the relationship between each

pair of names, e.g., the Located relationship between troops and Himalayan. In addition, an

IE system should also detect dispatching as a trigger for an Transport-Person event mention,

and identify Himalayan as the Destination and 1950 as the Time for dispatching event.

Recently, as the development of machine learning technologies, IE systems have been

applied to a wide range of textual sources: from high resource languages (e.g., English,
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Chinese) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] to extremely low resource languages

(e.g., Amharic, Uyghur) [15, 16, 17, 18, 19, 20], from general news domain to biomedical

domain [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] or scientific domain [32, 33], and even from

plain text to multimedia (e.g., images, videos) [34, 35].

1.1 TRADITIONAL IE PIPELINES AND THEIR LIMITATIONS

With improving the quality of extraction as the main goal, traditional IE has gone through

a “hill-climbing” process since 1990s, driven by various shared tasks including MUC [1],

CONLL [36, 37], ACE and TAC-KBP [38, 39]. This paradigm includes three steps:

1. Some expert linguists define a schema about “what to extract”, such as concept types

and their relations for a specific data collection based on the needs of potential users,

and write an annotation guideline for each type in the schema;

2. Human annotators follow the guideline to annotate a certain amount of documents (a

typical size is 500 documents);

3. Researchers design features and train supervised learning models from these manually

annotated data.

This traditional IE paradigm has achieved significant successes on some IE tasks. For ex-

ample, for English name tagging task, current state-of-the-art approaches [16, 40, 41, 42] can

achieve more than 90% F-score on CONLL2003 [36, 37] benchmark using 15,000 annotated

sentences with more than 23,000 annotated names, while for English event extraction task,

state-of-the-art approaches [13, 35, 43] can achieve more than 70% F-score for event trigger

extraction and 58% F-score for argument extraction with 5000 annotated event mentions.

However, we argue that it has at least two limitations which make it difficult to be directly

applied to new domains or languages:

1. First, this paradigm is not fully automatic because it involves human in the loop during

the first two steps. Both of the predefined type schema and human annotated data

are very expensive. For example, it took expert linguists almost one year to define the

ACE (Automatic Content Extraction) event type schema which covers 33 event types,

and government spent millions of dollars to hire human annotators to fully annotate

599 articles.
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2. Second, a predefined schema can only cover a limited number of types and relations.

For example, some typical types of emergent events such as “donation” and “evacua-

tion” in response to a natural disaster are missing in all of the traditional IE programs.

Extracting event mentions for new types means to start the whole process again from

zero, without utilizing any resources for existing types.

Some recent research efforts have been made to address these limitations. Several new

paradigms such as Open IE [44, 45, 46], Preemptive IE [47] and On-Demand IE [48] exploited

data-driven methods (e.g., domain-independent patterns) to extract relations or events which

are not restricted to any pre-defined schema. However, state-of-the-art Open IE techniques

obtained substantially lower recall than traditional IE [46], because they heavily rely on

information redundancy and thus fail to discover relations in the “long-tail” due to knowledge

sparsity. In addition, they are still incapable of generalizing contexts to name new relation

types and form a schema.

1.2 MOTIVATIONS AND SOLUTIONS

Unstructured Text

…

English
News

Biomedical
Articles

Russian
News

Available Resources

Ontology

Existing
Annotated
Resources

Cold-Start Universal IE

Bottom-Up
Knowledge
Discovery

Existing
Knowledge
Encoding

Share/Transfer

Structured Knowledge

Cold-Start Liberal
Information Extraction
(ACL’2016, BigData’2017)

Zero-Shot Information
Extraction (ACL’2018)

Multilingual Common
Semantic Space
(EMNLP’2018, NAACL’2019)

Figure 1.2: Overview of Our Cold-Start Universal Information Extraction Paradigm.

To solve these limitations, we basically need to answer three research questions: (1) in

order to reduce the human cost, how can machines automatically discover the key information

without any human effort? (2) to improve the coverage, can machines automatically discover

new types of knowledge by leveraging existing annotations? (3) to improve the portability,
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we also need to investigate how can the knowledge be effectively shared and transferred

across various scenarios, e.g., from one domain to another domain, or from one language to

another language.

This thesis addresses these questions with a new research paradigm, Cold Start Univer-

sal Information Extraction, a “bottom-up” information extraction fashion which attempts to

discover structured knowledge from any source of unstructured text, such as English news ar-

ticles, Russian news articles or even Biomedical articles, by leveraging all available resources,

including manually defined ontologies or existing annotated data for old scenarios without

requiring human in the loop. As Figure 1.2 shows, the universal information paradigm cov-

ers three representative work: a cold-start liberal IE approach, a zero-shot transfer learning

framework, as well as a multilingual common semantic space, which serves as a bridge for

knowledge transfer across various domains, sources, and languages.

1.2.1 Liberal Information Extraction

Traditional IE approaches tend to follow a “top-down” manner - learning effective features

for each predefined type according to human annotated data, and then discovering the facts

specific to the predefined types. We take a fresh look at the IE problem and design a cold-

start liberal information extraction framework. We argue that all the types of candidate

facts can be discovered with simple features or existing linguistic resources. For example, for

entity recognition, a lot of work [49, 50, 51, 52] has explored to apply patterns and lexical

features to identify names; which for event extraction, we can take all the verbs as well as

the nouns that are covered by exiting linguistic resources, e.g., FrameNet [53], VerbNet [54],

propbank [55], and ontonotes [56], as candidate triggers, and take all the semantically related

contexts in a semantic parsing output, e.g., Abstract Meaning Representation (AMR) parsing

or dependency parsing output, as their candidate arguments. This hypothesis can be verified

by the fact that about 90% of the triggers in ACE2005 annotation can be covered by the

candidate triggers discovered by AMR parsing and FrameNet. After identifying all candidate

facts, the next step is to automatically induce a type schema. We observed that the facts,

such as entities and event triggers, usually shared similar types when they occur in similar

contexts and scenarios. Thus, in order to automatically induce a type schema, we seek

to group all the candidate facts into various clusters based on their semantics and each

cluster denotes one type. Previous work [12, 13, 57] usually take the contextual words and

distributional semantic representations as features to a classifier and map each trigger to a

predefined type. While in Liberal IE framework, we use such features to represent the rich

semantics of each fact and specify its type. The facts which share similar semantics as well
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as local contexts should belong to similar types. For example, in Figure 1.1, the semantics

of the dispatching event mention in E3 should be closer to the semantics of transferred event

mention in E2 than that of arrested or sentenced event mention in E1. Without requiring

any annotated data or predefined type schema, this framework can be directly applied to

any genres, domains, or languages, and can automatically induce a type schema which is

customized to the input corpus. Taking event extraction task as an example, Figure 1.3

depicts the differences between traditional ACE paradigm and our liberal IE paradigm.

Traditional Event Extraction

Conflict Life

Attack Marry Die … Injure

…Type:

Subtype:

Argument:
Demonstrate

Entity Time Place
… …

Agent Victim Time…

Guidelines Documents
Sen 1: The Indian army stated that 4 Islamic militants 

were killed in 2 separate gun battles 20021228.

Sen 2: The embassy stated the British government is 
opposed to the death penalty in all circumstances.

Event : killed, Type: Die,  Arguments: 4 Islamic militants (Victim)

Null

Linguistic Resource Documents
Sen 1: The Indian army stated that 4 Islamic militants were killed in 2 separate gun battles 20021228.

Sen 2: The embassy stated the British government is opposed to the death penalty in all circumstances.

Event 2: killed, Type: Kill,  Arguments: 4 Islamic militants (Victim)

Event 1: stated, Type: State, Arguments: embassy (Agent), opposed (Topic)

Event 1: stated, Type: State,  Arguments: Indian army (Agent), killed (Topic)

Event 3: battles, Type: Battle,  Arguments: 4 Islamic militants (Agent), 20021228 (Time)

Event 2: opposed, Type: Oppose, Arguments: British government (Patient), death penalty (Theme)

Attack ImprisonBattle … Demand StateType:

Trigger Cluster:

Arguments:
Agent Time Place… …

Agent Patient Topic Time Place
…

Oppose

attackstrike
hitbombs …

imprison
prisoners

sentence
…… demand

urge
pressured …… … anti

opposed …

Manner

Liberal Event Extraction

Figure 1.3: Comparison between ACE Event Extraction and Liberal Event Extraction.

1.2.2 Zero-Shot Information Extraction

Liberal information extraction approach can bottom up discover facts and automatically

induce a type schema from the given input corpus. However, in many practical applications,

the systems are required to extract certain predefined types of facts without providing any in-

domain annotated data. In this case, the types that are automatically discovered by liberal

IE approach may not be able to automatically or perfectly mapped with the given types.

On the other hand, expert linguists have spent decades on creating ontologies and linguistic

resource, and governments have spent millions of dollars on collecting annotated data for the

existing type schemas. For example, several event extraction programs have been proposed

in recent years. ACE (Automatic Content Extraction) program defines 8 main event types

and 33 event subtypes across three languages, English, Arabic and Chinese, while ERE

(Entities, Relations, Events) consists of 38 event subtypes. Both of these two programs

have released thousands of annotated articles according to the guidelines written by expert

linguists.

Considering these facts, we go beyond the liberal IE approach, and rise a new research

question: can we take advantage of the existing ontologies, as well as the annotations for
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existing types, to discover new types of facts? We finally achieve this goal by adopting a zero-

shot transfer learning framework for IE. Similar as the liberal IE approach, we first identify

all the candidate facts and get their rich semantic representations by incorporating their local

contexts. Then, inspired by the theory of [58] for event extraction task: “the semantics of an

event structure can be generalized and mapped to event mention structures in a systematic

and predictable way”, we propose to model information extraction as a grounding problems,

instead of a classification or clustering problem, by learning a regression function to map

each fact to its semantically closest type. The mapping function is independent of types,

and can be trained from annotations for a limited number of seen types and further used for

any new unseen types. With this zero-shot learning framework, we can take advantage of all

available linguistic resources as well as annotations for existing seen types, and automatically

discover facts for any new given types without requiring any human effort.

To alleviate the reliance of the large-scale target ontology, which is usually unavailable

for many scenarios, we further extend the zero-shot IE framework to a more challenging

setting, where the approaches are required to extract knowledge elements and induce a set

of new event types. We design a semi-supervised vector quantized variational auto-encoder

approach to automatically learn a vector representation for each potential unseen type and

ground each candidate fact into a seen or unseen type. With event detection as a case study,

this approach is approved to be able to discover a set of high-quality unseen types given the

annotations for a few seen types.

1.2.3 Multilingual Common Semantic Space

Both liberal information extraction and zero-shot learning frameworks are built upon the

rich semantic representations of each candidate fact. In order to facilitate the adaptation of

these approaches to new languages, we further propose to construct a multilingual common

semantic space, where words from multiple languages are projected into a shared semantic

space to serve as the bridge for knowledge transfer.

Previous work usually learn multilingual word embeddings using bilingual word dictionar-

ies, which, however, are not always enough, especially for low resource languages. Though

several recent attempts [59, 60, 61] have shown that it is possible to extract multilingual

word embedding from a pair of potentially unaligned corpora in multiple languages, we

claim that it is necessary to impose more constraints to preserve linguistic properties and

facilitate downstream NLP tasks, such as cross-lingual IE, and MT. We find that words

also can be clustered through explicit (e.g., sharing affixes of certain linguistic functions) or

implicit clues (e.g., sharing neighbors from monolingual word embedding) and such clusters
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should also be consistent across multiple languages. To do so, we introduce multiple cluster-

level alignments and enforce the word clusters to be consistently distributed across multiple

languages. We exploit three signals for clustering: (1) neighbor words in the monolingual

word embedding space; (2) character-level information; and (3) linguistic properties (e.g.,

apposition, locative suffix) derived from linguistic structure knowledge bases available for

thousands of languages. We introduce a new cluster-consistent correlational neural network

to construct the common semantic space by aligning words as well as clusters. By encour-

aging the consistency of clusters, this framework can maintain high performance with very

small size of bilingual lexicons, thus can serve as a bridge for transferring linguistic resources

as well as existing human annotations across thousands of languages.

In addition, we also explore adversarial training for cross-lingual transfer and design a

multi-level adversarial training framework to efficiently learn language-agnostic features on

both word level and sequence level. Using low-resource name tagging task as a case study, it

achieves up to 16% absolute F-score gain overall high-performing baselines on cross-lingual

transfer without using any target-language resources.

1.3 NOVELTY AND CONTRIBUTION CLAIMS

The main contribution of this thesis is to investigate the main limitations of traditional

approaches for information extraction task and propose several new architectures to solve

the problems. Here we briefly summarize the main contributions of the three representative

frameworks:

• To the best of our knowledge, Liberal IE is the first information extraction paradigm

to take human out of the IE loop and bring IE systems into the joy of identifying

useful information liberally. A Liberal IE approach can simultaneously discover a

domain-rich schema which is customized to the input data, and extract structured

knowledge. It has an absolute “cold-start” and can be adapted to any genres, domains,

and languages without any human annotated data, and thus tremendously save human

cost. The resulting system is being successfully used by various government agencies

(e.g., ARL, ARFL, and IARPA) and industrial companies (e.g., Bosch, IBM) on various

domains (e.g., military, disaster, bio-medical, power tool). It has also been widely

cited and has inspired follow-up research on open-domain information extraction, event

representation learning, event-event relation prediction.

• We also propose a new view of information extraction and reframe it from the current

classification into a grounding problem, and design a zero-shot information extraction
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framework and a semi-supervised vector quantized variational auto-encoder approach.

Taking advantage of the annotations for very limited types of old scenarios, our zero-

shot IE approach can achieve comparable performance for thousands of types as super-

vised methods without requiring extra human annotation effort. As a result of these

efforts, the extraction capabilities have been extended from dozens of types (e.g., 33

types for event extraction) to more than 1000 types while ensuring high quality.

• We also introduce an elegant way of effectively transferring available resources (e.g.,

manually constructed ontology or manually annotated data) across various languages.

A multilingual common semantic space is constructed to serve as a bridge among

thousands of languages. Without requiring large size of bilingual dictionaries and

multilingual descriptions for the same image, we take advantage of multi-level cluster

alignments between each pair of languages, and can automatically align multilingual

words in a shared semantic space. The resulting embeddings better retain the clus-

tering structures in each language, which is important to multi-lingual IE. This work

enables IE to be feasible for thousands of languages without requiring any human ef-

fort. By leveraging available resources from English through the common semantic

space, we provide coordinated NER (Named Entity Recognition) for hundreds of lan-

guages (e.g., Turkish, Amharic, Uyghur) without parallel data and achieve up to 24.5%

absolute F-score gain.

1.4 THESIS STRUCTURE

The rest of this thesis is structured as follows:

• Chapter 2 provides a comprehensive literature overview for previous information ex-

traction studies, including traditional rule-based and supervised IE approaches, semi-

supervised and distantly supervised methods, and the line of open information ex-

traction research. It also compares all these previous studies with our new cold-start

universal IE approaches in terms of the requirement of human effort and the coverage

and portability of the methods. : describes previous studies that related to our topics.

• Chapter 3 describes the main framework of our liberal information extraction ap-

proach. We demonstrated the quality and portability of this framework on both event

extraction and fine-grained named entity typing tasks.

• Chapter 4 presents idea of zero-shot learning for event extraction task. The system

trained on 500 sentences for 6 types and tested on 27 new types achieves comparable
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performance as a supervised extractor trained on more than 3000 sentences for 33

types.

• Chapter 5 discusses an extension of the zero-shot learning framework, a semi-supervised

vector quantized variational autoencoder approach, which does not required a target

ontology, and instead, can automatically induce a set of new unseen types based on

available annotations for a few seen types.

• Chapter 6 investigates the problems of extending IE from dominant languages to low-

resource languages by constructing a multilingual common semantic space. Intrinsic

evaluation on monolingual and multilingual QVEC tasks and extrinsic evaluation on

low-resource name tagging task demonstrates the effectiveness of this common space.

• Chapter 7 discusses a cross-lingual adversarial transfer approach which can be applied

to the scenario where no bilingual dictionaries or alignments are available. By lever-

aging word-level and sequence-level adversarial training, this approach achieves up to

16% F-score gain on low-resource name tagging task.

• Finally, Chapter 8 presents the conclusion and contributions of this thesis. We also

discuss the remaining limitations of current frameworks and algorithms, and point out

to some directions for future research.
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CHAPTER 2: RELATED WORK

This chapter first provides a comprehensive review for the traditional information ex-

traction approaches as well as the methods that are based on other information extraction

paradigms, and then compares our new Cold-Start University IE approaches with these prior

arts in terms of the quality as well as the requirement of human effort.

2.1 TRADITIONAL INFORMATION EXTRACTION

2.1.1 Rule and Pattern Based Approaches

Information extraction has long been an active research topic in natural language process-

ing. The earliest stage of IE approaches that are designed to detect entities, relations and

events are based on human-crafted heuristic rules or patterns [62, 63, 64, 65, 66, 67, 68, 69,

70]. For example, to identify Person entity names, [71] summarized more than 100 rules

and patterns as Table 2.1 shows. In addition, [62] described a TextMarker system to acquire

and refine a set of rules for structured data extraction. [64] proposed a generative model

that incorporates distributional prior knowledge to help distribute candidate slot fillers in a

document into appropriate slots and identify meaningful template slots. In addition, many

rules, such as dependency restrictions [72], entity type constraints [73], seed dictionaries [74],

are also combined with supervised learning approaches.

<Token> [ “[A− Z][a− z] ∗ ”] → <CapsWord>
<Token> [ “Michael | Richard | Smith |...”] → <PersonDict>
<Token> [ “Mr. | Mrs. | Dr. | Miss. |...”] → <Salutation>
<PersonDict> <PersonDict> → <Person>
<Salutation> <CapsWord> → <Person>
<Salutation> <CapsWord> <CapsWord> → <Person>
... ... → ... ...

Table 2.1: Rules and Patterns for Identifying Person Entity Names.

With hand crafted rules and patterns, these IE approaches tend to generate very fast and

good results with very high precision. The identification process is easy to comprehend and

trace as we can quickly tell based on which rules is the entity or relationship be determined,

so that developers can quickly fix the cause of errors. Another advantage is that domain

specific knowledge can be easily incorporated into the rule based IE systems as additional
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dictionary or patterns. Given these pros, many commercial vendors are relying on rule-based

IE systems. However, it’s also noticeable that these approaches also require tedious manual

labor from domain experts to identify and correctly define the rules and patterns. According

to the analysis on the EMNLP, ACL, and NAACL conference proceedings from 2003 through

2012 [75], only 3.5% of the research papers on information extraction are purely based on

rules and patterns.

2.1.2 Supervised Machine Learning Based Approaches

Most of the current information extraction methods were based on human annotated data

and supervised learning techniques, which can be further divided into: (1) machine learning

models using manually crafted features, and (2) deep neural networks with distributional

semantic embedding features. This section briefly summarizes the supervised algorithms

and models for each subtask of IE.

Name tagging task is usually treated as a sequence labeling problem, where each token is

mapped to a tag based on its feature representation. Early machine learning models that

have been explored include Hidden Markov Model (HMM) [76, 77, 78, 79], Support Vector

Machines (SVMs) [80], Conditional Random Fields (CRFs) [81, 82], and decision trees [83].

As each name may contain multiple tokens, CRFs has been proved to be quite effective in

capturing inter dependency between name tags [84, 85]. [86] is the first to use neural network

architecture for name tagging task, where feature vectors are constructed from orthographic

features and a multi-layer feed forward neural networks is used for label prediction. This

approach was further improved by replacing the manually constructed features with word

embeddings [87]. Afterwards, Recurrent Neural Networks, especially Bi-directional Long

Short-Term Memory (Bi-LSTM) networks [41, 88, 89, 90], showed significant improvements

on all the sequence labeling tasks. They process each sequence in both directions with two

separate hidden layers to learn a contextual representation for each token, which is then fed

into a CRFs layer to predict a name tag.

Event extraction task aims to extract both a trigger and its arguments, where the argu-

ment candidates are the entities detected from the same sentence. Early research on event

extraction mainly relies on local sentence-level symbolic features in a pipelined architec-

ture [12, 57, 91, 92, 93, 94, 95], where the extraction of triggers, which tags each token to

a particular event type or Other, and argument links, which are classified for each pair of

a candidate trigger and an argument into a particular argument role or Other, are modeled

as two isolated subtasks. Such pipelined approaches prohibit the interaction among com-

ponents such that errors from upstream components are propagated to downstream ones.
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To resolve this limitation, joint models using Markov Logic Network [96], Structured Per-

ceptrons [97, 98, 99], Dual Decomposition [29] and Deep Neural Network [100, 101] are

developed to jointly identify the candidate trigger and arguments by considering the inter-

actions between these two predictions.

Both supervised learning and rule based IE approaches usually achieve high quality for

known types, but cannot be directly applied to any new types. Both of them require hu-

man to be involved: experts need to define a type schema with detailed guidelines; system

developers either manually defined a set of hand-written rules or ask human annotators to

annotate a set of articles according to the guidelines. Handling new types means to start

over from zero and repeat the same effort. In contrast, our liberal IE framework leverages

rich semantic representations of knowledge elements and requires no human annotations or

human predefined types. However the performance is not as good as supervised approaches.

These two lines of approaches could possibly be combined and complementary to each other,

for example, the new type distributions obtained from liberal IE can be taken as high-level

effective features to supervised approaches.

