15 research outputs found

    On the approximability of the maximum induced matching problem

    Get PDF
    In this paper we consider the approximability of the maximum induced matching problem (MIM). We give an approximation algorithm with asymptotic performance ratio <i>d</i>-1 for MIM in <i>d</i>-regular graphs, for each <i>d</i>≥3. We also prove that MIM is APX-complete in <i>d</i>-regular graphs, for each <i>d</i>≥3

    Efficient edge domination in regular graphs

    Get PDF
    An induced matching of a graph G is a matching having no two edges joined by an edge. An efficient edge dominating set of G is an induced matching M such that every other edge of G is adjacent to some edge in M. We relate maximum induced matchings and efficient edge dominating sets, showing that efficient edge dominating sets are maximum induced matchings, and that maximum induced matchings on regular graphs with efficient edge dominating sets are efficient edge dominating sets. A necessary condition for the existence of efficient edge dominating sets in terms of spectra of graphs is established. We also prove that, for arbitrary fixed p 3, deciding on the existence of efficient edge dominating sets on p-regular graphs is NP-complet

    Edge open packing: complexity, algorithmic aspects, and bounds

    Full text link
    Given a graph GG, two edges e1,e2E(G)e_{1},e_{2}\in E(G) are said to have a common edge ee if ee joins an endvertex of e1e_{1} to an endvertex of e2e_{2}. A subset BE(G)B\subseteq E(G) is an edge open packing set in GG if no two edges of BB have a common edge in GG, and the maximum cardinality of such a set in GG is called the edge open packing number, ρeo(G)\rho_{e}^{o}(G), of GG. In this paper, we prove that the decision version of the edge open packing number is NP-complete even when restricted to graphs with universal vertices, Eulerian bipartite graphs, and planar graphs with maximum degree 44, respectively. In contrast, we present a linear-time algorithm that computes the edge open packing number of a tree. We also resolve two problems posed in the seminal paper [Edge open packing sets in graphs, RAIRO-Oper.\ Res.\ 56 (2022) 3765--3776]. Notably, we characterize the graphs GG that attain the upper bound ρeo(G)E(G)/δ(G)\rho_e^o(G)\le |E(G)|/\delta(G), and provide lower and upper bounds for the edge-deleted subgraph of a graph and establish the corresponding realization result.Comment: 12 pages, 1 figur

    Parameterized Complexity of Perfectly Matched Sets

    Get PDF
    For an undirected graph G, a pair of vertex disjoint subsets (A, B) is a pair of perfectly matched sets if each vertex in A (resp. B) has exactly one neighbor in B (resp. A). In the above, the size of the pair is |A| (= |B|). Given a graph G and a positive integer k, the Perfectly Matched Sets problem asks whether there exists a pair of perfectly matched sets of size at least k in G. This problem is known to be NP-hard on planar graphs and W[1]-hard on general graphs, when parameterized by k. However, little is known about the parameterized complexity of the problem in restricted graph classes. In this work, we study the problem parameterized by k, and design FPT algorithms for: i) apex-minor-free graphs running in time 2^O(?k)? n^O(1), and ii) K_{b,b}-free graphs. We obtain a linear kernel for planar graphs and k^?(d)-sized kernel for d-degenerate graphs. It is known that the problem is W[1]-hard on chordal graphs, in fact on split graphs, parameterized by k. We complement this hardness result by designing a polynomial-time algorithm for interval graphs

    Induced Matching below Guarantees: Average Paves the Way for Fixed-Parameter Tractability

    Get PDF
    In this work, we study the Induced Matching problem: Given an undirected graph GG and an integer \ell, is there an induced matching MM of size at least \ell? An edge subset MM is an induced matching in GG if MM is a matching such that there is no edge between two distinct edges of MM. Our work looks into the parameterized complexity of Induced Matching with respect to "below guarantee" parameterizations. We consider the parameterization uu - \ell for an upper bound uu on the size of any induced matching. For instance, any induced matching is of size at most n/2n / 2 where nn is the number of vertices, which gives us a parameter n/2n / 2 - \ell. In fact, there is a straightforward 9n/2nO(1)9^{n/2 - \ell} \cdot n^{O(1)}-time algorithm for Induced Matching [Moser and Thilikos, J. Discrete Algorithms]. Motivated by this, we ask: Is Induced Matching FPT for a parameter smaller than n/2n / 2 - \ell? In search for such parameters, we consider MM(G)MM(G) - \ell and IS(G)IS(G) - \ell, where MM(G)MM(G) is the maximum matching size and IS(G)IS(G) is the maximum independent set size of GG. We find that Induced Matching is presumably not FPT when parameterized by MM(G)MM(G) - \ell or IS(G)IS(G) - \ell. In contrast to these intractability results, we find that taking the average of the two helps -- our main result is a branching algorithm that solves Induced Matching in 49(MM(G)+IS(G))/2nO(1)49^{(MM(G) + IS(G))/ 2 - \ell} \cdot n^{O(1)} time. Our algorithm makes use of the Gallai-Edmonds decomposition to find a structure to branch on
    corecore