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—— Abstract

In this work, we study the INDUCED MATCHING problem: Given an undirected graph G and an integer
¢, is there an induced matching M of size at least £7 An edge subset M is an induced matching
in G if M is a matching such that there is no edge between two distinct edges of M. Our work
looks into the parameterized complexity of INDUCED MATCHING with respect to “below guarantee”
parameterizations. We consider the parameterization u — ¢ for an upper bound u on the size of any

induced matching. For instance, any induced matching is of size at most n/2 where n is the number

OM_time

of vertices, which gives us a parameter n/2 — £. In fact, there is a straightforward gn/2=t.
algorithm for INDUCED MATCHING [Moser and Thilikos, J. Discrete Algorithms]. Motivated by this,
we ask: Is INDUCED MATCHING FPT for a parameter smaller than n/2 — ¢? In search for such
parameters, we consider MM(G) — £ and IS(G) — ¢, where MM(G) is the maximum matching size and
IS(G) is the maximum independent set size of G. We find that INDUCED MATCHING is presumably
not FPT when parameterized by MM(G) — £ or IS(G) — £. In contrast to these intractability results,
we find that taking the average of the two helps — our main result is a branching algorithm that
solves INDUCED MATCHING in 49MM(G+IS(G)/2=¢  ,00)

Gallai-Edmonds decomposition to find a structure to branch on.

time. Our algorithm makes use of the
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1 Introduction

A matching in a graph is a set of pairwise non-incident edges. An induced matching is a
matching such that no edge is incident with two edges from the matching. The notion of
induced matchings was initially introduced by Stockmeyer and Vazirani [43]. Since then, the
INDUCED MATCHING problem — given an undirected graph GG and an integer ¢ € N, we are
to determine whether G has an induced matching of size £ — has been studied extensively.
This problem is NP-hard, which was proven independently by Stockmeyer and Vazirani [43]
and Cameron [2]. The NP-hardness persists on restricted graph classes, such as bipartite
graphs of vertex degree at most three [31] and cubic planar graphs [12]. On the positive side,
INDUCED MATCHING is polynomial-time solvable on trees [45], chordal graphs [2], weakly
chordal graphs [4], circular-arc graphs [17], comparability graphs [18], and AT-free graphs [3].

In this work, we study the parameterized complexity of INDUCED MATCHING. The
standard parameterization of INDUCED MATCHING takes the solution size £ as the parameter.
For ¢, INDUCED MATCHING is W][1]-hard, which can be easily seen by a parameterized
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reduction from the W[1]-hard INDEPENDENT SET problem. Indeed, the W[1]-hardness holds
even on bipartite graphs [37]. Perhaps for this reason, many researchers have investigated the
parameterized complexity of INDUCED MATCHING from multivariate perspectives. Moser and
Sikdar [37] gave a kernel of size O(A3/) for INDUCED MATCHING for the maximum degree A.
Erman et al. [13] and Kanj et al. [22] independently found that INDUCED MATCHING admits
a polynomial kernel of size £°(?) on d-degenerate graphs. This result was later complemented
by Cygan et al. [9], who showed that the kernel size is basically tight — there is no kernel
of size £°(9) under standard complexity assumptions. Recently, it was shown that INDUCED
MATCHING on c-closed graphs [23] and on weakly v-closed graphs [24] has a kernel with at
most O(c"¢®) vertices and 290 vertices, respectively. We remark that the parameterized
complexity on planar graphs has also received considerable attention [38, 13, 22].

In this paper, we adopt an alternative approach to tackle the fixed-parameter tractability
of INDUCED MATCHING — using above guarantees and below guarantees [33, 34] (see also a
very recent survey [19]). This work particularly concerns below guarantees. For a graph
G, let IM(G) denote the maximum induced matching size of G. In a nutshell, we employ
UB(G) — ¢ as a parameter where UB(G) is a function on G that upper-bounds IM(G), i.e.,
UB(G) > IM(G) on every graph G.