Another limitation of these supervised learning approaches is that they usually model the

target types as atomic symbols, thus they can only measure the similarity between features

encoded for testing data and annotated data. However, our zero-shot IE framework further

incorporates the semantics of the types into the learning process, thus it can be applied to

any new types because the semantics of the types is independent of the annotated data.

Similar ideas haven been incorporated into supervised learning approaches to improve the

extraction performance [102, 103, 104].

2.2 OPEN INFORMATION EXTRACTION

Open information extraction (OIE) [45, 105, 106, 107, 108, 109] is a recently proposed

extraction paradigm that facilitates domain independent discovery of relations or textual

assertions, consisting in a verb relation and two arguments, extracted from text and scales

to the diversity and size of the Web corpus. Unlike most traditional information extraction

methods which focus on a limited set of predefined relation types, an open IE system can

extract any types of verbal relations found in the text. Most of previous open IE systems

explore lexical or syntactic features and patterns to extract relational triples within a sen-

tence. Among which, TextRunner [45] is based on a second order linear-chain CRF trained

on triples sampled from Penn Treebank while the input features include part-or-speech tags

and NP-chunked sentences. WOE [106] extract triples by identifying the shortest dependency

paths between two noun phrases. The state-of-the-art OIE system, ReVerb [110], takes the
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same set of syntactic features as TextRunner as input to a logic regression classifier, and

incorporates lexical constraints to filter out over-specified relational triples.

Recently, deep neural networks (DNNs) have also been explored for open information

extraction. [111, 112, 113] explored recurrent neural networks or neural encoder-decoder

framework with attention and copying mechanisms to automatically discover tuples from

each natural language sentence. [114] further proposes a novel supervised open information

extraction framework that leverages an ensemble of unsupervised Open IE systems and a

small amount of labeled data to improve system performance. To discover implicit rela-

tional tuples, [115, 116] also explored reading comprehension datasets for Open IE. Several

studies [117, 118, 119] also extend Open IE to cross-lingual and multi-lingual by leveraging

sequence-to-sequence translation models or multilingual embeddings.

Both open IE and our Liberal IE approaches leverage syntactic or semantic parsing outputs

to discover the relations or events, which are not restricted to any pre-defined schema and

dramatically enhance the scalability of IE. However, the outputs of open IE approaches

are usually a massive amount of tuples, which are difficult to discover the connections or

underlying relations among tuples, while our liberal IE approach further induces a type

schema, a typological representation of the events or entities, by combining symbolic and

distributional semantics of the knowledge elements. Our zero-shot IE approach can further

ground all candidate knowledge elements to a large-scale and extensible target ontology, thus

it can be combined with open IE approaches, e.g., directly mapping the relation or event

tuples discovered by open IE approaches to a target ontology.

2.3 WEAKLY AND DISTANTLY SUPERVISED INFORMATION EXTRACTION

Recently, distant supervision has been widely applied in information extraction tasks, espe-

cially on relation extraction. [120, 121] use weakly labeled data in bioinformatics for biologi-

cal knowledge base construction. [122] first exploited WordNet for extracting hypernym(is-a)

relations between entities. In addition, many previously studies [7, 123, 124, 125, 126, 127,

128, 129, 130] use the entity pairs extracted from existing knowledge base, e.g. Wikipedia,

DBPedia, Freebase, as signals to acquire weakly annotated data for relation extraction.

Though, distant supervision can help reduce human annotation effort, it still requires

human effort to map the types from knowledge based to the target type schema. More

importantly, the weakly supervised data extracted with distant supervision are usually noisy,

which hinders the performances in real applications. Figure 2.1 compares our new cold-start

universal IE paradigm with traditional rule-based and supervised IE approaches, as well as

distantly supervised IE approaches in terms of the requirement of human effort and coverage
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and portability of the approaches.

Human
Effort

Coverage / Portability

Supervised IE [ Ji2008a, Liao2010, McClosky2011, Li2013, Li2014, 
Chen2015, Liu2016, Nguyen2016a ]

Rule-Based IE [ Krishnan2005, Feldman2006, Atzmueller2008, 
Leung2011, Yao2011 ]

Distantly Supervised IE

[ Mintz2009, Surdeanu2010, Nguyen2011, Takamatsu2012, 
Min2013, Angeli2014, Zeng2015, Quirk2016, Ji2017 ]

Open IE

[ Yakushiji2006, Yates2007, Fei2010, 
Fader2011, Etzioni2011, Schmitz2012, 
Gamallo2012, Corro2013 ] Cold-Start

Universal IE

[ Huang2016a, Huang2017,
Huang2018a, Huang2018b …]

Figure 2.1: Comparison Among Various Information Extraction Paradigms.
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CHAPTER 3: COLD-START LIBERAL INFORMATION EXTRACTION

In this chapter, we present a liberal information information framework which can bottom-

up discover candidate facts from a given corpora and automatically induce a type schema

which is customized to it. We use event extraction as a case study to describe how this

framework works and demonstrate the effectiveness of this framework on both general news

domain and biomedical domain.

3.1 MOTIVATIONS

The main research problem that we are addressing here includes three subtasks: (1) how

to automatically discover all candidate facts from unstructured texts? (2) how to get a rich

semantic representation for each candidate fact and (3) how to induce a type schema and

automatically assign a type for each fact. For the first subtask, we observe that the candidate

facts, such as event triggers and arguments, can be automatically discovered based on some

simple patterns, lexical features and existing linguistic resources. For example, most of the

verbs can be regarded as candidate triggers and are covered by existing linguistic resources,

e.g., FrameNet [53], VerbNet [54], propbank [55], and ontonotes [56], and most of the noun

phrases can be regarded as candidate entity mentions.

The second subtask of learning rich semantic representation for each candidate fact is the

core of our liberal IE framework. The semantic representation should be able to capture

local contexts and specify its type. Let’s consider the following examples to describe our

motivations:

E1. Two Soldiers were killed and one injured in the close-quarters fighting in Kut.

E2. Bill Bennet ’s glam gambling loss changed my opinion.

E3. Gen. Vincent Brooks announced the capture of Barzan Ibrahim Hasan al-Tikriti ,

telling reporters he was an adviser to Saddam.

E4. This was the Italian ship that was captured by Palestinian terrorists back in 1985.

E5. Ayman Sabawi Ibrahim was arrested in Tikrit and was sentenced to life in prison.

We seek to cluster the event triggers and event arguments so that each cluster represents

a type. We rely on distributional similarity for our clustering distance metric. The dis-

tributional hypothesis [131] states that words often occurring in similar contexts tend to
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have similar meanings. We formulate the following distributional hypotheses specifically for

information extraction, and develop our approach accordingly.

Hypothesis 3.1: Event triggers that occur in similar contexts and share the same sense

tend to have similar types.

Following the distributional hypothesis, when we simply learn general word embeddings

from a large corpus for each word, we obtain similar words like those shown in Table 3.1. We

can see similar words, such as those centered around “injure” and “fight”, are converging to

similar types. However, for words with multiple senses such as “fire” (shooting or employ-

ment termination), similar words may indicate multiple event types. Thus, we propose to

apply Word Sense Disambiguation (WSD) and learn a distinct embedding for each sense.

injure Score fight Score fire Score
injures 0.602 fighting 0.792 fires 0.686
hurt 0.593 fights 0.762 aim 0.683
harm 0.592 battle 0.702 enemy 0.601
maim 0.571 fought 0.636 grenades 0.597

injuring 0.561 Fight 0.610 bombs 0.585
endanger 0.543 battles 0.590 blast 0.566
dislocate 0.529 Fighting 0.588 burning 0.562

kill 0.527 bout 0.570 smoke 0.558

Table 3.1: Top-8 Most Similar Words (in 3 Clusters)

Hypothesis 3.2: Beyond the lexical semantics of a particular event trigger, its type is

also dependent on its arguments and their roles, as well as other words contextually connected

to the trigger.

For example, in E4, the fact that the patient role is a vehicle (“Italian ship”), and not a

person (as in E3 and E5 ), suggests that the event trigger “captured” has type “Transfer-

Ownership” as opposed to “Arrest”. In E2, we know the “loss” event occurs in a gambling

scenario, so we can determine its type as loss of money, not loss of life.

We therefore propose to enrich each trigger’s representation by incorporating the distri-

butional representations of various words in the trigger’s context. Not all context words are

relevant to event trigger type prediction, while those that are vary in their predictive value.

We propose to use semantic relations, derived from a meaning representation for the text,

to carefully select arguments and other words in an event trigger’s context. These words are

then incorporated into a “global” event structure for a trigger mention. We rely on semantic

relations to (1) specify how the distributional semantics of relevant context words contribute

to the overall event structure representation; (2) determine the order in which distributional
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semantics of relevant context words are incorporated into the event structure.

3.2 APPROACH OVERVIEW

Input Documents
FrameNet 

Lexical Units

Candidate Trigger & 
Argument Identification

Event Schema & Event Extraction Results

AMR Parsing

Event Structure Semantic 
Composition & Representation

Unlabeled 
Corpus

Word Sense 
Disambiguation

Distributional Semantic 
Representation

Word Sense based Trigger 
and Argument Representation

Joint Trigger and Argument Clustering

Event Type Naming

Argument Role Naming
AMR/PropBank/FrameNet/

VerbNet/OntoNotes Role 
Descriptions

Figure 3.1: Liberal Event Extraction Overview.

Figure 3.1 illustrates the overall framework of Liberal Event Extraction. Given a set

of input documents, we first extract semantic relations, apply WSD and learn word sense

embeddings. Next, we identify candidate triggers and arguments.

For each event trigger, we apply a series of compositional functions to generate that

trigger’s event structure representation. Each function is specific to a semantic relation, and

operates over vectors in the embedding space. Argument representations are generated as a

by-product.

Trigger and argument representations are then passed to a joint constraint clustering

framework. Finally, we name each cluster of triggers, and name each trigger’s arguments us-

ing mappings between the meaning representation and semantic role descriptions in FrameNet,

VerbNet [132] and Propbank [55].

We compare settings in which semantic relations connecting triggers to context words are
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derived from three meaning representations: Abstract Meaning Representation (AMR) [133],

Stanford Typed Dependencies [134], and FrameNet [53]. We derive semantic relations

automatically for these three representations using CAMR [135], Stanford’s dependency

parser [136], and SEMAFOR [137], respectively.

3.3 BOTTOM-UP CANDIDATE EVENT TRIGGER AND ARGUMENT
IDENTIFICATION

Although an event trigger may in principle be more than one word, more than 95% of the

triggers consist of one single word. Furthermore, in the human annotated AMR data set,

nearly 91.5% of triggers are parsed as verb concepts. Thus, trigger identification is simplified

as the task of AMR parsing, incorporating the gazetteer created from FrameNet.

Given an input sentence, we first apply an AMR parser [135] to parse it. To maximize

coverage, we consider all noun and verb concepts that can be linked to an OntoNotes [138]

sense as candidate event triggers. In addition, if a word matches any lexical unit of a verb

concept in FrameNet, we also consider it as a candidate event trigger. This can especially

enrich nominal triggers such as “war”, “theft” and “pickpocket”.

For argument identification, we take E1 as an example. Figure 3.2 shows the events

and argument annotations and AMR parsing results of E1. We can see that, most of the

arguments are semantic related with triggers and can be identified based on the parsing

results of AMR. On the other hand, AMR parsing results can help us discover much richer

set of events and arguments. So, we carefully select 72 types of AMR relations1 which are

related to events, as shown in Table 3.2, and for each candidate event trigger, we collect

all other concepts that are involved in these selected types of AMR relations as candidate

arguments.

Categories Relations

Core Roles ARG0, ARG1, ARG2, ARG3, ARG4
Non-Core Roles mod, location, poss, manner, topic, medium,

instrument, duration, prep-X
Temporal year, duration, decade, weekday, time
Spatial destination, path, location

Table 3.2: Event-Related AMR Relations.

So in E1, “killed”, “injured” and “fighting” are identified as candidate triggers, and three

1For relation details, see https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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concept sets are identified as candidate arguments: “{Two Soldiers, very large missile}”,

“{one, Kut}” and “{Two Soldiers, Kut}”, as shown in Figure 3.2.

 Two Marines were killed by a U.S. Patriot missile and one  injured in the close-quarters fighting in Kut.

[Event:Die] [Event:Injure] [Event:Attack]

Place

Place

Place
VictimVictim

Attacker

Instrument

kill-01
:ARG1 :instrument

fight-01
:location:ARG0

injure-01

Figure 3.2: Event Trigger and Argument Annotations and AMR Parsing Results of E1.

3.4 TRIGGER SENSE AND ARGUMENT REPRESENTATION

Based on Hypothesis 3.1, each sense of a trigger may have a distinct type. Therefore we

differentiate multiple senses and learn sense-based embeddings from a large data set, using

the Continuous Skip-gram model [139]. Specifically, we first apply a state-of-the-art Word

Sense Disambiguation (WSD) tool [140], which is trained on WordNet [141] and has achieved

state-of-the art results on several SenseEval/SemEval English lexical-sample and all words

tasks, to link each word to its sense in WordNet. Then based on a WordNet-OntoNotes

sense mapping table 2 we map each trigger candidate to its OntoNotes sense and learn a

distinct embedding for each sense. For arguments, we use their general lexical embedding

as representations.

To capture the multi-word phrase embeddings, we compared two methods: (1) the model

proposed by [142], which learned phrase embeddings directly by considering the phrase as

a basic language unit, and (2) a simple element-based additive model (z = x1 + x2 + ... +

xi) [139], where z represents a phrase embedding and x1, x2, ..., xi represent the individual

embeddings of the words in z. We found the latter performed better because Wikipedia is

still too small to cover enough phrases (30% phrases in our test data appears 20 times or

less in Wikipedia). Besides, method (2) can well capture multi-word expressions such as

“nuclear powered submarine”.

2https://catalog.ldc.upenn.edu/LDC2011T03
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3.5 EVENT STRUCTURE COMPOSITION AND REPRESENTATION

Based on Hypothesis 3.2, the type of event does not only depend on the semantics of

its trigger, but also depends on the arguments involved. Thus, we aim to exploit linguistic

knowledge to represent event structures which incorporate event triggers, their arguments

and inter-dependency relations. Many linguistic resources, including dependency parsing,

semantic role labeling and VerbNet could be exploited. We will use AMR as an example to

present our embedding composition method, and later we will compare the impact of various

linguistic representations on event extraction.

exchange for 15000 U.S. dollars. Event: ship,    
Arguments: man(Agent), Austrialia(Destination),heroin(Theme)

S2: State media didn’t identify the 2 convicts hanged in Zahedan but stated 
that they had been found guilty of transporting 5.25 kilograms of heroin.

Event: transporting,   Arguments: they(Agent), heroin(Theme)

S1: The construction of the facility started in 790000, but stopped after 
the 910000 Soviet collapse when Tajikistan slid into a 5 year civil war 
that undermined its economy. Event:construction,  

Arguments: facility(Product), 790000(Time)
S2: The closed Soviet-era military facility was fou-nded in 570000 and 
collects and analyzes all information gathered from Russia's military spy 
satellites. Event: founded,    

Arguments: Soviet-era facility(Product), 570000(Time)

Event Type: Build

 sentenced him to death in 1997.
Event: death,   Arguments: him(Theme), 1997(Time)

S2: A newspaper report on January 1, 2008 that Iran hanged two 
convicted drug traffickers in the south-eastern city of Zahedan.

S1: Colombian Government was alarmed because uranium is the 
primary basis for generating weapons of mass destruction.
Event:alarmed, Arguments:Columbian Government(Experiencer)

Event Type: Threaten

S2: Cluster bomblets have been criticized by human rights groups 
because they kill indiscriminately and because unexploded 
ordinance poses a threat to civilians similar to that of land mines.

Event:threat,  
Arguments:ordinance(Cause), civilian(Experiencer)

Event: hanged,   Arguments: Iran(Agent), drug traf- 
fickers(Theme), southeastern city of Zahedan(Place)

losegambleglamBill Bennet

:op1 :op2 :mod

:mod

:poss

Z1=fmod(Wmod,Xga,Yl)=XTgaWmodYl+b

Reconstruct: (X’ga,Y’l)=Z1W’mod+b’

Z2=fmod(Wmod,Xgl,Z1)

Z4=fposs(Wposs,Z3,Z2)

Reconstruct: (Z’3,Z’2)=Z4W’poss+b’

Z3=Avarage(VBill, VBennet) Z1

Z2

Z4

X’gamble Y’lose

Z’3 Z’2

Reconstruct: (X’gl,Z’1)=Z2W’mod+b’

X’glam Z’1

AMR annotation

Event Structure Representation

Event Structure for “lose”

:instance
:mod

:mod
:poss

:op1 :op2

Bill Bennet

glamgamble lose

:ARG0 (x8 / lose-1 
  :poss (x3 / person 

:name (n1 / name 
  :op1 "Bill" 
  :op2 "Bennet")) 

  :mod (x6 / glam) 
  :mod (x7 / gamble-01))

Figure 3.3: Partial AMR and Event Structure for E2.

Let’s take E2 as an example. Based on AMR and Table 3.2, we extract semantically

related words for the event trigger with sense “lose-1 ” and construct the event structure

for the whole event, as shown in Figure 3.3. In order to generate the representation for

the whole event structure based on various semantic relations and arguments, we design a
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Tensor based Recursive Auto-Encoder (TRAE) [143] framework to utilize a tensor based

composition function for each AMR semantic relation and compose the event structure

representation based on multiple functions.

Figure 3.3 shows an instance of a TRAE applied to the event structure. For each semantic

relation type r, such as :mod, we define the output of a tensor product Z via the following

vectorized notation:

Z = fmod(X, Y,W
[1:d]
r , b) = [X;Y ]TW [1:d]

r [X;Y ] + b (3.1)

where Wmod ∈ R2d·2d·d is a 3-order tensor, and X, Y ∈ Rd are two input word vectors. b ∈ Rd

is the bias term. [X;Y ] denotes the concatenation of two vectors X and Y . Each slice of

the tensor acts as a coefficient matrix for one entry Zi in Z:

Zi = fmod(X, Y,W
[i]
r , b) = [X;Y ]TW [i]

r [X;Y ] + bi (3.2)

We use the average operation to compose the words connected by “:op” relations (e.g.

“Bill” and “Bennet” in Figure 4).

After composing the vectors of X and Y , we apply an element-wise activation function

sigmoid to the composed vector and generate the hidden layer representations Z. One way

to optimize Z is to try to reconstruct the vectors X and Y by generating X
′

and Y
′

from Z,

and minimizing the reconstruction errors between the input VI = [X, Y ] and output layers

VO = [X
′
, Y

′
]. The error is computed based on Euclidean distance function:

E(VI , VO) =
1

2
||VI − VO||2 (3.3)

For each pair of words X and Y , the reconstruction error back-propagates from its output

layer to input layer through parameters Θr = (W
′
r , b

′
r,Wr, br). Let δO be the residual error

of the output layer, and δH be the error of the hidden layer:

δO = −(VI − VO) · f ′sigmoid(V O
H ) (3.4)

δH = (
d∑

k=1

δkO · (W
′k
r + (W

′k
r )T ) · V O

H ) · f ′sigmoid(V I
H) (3.5)

where V I
H and V O

H denote the input and output of the hidden layer, and V O
H = Z. W

′k
r is

the kth slice of tensor W
′
r .

To minimize the reconstruction errors, we utilize gradient descent to iteratively update

parameters Θr:
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∂E(Θr)

∂W ′k
r

= δkO · (V O
H )T · V O

H (3.6)

∂E(Θr)

∂b′r
= −(VI − VO) · f ′sigmoid(V O

H ) (3.7)

∂E(Θr)

∂W k
r

= δkH · (VI)T · VI (3.8)

∂E(Θr)

∂br
= (

d∑
k=1

δkO · (W
′k
r + (W

′k
r )T ) · V O

H ) · f ′sigmoid(V I
H) (3.9)

After computing the composition vector of Z1 based on X and Y , for the next layer,

it composes Z1 and another new word vector such as Xgl. For each type of relation r, we

randomly sample 2,000 pairs to train optimized parameters Θr. For each event structure tree,

we iteratively repeat the same steps for each layer. The main advantage of this framework

is that it can incorporate triggers, semantic relational arguments as well as various semantic

relation types to generate multi-layer compositional event structure representations. For

multiple arguments at each layer, we compose them in the order of their distance to the

trigger: the closest argument is composed first.

3.6 EVENT TYPE SCHEMA INDUCTION

3.6.1 Joint Trigger and Argument Clustering

Based on the representation vectors generated above, we compute the similarity between

each pair of triggers and arguments, and cluster them into types. We observe that, for two

triggers t1 and t2, if their arguments have the same type and role, then they are more likely

to belong to the same type. This is also true for two arguments when their semantic related

triggers belong to the same type. For example, for event trigger “capture”, when its ARG1

argument is a Person, such as “Barzan Ibrahim Hasan al-Tikriti” in E4, it usually refers

to an Arrest-Jail event, just the same as triggers “arrest” and “jail”, which also generally

take Person as ARG1 argument. However, when the ARG1 argument is a material object,

such as “Italian Ship” in E5, it is much more likely to be a Transfer-Ownership event.

Therefore, we design a novel joint constraint co-clustering framework to encode constraints

between two inter-dependent triggers and arguments so they can mutually enhance each

other.
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We first introduce a constraint function f , to enforce inter-dependent triggers and argu-

ments to have coherent types:

f(P1,P2) = log(1 +
|L1 ∩ L2|
|L1 ∪ L2|

) (3.10)

where P1 and P2 are triggers. Elements of Li are pairs of the form (r, id(a)), where

id(a) is the cluster ID for argument a that stands in relation r to Pi. For example, let

P1 and P2 be triggers “capture” and “arrested” (c.f. Figure 3.4). If Barzan Ibrahim

Hasan al-Tikriti and Ayman Sabawi Ibrahim share the same cluster ID, the pair (arg1,

id(Barzan Ibrahim Hasan al-Tikriti)) will be a member of L1 ∩ L2. This argument overlap

is evidence that “capture” and “arrested” have the same type. We define f where Pi are

arguments, and elements Li are defined analogously to above.

capture

captured arrested

sentenced

Barzan Ibrahim 
Hasan al-Tikriti

Tikrit

Ayman Sabawi 
Ibrahim

Palestinian 
terrorists

prison
Italian ship

:arg1

:arg1

:location

:arg1

:arg0 :arg1

:location

Figure 3.4: Joint Constraint Clustering for E3,4,5.

Given a trigger set T and their corresponding argument set A, we compute the similarity

between two triggers t1 and t2 and two arguments a1 and a2 by:

sim(t1, t2) = λ · simcos(E
t1
g , E

t2
g ) + (1− λ) ·

Σr∈Rt1∩Rt2
simcos(E

t1
r , E

t2
r )

|Rt1 ∩Rt2|
+ f(t1, t2) (3.11)

sim(a1, a2) = simcos(E
a1
g , E

a2
g ) + f(a1, a2) (3.12)

where Et
g represents the trigger sense vector and Ea

g is the argument vector. Rt is the

AMR relation set in the event structure of t, and Et
r denotes the vector resulting from the

last application of the compositional function corresponding to the semantic relation r for
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trigger t. λ is a regularization parameter that controls the trade-off between these two types

of representations. In our experiment λ = 0.6.

We design a joint constraint clustering approach, which iteratively produces new clustering

results based on the above constraints. To find a global optimum, which corresponds to an

approximately optimal partition of the trigger set into K clusters CT = {CT1 , CT2 , ..., CTK},
and a partition of the argument set into M clusters CA = {CA1 , CA2 , ..., CAM}, we minimize the

agreement across clusters and the disagreement within clusters:

arg min
KT ,KA,λ

O = (DT
inter +DT

intra) + (DA
inter +DA

intra) (3.13)

DPinter =
K∑

i 6=j=1

∑
u∈CPi ,v∈CPj

sim(Pu,Pv) (3.14)

DPintra =
K∑
i=1

∑
u,v∈CPi

(1− sim(Pu,Pv)) (3.15)

We incorporate the Spectral Clustering algorithm [144] into joint constraint clustering

process to get the final optimized clustering results. The detailed algorithm is summarized

in Algorithm 7.1.

3.6.2 Event Type and Argument Role Naming

After clustering, we assume each cluster represents a type and will assign a name for each

type. For each trigger cluster, we utilize the trigger which is nearest to the centroid of the

cluster as the event type name. In order to assign a role name to each argument, we map

roles from AMR to available linguistic resources to name the arguments. For core roles

(e.g., :ARG0, :ARG1) in AMR, we first link each concept from OntoNotes to FrameNet and

VerbNet, and map AMR core roles to FrameNet roles and VerbNet roles3. Nearly 5% of

AMR core roles can be mapped to FrameNet roles and 55% can be mapped to VerbNet

roles. For the remaining concepts, we use the role descriptions from PropBank to name

their roles. Table 3.3 shows some mapping examples. For non-core roles, we map them from

AMR to FrameNet, as shown in Table 3.4.

3https://catalog.ldc.upenn.edu/LDC2013T19
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Algorithm 3.1 Joint Constraint Clustering Algorithm

Input: Trigger set T , argument set A, their lexical embedding ET
g , EA

g , event structure
representation ET

R, and the minimal (Kmin
T , Kmin

A ) and maximal (Kmax
T , Kmax

A ) number of
clusters for triggers and arguments;
Output: The optimal clustering results: CT and CA;

• Omin =∞, CT = ∅, CA = ∅

• For KT = Kmin
T to KT = Kmax

T , KA = Kmin
A to KA = Kmax

A

– Clustering with Spectral Clustering Algorithm:

– CTcurr = spectral(T,ET
g , E

T
R,KT )

– CAcurr = spectral(A,EA
g ,KA)

– Ocurr = O(CTcurr, CAcurr)
– if Ocurr < Omin

∗ Omin = Ocurr, CT = CTcurr, CA = CAcurr
– while iterate time ≤ 10

∗ CTcurr = spectral(T,ET
g , E

T
R,KT , CAcurr)

∗ CAcurr = spectral(A,EA
g ,KA, CTcurr)

∗ Ocurr = O(CTcurr, CAcurr)
∗ if Ocurr < Omin

· Omin=Ocurr, CT = CTcurr, CA = CAcurr

• return Omin, CT , CA;

3.7 EXPERIMENTS

3.7.1 Data

Since our approach is based on word embeddings, which need to be trained from a large

corpus of unlabeled in-domain articles, we used the August 11, 2014 English Wikipedia

dump to learn trigger sense and argument embeddings.

ACE (Automatic Content Extraction) 4 and ERE (Entities, Relations, Events) [145] pro-

vide comprehensive annotation standards for annotating Entities, Events and Relations.

Table 3.5 shows the statistics of the types defined in ACE and ERE. Both programs re-

leased annotations for hundreds of articles from a wide variety of genres, including news and

discussion forum. For event extraction evaluation, we choose a subset of ERE corpus (50

documents) which has perfect AMR annotations so we can compare the impact of perfect

4https://www.ldc.upenn.edu/collaborations/past-projects/ace
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Concept AMR Core
Role

FrameNet Role VerbNet Role PropBank
Description

fire.1 ARG0 Agent Agent Shooter
fire.1 ARG1 Projectile Theme Gun/projectile

fire.2 ARG0 Employer Agent Employer
fire.2 ARG1 Employee Theme Ex-employee
fire.2 ARG2 Task Source Job

extrude.1 ARG0 Agent Extruder, agent
extrude.1 ARG1 Theme Entity extruded
extrude.1 ARG2 Source Extruded from

blood.1 ARG0 Agent
blood.1 ARG1 Theme, one bled

Table 3.3: Core Role Mapping Examples Between AMR and FrameNet, VerbNet, and Prop-
Bank.

AMR None-Core Role FrameNet Role

topic Topic
instrument Instrument

manner Manner
poss Possessor

prep-for, prep-to, prep-on-behalf Purpose
time, decade, year, weekday, duration Time

mod, cause, prep-as Explanation
prep-by, medium, path Means

location, destination, prep-in Place

Table 3.4: None-Core Role Mapping Between AMR and FrameNet.

AMR and system generated AMR. To compare with state-of-the-art event extraction on

ACE2005 data, we follow the same evaluation setting in previous work [12, 57, 93] on data

splitting and scoring metrics. We use 40 newswire documents as our test set. The detailed

data statistics are presented in Table 3.6.

Evaluation Criteria and Metrics For event extraction task, we follow previous work

[12, 57, 93] and use the following criteria to determine the correctness of an predicted event

mention and evaluate the performances with mention-level Precision, Recall and F-measure:

• A trigger is correct if its event type and offsets match a reference trigger.
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Programs # of
Entity
Types

# of Relation
Types

# of Relation
Subtypes

# of
Event
Types

# of Event
Subtypes

ACE 7 6 18 8 33
ERE 5 5 20 9 38

Table 3.5: Statistics of Entity, Relation, Event Types Covered by ACE and ERE

Data Sets ACE ERE

# of Documents 40 50
# of Sentences 799 1,053

# of Tokens 18,722 19,901

Table 3.6: Statistics of Data Sets

• An argument is correctly identified if its event type and offsets match any of the reference

argument mentions.

• An argument is correctly identified and classified if its event type, offsets and role match

any of the reference argument mentions.

3.7.2 Experimental Results for Schema Discovery

S1: The court official stated that on 18 March 2008 Luong stated to judges 
that she was hired by an unidentified man to ship the heroin to Australia in 
exchange for 15000 U.S. dollars. Event: ship,    

Arguments: man(Agent), Austrialia(Destination),heroin(Theme)
S2: State media didn’t identify the 2 convicts hanged in Zahedan but stated 
that they had been found guilty of transporting 5.25 kilograms of heroin.

Event: transporting,   Arguments: they(Agent), heroin(Theme)

Event Type: Transport

S1: The construction of the facility started in 790000, but stopped after 
the 910000 Soviet collapse when Tajikistan slid into a 5 year civil war 
that undermined its economy. Event:construction,  

Arguments: facility(Product), 790000(Time)
S2: The closed Soviet-era military facility was fou-nded in 570000 and 
collects and analyzes all information gathered from Russia's military spy 
satellites. Event: founded,    

Arguments: Soviet-era facility(Product), 570000(Time)

Event Type: Build

Event Type: Die
S1: Police in the strict communist country discovered his metha-
mphetamine manufacturing plant disguised as a soap factory and 
 sentenced him to death in 1997.

Event: death,   Arguments: him(Theme), 1997(Time)
S2: A newspaper report on January 1, 2008 that Iran hanged two 
convicted drug traffickers in the south-eastern city of Zahedan.

S1: Colombian Government was alarmed because uranium is the 
primary basis for generating weapons of mass destruction.
Event:alarmed, Arguments:Columbian Government(Experiencer)

Event Type: Threaten

S2: Cluster bomblets have been criticized by human rights groups 
because they kill indiscriminately and because unexploded 
ordinance poses a threat to civilians similar to that of land mines.

Event:threat,  
Arguments:ordinance(Cause), civilian(Experiencer)

Event: hanged,   Arguments: Iran(Agent), drug traf- 
fickers(Theme), southeastern city of Zahedan(Place)

S1: Ras acts as a molecular switch that is activated upon GTP loading and 
deactivated upon hydrolysis of GTP to GDP.

Event: hydrolysis   Arguments: GTP (Patient), GDP (Result)

Event Type: Dissociate

S2: Activation requires dissociation of protein-bound GDP , an intrinsica- 
lly slow process that is accelerated by guanine nucleotide exchange factors.

Event: dissociation   Arguments: GDP (Patient)
S3: His - ubiquitinated proteins were purified by Co2+ metal affinity 
chromatography in 8M urea denaturing conditions.

Event: denaturing  Arguments: proteins(Patient)

Figure 3.5: Example Output of the Event Schema.

Figure 3.5 shows some examples as part of the event schema discovered from the ERE

data set. Each cluster denotes an event type, with a set of event mentions and sentences.

Each event mention is also associated with some arguments and their roles. The annotations
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for sample sentences may also serve as a corpus customized annotation guideline for event

extraction.

Figure 3.6 shows an overview of the event schema (ontology) that our approach discovers.

On event type level, by aggregating semantic coherent triggers into clusters, our approach

extracts a set of abstracted event types, such as Transport, Die, Build and Threaten.

In addition, our approach also discovers a set of argument roles for each event type, For

example, for the Threaten event type, there are four argument roles, Agent, Experiencer,

Cause and Time. It’s worth noting that the argument roles are dependent on the types of

argument mentions, which means, only few types’ of entity mentions can play for a particular

argument role, e.g., the Product of Build event can only be Facility rather than Person

or GPE, which is consistent as the definition of human create event schemas.

Type:

Trigger Cluster:

Arguments:

Agent Theme…

Die

death
hanged

…

Transport

ship
transporting

…
…

Build

founded
construction

…
… …

Threaten

threat
alarmed …

Argument Cluster: man
they

him
…

Destination Agent Theme TimePlace Agent Product Time Agent Experiencer TimeCause

…

790000

1997
…

570000

heroin
…

… facility
Soviet-ear 

facility

Australia
southeastern city 

of Zahedam
…

Iran

…

Columbian 
Government

Figure 3.6: Overview of the Event Schema.

Data
ACE ERE

Human System
AMR

Overlap Human Perfect
AMR

Overlap System
AMR

Overlap

# of Events 440 2,395 331 580 3,765 517 2,498 477
# of Event

Types
33 134 N/A 26 137 N/A 120 N/A

# of
Arguments

883 4,361 587 1,231 6,195 919 4,288 801

Table 3.7: Schema Coverage Comparison on ACE and ERE.

Table 3.7 shows comparison on the coverage of event schema discovered by our approach

with the predefined ACE and ERE event schemas. We can see that the coverage of both

event types and argument roles by our approach is much higher than ACE and ERE. In

order to evaluate the quality of the schema discovered by our approach, we asked two human
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annotators to manually check whether each cluster can denote an event type, and whether

the event type name is appropriate, and ask another annotator to do adjudication. About

84.3% (113/134) of all the clusters can denote event types, and the accuracy of event type

naming is about 86.7% (98/113). There are two types of meaningless clusters which can

not denote event types: (1) a cluster containing triggers of various types; (2) a cluster with

triggers which cannot denote an event mention, e.g., include-01. Most of the type naming

errors are due to that the centroid trigger that we selected cannot describe an event type,

e.g., part-01 cannot well describe the event type for a cluster of triggers including part-01,

join-01 group. Besides the types defined in ACE and ERE, our approach discovers many

new event types such as Build, Threaten in Figure 3.5. Our approach can also discover

new types of argument roles. For example, for Attack events, besides five types of existing

arguments (Attacker, Target, Instrument, Time, and Place) defined in ACE, we also discover

a new type of argument Purpose. For example, in “The Dutch government, facing strong

public anti-war pressure, said it would not commit fighting forces to the war against Iraq

but added it supported the military campaign to disarm Saddam.”, “disarm Saddam” is

identified as the Purpose for the Attack event triggered by “campaign”.

3.7.3 Event Extraction for All Types

Since our approach can discover many new event types and arguments, besides the eval-

uation on ACE and ERE types, we also evaluate the overall performance of the whole

event schema based on human annotations. To evaluate the performance of the whole event

schema, we randomly sample 100 sentences from ERE data set and ask two linguistic ex-

perts to fully annotate the events and arguments. The inter-annotator agreement is over

83% for triggers and 79% for arguments. We manually map human annotated event types

and argument roles with the event schema discovered by our approach and Table 3.8 shows

the performance.

Method
Trigger

Identification
(%)

Trigger
Typing (%)

Arg
Identification

(%)

Arg Typing
(%)

P R F1 P R F1 P R F1 P R F1

Perfect AMR 87.0 98.7 92.5 70.0 79.5 74.5 94.0 83.7 88.6 72.4 64.4 68.2
System AMR 93.0 67.2 78.0 69.8 50.5 58.6 95.7 59.6 73.4 68.9 42.9 52.9

Table 3.8: Overall Performance of Liberal Event Extraction on ERE data for All Event
Types.
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By error analysis we found that most of missing event triggers are multi-word expressions

such as “took office” in “The ruling Millennium Democratic Party (MDP), has suffered

declining popularity since President Roh Moo-Hyun took office in February” or words which

are not verb or noun concepts, such as “previously” and “formerly” , which are End-

Position events in “As well as previously holding senior positions at Barclays Bank, BZW

and Kleinwort Benson, McCarthy was formerly a top civil servant at the Department of

Trade and Industry”. For argument identification, considering our approach heavily relies

on semantic parsing results, it cannot identify some arguments that are implicitly related to

triggers. For example, in “Anti-corruption judge Saul Pena stated Montesinos has admitted

to the abuse of authority charge”, “Saul Pena” is not identified as a Adjudicator argument

of event “charge” because it has no direct semantic relations with the event trigger. In

addition, argument identification often requires some inference. For example, in Anwar, 56,

who this week completed four years in prison on a corruption charge, now faces an earliest

possible release date of April 14, 2009 if he is given one third remission of his sentence for

good behavior”, “corruption” is a Crime argument for the “release” event considering that

it is a subsequent event of “prison”, which holds the “corruption” argument.

3.7.4 Event Extraction for ACE/ERE Types

In order to compare with traditional event extraction, we conduct experiments on event

types defined by ACE and ERE.

We manually assess whether an event discovered by our approach should be mapped to

an ACE/ERE event or not for evaluation purpose. For arguments, we keep all core roles

and Instrument/Possessor/Time/Place arguments. Using the mapped subset of events and

arguments, we compare our approach with the following state-of-the-art supervised methods

which are trained from 529 ACE documents or 336 ERE documents:

• DMCNN: A dynamic multi-pooling convolutional neural network based on distributed

word representations [146].

• Joint: A structured perceptron model based on symbolic semantic features [13].

• LSTM: A long short-term memory neural network [147] based on distributed semantic

features.

To evaluate the portability of each method on different datasets, we compare their perfor-

mance on ERE and ACE. We train them on 529 ACE documents and 336 ERE documents

for two experiments.

Tables 3.9 shows the results. On ACE events, both DMCNN and Joint methods outper-
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Method
ERE:

Trigger F1

(%)

ERE: Arg
F1(%)

ACE:
Trigger F1

(%)

ACE: Arg
F1 (%)

P R F1 P R F1 P R F1 P R F1

LSTM 41.5 46.8 44.1 9.9 11.6 10.7 66.0 60 62.8 29.3 32.6 30.8
Joint 42.3 41.7 42.0 61.8 23.2 33.7 73.7 62.3 67.5 64.7 44.4 52.7

DMCNN - - - - - - 75.6 63.6 69.1 68.8 46.9 53.5

LiberalPerfectAMR 79.8 50.5 61.8 48.9 32.9 39.3 - - - - - -
LiberalSystemAMR 88.5 42.6 57.5 47.6 30.0 36.8 80.7 50.1 61.8 51.9 39.4 44.8

Table 3.9: Performance on ERE and ACE events.

form our approach for trigger and argument extraction. However, when moving to ERE

event schema, although re-trained based on ERE labeled data, their performance still de-

grades significantly. These previous methods heavily rely on the quality and quantity of

the training data. So when the training data is not adequate (the ERE training documents

contain 1,068 events and 2,448 arguments, while ACE training documents contain more

than 4,700 events and 9,700 arguments), the performance is low. In contrast, our approach

doesn’t rely on any training corpus and it can automatically identify events, arguments and

assign types/roles, so when the definition of event schema is changed, the performance will

not be affected.

3.7.5 Event Extraction for Biomedical Domain

To demonstrate the portability of our approach to a new domain, we take the biomedical

domain as a case study. We conduct our experiment on 14 biomedical articles (755 sentences)

with perfect AMR annotations [148]. We utilize a word2vec model5 trained from all paper

abstracts from PubMed6 and full-text documents from the PubMed Central Open Access

subset. To evaluate the performance, we randomly sample 100 sentences and ask a biomedical

scientist to assess the correctness of each event and argument role. Our approach achieves

83.1% precision on trigger labeling (619 events in total) and 78.4% precision on argument

labeling (1,124 arguments in total). It demonstrates that our approach can be rapidly

adapted to a new domain and discover domain-rich event schema. An example schema for

an event type “Dissociate” is shown in Figure 3.7.

From the results, we have several observations that : (1) All event types in biomedical we

discovered cannot be mapped to ACE/ERE event schema. (2). Most of events in biomedical

5http://bio.nlplab.org/
6http://www.ncbi.nlm.nih.gov/pubmed

32



exchange for 15000 U.S. dollars. Event: ship,    
Arguments: man(Agent), Austrialia(Destination),heroin(Theme)

S2: State media didn’t identify the 2 convicts hanged in Zahedan but stated 
that they had been found guilty of transporting 5.25 kilograms of heroin.

Event: transporting,   Arguments: they(Agent), heroin(Theme)

S1: The construction of the facility started in 790000, but stopped after 
the 910000 Soviet collapse when Tajikistan slid into a 5 year civil war 
that undermined its economy. Event:construction,  

Arguments: facility(Product), 790000(Time)
S2: The closed Soviet-era military facility was fou-nded in 570000 and 
collects and analyzes all information gathered from Russia's military spy 
satellites. Event: founded,    

Arguments: Soviet-era facility(Product), 570000(Time)

Event Type: Build

 sentenced him to death in 1997.
Event: death,   Arguments: him(Theme), 1997(Time)

S2: A newspaper report on January 1, 2008 that Iran hanged two 
convicted drug traffickers in the south-eastern city of Zahedan.

S1: Colombian Government was alarmed because uranium is the 
primary basis for generating weapons of mass destruction.
Event:alarmed, Arguments:Columbian Government(Experiencer)

Event Type: Threaten

S2: Cluster bomblets have been criticized by human rights groups 
because they kill indiscriminately and because unexploded 
ordinance poses a threat to civilians similar to that of land mines.

Event:threat,  
Arguments:ordinance(Cause), civilian(Experiencer)

Event: hanged,   Arguments: Iran(Agent), drug traf- 
fickers(Theme), southeastern city of Zahedan(Place)

S1: Ras acts as a molecular switch that is activated upon GTP 
loading and deactivated upon hydrolysis of GTP to GDP.
Event: hydrolysis   Arguments:GTP (Patient), (GDP) (Result)

Event Type: Dissociate

S2: Activation requires dissociation of protein-bound GDP , an 
intrinsically slow process that is accelerated by guanine nucleotide 
exchange factors.

Event: dissociation   Arguments: GDP (Patient)
S3: His - ubiquitinated proteins were purified by Co2+ metal 
affinity chromatography in 8M urea denaturing conditions.