In this spirit, we first consider a trivial upper bound. For the number n of vertices, %n
clearly constitutes an upper bound on IM(G). We refer to the parameterized problem arising

from this upper bound UB(G) = in as INDUCED MATCHING BELOW TRIVIAL GUARANTEE:

INDUCED MATCHING BELOW TRIVIAL GUARANTEE (IMBTG)

Input: An undirected graph G and an integer £.
Question: Does G have an induced matching of size £7
Parameter: k= %n -/

This problem has been studied in the literature, albeit under different names: Moser and
Thilikos [38] gave an algorithm solving IMBTG in O*(9%) time.! Subsequently, Xiao and
Kou [44] developed an algorithm running in O*(3.1845%) time. In terms of kernelization, a
kernel with O(k?) vertices was given by Moser and Thilikos [38]. Later, Xiao and Kou [44]
gave an improved kernel with O(k) vertices.

In parameterized complexity, whenever the fixed-parameter tractability with respect to
a parameter k is discovered, one asks whether the “boundary of tractability” can be taken
further, that is, fixed-parameter tractability is achievable for a parameter k¥’ smaller than k
(i.e., k' < g(k) for some function g). (An analogous question arises when W-hardness for
k is discovered as well — does fixed-parameter parameter tractability hold for a parameter
k' larger than k?) This question appears prominently in multivariate algorithmics [26, 40]
and structural parameterizations [1, 15]. We ask ourselves this type of question for INDUCED
MATCHING parameterized by below guaranteed values. More precisely, the main question we
challenge in this work is the following:

(%) Is INDUCED MATCHING FPT for a parameterization smaller than that of IMBTG?

Let us remark we are not the first to address this kind of question in the context of
above and below guarantee parameterizations: The VERTEX COVER problem — given an
undirected graph G and an integer ¢, decide whether there is a set of at most ¢ vertices
that is incident with every edge — is one of the problems where this kind of question was

1 The O* notation suppresses the polynomial factor in the input size.
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considered. A simple branching algorithm solves VERTEX COVER in O*(2¢) time. For any
graph G, it holds that VC(G) > LP(G) > MM(G), where VC(G), MM(G), and LP(G) denote
the minimum vertex cover size, the maximum matching size, and the optimum of the linear
programming relaxation of VERTEX COVER, respectively. These inequalities give rise to the
above-guarantee parameterizations, { — MM(G) and ¢ — LP(G). These parameterizations
have been extensively studied [10, 21, 28, 29, 39, 41, 42] — it has been shown that VERTEX
CovER FPT is with respect to £ — MM(G) as well as £ — LP(G). Notably, the border of
tractability was further extended to £ — (2LP(G) — MM(G)) [16, 27]. Let us also remark that
the above guarantee parameterizations of MAX CuUT and related problems have been also
extensively studied [6, 7, 14, 32, 35, 33, 36].

Now we come back to the question (x) on INDUCED MATCHING. We wish to find an upper
bound on the maximum induced matching size which is stricter than %n The maximum
matching size MM(G) serves as such a bound: Clearly, MM(G) < in. Moreover, MM(G) is
an upper bound on IM(G), since every induced matching is a matching. This leads to the
following parameterized problem:

INDUCED MATCHING BELOW MAXIMUM MATCHING (IMBMM)

Input: An undirected graph G and an integer ¢.
Question: Does G have an induced matching of size £7
Parameter: k= MM(G) —¢

As graphs G with MM(G) = IM(G) have been of theoretical interest, there are known
results on IMBMM: Kobler and Rotics [25] gave a polynomial-time algorithm for k& = 0.
Cameron and Walker [5] extended this result by providing a structural characterization
of graphs G with MM(G) = IM(G). Later, Duarte et al. [11] developed an algorithm for
IMBMM that runs in n®*) time. However, it has been left open whether IMBMM is FPT.
Filling the gap, we prove in Section 4 that IMBMM is W][2]-hard, i.e., presumably not FPT.
This implies that taking MM(G) as the upper bound falls short to answer the question (x).