Event: denaturing  Arguments: proteins(Patient)

Figure 3.7: Example Output of the Discovered Biomedical Event Schema.

are unique and unambiguous, and the events with the same string often refer to the same type

of event. This observation is also demonstrated by the experiment results: without WSD,

the precision of events typing is still over 80%. We utilize the ambiguity measure defined

in [149] as the criteria to demonstrate the ambiguity degree of general domain (16.2%) and

biomedical domain (6.7%).

ambiguity =
#event Strings belong to more than one cluster

#event Strings
(3.16)

3.8 DISCUSSION: IMPACT OF SEMANTIC INFORMATION AND MEANING
REPRESENTATIONS

In this work, we utilize AMR (Abstract Meaning Representation) to generate the composi-

tional representations. Many linguistic resources can be used to capture symbolic semantics.

Compared with dependency parsing and semantic role labeling, AMR has three advantages:

(1) both syntactic and semantic information can be captured based on rich types of semantic

relations from specific contexts, which is crucial for many IE tasks, while dependency pars-

ing mainly focused on syntactic information; (2) AMR relations are much more fine-grained,

which could be helpful for argument role induction; (3) Available AMR parsers are trained

based on dependency parsing results.

To evaluate the impact of the symbolic and semantic representations, we also design several

baselines and evaluate on the 100 ERE sentences with ground truth.

Table 3.10 shows the efffectiveness of each type of representation. We can see that: Com-

bining the WSD based lexical representation and event structure representation together,

our approach can get much better performance than based on single type of representa-

tion, which demonstrate the effectiveness of our Hypothesis 3.1 and Hypothesis 3.2. The
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Method
Trigger F1 (%) Arg F1 (%)
P R F1 P R F1

Liberal 70 79.5 74.5 72.4 64.4 68.2
w/o Structure Representation 52.8 59.4 55.9 52.1 48.0 50.0

w/o WSD 62.8 57.4 60.1 61.9 50.3 55.5
w/o None-Core Roles 61.5 72.2 66.5 61.3 58.0 59.6

w/o Core Roles 57.3 49.7 53.2 63.6 49.5 55.7
Replace AMR with Dependency

Parsing
50.1 39.8 44.3 28.1 10.1 14.8

Table 3.10: Impact of Representations in Liberal Event Extraction on ERE data.

performance of our approach based on core AMR roles is much better than that based on

none-core roles, which demonstrates that the core AMR roles are more meaningful for event

extraction. What’s more, when using dependency parsing to replace AMR, we manually

map dependency relations to FrameNet roles to determine the argument roles and find the

performance decreases significantly. Compared with dependency relations, the fine-grained

AMR semantic relations such as :location, :manner, :topic, :instrument are much more infor-

mative to infer the argument roles. For example, in sentence “Approximately 25 kilometers

southwest of Sringar 2 militants were killed in a second gun battle.”, “gun” is identified as

an Instrument for “battle” event based on the AMR relation :instrument. In contrast,

dependency parsing identifies “gun” as a compound modifier of “battle”.

3.9 SUMMARY

Traditional information extraction approaches heavily rely on a set of predefined types

and human annotated data, thus suffer from high cost and low portability. In this chapter,

we discuss a novel Liberal event extraction framework which combines the merits of symbolic

semantics, e.g., Abstract Meaning Representation, and distributed semantics, including word

sense representations and local context representations learned from a tree-based recursive

auto-encoder. Experiments on news and biomedical domain demonstrate that this frame-

work can discover explicitly defined rich event schemas which cover not only most types

in existing manually defined schemas, such as ACE and ERE, but als o new event types

(e.g., Threaten, Building) and argument roles (e.g., Purpose of Attack event type). The

granularity of event types is also customized for specific input corpus, and it can produce

high-quality event annotations simultaneously without using annotated training data.
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The general philosophy of liberal IE framework is to leverage rich representations, in-

cluding word senses, local contexts, or even external knowledge, to better disambiguate the

meaning of the knowledge elements and further induce high-level representations, e.g., type

schema. This framework has been successfully applied to entity and event extraction tasks,

and can also be adapted to other schema guided tasks.

However, we also notice several remaining limitations of this liberal IE framework: (1)

it also detects a lot of nonsensical event triggers, such as know, feel, say, hear, etc.; (2) it

misses a lot of multi-token event mentions (e.g., take place) and adverb event mentions (e.g.,

previously and formerly); (3) in some cases, the semantics of event mentions is not enough to

indicate their types, for example, hire and resign share very similar semantic representations,

however they indicate different state changes so they still should belong to different types.
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CHAPTER 4: ZERO SHOT INFORMATION EXTRACTION: EXTENDING
EVENT TYPES FROM 30+ TO 1300+

The Liberal Information Extraction framework can automatically extract facts as well as a

type schema for a given corpora. However, in many practical applications, customers usually

require to extract certain types of event mentions for a specific domain, while there is no or

very limited in-domain annotations. In this case, liberal IE framework is not very suitable

since it’s not easy to automatically map the automatically induced types to a predefined

target ontology. Thus, beyond absolute unsupervised information extraction, we design a

zero shot transfer learning framework, which can take advantage of existing annotated data

for any types, and transfer the knowledge from the old types to any new types.

4.1 MOTIVATIONS

Traditional supervised methods have typically modeled event extraction as a classification

problem, by assigning event triggers to event types from a pre-defined fixed set. These

methods rely heavily on manual annotations and features specific to each event type, and

thus are not easily adapted to new event types without extra annotation effort. Handling new

event types may entail starting over, without being able to re-use annotations for previous

event types.

Figure 4.1: Event Mention Example: dispatching is the trigger of a Transport-Person event
with four arguments.

To make event extraction more feasible for practical emergent settings, we take a fresh look

at this task. We observe that each event mention has a structure consisting of a candidate

trigger and arguments, with corresponding pre-defined name labels for the event type and

argument roles. Let’s consider two example sentences:

E1. The Government of China has ruled Tibet since 1951 after dispatching troops to the

Himalayan region in 1950 .
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E2. Iranian state television stated that the conflict between the Iranian police and the

drug smugglers took place near the town of mirjaveh.

In E1, as also diagrammed in Figure 4.1, dispatching is the trigger for the event mention

of type Transport Person and in E2, conflict is the trigger for the event mention of type

Attack. We make use of Abstract Meaning Representations (AMR) [133] to identify the can-

didate arguments and construct event mention structures as shown in Figure 4.2. Figure 4.2

also shows event type structures defined in the Automatic Content Extraction (ACE) guide-

line 1. We can see that, a trigger and its event type usually share similar lexical semantic

meaning. Besides the lexical semantics that relates a trigger to its type, their structures

also tend to be similar : a Transport Person event typically involves a Person as its patient

role, while an Attack event involves a Person or Location as an Attacker. This observation

matches the theory by [58]: “the semantics of an event structure can be generalized and

mapped to event mention structures in a systematic and predictable way”.

Figure 4.2: Examples of Event Mention Structures and Type Structures from ACE.

Inspired by this theory, for the first time, we model event extraction as a grounding

problem, by mapping each mention to its semantically closest event type. Given an event

ontology, where each event type structure is well defined (e.g., argument roles), we call the

event types with annotated event mentions as seen types, while those without annotations

as unseen types. Our goal is to learn a generic mapping function independent of event

1https://en.wikipedia.org/wiki/Automatic content extraction
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types, which can be trained from annotations for a limited number of seen event types and

further used for any new unseen event types. We design a transferable neural architecture,

which jointly learns and maps the structural representations of event mentions and types

into a shared semantic space, by minimizing the distance between each event mention and its

corresponding type. For event mentions with unseen types, their structures will be projected

into the same semantic space using the same framework and assigned types with top-ranked

similarity values.

To summarize, to apply our new zero-shot transfer learning framework to any new unseen

event types, we only need (1) a structured definition of the unseen event type (its type name

along with role names for its arguments); and (2) some annotations for one or a few seen

event types. Without using any manual annotations for the new unseen types, our framework

achieves performance comparable to supervised methods trained from a substantial amount

of training data for the same types.

4.2 APPROACH OVERVIEW

Figure 4.3: Architecture Overview. The blue circles denote event types and event type
representations. The dark grey diamonds and circles denote triggers and trigger represen-
tations from training set. The light grey diamonds and circles denote triggers and trigger
representations from testing set.
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Given a sentence s, we start by identifying candidate triggers and arguments based on

AMR parsing [150]. For the example shown in Figure 4.1, we identify dispatching as a

trigger, and its candidate arguments: China, troops, Himalayan and 1950. Then we use

our new neural architecture depicted in Figure 4.3 to classify triggers into event types. The

argument classification follows the same pipeline.

For each trigger t, e.g., dispatch-01, we determine its type by comparing its semantic

representation with that of any event type in the event ontology. In order to incorporate

the contexts into the semantic representation of t, we build a structure St using AMR as

shown in Figure 4.3. Each structure is composed of a set of tuples, e.g, 〈dispatch-01, :ARG0,

China〉. We use a matrix to represent each AMR relation, composing its semantics with two

concepts for each tuple. As CNN can capture sequence level feature representation, we and

feed all tuple representations into a CNN to generate a dense vector representation VSt for

the event mention structure.

Given a target event ontology, for each type y, e.g., Transport Person, we construct a type

structure Sy consisting of its predefined roles, and use a tensor to denote the implicit relation

between any type and argument role. We compose the semantics of type and argument role

with the tensor for each tuple, e.g., 〈Transport Person, Destination〉. Then we generate the

event type structure representation VSy using the same CNN. By minimizing the semantic

distance between dispatch-01 and Transport Person using VSt and VSy , we jointly map the

representations of event mention and event types into a shared semantic space, where each

mention is closest to its annotated type.

After training, the compositional functions and CNNs can be further used to project any

new event mention (e.g., donate-01 ) into the semantic space and find its closest event type

(e.g., Donation). In the next sections we will elaborate each step in great detail.

4.3 TRIGGER AND TYPE STRUCTURE COMPOSITION

As Figure 4.3 shows, for each candidate trigger t, we construct its event mention structure

St based on its candidate arguments and AMR parsing. For each type y in the target event

ontology, we construct a structure Sy by including its pre-defined roles and using its type as

the root.

Each St or Sy is composed of a collection of tuples. For each event mention structure, a

tuple consists of two AMR concepts and an AMR relation. For each event type structure,

a tuple consists of a type name and an argument role name. Next we will describe how to

compose semantic representations for event mention and event type respectively based on

these structures.
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Event Mention Structure For each tuple u = 〈w1, λ, w2〉 in an event mention structure,

we use a matrix to represent each AMR relation λ, and compose the semantics of λ between

two concepts w1 and w2 as:

Vu = [V
′

w1
;V

′

w2
] = f([Vw1 ;Vw2 ] ·Mλ) (4.1)

where Vw1 , Vw2 ∈ Rd are the vector representations of words w1 and w2. d is the dimension

size of each word vector. [ ; ] denotes the concatenation of two vectors. Mλ ∈ R2d×2d is the

matrix representation for AMR relation λ. Vu is the composition representation of tuple u,

which consists of two updated vector representations V
′
w1

, V
′
w2

for w1 and w2 by incorporating

the semantics of λ.

Event Type Structure For each tuple u
′

= 〈y, r〉 in an event type structure, where y

denotes the event type and r denotes an argument role, following Socher et al. [151], we

assume an implicit relation exists between any pair of type and argument, and use a single

and powerful tensor to represent the implicit relation:

Vu′ = [V
′

y ;V
′

r ] = f([Vy;Vr]
T · U [1:2d] · [Vy;Vr]) (4.2)

where Vy and Vr are vector representations for y and r. U [1:2d] ∈ R2d×2d×2d is a 3-order

tensor. V
′
u is the composition representation of tuple u

′
, which consists of two updated

vector representations V
′
y , V

′
r for y and r by incorporating the semantics of their implicit

relation U [1:2d].

4.4 TRIGGER AND ARGUMENT CLASSIFICATION

4.4.1 Trigger Classification for Seen Types

Both event mention and event type structures are relatively simple and can be repre-

sented with a set of tuples. CNNs have been demonstrated effective at capturing sentence

level information by aggregating compositional n-gram representations. In order to gener-

ate structure-level representations, we use CNN to learn to aggregate all edge and tuple

representations.

Input layer is a sequence of tuples, where the order of tuples is from top to bottom in

the structure. Each tuple is represented by a d × 2 dimensional vector, thus each mention
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structure and each type structure are represented as a feature map of dimensionality d×2h∗

and d × 2p∗ respectively, where h∗ and p∗ are the maximal number of tuples for event

mention and type structures. We use zero-padding to the right to make the volume of all

input structures consistent.

Convolution layer Take St with h∗ tuples: u1, u2, ..., uh∗ as an example. The input

matrix of St is a feature map of dimensionality d × 2h∗. We make ci as the concatenated

embeddings of n continuous columns from the feature map, where n is the filter width and

0 < i < 2h∗+n. A convolution operation involves a filter W ∈ Rnd, which is applied to each

sliding window ci:

c
′

i = tanh(W · ci + b) (4.3)

where c
′
i is the new feature representation, and b ∈ Rd is a biased vector. We set filter width

as 2 and stride as 2 to make the convolution function operate on each tuple with two input

columns.

Max-Pooling: All tuple representations c
′
i are used to generate the representation of the

input sequence by max-pooling.

Learning: For each event mention t, we name the correct type as positive and all the

other types in the target event ontology as negative. To train the composition functions and

CNN, we first consider the following hinge ranking loss:

L1(t, y) =
∑

j∈Y, j 6=y

max{0,m− Ct,y + Ct,j} (4.4)

Ct,y = cos([Vt;VSt ], [Vy;VSy ]) (4.5)

where y is the positive event type for t. Y is the type set of the target event ontology.

[Vt;VSt ] denotes the concatenation of representations of t and St. j is a negative event type

for t from Y . m is a margin. Ct,y denotes the cosine similarity between t and y.

The hinge loss is commonly used in zero-shot visual object classification task. However,

it tends to overfit the seen types in our experiments. Compared with zero-shot visual object

classification, our task has much fewer seen types for training, for example, ACE defined 33

event types, whereas there are usually more than 1,000 seen types in visual object classifica-

tion, thus the model will be easier to be biased to the limited seen types. While clever data

augmentation can help alleviate overfitting, we propose to add “negative” event mentions

into the training process. Here a “negative” event mention means that the mention has no
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positive event type among all seen types, namely it belongs to Other. Though we don’t

know the exact type of the negative event mentions, we know that their types must be from

unseen types rather than seen ones. To encourage the negative event mentions to be mapped

to unseen types, we design a new loss function as follows:

Ld1(t, y) =


max
j∈Y,j 6=y

max{0,m− Ct,y + Ct,j}, y 6= Other

max
j∈Y ′ ,j 6=y′

max{0,m− Ct,y′ + Ct,j}, y = Other
(4.6)

where Y is the type set of the event ontology. Y
′

is the seen type set. y is the annotated

type. y
′

is the type which ranks the highest among all event types for event mention t, while

t belongs to Other.

By minimizing Ld1, we can learn the optimized model which can compose structure repre-

sentations and map both event mention and types into a shared semantic space, where the

positive type ranks the highest for each mention.

4.4.2 Argument Classification for Seen Types

For each mention, we map each candidate argument to one of the pre-defined roles follow-

ing the same pipeline. Each argument candidate is matched to a specific role based on the se-

mantic similarity of the argument path. Take E1 as an example. China is matched to Agent

based on the semantic similarity between dispatch-01→ :ARG0→ China and Transport-

Person→Agent.

Given a trigger t and a candidate argument a, we first extract a path Sa = (u1, u2, ..., up),

which connects t and a and consists of p tuples. Each predefined role r is also represented

as a structure by incorporating the event type, Sr = 〈y, r〉. We apply the same framework

to take the sequence of tuples contained in Sa and Sr into a weight-sharing CNN to rank all

possible roles for a.

Ld2(a, r) =


max

j∈Ry ,j 6=r
max{0,m− Ca,r + Ca,j} r 6= Other

max
j∈R

Y
′ ,j 6=r′

max{0,m− Ca,r′ + Ca,j} r|y = Other
(4.7)

where Ry and RY ′ are the set of argument roles which are predefined for trigger type y and

all seen types Y
′
. r is the annotated role and r

′
is the argument role which ranks the highest

for a when a or y is annotated as Other.
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In our experiments, the trigger and argument annotations are not balanced. Therefore, we

sample various size of “negative” training data for trigger and argument labeling respectively.

In the following section, we describe how the negative training instances are generated.

4.4.3 Zero-Shot Classification for Unseen Types

During test, given a new event mention t
′
, we compute its mention structure representation

for St′ and all event type structure representations for SY = {Sy1 , Sy2 , ..., Syn} using the same

parameters trained from seen types. Then we rank all event types based on their similarity

scores with mention t
′
. The top ranked prediction for t

′
from the event type set, denoted as

ŷ(t
′
, 1), is given by:

ŷ(t
′
, 1) = arg max

y∈Y
cos([Vt′ ;VSt

′ ], [Vy;VSy ]) (4.8)

Moreover, ŷ(t
′
, k) denotes the kth most probable event type predicted for t

′
. We will

investigate the event extraction performance based on the top-k predicted event types.

After determining the type y
′

for mention t
′
, for each candidate argument, we adopt the

same ranking function to find the most appropriate role from the role set defined for y
′
.

4.5 EXPERIMENTS

4.5.1 Hyperparameters

We use the English Wikipedia dump to learn trigger sense and argument embeddings

based on the Continuous Skip-gram model [139]. Table 7.3 shows the hyper-parameters we

use to train models.

Parameter Name Value

Word Sense Embedding Size 200
Initial Learning Rate 0.1
# of Filters in Convolution Layer 500
Maximal # of Tuples for Mention Structure 10
Maximal # of Tuples for Argument Path 5
Maximal # of Tuples for Event Type Structure 5
Maximal # of Tuples for Argument Role Path 1

Table 4.1: Hyper-Parameters.
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4.5.2 ACE Event Classification

We first use ACE event schema 2 as our target event ontology and assume the boundaries

of triggers and arguments are given. Of the 33 ACE event types, we select the top-N most

popular event types from ACE05 data as “seen” types, and use 90% event annotations of

these for training and 10% for development. N is set as 1, 3, 5, 10 respectively. We test the

zero-shot classification performance on the annotations for the remaining 23 unseen types.

Table 4.2 shows the types that we selected for training in each experiment setting.

Setting N Seen Types for Training/Dev

A 1 Attack
B 3 Attack, Transport, Die
C 5 Attack, Transport, Die, Meet,

Arrest-Jail
D 10 Attack, Transport, Die, Meet, Sentence,

Arrest-Jail, Transfer-Money, Elect,
Transfer-Ownership, End-Position

Table 4.2: Seen Types in Each Experiment Setting.

Setting
Index

Training Development Test
# of

Types,
Roles

# of
Events

# of Ar-
guments

# of
Events

# of Ar-
guments

# of
Type-

s/Roles

# of
Events

# of Ar-
guments

A 1, 5 953/900 894/1,097 105/105 86/130

23/59 753 879
B 3, 14 1,803/1,500 2,035/1,791 200/200 191/237
C 5, 18 2,033/1,300 2,281/1,503 225/225 233/241
D 10, 37 2537/700 2,816/879 281/281 322/365

Table 4.3: Statistics for Positive/Negative Instances in Training, Dev, and Test Sets for Each
Experiment.

The negative event mentions and arguments that belong to Other are sampled from the

output of the system developed by Huang et al. [152] based on ACE05 training sentences,

which groups all candidate triggers and arguments into clusters based on semantic represen-

tations and assigns a type/role name to each cluster. We sample the negative event mentions

from the clusters (e.g., Build, Threaten) which cannot be mapped to ACE event types. We

sample the negative arguments from the arguments of negative event mentions. Table 4.3

shows the statistics of the training, development and testing data sets.

2ACE event schema specification is at: https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-
events-guidelines-v5.4.3.pdf
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Setting Method
Hit@k Trigger Classification

(%)
Hit@k Argument
Classification (%)

k=1 k=3 k=5 k=1 k=3 k=5

WSD-
Embedding

1.7 13.0 22.8 2.4 2.8 2.8

A
Our
Approach

4.0 23.8 32.5 1.3 3.4 3.6
B 7.0 12.5 36.8 3.5 6.0 6.3
C 20.1 34.7 46.5 9.6 14.7 15.7
D 33.5 51.4 68.3 14.7 26.5 27.7

Table 4.4: Comparison between Structural Representation (Our Approach) and Word Sense
Embedding based Approaches on Hit@K Accuracy (%) for Trigger and Argument Classifi-
cation.

To show the effectiveness of structural similarity in our approach, we design a baseline,

WSD-Embedding, which directly maps event mentions and arguments to their candidate

types and roles using our pre-trained word sense embeddings. Table 4.4 shows the compar-

ison. We can see that the structural similarity is much more effective than lexical similarity

for both trigger and argument classification. Also, as the number of seen types in training

increases, the performance of the transfer model is improved.

We further evaluate the performance of our transfer approach on similar and distinct

unseen types. The 33 subtypes defined in ACE fall within 8 coarse-grained main types, such

as Life and Justice. Each subtype belongs to one main type. Subtypes that belong to the

same main type tend to have similar structures. For example, Trial-Hearing and Charge-

Indict have the same set of argument roles. For training our transfer model, we select 4

subtypes of Justice: Arrest-Jail, Convict, Charge-Indict, Execute. For testing, we

select 3 other subtypes of Justice: Sentence, Appeal, Release-Parole. Additionally, we also

select one subtype from each of the other seven main types for comparison. Table 4.5 shows

that, when testing on a new unseen type, the more similar it is to the seen types, the better

performance is achieved.

4.5.3 ACE Event Identification and Classification

ACE2005 corpus includes the richest event annotations for 33 types. However, in real

scenario, there may be thousands of event types of interest. In order to enrich the target

event ontology and assess our transferable neural architecture on a large number of unseen

types when trained on limited annotations of seen types, we manually construct a new event

ontology which combines 33 ACE event types and argument roles, and 1,161 frames from
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Type Subtype
Hit@k Trigger Classification

1 3 5

Justice Sentence 68.3 68.3 69.5
Justice Appeal 67.5 97.5 97.5
Justice Release-Parole 73.9 73.9 73.9

Conflict Attack 26.5 44.5 46.7
Transaction Transfer-Money 48.4 68.9 79.5
Business Start-Org 0 33.3 66.7
Movement Transport 2.6 3.7 7.8
Personnel End-Position 9.1 50.4 53.7
Contact Phone-Write 60.8 88.2 90.2

Life Injure 87.6 91.0 91.0

Table 4.5: Performance on Various Types Using Justice Subtypes for Training

Method
Trigger

Identification
Trigger

Identification +
Classification

Arg
Identification

Arg
Identification

+
Classification

P R F P R F P R F P R F

Supervised
LSTM

94.7 41.8 58.0 89.4 39.5 54.8 47.8 22.6 30.6 28.9 13.7 18.6

Supervised
Joint

55.8 67.4 61.1 50.6 61.2 55.4 36.4 28.1 31.7 33.3 25.7 29.0

Transfer 85.7 41.2 55.6 75.5 36.3 49.1 28.2 27.3 27.8 16.1 15.6 15.8

Table 4.6: Event Trigger and Argument Extraction Performance (%) on Unseen ACE Types.

FrameNet except for the most generic frames such as Entity and Locale. Some ACE event

types can be easily aligned to frames, e.g., Die is aligned with Death. Some frames are

instead more accurately treated as inheritors of ACE types, such as Suicide-Attack, which

inherits from Attack. We manually mapped the selected frames to ACE types.

We compare our approach with the following state-of-the-art supervised methods:

• LSTM: A long short-term memory neural network [147] based on distributed semantic fea-

tures, similar to [153].

• Joint: A structured perceptron model based on symbolic semantic features [13].

For our approach, we follow the experiment setting D in the previous section, using the

same training and development data sets for the 10 seen types, but target at all of the 1,194
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event types in our new event ontology instead of just the 33 ACE event types. For evaluation,

we sample 150 sentences from the remaining ACE05 data, including 129 annotated event

mentions for the 23 unseen types. For both LSTM and Joint approaches, we use the entire

ACE05 annotated data for 33 ACE event types for training except for the held-out 150

evaluation sentences.

We first identify the candidate triggers and arguments, then map each of them to the

target event ontology. We evaluate our model on extracting the event mentions which are

classified into 23 testing ACE types. Table 4.6 shows the performance.

To further demonstrate the zero-shot learning ability of our framework and the significance

on saving human annotation effort, we use the supervised LSTM approach for comparison.

The training data of LSTM contains 3,464 sentences with 905 annotated event mentions for

the 23 unseen event types. We divide these event annotations into 10 subsets and gradually

add one subset (10% of annotations) into the training data of LSTM. Figure 4.4 shows the

learning curve. Without any annotated mentions of the 23 unseen test event types in its

training set, our transfer learning approach achieves performance comparable to that of the

LSTM, which is trained on 3,000 sentences3 with 500 annotated event mentions.

Figure 4.4: Comparison between Our Approach and Supervised LSTM model on 23 Unseen
Event Types.

4.6 DISCUSSION: IMPACT OF AMR

We use AMR parsing output to construct event structures. To assess the impact of

AMR parser [135] on event extraction, we choose a subset of ERE (Entity, Relation, Event)

corpus [154] which has perfect AMR annotations. This subset contains 304 documents

3The 3,000 sentences include all the sentences which have not any event annotations.
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with 1,022 annotated event mentions of 40 types. We select the top-6 most popular event

types (Arrest-Jail, Execute, Die, Meet, Sentence, Charge-Indict) with manual annotations

of 548 event mentions as seen types. We sample 500 negative event mentions from distinct

types of clusters generated from the system [152] based on ERE training sentences. We

combine the annotated events for seen types and the negative event mentions, and use 90%

for training and 10% for development. For evaluation, we select 200 sentences from the

remaining ERE subset, which contains 128 Attack event mentions and 40 Convict event

mentions. Table 4.7 shows the event extraction performances based on perfect AMR and

system AMR respectively.

We also compare AMR with Semantic Role Labeling (SRL) output [155] by keeping only

the core roles (e.g., :ARG0, :ARG1 ) from AMR annotations. As Table 4.7 shows, compared

with SRL, the fine-grained AMR semantic relations such as :location, :instrument appear to

be more informative to infer event argument roles

Method
Trigger Labeling Argument Labeling
P R F1 P R F1

Perfect AMR 79.1 47.1 59.1 25.4 21.4 23.2
Perfect AMR with Core
Roles only (SRL)

77.1 47.0 58.4 19.7 16.9 18.2

System AMR 85.7 32.0 46.7 22.6 15.8 18.6

Table 4.7: Impact of AMR and Semantic Roles on Trigger and Argument Extraction (%).

4.7 SUMMARY

Extracting knowledge for a set of new types is usually a costly task. In this chapter, we

investigate zero-shot transfer learning, a new learning fashion that can leverage available

annotations for a few seen types, e.g., annotated event mentions for Attack, Sentence and

Meet, and automatically extract event mentions for all other unseen types (e.g., Convict,

Threaten) from a large-scale and extensible target ontology. Without any annotation, our

approach can achieve performance comparable to state-of-the-art supervised models trained

on about 500 event mentions and 3000 sentences for 23 ACE types. The grounding idea can

be applied to a lot of other NLP tasks, e.g., entity recognition, relation extraction, entity

linking.
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CHAPTER 5: SEMI-SUPERVISED NEW EVENT TYPE INDUCTION AND
EVENT DETECTION - AN EXTENSION OF ZERO-SHOT IE

The aforementioned zero-shot learning approach requires a large-scale target event ontol-

ogy available so that the algorithms can efficiently map each candidate event mention into

a particular type. However, in practice, it is usually very expensive and time-consuming to

manually craft a large-scale event schema, which defines the types and complex templates

of the expected events. So, one further question is, can machines automatically discover a

set of new event types and their event mentions by leveraging existing annotations for a few

seen types?

5.1 MOTIVATIONS

Recent studies have shown that it’s possible to automatically induce an event schema from

raw text. Some researchers explore probabilistic generative methods [156, 157, 158, 159]

or ad-hoc clustering-based algorithms [160] to discover a set of event types and argument

roles. Generally, event schema induction can be divided into two steps: event type induction,

aiming to discover a set of new event types for the given scenario, and argument role induction

which discovers a set of argument roles for each type. In this chapter, we focus on tackling

the first problem only.

We propose a task of semi-supervised event type induction, which aims to leverage avail-

able event annotations for a few types, which are called as seen types, and automatically

discover a set of new unseen types, as well as their corresponding event mentions. As a solu-

tion, we design a new Semi-Supervised Vector Quantized Variational Autoeocoder framework

(short as SS-VQ-VAE) which first assigns a discrete latent type representation for each seen

and unseen type, and optimizes them during the process of projecting each candidate trigger

into a particular seen or unseen type. The candidate triggers are discovered with a heuristic

approach. To avoid the type projection to be over-fitted to the set of seen types, we intro-

duce a variational autoencoder (VAE) as a regularizer to enforce the decoder to reconstruct

each particular trigger conditioned on its type distribution.

Experiments under the setting of both supervised event detection and new event type

induction demonstrate that our approach can not only detect event mentions for seen types

with high precision, but also discover high-quality new unseen types.
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5.2 APPROACH OVERVIEW

As Figure 5.1 shows, given an input sentence, we first automatically discover all candidate

triggers and encode each trigger with a contextual vector using a pre-trained BERT [161]

encoder. Then, we predict the type of each candidate trigger by looking up a dictionary of

discrete latent representations of all seen and unseen types. Meanwhile, to avoid the type

prediction to be over-fitted to seen types, we apply a variational autoencoder as a regularizer

to first project each trigger into a latent variational embedding and then reconstruct the

trigger conditioned on its type distribution.
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Figure 5.1: Architecture Overview.

5.3 EVENT TRIGGER IDENTIFICATION AND REPRESENTATION LEARNING

Similar to [160], we identify all candidate triggers based on word sense induction. Specif-

ically, for each word, we disambiguate its senses and link each sense to OntoNotes [162]

using a word sense disambiguation system — IMS [140] 1. We consider all noun and verb

concepts that can be mapped to OntoNotes senses as candidate triggers. In addition, the

concepts that can be matched with verbs or nominal lexical units in FrameNet [163] are also

considered as candidate triggers.

1We use the OntoNotes based IMS word sense disambiguator (https://github.com/c-amr/camr)
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Given a sentence s = [w1, ..., wn], where we assume wi is identified as a candidate trigger,

we use a pre-trained BERT encoder to encode the whole sentence and get a contextual

representation for wi. If wi is split into multiple subwords or a trigger consists of multiple

tokens, we use the average of all subword vectors as the final trigger representation.

5.4 EVENT TYPE PREDICTION WITH VECTOR QUANTIZATION

To predict a type for a candidate trigger, an intuitive approach is to learn a classifier using

the event annotations of seen types. However, as we also aim to discover a set of unseen

types, without any annotations, the classifier for the unseen types cannot be optimized.

To solve this problem, we employ a Vector Quantization [164] strategy. We first define

a discrete latent event type embedding space E ∈ Rk×d, where k is the number of possible

event types, and d is the dimensionality of each type embedding ei. Each ei can be viewed

as the centroid of the triggers belonging to the corresponding event type. For each seen

type, we initialize e with the contextual vector of a trigger which is randomly selected from

the corresponding annotations. For each unseen type, we initialize e with the contextual

vector of another trigger which is randomly picked from all unannotated event mentions.

Assuming there are m seen types, we arbitrarily assign E[1:m] as their type representations.

Given a candidate trigger t and its contextual vector vt, we first apply a linear encoder

fc(vt) ∈ Rd to extract type specific features. Then, we compute a type distribution y based

on fc(vt) by looking up all the discrete latent event type embeddings with inner-product

operation

yt = E[1:k] · fc(vt) (5.1)

The feature encoder fc(.) is optimized using all event annotations for seen types (the

cross-entropy term in Equation 5.2) and event mentions for unseen types (the second term

in Equation 5.2 2) as follows

Lc =
∑

(t,ỹt)∈Ds

−ỹt log(yt) +
∑
t∈Du

max(y
[1:m]
t )−max(y

[m:k]
t ) (5.2)

where −ỹt is the ground truth label. Ds and Du denote the set of annotated event mentions

for seen types and new event mentions for unseen types. y
[1:m]
t and y

[m:k]
t are the type

prediction scores for seen and unseen types respectively.

To optimize the type embeddings E, we follow the VQ objective [165] and use l2 error

to move the type vector ei towards the type-specific feature fc(vt) (the first term in Equa-

2We only apply this term when we know the new event mentions do not belong to any seen types
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tion 5.3) while ei of t is determined by yt . To make sure fc(.) commits to an embedding,

we add a commitment loss (the second term in Equation 5.3)

Lvq = ||sg(fc(vt))− ei||2 + ||fc(vt)− sg(ei)||2 (5.3)

where sg stands for the stop gradient operator, which is defined as identity at forward

computation time and has zero partial derivatives, thus effectively constraining its operand

to be a non-updated constant.

5.5 VARIATIONAL AUTOENCODER AS REGULARIZER

To avoid the type prediction to be over-fitted to the seen types, we employ a semi-

supervised variational autoencoder as a regularizer. The intuition is that each event mention

can be generated conditioned on a latent variational embedding z as well as a its correspond-

ing type distribution y, which is predicted by the approach described in Section 5.4.

We first describe the semi-supervised variational inference process. It consists of an infer-

ence network q(z|t) which is a posterior of the learning of a latent variable z given the trigger

t, and a generative network p(t|z, y) to reconstruct the candidate trigger t from the latent

variable z and type information y. For each candidate trigger t with human annotated label

y, the likelihood p(t, y) can be approximated to a variational lower bound

log p(t, y) ≥ log p(t|y, z)−KL(q(z|t)||p(z)) = −L(t, y) (5.4)

where log p(t|z, y) is the expectation of reconstruction of t conditioned on z and y, p(z) is

the prior Gaussian distribution. For each unlabeled candidate trigger t, the likelihood p(t)

approximates to another variational lower bound

log p(t) ≥
∑
y

q(y|t)(−L(t, y))− q(y|t) log q(y|t) = −L(t) (5.5)

where q(y|t) is obtained from Equation 5.1.

As for model implementation, given a candidate trigger t and its contextual embedding

vt, we first pass it through an encoder fe(vt) to extract features. As we assume the latent

variatonal embedding zt follows Gaussian distribution zt ∼ N (µt,σt), we apply two linear

functions to obtain the mean vector µt = fµ(fe(vt)) and a variance vector σt = fσ(fe(vt)).

For decoding, we employ another linear function to reconstruct vt from the concatenation

of zt and yt: v
′
t = fr([zt : yt]). We optimize the following objective for the semi-supervised
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VAE
Lv =

∑
t∈Du

L(t) +
∑

(t,y)∈Ds

L(t, y) (5.6)

The overall loss function for optimizing the whole SS-VQ-VAE framework is

L = αLc + βLvq + γLv (5.7)

where α, β and γ are hyper-parameters to balance the three objectives.

5.6 DATA AND EXPERIMENTAL SETUP

We perform experiments on Automatic Content Extraction (ACE) 2005 dataset and eval-

uate our approach under two settings: (1) supervised event extraction, where the target

types include 33 ACE predefined types and other. Giving all candidate triggers, the goal

is to correctly identify all ACE event mentions and classify them into corresponding types.

We follow the same data split with prior work [97, 101, 166] in which 529/30/40 newswire

documents are used for training/dev/test set. (2) new event type induction, where only 10

ACE types are seen. Given all ACE annotated event mentions, the goal of this task is to

test whether the approach can automatically discover the remaining 23 unseen ACE types

and categorize each candidate trigger into a particular seen or unseen type.

In terms of implementation details, we use the pre-trained bert-large-cased 3 model for

fine-tuning, and optimize our model with BertAdam. we optimize the parameters with

grid search: training epoch 15, learning rate l ∈ {1e − 5, 2e − 5, 3e − 5, 5e − 5}, gradient

accumulation steps g ∈ {1, 2, 3}, training batch size b ∈ {5g, 8g, 10g}, the hyper-parameters

for the overall loss function α ∈ {1.0, 5.0, 10.0}, β ∈ {0.1, 0.5, 1.0}, γ ∈ {0.1, 0.5, 1.0}. The

dimensionality of type embedding as well as latent variational embedding, and the hidden

states of fc(.) are all 500 while the hidden states of fe(.), fµ(.), fσ(.) are all 1024.

We also use several clustering metrics to measure the agreement between the ground truth

class assignments and system based unseen type predictions:

Normalized Mutual Info is a normalization of the Mutual Information (MI) score and

scales the MI score to be between 0 and 1.

NMI(Y,C) =
2× I(Y ;C)

[H(Y ) +H(C)]
(5.8)

3https://github.com/google-research/bert
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where Y denotes the ground truth class labels, C denotes the cluster labels, H(.) denotes

the entropy function and I(Y ;C) is the mutual information between Y and C.

Fowlkes Mallows is an evaluation metric to evaluate the similarity between the clusters

obtained from our approach and ground-truth labels of the data.

FM(Y,C) =
TP√

((TP + FP )× (TP + FN))
(5.9)

where TP means True Positive, which is calculated as the number of pair of data points

which are in the same cluster in Y and in C. FP refers to False Positive, which is calculated

as the number of pair of data points which are in the same cluster in Y but not in C. FN

is False Negative and calculated as the number of pair of data points which are not in the

same cluster in Y but are in the same cluster in C.

Completeness : A clustering result satisfies completeness if all members of a given class

are assigned to the same cluster.

C(Y,C) = 1− H(C|Y )

H(C)
(5.10)

where H(C|Y ) is the conditional entropy of the clustering outputs given the class labels and

H(Y ) is the entropy of the classes.

Homogeneity : A clustering result satisfies completeness if all of its clusters contain only

data points which are members of a single class.

C(Y,C) = 1− H(Y |C)

H(Y )
(5.11)

V Measure is the weighted harmonic mean between homogeneity score and completeness

score.

V (Y,C) =
(1 + β) · h · c)

(β · h) + c
(5.12)

where h denotes the homogeneity score and c refers to the completeness score.
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Methods Encoder Trigger Identification Trigger Detection
P R F P R F

DMCNN [100] CNN 80.4 67.7 73.5 75.6 63.6 69.1
JRNN [101] RNN 68.5 75.7 71.9 66.0 73.0 69.3
JMEE [167] GCN 80.2 72.1 75.9 76.3 71.3 73.7

Joint3EE [168] GRU 70.5 74.5 72.5 68.0 71.8 69.8
MOGANED [169] GAN - - - 79.5 72.3 75.7

BERT-CRF BERT 73.8 76.9 75.3 70.4 73.3 71.8
DMBERT [170] BERT - - - 77.6 71.8 74.6

OneIE [171] BERT - - 75.6 - - 72.8

SS-VQ-VAE w/o VQ-VAE BERT 78.2 77.8 78.0 73.2 72.9 73.0
SS-VQ-VAE w/o VAE BERT 80.8 80.2 80.5 76.2 75.7 75.9

SS-VQ-VAE BERT 79.1 81.4 80.2 75.7 77.8 76.7

Table 5.1: Supervised Event Detection Performance on ACE 2005 (F-score%).

5.7 SUPERVISED EVENT DETECTION

We compare our approach with several state-of-the-art event extraction methods under

the setting of fully supervised event detection, as shown in Table 5.1. We conduct ablation

study to testify the impact of the VQ and VAE components: SS-VQ-VAE w/o VQ-VAE

is only optimized with the classification loss (Equation 5.2) while SS-VQ-VAE w/o VAE

is optimized with the classification loss (Equation 5.2) and the VQ objective (Equation 5.3).

As we can see, BERT based approaches generally outperform the methods using CNN,

RNN or GRU. Our approach achieves the state-of-the-art among all methods. In particular,

the recall of our approach is much higher than other methods, which demonstrate the ef-

fectiveness of the trigger identification step. It can narrow the learning space of the model.

The ablation studies also prove the effectiveness of the VQ and VAE components.

5.8 NEW EVENT TYPE INDUCTION

For new event type induction, we compare our approach with another intuitive baseline,

BERT-C-Kmeans, which takes in the BERT based trigger representations and group all

candidate triggers into clusters with a Constrained K-means [172], a semi-supervised clus-

tering algorithm which enforces all trigger candidates annotated with the same seen type to

belong to the same cluster. Table 5.2 shows the performance with several clustering metrics,

which measure the agreement between the ground truth class assignments and system based

unseen type predictions.
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Metrics C-Kmeans SS-VQ-VAE

Normalized Mutual Info 8.93 40.88
Adjusted Rand Index 0.15 4.22

Fowlkes Mallows 6.04 31.46
Completeness 8.64 53.57
Homogeneity 9.22 31.19
V Measure 8.92 39.43

Table 5.2: Evaluation of New Event Type Induction on 23 Unseen Types of ACE 2005 (%).

5.9 QUALITATIVE DISCUSSION

As qualitative analysis, we further pick 6 unseen ACE types, including Trial-Hearing,

Sentence, Marry, Demonstrate, Convict, Merge-Org, and randomly select at most 100 event

mentions for each type. We visualize their type distribution y using TSNE 4. As Figure 5.2

shows, most of the event mentions that are annotated with the same ACE type tends to be

predicted to the same new unseen type.

Figure 5.2: Type Distribution of 6 Unseen Types of Event Mentions.

5.10 SUMMARY

In this chapter, we study a more challenging problem of automatically discovering a set of

new event types as well as their corresponding event mentions given some event annotations

4https://scikit-learn.org/stable/modules/generated/sklearn.
manifold.TSNE.html
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for a few event types. It combines the merits of liberal information extraction framework,

i.e., high flexibility of the target types, and the merits of zero-shot IE framework, i.e., higher

quality by leveraging existing annotations. Experiments show that this approach achieves

the state-of-the-art on supervised event extraction and discovers a set of high-quality unseen

types. In the future, this framework can be further extended to extract arguments and

induce argument roles to discover complete event schemas.
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CHAPTER 6: MULTI-LINGUAL COMMON SEMANTIC SPACE
CONSTRUCTION: FROM 3 LANGUAGES TO 3000+ LANGUAGES

All the aforementioned IE frameworks, including liberal IE, zero shot IE and the semi-

supervised event type induction framework, can extend information extraction tasks to thou-

sands of types without requiring any additional annotated data. However, they are all de-

signed by English. In order to adapt these frameworks to other languages, we describe a

general framework to construct a multi-lingual common semantic space, where words from

various languages but referring to the same concept share similar semantics.

6.1 MOTIVATIONS

There are about 7,099 known living languages in the world, and more than 3,000 languages

have electronic record, e.g., at least a portion of the Christian Bible had been translated into

2,508 different languages.1 However, the training data for mainstream natural language pro-

cessing (NLP) tasks such as information extraction and machine translation is only available

for dozens of dominant languages. In this paper we aim to construct a multilingual common

semantic space where words in multiple languages are mapped into a distributed, language-

agnostic semantic continuous space, so that resources and knowledge can be shared across

languages.

Words can be clustered through explicit (e.g., sharing affixes of certain linguistic functions)

or implicit clues (e.g., sharing neighbors from monolingual word embedding). We hypothesize

that the distribution of such clusters should be consistent across multiple languages. We

achieve this cluster-level consistency by aligning word clusters across languages. Based on

this intuition we propose to create clusters through three kinds of signals as follows, without

any extra human annotation effort. Then we aggregate the embedding vectors of words in

each cluster and ensure that the clusters (or the words therein) are consistent across multiple

languages.

Neighbor based clustering and alignment. We build our common space based on

correlational neural network (CorrNet) which is commonly used to learn word representations

for multiple views or languages. CorrNet is an extension of autoencoder framework by

enabling cross-lingual reconstruction. In contrast to previous work [173, 174], we extend

CorrNet to neighbor-consistent correlation network by using each word’s neighbors (the

nearest words within monolingual semantic space) to ensure that the cross-lingual mapping

from and to the common semantic space is locally smooth. For instance, the neighboring

1https://www.ethnologue.com
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words of China in English (Japan, India and Taiwan) should be close to the neighboring

words of Cina in Italian (Beijing, Korea, Japan) in the common semantic space. In other

words, we encourage the consistency of neighborhoods across multiple languages.

Character based clustering and alignment. Many related languages share very simi-

lar character set, and many words that refer to the same concept share similar compositional

characters or patterns, e.g., China (English), Kina (Danish), and Cina (Italian).

Linguistic property based clustering and alignment. Many languages also share lin-

guistic properties, e.g., apposition, conjunction, and plural suffix (English (-s / -es), Turkish

(-lar / -ler), Somali (-o)). Linguists have created a wide variety of linguistic property knowl-

edge bases, which are readily available for thousands of languages. For example, the CLDR

(Unicode Common Locale Data Repository) includes closed word classes and affixes indicat-

ing various linguistic properties. We propose to take advantage of these language-universal

resources to create clusters, where the words within one cluster share the same linguistic

property, and build alignment between clusters for common semantic space construction.

We evaluate our approach on monolingual and multilingual QVEC [175] tasks, as well as

an extrinsic evaluation on name tagging for low-resource languages. Experiments demon-

strate that our framework is effective at capturing linguistic properties and significantly

outperforms state-of-the-art multi-lingual embedding learning methods.

6.2 APPROACH OVERVIEW

Figure 6.1: Architecture Overview. In each monolingual semantic space, the words within
solid rectangle denote a neighbor based cluster and the words within dotted rectangle denote
a linguistic property based cluster.
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Figure 6.1 shows the overview of our neural architecture.

We project all monolingual word embeddings into a common semantic space based on

word-level as well as cluster-level alignments and learn the transformation functions. First,

on word-level, we build a neighborhood-consistent CorrNet to augment word representations

with neighbor based clusters and align them in the common semantic space. In addition,

we apply a language-independent convolutional neural networks to compose character-level

word representation and concatenate it with word representation in the common semantic

space. Finally, we construct clusters based on linguistic properties, such as closed word

classes and affixes, and align them in the common semantic space. We jointly optimize for

all the alignments in the common semantic space for each pair of languages.

6.3 BASIC MODEL: CORRNET

We briefly describe the basic model for learning the common semantic space: correlational

neural networks (CorrNets) [173, 174]. CorrNets have been widely adopted for learning mul-

tilingual or multi-view representations. Figure 6.2 shows the basic architecture of a CorrNet.

It combines the advantages of canonical correlation analysis (CCA) and autoencoder (AE).

Figure 6.2: CorrNet for Learning Multilingual Word Embeddings

Given the bilingual aligned word pairs between two languages l1 and l2, we first use

their monolingual word embeddings to initialize each word with a vector and obtain Ml1 ∈
R|Vl1 |×dl1 and Ml2 ∈ R|Vl2 |×dl2 , where Vl1 and Vl2 are the bilingual dictionary of l1 and l2.

V i
l1

is the translation of V i
l2

, and dl1 and dl2 are the vector dimensionalities. Then for each

language we learn a linear projection function to project Ml1 and Ml2 into the common

semantic space:

Hl1 = σ(Ml1 ·Wl1 + bl1) , (6.1)

Hl2 = σ(Ml2 ·Wl2 + bl2) , (6.2)
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where Hl1 ∈ RVl1×h and Hl2 ∈ RVl2×h are the vector representations for Vl1 and Vl2 in the

common semantic space respectively. h is the vector dimensionality in the shared semantic

space. Wl1 ∈ RVl1×h and Wl2 ∈ RVl2×h are the transformation matrices, and bl1 and bl2 are

the bias vectors. σ denotes Sigmoid function.

After we project the monolingual embeddings into the common semantic space, we further

reconstruct Ml1 and Ml2 from Hl1 and Hl2 separately:

M
′

l1
= σ(Hl1 ·W>

l1
+ b

′

l1
) , (6.3)

M∗
l1

= σ(Hl2 ·W>
l1

+ b
′

l1
) , (6.4)

M
′

l2
= σ(Hl2 ·W>

l2
+ b

′

l2
) , (6.5)

M∗
l2

= σ(Hl1 ·W>
l2

+ b
′

l2
) , (6.6)

where b
′

l1
, b
′

l2
are the bias vectors. M

′

l1
and M

′

l2
are the monolingual reconstructions of Ml1

and Ml2 from the common space, and M∗
l1

and M∗
l2

are cross-lingual reconstructions. W>
l1

and W>
l2

are the transposes of Wl1 and Wl2 respectively.

To learn the common semantic space, we minimize the distance between the aligned word

vectors as well as the loss of monolingual and cross-lingual reconstruction:

OW =
∑

{li,lj}∈A

L(M
′

li
,Mli) + L(M∗

li
,Mli) + L(M

′

lj
,Mlj) + L(M∗

lj
,Mlj) + L(Hli , Hlj) , (6.7)

where l denotes any specific language that we want to project into the common semantic

space, A denotes all bilingual dictionaries, and L denotes a similarity metric. In our work,

we use cosine similarity as the similarity metric.

6.4 NEIGHBORHOOD-CONSISTENT CORRNET

CorrNet can project multiple monolingual word embeddings into a common semantic space

using bilingual word alignment. However, the same concepts may have different semantic

bias in various languages. For example, the top five nearest words of the concept “China” are:

(Japan, India, Taiwan, Chinese, Asia) in English, (Cosco, Shenzhen, Australian, Shanghai,

manufacturing) in Danish, and (Beijing, Korea, Japan, aluminum, copper) in Italian respec-

tively. The neighboring words can reflect the semantic meanings of each concept within each

semantic space. In order to ensure the consistency of the neighborhoods within the common

semantic space and make the cross-lingual mapping locally smooth, we propose to augment
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monolingual word representation with its top-N nearest neighboring words from the original

monolingual semantic space.2

Given the monolingual embeddings of the bilingual aligned words for two languages l1 and

l2, Ml1 and Ml2 , for each word, we extract the top-N nearest neighbors and construct the

neighborhood clusters. Each cluster tl = {w1, w2, ..., w|tl|} in language l is represented by

ctl =
1

|tl|
∑
w∈tl

Ew , (6.8)

where Ew denotes the monolingual word embedding for w.

We obtain all the neighborhood cluster vector representations Cl1 , Cl2 for l1 and l2. We

incorporate these neighborhood cluster information into the common semantic space when

projecting monolingual embeddings:

Hl1 = σ(Ml1 ·Wl1 + Cl1 · Ul1 + bl1), (6.9)

Hl2 = σ(Ml2 ·Wl2 + Cl2 · Ul2 + bl2), (6.10)

Besides the monolingual and cross-lingual reconstructions for Ml1 and Ml2 in CorrNets,

we also add monolingual and cross-lingual reconstructions for the neighborhood clusters:

C
′

l1
= σ(Hl1 · U>l1 + b∗l1) , (6.11)

C∗l1 = σ(Hl2 · U>l1 + b∗l1) , (6.12)

C
′

l2
= σ(Hl2 · U>l2 + b∗l2) , (6.13)

C∗l2 = σ(Hl1 · U>l2 + b∗l2) , (6.14)

In addition to optimizing the loss functions described in the Section 6.3, we further opti-

mize the monolingual and cross-lingual reconstruction for neighborhood clusters:

ON =
∑

{li,lj}∈A

L(C
′

li
, Cli) + L(C∗li , Cli) + L(C

′

lj
, Clj) + L(C∗lj , Clj) , (6.15)

6.5 CHARACTER-LEVEL WORD ALIGNMENT

Bilingual word alignment is not always enough to induce a common semantic space, es-

pecially for low-resource languages. Although the words that refer to the same concept are

2We set N as 5 in our experiments.
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not exactly the same in multiple languages, they usually share a set of similar characters,

especially in related languages written in the same script, such as Amharic and Tigrinya. For

example, the same entity is spelled slightly differently in three languages: Semsettin Gunal-

tay in English, Şemsettin Günaltay in Turkish, and Semsetin Ganoltey in Somali. Beyond

word-level alignment, we introduce character-level alignment by composing word represen-

tations from its compositional characters using convolutional neural networks (CNN). For

each language, we adopt a language-independent CNN to generate character-level word rep-

resentation.

Character Lookup Embeddings Let Sl be the character set for language l and ESl
∈

R|Sl|×d be the character lookup embeddings, where d is the dimensionality of each character

embedding. Here, we use a simple yet effective method to induce character embeddings

from word embeddings. For each character c, we average the embeddings of all words which

contain the character. The character embeddings will be further tuned by the model.

Character-Level CNN [176] The input layer is a sequence of characters of length k for

each word. Each character is represented by a d-dimensional lookup embedding. Thus each

input sequence is represented as a feature map of dimensionality d× k.

The convolution layer is used to learn the representation for each sliding n-gram characters.

We make pi as the concatenated embeddings of n continuous columns from the input matrix,

where n is the filter width. We then apply the convolution weights W ∈ Rd×nd to pi with a

biased vector b ∈ Rd as follows:
p

′

i = tanh(W · pi + b) (6.16)

All n-gram representations p
′
i are used to generate the word representation y by max-

pooling.

In our experiments, we apply multiple filters with various widths to obtain the represen-

tation for word wli. The final character-level word representation ŵli is the concatenation of

all word representations with varying filter widths.

Cross-Lingual Mapping Given the bilingual aligned word pairs, we directly minimize

the distance of the character-level word representations in the common semantic space by:

Ochar =
∑

{li,lj}∈A

L(Ŵ char
li

, Ŵ char
lj

) (6.17)

The final word representation of wli in the common semantic space is the concatenation of

character-level word presentation ŵli and projected word representation hli.
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Class Name Words / Word Pairs

Colors white, yellow, red, blue, green ...
Weekdays monday, tuesday, friday, sunday ...
Months january, february, march, april ...
cardinal numbers one, two, three, four, five ...
ordinal numbers first, second, third, fourth, fifth ...
pronouns i, me, you, he, she, her, they ...
prepositions of, in, on, for, from, about ...
conjunctions but, and, so, or, when, while ...
clothes hat, shirt, pants, skirt, socks ...

-like (god, godlike), (bird, birdlike) ...
-able (accept, acceptable), (adopt, adoptable) ...
micro- (gram, microgram), (chip, microchip) ...
auto- (maker, automaker), (gas, autogas) ...

Table 6.1: Examples of closed word classes and linguistic properties based clusters

6.6 LINGUISTIC PROPERTY ALIGNMENT

6.6.1 Linguistic Property Alignment

Linguists have made great efforts at building linguistic property knowledge bases for thou-

sands of languages in the world. These knowledge bases include a large number of topological

properties (phonological, lexical and grammatical) which we will use to build a high-level

alignment between words across languages. We exploit the following resources:

• CLDR (Unicode Common Locale Data Repository)3 which includes multilingual gazetteers

for months, weekdays, cardinal and ordinal numbers;

• Wiktionary4 which is a multilingual, web-based collaborative project to create an

English content dictionary, includes word and prefix/suffix dictionaries for 1,247 lan-

guages;

• Panlex5 database which contains 1.1 billion pairwise translations among 21 million

expressions in about 10,000 language varieties.

We mainly exploit two types of linguistic properties to extract word clusters. The first type

is closed word classes, such as colors, weekdays, and months. Table 6.1 shows some examples

3http://cldr.unicode.org/index/charts
4https://en.wiktionary.org
5http://panlex.org/
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of the word clusters we automatically extracted from CLDR and Wiktionary for English. The

second type of word clusters are generated based on morphological information, including

affixes that indicate various linguistic functions. These properties tend to be consistent across

many languages. For example, “-like” is a suffix denoting “similar to” in English, while in

Danish “-agtig” performs the same function. For each affix, we extract a set of word pairs

(basic word, extended word with affix ) to denote its semantics from each language.

We extract a set of word clusters from each language, and align the clusters based on

their functions defined in CLDR, Wiktionary and Panlex. For each language l, each cluster

rli ∈ Rl contains a set of words or word-pairs sharing the same function. We use the average

operation to obtain an overall vector representation for each cluster MR
l .6 Then, we project

the cluster-level vectors into the shared semantic space and minimize the distance between

them:

HR
li

= σ(MR
li
·Wli + bRli ) , (6.18)

HR
lj

= σ(MR
lj
·Wlj + bRlj) , (6.19)

OR =
∑

{li,lj}∈A

L(HR
li
, HR

lj
) , (6.20)

where W is the same as the W used in Section 6.4 for each language. We finally optimize

the sum of the losses by finding the parameters θ = {Wl, bl, b
′

l, Ul, b
∗
l , CNNl, b

R
l }, where l

denotes a specific language:

Oθ = OW +ON +Ochar +OR (6.21)

6.7 EXPERIMENTS

6.7.1 Experiment Setup

Previous work [177, 178] evaluated multilingual word embeddings on a series of intrinsic

(e.g., monolingual and cross-lingual word similarity, word translation) and extrinsic (e.g.,

multilingual document classification, multilingual dependency parsing) evaluation tasks.

Compared with previous work, we aim at incorporating more linguistic features into the

multilingual embeddings, which can be helpful for downstream NLP tasks. In order to

evaluate the quality of the multilingual embeddings, we use QVEC [175] tasks (details will

be described in Section 6.7.2) as the intrinsic evaluation platform. In addition, to demon-

6For each word pair, we use the vector of the extend word minus the vector of the basic word as the
vector representation of the word pair.
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strate the effectiveness of our common semantic space for knowledge transfer, especially for

low-resource scenarios, we adopt the low-resource language name tagging task for extrinsic

evaluation.

For fair comparison with state-of-the-art methods on building multi-lingual embeddings [177,

178], we use the same monolingual data and bilingual dictionaries as in their work. We build

multilingual word embeddings for 3 languages (English, Italian, Danish) and 12 languages

(Bulgarian, Czech, Danish, German, Greek, English, Spanish, Finnish, French, Hungarian,

Italian, Swedish) respectively. The monolingual data for each language is the combination

of the Leipzig Corpora Collection7 and Europarl.8 The bilingual dictionaries are the same

as those used in [177].9

For each task, we evaluate the performance of our common semantic space in comparison

with previously published multilingual word embeddings (MultiCluster, MultiCCA, Multi-

Skip, and MultiCross). MultiCluster [177] groups multilingual words into clusters based

on bilingual dictionaries and forces all the words from various languages within one cluster

share the same embedding. MultiCCA [177, 179] uses CCA to estimate linear projections for

each pair of languages. MultiSkip is an extension of the multilingual skip-gram model [180],

which requires parallel data. MultiCross is an approach to unify bilingual word embeddings

into a shared semantic space using post hoc linear transformations [178].

Table 6.2 lists the hyper-parameters used in the experiments.

Parameter Name Value

Monolingual Word Embedding Size 512
Multilingual Word Embedding Size 512
# of Filters in Convolution Layer 20
Filter Widths 1, 2, 3
Batch Size 500
Initial Learning Rate 0.5
Optimizer Adadelta

Table 6.2: Hyper-Parameters.

6.7.2 Intrinsic Evaluation: QVEC

In order to evaluate the quality of multilingual embeddings, especially on linguistic aspect,

we adopt QVEC [175] as the intrinsic evaluation measure. It evaluates the quality of word

7http://wortschatz.uni-leipzig.de/en/download/
8http://www.statmt.org/europarl/index.html
9http://128.2.220.95/multilingual/data/
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3 Languages 12 Languages

Monolingual Multilingual Monolingual Multilingual

QVEC QVEC-
CCA

QVEC QVEC-
CCA

QVEC QVEC-
CCA

QVEC QVEC-
CCA

MultiCluster 10.8 9.1 63.6 45.8 10.4 9.3 62.7 44.5
MultiCCA 10.8 8.5 63.8 43.9 10.8 8.5 63.9 43.7
MultiSkip 7.8 7.3 57.3 36.2 8.4 7.2 59.1 36.5
MultiCross - - - - 11.9 8.6 46.4 31.0

C
or

rN
et

W 14.8 11.3 63.6 43.4 14.7 13.2 63.8 43.9
W+N 15.9 12.7 64.5 45.3 15.5 13.6 65.0 46.4
W+N+Ch 15.2 12.1 66.3 44.5 14.8 12.9 67.2 47.3
W+N+L 15.8 12.8 64.3 45.3 16.3 14.5 65.0 45.9
W+N+Ch+L 15.5 12.7 66.5 46.3 14.9 13.1 67.3 47.2

Table 6.3: QVEC and QVEC-CCA scores. W: word alignment. N: neighbor based clustering
and alignment. Ch: character based clustering and alignment. L: linguistic property based
clustering and alignment.

embeddings based on the alignment of distributional word vectors to linguistic feature vectors

extracted from manually crafted lexical resources, e.g., SemCor [181].

QVEC = max∑
j aij≤1

D∑
i=1

P∑
j=1

r(xi, sj)× aij (6.22)

where x ∈ RD×1 denotes a distributional word vector and s ∈ RP×1 denotes a linguistic word

vector. aij = 1 iff xi is aligned to sj, otherwise aij = 0. r(xi, sj) is the Pearson’s correlation

between xi and sj. QVEC-CCA [177] is extended from QVEC by using CCA to measure

the correlation between the distributional matrix and the linguistic vector matrix, instead

of cumulative dimension-wise correlation.

Using QVEC and QVEC-CCA, we evaluate the quality of multilingual embeddings for

both monolingual (English) and multilingual (English, Danish, Italian) settings.

As shown in Table 6.3, our approaches outperform previous approaches in all cases. Specif-

ically, by augmenting word representation with neighboring words in the common semantic

space as in Eq. (6.9), the performance for monolingual QVEC and QVEC-CCA tasks is

consistently improved. In addition, by aligning character-level compositional representa-

tions and linguistic property based clusters in the shared semantic space, the multilingual

representation quality is further improved.
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QVEC QVEC-CCA
Monolingual Multilingual Monolingual Multilingual

40,000
multiCCA 10.8 8.5 63.8 43.9
CorrNet W 14.8 11.3 63.6 43.4
CorrNet W+N+Ch+L 15.5 12.7 66.5 46.3

10,000
multiCCA 9.8 6.5 63.6 42.3
CorrNet W 14.8 11.3 63.4 43.0
CorrNet W+N+Ch+L 15.4 12.1 66.4 46.2

2,000
multiCCA 9.9 6.2 63.6 40.9
CorrNet W 14.5 7.1 62.0 39.2
CorrNet W+N+Ch+L 14.7 11.7 66.6 45.5

Table 6.4: Results using bilingual lexicons with varying sizes (40,000, 10,000, 2,000) and
three languages. CorrNet W+N+Ch+L is the proposed approach with all the cluster types.

6.7.3 Impact of Bilingual Dictionary Size

In order to show the impact of the size of bilingual lexicons, we use three languages as

a case study, and gradually reduce the size of the lexicons for each pair of languages from

40,000 to 10,000 and to 2,000. Both MultiCluster and MultiSkip by default take advantage

of identical strings from any pair of languages when they learn the multilingual embeddings.

For fair comparison, we thus use MultiCCA as a baseline. Table 6.4 shows the results.

We observe that both MultiCCA and CorrNet approaches are sensitive to the size of the

bilingual lexicons. Our approach on the other hand could maintain high performance, even

when the bilingual lexicons were reduced to 2,000.

6.7.4 Low-Resource Name Tagging

We evaluate the quality of multilingual embeddings on a downstream task by using the

embeddings as input features. Here, we use low-resource language name tagging as a target

task. We experiment with two sets of languages. The first set Amh+Tig consists of Amharic

and Tigrinya. Both languages share the same Ge’ez script and descend from the proto-

Semitic language family. The other set Eng+Uig+Tur consists of one high-resource language

(English), one medium-resource language (Turkish) and one low-resource language (Uighur).

It also consists of two distinct language scripts: English and Turkish use Latin script while

Uighur uses Arabic script.

We use LSTM-CRF architecture [40, 41, 182] for name tagging. Table 6.5 shows the
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Amh Tig Uig Tur Eng

Train 1,506 1,585 1,711 3,404 14,029
Dev 167 176 190 378 3,250
Test 711 440 476 1,604 3,453

Table 6.5: Data statistics (# of Sentences) for name tagging

Multilingual
Mono- CorrNet
lingual MultiCCA W W+N+Ch+L

Amh 52.0 50.6 52.4 55.8
Tig 78.2 78.4 77.9 77.6
Uig 70.0 63.6 66.8 66.0
Tur 73.9 65.3 72.4 75.6

Table 6.6: Name tagging result (F-score, %) using monolingual embedding and multilingual
embeddings.

statistics of training, development, and test sets for each language released by Linguistic Data

Consortium (LDC).10 For each language pair in each language set, we combine the bilingual

aligned words extracted from Wiktionary and extracted from monolingual dictionaries based

on identical strings.11 We evaluate the quality from several aspects:

Monolingual embedding quality evaluation Table 6.6 shows the name tagging per-

formance for each language using the original monolingual embeddings and multilingual

embeddings. For both Amharic and Turkish, the multilingual embeddings learned from our

approach significantly improve over the monolingual embeddings, compared to MultiCCA.

In the case of Uighur, all the multilingual embeddings fail to outperform the original mono-

lingual embeddings. We conjecture that this is due to the use of Arabic script in Uighur,

which differs from Turkish and English.

Cross-Lingual Direct Transfer We further demonstrate the effectiveness of our multi-

lingual embeddings on direct knowledge transfer. In this setting, we train a name tagger

on one or two languages using multilingual embeddings and test it on a new language with-

out any annotated data. Table 6.7 shows the performance. For each testing language, our

10The annotations are from: Amh (LDC2016E87), Tig (LDC2017E27), Uig (LDC2016E70), Tur
(LDC2014E115), Eng [36]

11We extracted 23,781 pairs of words for Amh and Tig, 16,868 pairs for Eng and Tur, 3,353 pairs for Eng
and Uig, and 3,563 pairs for Tur and Uig.
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CorrNet
Train Test MultiCCA W W+N+Ch+L

Amh Tig 15.5 28.3 31.7
Tig Amh 11.1 12.8 23.3

Eng Uig 8.4 16.9 15.4
Tur Uig 1.1 18.1 25.6
Eng+Tur Uig 8.0 20.3 20.6

Eng Tur 20.6 21.4 17.3
Uig Tur 10.4 10.1 17.7
Eng+Uig Tur 18.5 21.1 29.4

Table 6.7: Name tagging performance (F-score, %) when the tagger was trained on a source
language and tested on a target language. CorrNet W+N+Ch+L is the proposed approach
with all the cluster types.

approach achieves better performance than MultiCCA and CorrNet. The closer that the

languages are, such as Amharic and Tigrinya, and Turkish and Uighur, the better perfor-

mance could be achieved, even when they may have distinct language scripts (e.g., Turkish

and Uighur).

We also notice that a larger extra annotation from another language does not necessarily

result in the improvement. For instance, the proposed approach (CorrNet W+N+Ch+L)

suffers from English annotated examples when tested on Turkish. This suggests that we

need to be careful and aware of linguistic properties among different languages for transfer

learning.

Mutual enhancement We finally show the improvement by adding more cross-lingual

annotated data and using multilingual embeddings in Table 6.8. The multilingual embed-

dings learned by our approach consistently outperforms MultiCCA. More specifically, when

there are not enough annotated examples, the performance could be improved by incorpo-

rating annotated examples from other languages. This is evident for Amharic, Tigrinya and

Uighur.

6.8 SUMMARY

In this chapter, we investigate a general framework to effectively transfer knowledge and re-

sources across various languages, that is, constructing a common semantic space for multiple

languages based on a cluster-consistent correlational neural network. It combines word-level
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CorrNet
Train Test MultiCCA W W+N+Ch+L

Tig+Amh Amh 52.9 52.1 56.5

Amh+Tig Tig 78.0 78.1 78.7

Eng+Uig Uig 67.9 67.8 68.3
Tur+Uig Uig 67.7 67.5 68.8
Eng+Tur+Uig Uig 68.7 67.4 65.9

Uig-Tur Tur 65.9 69.2 72.8
Eng-Tur Tur 66.9 70.4 73.4
Eng+Uig+Tur Tur 67.5 68.5 72.9

Table 6.8: Name tagging performance (F-score, %) when the training set for the tagger was
enhanced by annotated examples in other languages. CorrNet W+N+Ch+L is the proposed
approach with all the cluster types.

alignment and multi-level cluster alignment, including neighbor based clusters, character-

level compositional word representations, and linguistic property based clusters induced from

the readily available language-universal linguistic knowledge bases. This approach achieved

consistently higher correlation on QVEC tasks than state-of-the-art multilingual embedding

learning methods, and achieved up to 24.5% absolute F-score gain over the state of the art

on low-resource language name tagging task.

In the future, this framework can be further extended to multi-lingual and multi-media,

where both words, entities, events from natural language text and images and videos are

all represented within a unified semantic space, which can serve as bridge for cross-media

knowledge transfer.
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CHAPTER 7: WHAT IF THERE IS NO BILINGUAL LEXICON
AVAILABLE: CROSS-LINGUAL ADVERSARIAL TRANSFER

The multilingual common semantic space can serve as a bridge to transfer all available

resources from resource-dominant languages to low-resource languages, however, it still re-

quires a small size of bilingual lexicon for each pair of languages, which may still be difficult

to get. In this chapter, we investigate adversarial training and discuss how to automatically

learn language-agnostic features without using any bilingual alignment signals.

7.1 MOTIVATIONS

Low-resource language name tagging is an important but challenging task. An effective

solution is to perform cross-lingual transfer, by leveraging the annotations from high-resource

languages. Most of these efforts achieve cross-lingual annotation projection based on bilin-

gual parallel corpora combining with automatic word alignment [183, 184, 185, 186, 187],

bilingual gazetteers [18, 188], cross-lingual word embedding [19, 189, 190], or cross-lingual

Wikification [17, 20, 191, 192], but these resources are still only available for dozens of lan-

guages. Recent efforts on multi-task learning model each language as one single task while all

the tasks share the same encoding layer [193, 194, 195]. These methods can transfer knowl-

edge via the shared encoder without using bilingual resources. However, different languages

usually have different underlying sequence structures, as shown in Figure 7.1. Without an

explicit constraint, the encoder is not guaranteed to extract language-independent sequen-

tial features. Moreover, when the size of annotated resources is not balanced, the encoder

is likely to be biased toward the resource-dominant language.

NED:

ENG:

ESP:

The European Union5' s competition policy3 has been of
central importance4 since European integration2 began1.

La política de competencia3 de la Unión Europea5 ha sido de
central importancia4 desde que se inició1 la integración europea2.

Sedert het begin1 van de Europese integratie2 is het
mededingingsbeleid3 van groot belang4 voor de Europese Unie5. 

Figure 7.1: Example of parallel sentences between English (ENG), Spanish (ESP) and Dutch
(NED) from Europarl Parallel Corpus [196]. The information units with the same color and
superscript are aligned.
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Considering these challenges, we develop a new neural architecture which can effectively

transfer resources from source languages to improve target language name tagging. Our

neural architecture is built upon a state-of-the-art sequence tagger: bi-directional long short-

term memory as input to conditional random fields (Bi-LSTM-CRF) [40, 41, 182], integrated

with multi-level adversarial transfer: (1) word level adversarial transfer, similar to [61],

applying a projection function on the source language and a discriminator to distinguish each

word of the target language from that of the source language, resulting in a bilingual shared

semantic space; (2) sentence-level adversarial transfer, where a discriminator is trained to

distinguish each sentence of the target language from that of the source language,1 and a

sequence encoder is applied to each sentence of both languages to prevent the discriminator

from correctly predicting the source of each sentence, yielding language-agnostic sequential

features. These features can better facilitate the resource transfer from the source language

to the target language.

7.2 APPROACH OVERVIEW

Figure 7.2 shows the overview of our neural architecture. It consists of three components:

...

...

Target Language

Source Language

...

Linear Projection

Word Discriminator Sequence Feature
Encoder

Context
Encoder 

CRF Name
Tagger 

Sequence
Discriminator

C
onvolutional

N
eural N

etw
orks

BPER 

IPER 

O 

... 

O 

BGPE 

Figure 7.2: Architecture overview.

Cross-lingual word embedding learning with adversarial training: Given pre-

trained monolingual word embeddings for a target language t and a source language s,

we first apply a mapping function to each word representation from s, then feed both the

1For the name tagging task, ‘sequence’ always means ‘sentence.’
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projected source word representations and the target word representations to a word dis-

criminator to predict the language of each word. If the discriminator cannot distinguish the

language of t from the projection of s, then we consider t and the projection of s to be in a

shared space.

Language-agnostic sequential feature extraction: For each sentence of t and s, we

apply a sequence encoder to extract sequential features, and a Convolutional Neural Network

(CNN) [197] based sequence discriminator to predict the language source of each sentence.

The sequence encoder is trained to prevent the sequence discriminator from correctly predict-

ing the language of each sentence, such that it finally extracts language-agnostic sequential

features.

Language-independent name tagger The language-agnostic sequential features from

both t and s are further fed into a context encoder to better capture and refine contextual

information and a conditional random field (CRF) [82] based name tagger.

Next we show the details of each component in our architecture.

7.3 WORD-LEVEL ADVERSARIAL TRANSFER

To better leverage the resources from the source language, our first step is to construct

a shared semantic space where the words from the source and target languages are seman-

tically aligned. Without requiring any bilingual gazetteers, recent efforts [61, 198, 199]

explore unsupervised approaches to learn cross-lingual word embeddings and achieve com-

parable performance to supervised methods. Following these studies, we perform word-level

adversarial training to automatically align word representations from s and t.

Assume we are given pre-trained monolingual word embeddings Vt = {vt1,vt2, ...,vtN} ∈
RN×dt for t, and Vs = {vs1,vs2, ...,vsM} ∈ RM×ds for s, where vti and vsj are the vector

representations of words wti and wsi from t and s, N and M denote the vocabulary sizes,

dt and ds denote the embedding dimensionality of t and s respectively. We then apply a

mapping function f to project s into the same semantic space as t:

Ṽs = f(Vs) = VsU (7.1)

where U ∈ Rds×dt is the transformation matrix. Ṽs ∈ RM×dt are the projected word

embeddings for s, and Θf = {θf} denotes the set of parameters to be optimized for f .
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Similar to [200], [61], and [199], we constrain the transformation matrix U to be orthogonal

with singular value decomposition (SVD) to reduce the parameter search space:

U = AB> ,with AΣB> = SVD(ṼsV
>
s ) (7.2)

To automatically optimize the mapping function f without using extra bilingual signals, we

introduce a multi-layer perceptron D as a word discriminator, which takes word embeddings

of t and projected word embeddings of s as input features and outputs a single scalar.

D(w∗i ) represents the probability of w∗i coming from t. The word discriminator is trained by

minimizing the binary cross-entropy loss:

Lwdis = − 1

It;s
·
It;s∑
i=0

(
yi · log(D(w∗i )) + (1− yi) · log(1−D(w∗i ))

)
, yi = δi(1− 2ε) + ε , (7.3)

where δi = 1 when w∗i is from t and δi = 0 otherwise. It;s represents the number of words

sampled from the vocabulary of t and s together. ε is a smoothed value added to the positive

and negative labels. Θdis = {θD} is the parameter set.

The mapping function f and word discriminator D are two adversarial players, thus we

flip the word labels and optimize f by minimizing the following loss:

Lwf = − 1

It;s
·
It;s∑
i=0

(
(1− yi) · log(D(w∗i )) + yi · log(1−D(w∗i ))

)
, yi = δi(1− 2ε) + ε (7.4)

Following the standard training procedures of deep adversarial networks [201], we train the

word discriminator and the mapping function successively with stochastic gradient descent

(SGD) [202] to minimize Lwdis and Lwf . Similar to [61], after word-level adversarial training,

we also adopt a refinement step to construct a bilingual dictionary for the top-k most frequent

words in the source language2 based on Ṽs and Vt, and further optimize U with Equation 7.2

in a supervised way.

7.4 SENTENCE-LEVEL ADVERSARIAL TRANSFER

Once s is projected into the same semantic space as t, we can regard both sentences as

coming from one unified language and directly project annotations from s to t. However,

name tagging not only relies on word level features, but also on sequential contextual features

for entity type classification. Without constraints, the sequence encoder can only extract

2We set k=15,000 in our experiment.
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sequential features for both t and s based on their final training signals while these features

are not necessarily beneficial to the target language. Thus, we further design sentence

level adversarial transfer to encourage the encoder to extract language-agnostic sequential

features.

Given a sentence xt = {wt1, wt2, ...} from t and a sentence xs = {ws1, ws2, ...} from s, we

first use Vt and Ṽs to initialize a vector representation for each wti and wsi . We also

apply a character-based CNN (denoted as CharCNN) [176] for each language to com-

pose a word representation from its characters. For each word, we concatenate its word

representation and character based representation. Then we feed the sequence of vector

representations into a weight sharing Bi-LSTM encoder E to obtain sequential features

Ht = {ht1,ht2, ...} and Hs = {hs1,hs2, ...} for xt and xs respectively. The parameter set of

optimizing both language-dependent CharCNN and the sequence encoder can be denoted as

Θe = {θCharCNNt , θCharCNNs , θE}.
Based on these sequential features, we use a sequence discriminator to predict the language

source of each sentence. Given a sentence x∗ and its sequential features H = {h∗1,h∗2, ...}
from E, we first apply a language-independent CNN with max-pooling to get an overall

vector representation for x∗, then feed it into another multi-layer perceptron, D̃, to predict

the probability that x∗ comes from language t. The sequence discriminator is trained by

minimizing the following binary cross-entropy loss:

Lxdis = − 1

Ĩt;s
·
Ĩt;s∑
i=0

(
ỹi · log(D̃(x∗i )) + (1− ỹi) · log(1− D̃(x∗i ))

)
, ỹi = δ̃i(1− 2η) + η , (7.5)

where δ̃i = 1 if the sentence x∗i is from t and δ̃i = 0 otherwise. Ĩt;s represents the number

of sentences sampled from the whole data set of t and s. η is another smoothed value for

sequence labels. Θd̃is = {θCNN, θD̃} denotes the parameter set for optimizing the sequence

discriminator.

The sequence encoder E and the sequence discriminator D̃ are two adversarial players and

E is optimized by trying to fool D̃ to correctly predict the language source of each sentence.

Thus we flip the sequence labels and optimize E by minimizing the following loss:

Lxe = − 1

Ĩt;s
·
Ĩt;s∑
i=0

(
(1− ỹi) · log(D̃(x∗i )) + ỹi · log(1− D̃(x∗i ))

)
, ỹi = δ̃i(1− 2η) + η (7.6)
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7.5 NAME TAGGER TRAINING

With the language-agnostic sequential features from E, we can directly combine all anno-

tated training data from both t and s to train the name tagger for t. To do so, we feed the

sequential features from E to another Bi-LSTM encoder Ec to refine the context informa-

tion for each token, and use a CRF output layer to render predictions for each token, which

can effectively capture dependencies among name tags (e.g., an “inside-organization” token

cannot follow a “beginning-person” token).

Algorithm 7.1 Multi-Level Adversarial Training for Improving Target Language Name
Tagging

Input: Monolingual pre-trained word embeddings Vt for target language t, and Vs for
source language s. Annotated sentence set ∆t for t and ∆s for related language s.

1. for iter = 1 to word epoch do

2. for a = 1 to word dis steps do

3. sample a batch of words bt ∼ Vt, bs ∼ Vs

4. loss = Lwdis([bt, f(bs)])

5. update Θdis to minimize loss

6. sample a batch of words b
′
t ∼ Vt, b

′
s ∼ Vs

7. loss
′
= Lwf ([b

′
t, f(b

′
s)])

8. update Θf to minimize loss
′

9. build a parallel dictionary with Vt and f(Vs) and refine projected word embeddings

Ṽs = f(Vs)

10. for iter = 1 to seq epoch do

11. sample a batch of sentences b̃t ∼ ∆t, b̃s ∼ ∆s

12. extract sequential features from b̃t, b̃s with E

13. loss = Lxdis([E(b̃t), E(b̃s)])

14. update Θe, Θd̃is to minimize loss

15. for g = 1 to seq tagger steps do

16. sample a batch of sequences b̃
′
t ∼ ∆t, b̃

′
s ∼ ∆s

17. loss
′
= Lxe([E(b̃

′
t), E(b̃

′
s)]) + Lcrf ([b̃

′
t, b̃

′
s])

18. update Θe, Θc to minimize loss
′

Specifically, given an input sentence x = {w1, w2, ...wn}, we extract language-agnostic

sequential features with E, and further obtain a new sequence of contextual features H̃ =

{h̃1, h̃2, ..., h̃n} with Ec. Then we a apply a linear layer ` to further convert each h̃i to a score
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vector yi, in which each dimension denotes the predicted score for a tag (the starting, inside

or outside of a name mention with a pre-defined entity type). Then we feed the sequence

of score vectors Y = {y1,y2, ...,yn} into the CRF layer. The score of a sequence of tags

Z = {z1, z2, ..., zn} is defined as:

Score(x,Y,Z) =
n∑
i=1

(Rzi−1,zi + Yi,zi) (7.7)

where R is a transition matrix and Rp,q denotes the binary score of transitioning from tag p

to tag q. Yi,z represents the unary score of assigning tag z to the i-th word.

Given the annotated sequence of tags Z, the CRF loss is:

Lcrf = log
∑
Z′∈Z̃

eScore(x,Y,Z
′
) − Score(x,Y,Z) (7.8)

where Z̃ is the set of all possible tagging paths. The parameter set for optimizing the name

tagger can be denoted as Θc = {θEc , θ`, θCRF}.
We jointly optimize the sequence encoder E, the context encoder Ec and the CRF together

by minimizing the loss L
′

= Lxe + Lcrf , and successively minimize Lxdis and L
′

with SGD.

The end-to-end training for our neural architecture is described in Algorithm 7.1.

7.6 DATA AND EXPERIMENTAL SETUP

7.6.1 Dataset

We evaluate our methods from multiple settings. We first evaluate our architecture on 10

low-resource languages from the DARPA LORELEI project. The annotations are released

by the Linguistic Data Consortium (LDC).3 Each dataset has four predefined name types:

person (PER), organization (ORG), location (LOC) and geo-political entity (GPE). For

each target low-resource language, we choose a source language if they are from the same

language family or use the same script. To show the impact of resource transfer between

distinct languages, we also use English as a source language for each target low-resource

language. We create the English annotated resource by combining the TAC-KBP 2015

English Entity Discovery and Linking [203] data set and the Automatic Content Extraction

3The annotations are from: am (LDC2016E87), ti (LDC2017E39), ar (LDC2016E89), fa (LDC2016E93),
om (LDC2017E27), so (LDC2016E91), sw (LDC2017E64), yo (LDC2016E105), ug (LDC2016E70), uz
(LDC2016E29)
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(ACE2005) data set.4 To avoid the impact of parameter initialization, we perform 5-fold

cross validation. For each experiment, we run twice and get the averaged F-score. Table 7.1

shows the statistics of each data set.

Language # of Sents # of Tokens # of Names
Amharic (am) 4,770 71,399 3,891
Tigrinya (ti) 5,023 95,364 6,201
Arabic (ar) 4,781 80,715 4,937
Farsi (fa) 3,855 72,629 3,966
Oromo (om) 2,987 52,876 4,985
Somali (so) 3,453 78,400 5,571
Swahili (sw) 4,155 96,902 6,044
Yoruba (yo) 1,599 46,084 2,016
Uyghur (ug) 3,961 60,999 2,575
Uzbek (uz) 11,135 177,816 10,937

English (en) 17,936 388,120 23,938

Table 7.1: Data set statistics for each low-resource language.

We also evaluate our approach on high-resource languages. We use Dutch (nl) and Spanish

(es) data sets from the CoNLL 2002 [204] shared task as target languages, and use English

(en) data from the CoNLL 2003 [36] shared task as the source language. All the data sets

have four pre-defined name types: PER, ORG, LOC and miscellaneous (MISC). Table 7.2

shows the statistics of these data sets.

Language Resource Train Dev Test
English (en) source language 204,567 (23,499) 51,578 (5,942) 46,666 (5,648)
Dutch (nl) target language 202,931 (13,344) 37,761 (2,616) 68,994 (3,941)
Spanish (es) target language 264,715 (18,797) 52,923 (4,351) 51,533 (3,558)

Table 7.2: CoNLL data set statistics: # of tokens and # of names (between parentheses).

For fair comparison, we use the same pre-trained word embeddings of English, Dutch and

Spanish as [195], while for each low-resource language we train their word embeddings using

the documents from their LDC packages with FastText.5 Table 7.3 lists the key hyper-

parameters we used in our experiments.

4The data sets are LDC2015E103 and LDC2006T06
5https://fasttext.cc/
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Parameter Name Value
Monolingual Embedding Size 100
CharCNN Filter Size 25
CharCNN Filter Widths [2, 3]
LSTM Hidden Size 100
Droupout Rate 0.5
Smoothing Value ε for Word Dis-
criminator

0.1

Word Adversarial Training
Epochs

5

Smoothing Value η for Sequence
Discriminator

0.3

Sequence Adversarial & Name
Tagging Training Epochs

60

# of Steps for Sequence Tagging
Training

5

Batch Size 20
Initial Learning Rate 0.01
Optimizer SGD

Table 7.3: Hyper-parameters.

7.6.2 Baselines

We compare our methods with three categories of baseline methods:6

• Monolingual Name Tagging Using monolingual annotations only, the current state-of-

the-art name tagging model is the Bi-LSTM-CRF network [40, 41, 182].7

• Multi-Task Learning [195] apply multi-task learning to boost name tagging performance

by introducing additional annotations from source languages using a weight sharing con-

text encoder across multiple languages.

• Language Universal Representations We apply word adversarial transfer only to

project the source language into the same semantic space as the target language, then train

the name tagger on the annotations of source and target languages. Word-Adv1 refers to

the approach which is directly trained on the combination of the annotations, while Word-

Adv2 refers to the baseline that is first trained on the target language annotations and

then further tuned on the related language annotations.

6All the baselines are trained for 100 epochs
7For each word, we also combine its word embedding with a CharCNN based representation.
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7.7 CROSS-LINGUAL TRANSFER WITH ZERO TARGET LANGUAGE
ANNOTATED RESOURCE

We first evaluate our approach on a cross-lingual transfer setting without using any an-

notated training data from the target language. We conduct experiments on 8 low-resource

languages. Among those, some pairs, such as Amharic (am) and Tigrinya (ti), Oromo (om)

and Somali (so), or Yoruba (yo) and Swahili (sw), are from the same language family and are

closely related, while some are not, such as Arabic (ar) and Farsi (fa). Since our approach

requires some unlabeled sentences from the target language to train the sentence-level dis-

criminator, we entirely remove the annotations from the annotated data set of the target

language. Table 7.4 presents the results.

target Cross-Lingual Multitask Our
(source) Word-Adv1 Learning Approach
am (ti) 15.19 19.72 26.86
ti (am) 16.20 9.06 29.36
ar (fa) 1.53 3.52 13.83
fa (ar) 2.59 0.91 11.14
om (so) 4.66 3.40 14.14
so (om) 4.12 2.98 20.02
sw (yo) 7.20 5.60 18.25
yo (sw) 13.07 6.14 23.73

Table 7.4: Cross-lingual transfer when the target language has no resources (F-score %).

Our approach significantly outperforms the previous methods on all languages. Specifi-

cally, compared with the Word-Adv1 baseline, which only performs word-level adversarial

transfer, our approach achieves 10% absolute F-score gain on average, which demonstrates

the effectiveness of the sentence-level adversarial transfer. In addition, compared with [195],

who only apply a shared context-encoder to transfer the knowledge, our approach not only

includes a language-sharing encoder, but also performs multi-level adversarial training to

encourage the semantic alignment of words from both languages and a sequence encoder to

extract language-agnostic sequential features.

7.8 CROSS-LINGUAL TRANSFER FOR LOW-RESOURCE LANGUAGES

We also investigate the impact of cross-lingual transfer when the target languages have

some annotated resources. For each target low-resource language, we explore the use of a

related low-resource language vs. using the high-resource English as our source language.

Table 7.5 shows the performance on 10 low-resource languages.
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Comparing cross-lingual embedding based baselines to the monolingual baseline, we ob-

serve that for most low-resource languages, directly adding the annotations from the source

language to the target language slightly hurts the model. This suggests that when the train-

ing data for the target language is not enough, the model will be very sensitive to noise. The

multitask learning based baseline [195] performs better than the monolingual baseline only

when the target and source languages are very close, such as Amharic (am) and Tigrinya

(ti), or Swahili (sw) and Yoruba (yo).

target Monolingual Cross-Lingual Embedding Multitask Our Approach
(related) Bi-LSTM-CRF Word-Adv1 Word-Adv2 Learning Multi-Adversarial

am (ti) 72.23 72.15 72.01 72.35 73.98
ti (am) 74.68 74.43 74.83 74.71 74.93
ar (fa) 48.92 48.37 47.90 47.53 49.76
fa (ar) 64.35 63.93 64.43 63.21 65.09
om (so) 76.37 76.43 76.19 76.18 77.19
so (om) 77.63 77.31 77.13 77.99 78.15
sw (yo) 77.01 77.31 77.85 77.86 76.28
yo (sw) 68.97 68.89 69.62 70.12 70.59
ug (uz) 68.73 68.53 68.29 68.39 69.46
uz (ug) 74.59 74.21 74.74 74.56 75.37

am (en) 72.23 72.43 71.63 72.22 73.35
ti (en) 74.68 74.61 74.69 74.68 74.80
ar (en) 48.92 48.50 47.91 47.40 50.08
fa (en) 64.35 64.04 64.25 63.44 63.92
om (en) 76..27 76.68 76.53 76.2 77.29
so (en) 77.63 76.67 77.88 77.88 78.21
sw (en) 77.01 77.52 76.84 77.89 77.01
yo (en) 68.97 69.21 69.46 70.43 70.88
ug (en) 68.73 68.14 68.79 68.69 69.06
uz (en) 74.59 73.95 74.46 74.48 74.75

Table 7.5: Cross-lingual transfer when the target language has resources (F-score %).

By introducing annotated training data from English, the performance of all the baselines

becomes worse than the monolingual baseline. Since the script and sequence structure

of English is very different from these low-resource languages, the addition of English to

the limited target language training data yields a considerably noisy corpus. However,

by forcing the sequence encoder to extract language-agnostic features, our approach still

achieves better performance than the monolingual baseline for most languages. All of these

experiments demonstrate that our approach is more effective in leveraging annotations from
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other languages to improve target language name tagging.

7.9 CROSS-LINGUAL TRANSFER FOR HIGH RESOURCE LANGUAGES

Language Model F-score

Dutch

[40] 81.74
[194] 85.19
[195] 85.71
[205] 82.84
Word-Adv1 85.87
Word-Adv2 86.43
Our Model (Bi-LSTM) 86.87

Spanish

[40] 85.75
[194] 85.77
[195] 85.02
[205] 82.95
Word-Adv1 85.92
Word-Adv2 85.84
Our Model (Bi-LSTM) 86.41

Table 7.6: Comparison on cross-lingual transfer for Dutch and Spanish with various base-
lines: monolingual baseline ([40]), multitask baselines ([194] and [195]), language universal
representation baselines ([205], Word-Adv1, Word-Adv2).

We finally investigate the results when both the source and target languages are all high-

resource languages. Table 7.6 presents the performance on Dutch and Spanish while using

English as the source language. Our approach significantly outperforms all the other ap-

proaches even when the size of the annotated training data for the target language is huge.

We notice that our approach achieves larger improvement on Dutch than Spanish. The

reason may be that, compared with Spanish, Dutch is much closer to English [206]. Both

English and Dutch are from the same West Germanic branch of the Indo-European language

family while Spanish is from the Italic branch.

7.10 DISCUSSION: IMPACT OF ANNOTATION SIZE FROM SOURCE AND
TARGET LANGUAGES

We use Amharic as the target language and Tigrinya as the source language to show the

impact of the size of their annotations. Specifically, to explore the impact of the size of target
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language annotations, we use 0, 10%, 50%, or 100% annotated training data from Amharic.

Similarly, to show the effect of the size of source language annotations, for each experiment,

we also gradually add 0, 20%, 50%, or 100% annotated training data from Tigrinya. For

all experiments, we use the same dev and test set of Amharic. As Figure 7.3 shows, as we

gradually add annotations from the source or target language, the performance can always be

improved. When the size of target language annotations is small, such as 400 sentences, we

can achieve 5%-30% F-score gain by adding about 4,000 sentences from the source language.

When the size of target language annotations is over 2,000 sentences, the improvement is

about 2% if we add in about 4,000 sentences from source language annotations.
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Figure 7.3: The impact of the size of annotations from source and target languages on
Amharic name tagging.

7.11 SUMMARY

In this chapter, we integrate a new neural architecture which integrates multi-level ad-

versarial training to learn language-agnostic features to improve low-resource name tagging.

With word-level adversarial training, it can automatically project the source language into

a shared semantic space with the target language without requiring any comparable data

or bilingual gazetteers. Moreover, considering the different underlying sequential structures

among various languages, we further design a sentence-level adversarial transfer to encour-

age the sequence encoder to extract language-agnostic features. The experiments show that
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this approach achieves the state-of-the-art on both CoNLL data sets and 10 low-resource

languages.

In the future, this framework can be further extended to select the feature-consistent

annotations from the source language and add to the target language to further improve

cross-lingual low resource name tagging.
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CHAPTER 8: CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Structured data (including entities, events, and their relationships) extracted from natural

language text represents the most important information embedded in the data. It can

facilitate the understanding of the texts for human so that we can quickly analyze a massive

amount of text corpora, discover and reason the key facts that we need. In addition, such

structured information can also be aggregated, stored and further managed as background

knowledge graph, which is crucial for human to learn and understand the real world. Previous

state-of-the-art information extraction approaches heavily rely on human annotated data

and can only discover the information for limited predefined types, which render them not

to be able to be easily adapted to a new scenario, genre, domain or language, and thus

post significant challenges to developing efficient IE algorithms to automatically convert

unstructured text into structure knowledge.

8.1 COLD-START UNIVERSAL INFORMATION EXTRACTION: SUMMARY

At the core of this thesis research in Information Extraction (IE) is the desire to endow

machines with the ability to automatically extract, assess, and understand text in order

to answer the fundamental questions, that is who did what to whom, when and where. In

particular, the focus of this thesis is on Cold-Start Universal Information Extraction, which

establishes a new research direction and creates the next generation of information access in

which computers can automatically discover accurate, concise, and trustworthy information

embedded in data of any form without requiring any extra human effort. In principal, we

develop efficient algorithms and frameworks by exploring the knowledge and connections

embedded in symbolic and distributional semantic representations, available ontologies and

knowledge bases, as well as other linguistic phenomenons, yielding satisfactory quality and

great portability and scalability. The main contributions of this thesis can be summarized

in following three aspects:

• We propose a brand new cold-start liberal information extraction paradigm, which

moves away the requirement of the high-cost of manual annotations and the narrow-

focus of predefined type schemas and bottom-up extracts the structured knowledge

from natural language text. Different from the top-down manner of traditional infor-

mation extraction approaches, The only input to Liberal IE is an arbitrary corpus,

without any supervision, restrictions, or prior knowledge of its size, topic, or domain.

It can automatically discover the homogeneity of entities and events by leveraging
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their rich symbolic and semantic contextual representations, resulting in a corpus-

customized and domain-specific type schema. Because of this “cold-start” (or with

minimal supervision from existing knowledge bases) fashion, it can be adapted to any

domain, genre or language without any extra requirements. The resulting system is be-

ing successfully used by various government agencies (e.g., ARL, ARFL, and IARPA)

and industrial companies (e.g., Bosch, IBM) on various domains (e.g., military, disas-

ter, bio-medical, power tool). It has also been widely cited and has inspired follow-up

research on open-domain information extraction [158, 159, 207, 208, 209, 210, 211],

event representation learning [212], event-event relation prediction [213, 214, 215, 216]

(Chapter 3).

• We propose a new view of current information extraction problem and accordingly

design a new framework to solve it. Traditionally, IE problem, such as entity or

event extraction, is viewed as classification, treating each type as a separate class and

requiring substantial investment towards annotation or pattern creation. This propo-

sition is impractical when we target at broad types from various genres or domains.

Fortunately, my work has shown that pre-defined types can also be encoded by rich

contextual or structured representations, through which knowledge elements can be

mapped to their appropriate types. Therefore, we frames IE as a grounding problem

instead of classification, where knowledge elements are grounded into an extensible

and large-scale target ontology with very few available annotations for a few types.

Under this new view of IE, I have designed a Zero-Shot learning framework to leverage

structured representations of both knowledge elements and types, and embed them

into a shared semantic space. To determine if a mention expresses an Attack event,

we now ask whether it lies closest to the Attack class in the embedding space. The

crucial advantage of this approach is that we only have to train it once because the

semantic space and metric is independent of knowledge types and domains, supporting

the transfer from old domains (e.g., military action) to new ones (e.g., rescue) with

no additional annotation. As a result of these efforts, the extraction capabilities have

been extended from dozens of types (e.g., 33 types for event extraction) to more than

1000 types while ensuring high quality. Note that zero-shot IE makes elegant use of all

available training data, and is therefore distinct from Open IE, which is type-agnostic

and must be mapped to extraction ontologies to be made useful. The system is now

being successfully used by ARL. (Chapter 4 and 5)

• We design a new elegant way of transferring available resources, e.g., manually con-

structed ontology or manually annotated data, from resource-dominant languages (e.g.,
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English, Chinese, Spanish) to low resource languages, by constructing a Multi-Lingual

Common Semantic Space, which is massively scalable across all languages and is ca-

pable of representing words as well as knowledge elements at all levels, from atomic

concepts to structured relations and events, in a distributed, language-agnostic contin-

uous semantic space. The key to constructing such a shared space is to generalize from

known anchor points and efficiently augment them, since parallel or aligned data be-

tween two languages is scarce or unavailable. My solution is called cluster-consistent

multi-lingual word embeddings, which constructs a common semantic space by pre-

serving the natural clustering structures of words across multiple languages based on

various readily-available linguistic cues such as linguistic properties (e.g., apposition,

locative suffixes) derived from knowledge bases that are available for thousands of lan-

guages, neighborhood clusters extracted from a monolingual word space, and composed

characters which aims to capture similar spelling phenomenon. The resulting embed-

dings better retain the clustering structures in each language, which is important to

multi-lingual IE. This work enables IE to be feasible for thousands of languages without

requiring any human effort. By leveraging available resources from English through

the common semantic space, we provide coordinated NER (Named Entity Recogni-

tion) for hundreds of languages (e.g., Turkish, Amharic, Uyghur) without parallel data

and achieve up to 24.5% absolute F-score gain. (Chapter 6 and 7)

Approach Input Annotation
Requirement

Resource
Requirement

Output

Liberal
IE [152]

Text Documents 7 AMR Parser Knowledge Elements,
Type Schema

Zero-Shot
IE [217]

Text Documents,
Target Ontology

Annotations for a
Few Types

AMR Parser Knowledge Elements
for All Types

SS-VQVAE Text Documents Annotations for a
Few Types

7 Knowledge Elements,
New Types

Common
Semantic
Space [190]

Word
Embeddings

Bilingual Lexicons Language
Universal KBs

Multilingual Common
Semantic Space

Cross-
Lingual
Adversarial
Transfer [218]

Text Documents
for Target
Language

Entity Annotations
for Source
Language

7 Entities from Target
Language

Table 8.1: Requirements and Outputs of Cold-Start Universal IE Approaches.

To better understand the application scenarios of each framework, we list the input, re-

quirement, as well as output of each approach in Table 8.1. Our Liberal IE approach can

be applied where there is no any annotated data or no specified target types, while the
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Zero-Shot IE method is applied when there is a target type ontology and a few types are

associated with some human annotations. Our SS-VQVAE approach can be further applied

when there are some human annotations for a few types, but there is no large-scale target

ontology.

8.2 LIMITATIONS

Even with the above innovations that we have developed in this thesis, it’s still challenging

to automatically construct a high-quality knowledge base without any human effort, espe-

cially the quality of the structured knowledge mined with current approaches is still not

sufficient. In this chapter, we use following examples shown in Table 8.2 to describe what

kind of challenges are still remaining.

ID Sentence Category
S1 Three young boys survived and are in critical condition after

spending 18 hours in the cold.
Polysemy

S2 Today I was let go from my job after working there for 4 years. Polysemy
S3 Still hurts me to read this. Metaphor
S4 Stewart has found the road to fortune wherever she has trav-

eled.
Metaphor

S5 When we come back, media speculation run amuck over pos-
sible indictments at sixteen hundred Pennsylvania and the
President’s scripted session with troops in Iraq .

Background
Knowledge

S6 The Stockholm Institute stated that 23 of 25 major armed
conflicts in the world in 2000 occurred in impoverished nations.

Commonsense

Table 8.2: Examples about Remaining Challenges.

The first and the fundamental challenge in dealing with language is the variety and am-

biguity. Many language phenomenons, such as Polysemy (e.g., a word or phrase may have

multiple meanings), Genericity (e.g., whether an event is specific to a singular occurrence

at a particular place and time or is generic to a finite set of such occurrences), Modality

(e.g., whether an event is asserted, hypothetical or metaphoric), make it hard for machines

to precisely interpret the context. For example, in S1, critical is usually used to express

adverse or disapprove comments or judgments, however, in this context, it is used to de-

scribe a person who is extremely ill and at risk of death, thus it should be identified as an

Injure event mention. Similarly, let go can be used as relinquishing one’s grip or dismiss

someone, while in S2, it refers to the second meaning thus it should also be identified as an
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End Position event mention. Metaphor is omnipresent in our daily language. For example,

hurts usually refers to an attack event and traveled means transport person, however in S3

and S4, both hurt and traveled don’t mean the real body hurt or body move. As we can

see, to understand the sentence precisely, our approaches need to incorporate more clues

and advanced architectures to perform very deep contextual understanding, analysis and

reasoning to disambiguate the meaning of the words.

In addition, our algorithms and models are still lack of background knowledge and com-

monsense to perform precise interpretation of the text and accurate prediction. One of the

biggest gaps between human and machines in terms of the understanding of a natural lan-

guage text lie in the knowledge, such as background knowledge, domain-specific knowledge

and commonsense, that they have acquired. This knowledge plays an important role in

correctly determining which entry it refers to. For example, in order to determine the type

of sixteen hundred Pennsylvania in S5, we need to acquire the background knowledge that

it refers to the White House because it’s the physical address of White House in Washing-

ton D.C.. In S6, Stockholm Institute can refer to multiple candidate entries in KB, e.g.,

Stockholm International Peace Research Institute or Stockholm Institute of Education. To

determine correct target entry, we need to first understand the local context that it’s talking

about armed conflicts, and according to human common sense, a peace research institute is

more likely to talk about armed conflicts than an education institute.

Finally, our IE algorithms and frameworks rely on the multilingual common semantic space

as a bridge for knowledge and resource transfer across various languages. However, there

are more than 6000 living languages in the real world, and most of the languages have very

distinct language phenomenons and properties, which make it extremely hard to efficiently

transfer the algorithms, resources and effective patterns across various languages. Taking

Amharic and Chinese as an example, they have distinct language scripts and symbols, basic

information units, structure dependence such as the SVO (subject-verb-object) structure,

and so on, thus these language pairs cannot be aligned well within the common semantic

space.

8.3 FUTURE WORK

Considering the limitations of our current approaches that we have discussed, we are going

to explore following directions to further improve them.

The ultimate goal of Cold-Start Universal IE is to remove human out of the IE loop.

However, even though the algorithms and models we discussed have tremendously reduced

the reliance of human effort, they still require some resources, e.g., the liberal IE framework
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relies on advanced AMR parsing to detect event mentions and compose the meanings of

their contexts, the zero-shot learning approach also requires a target ontology with very

high-coverage for the particular scenario. These requisites are not always available for a

new domain or language. So the first direction that we want to explore is to develop more

efficient algorithms and frameworks to further reduce the requirement of these resources and

keep improving the quality of the methods.

As we have discussed, knowledge is crucial for machines to interpret natural language

text. For example, the knowledge that PersonX is very likely to be sentenced and Per-

sonY is likely to be wounded after PersonX attacks PersonY is helpful for machines to

extract the participants of each event and the relationship between two events. However,

it’s also noticeable that such knowledge is extremely diverse and unlimited, so the second

research direction is to explore how to automatically acquire the knowledge, e.g., background

knowledge, domain-specific knowledge and commonsense, from large-scale domain specific

unlabeled corpora, and integrate this knowledge together with all available knowledge bases

to better understand the context and improve the quality of information extraction.

In a lot of cases, the knowledge elements concerning on one particular entity, event or

relation are not necessarily included in one single sentence. However, most of the current

IE programs are only on sentence level. For example, given the article which is shown in

Table 8.3 and is talking about that seven people from Vietnam were convicted and sentenced

last week. However, by looking at sentence highlighted in this article, it’s not possible to

understand where was Hanh sentenced because this information comes very ahead of this

sentence. So, the third direction is to extend the current sentence-level information extrac-

tion task to document or corpus level, by incorporating coreference resolution, commonsense,

and cross-sentence inference.
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Seven people convicted last week in Vietnam‘s biggest-ever criminal trial, in-
cluding two former senior government officials, have requested an appeal of
the verdicts, a court official said Tuesday. The trial by a Ho Chi Minh City
court was seen as a litmus test of the communist government’s resolve to fight
widespread corruption. The “godfather‘’ of organized crime, Truong Van Cam,
better known as Nam Cam, was convicted of seven crimes, including murder.
He was sentenced to face a firing squad, and his lawyer has said he also plans
to appeal. Hanh, also a former member of the powerful Communist
Party Central Committee, was convicted of receiving US$8,500 in
bribes from Nam Cam‘s family to secure the crime boss’ early re-
lease from labor camp in 1990s. Hanh was sentenced to 10 years
in jail. Chien was convicted of receiving a stereo set worth 27 million dong
(US$1,750) from Nam Cam’s family and sentenced to six years in jail.

Table 8.3: Example for Document-Level Information Extraction
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