Next, we consider another natural upper bound: the maximum independent set size
IS(G). Since an induced matching of size ¢ contains an independent set of size ¢, any graph
satisfies IS(G) > IM(G), which gives the following parameterization:

INDUCED MATCHING BELOW INDEPENDENT SET (IMBIS)

Input: An undirected graph G and an integer /.
Question: Does G have an induced matching of size £7
Parameter: k= IS(G)—/¢

Although %n and IS(G) are incomparable in general (consider complete graphs and
empty graphs), the parameter of IMBIS is essentially smaller compared to that of IMBTG:
Observe that for £ > 0, the graph G’ on 2n vertices obtained from G by adding n vertices
adjacent to all other vertices fulfills IM(G’) > ¢ if and only if IM(G) > ¢. The maximum
independent set size of G’ is at most n — half the number of vertices in G’. Thus, if IMBIS
was fixed-parameter tractability, then fixed-parameter tractability of IMBTG would follow,
answering our question (x). We find, however, that IMBIS is NP-hard for £ = 0 even if an
independent set of size £ is provided as part of the input.

Somewhat dismayed by the previous two negative results, we look into the upper bound
obtained by taking the average of MM(G) and IS(G), that is, 3(MM(G) +1S(G)). For any
graph G, we have

%(MM(G) +1S(G)) — IM(G) = %(MM(G) —IM(G)) + %(IS(G) —IM(G)) >0,

39:3
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implying that IM(G) < $(MM(G) 4 1S(G)). (This equation also implies that the parameteri-
zation by 1(MM(G) + IS(G)) — ¢ is larger compared to the parameterization of IMBMM
and IMBIS.) On the other hand, we have $(MM(G) + IS(G)) < 2(VC(G) +1S(G)) < in.
Hence, the parameterization obtained from the average is indeed smaller than the trivial
below guarantee. Formally, we study the following:

INDUCED MATCHING BELOW AVERAGE (IMBA)

Input: An undirected graph G and an integer £.
Question: Does G have an induced matching of size ¢7
Parameter: k= 1(MM(G) +IS(G)) — ¢

The main result of this work is an FPT algorithm for IMBA that runs in time O*(49%).
» Theorem 1. IMBA can be solved in O*(49%) time.

In other words, we identify a novel below-guarantee parameterization for INDUCED
MATCHING smaller than that of IMBTG that yields an FPT algorithm, thereby positively
answering our question (x). To our surprise, it turns out that an answer to our question
arises from using the average of two upper bounds as an upper bound.

To prove Theorem 1, we give a branching algorithm in which the measure 1(MM(G) +
IS(G)) — ¢ decreases by % in every branching step. As we will see, branching in a naive way
(which leads to an FPT algorithm for IMBTG) does not always decrease the measure. To work
around this issue, we develop branching rules based on the Gallai-Edmonds decomposition.
To establish the correctness of our algorithm, we reveal a structural property of graphs G
with 1(MM(G) 4 1S(G)) = IM(G), which may be of independent interest.

2 Preliminaries

2.1 Notation

We denote the set {1,...,t} of integers by [t]. All graphs are simple and undirected. For
a graph G, let V(G) and E(G) denote the set of vertices and edges, respectively. Let
v € V(G) be a vertex in G and let X C V(G) be a vertex set. We use N(v) to denote the
neighborhood of v (the set of vertices adjacent to v) and N(X) = [J, ¢y N(v) \ X to denote
the neighborhood of X. Let deg(v) = |N(v)| denote the degree of v. Let G[X] denote the
subgraph induced by X. We use G — X to denote G[V(G) \ X], i.e., the graph obtained from
G by deleting X. We use the shorthand G — v for G — {v}. A triplet (u,v,w) of pairwise
adjacent vertices is a triangle. A vertex v with deg(v) = 0 is isolated. A vertex v with
deg(v) = 1 is a pendant verter. A pair (u,v) of adjacent vertices with deg(u) = deg(v) = 11is
an isolated edge. A triangle is a pendant triangle if deg(u) = deg(w) = 2.

In our algorithm, we apply reduction rules and branching rules. Herein, a reduction rule
(branching rule) is a polynomial-time procedure that given an instance I, returns an instance
I’ (a set of instances Iy, ..., I, respectively). We say that a reduction rule (branching rule)
is correct if I is equivalent to I’; i.e., I is a yes-instance if and only if I’ is a yes-instance (I is
a yes-instance if and only if there is some ¢’ € [¢] such that I.» is a yes-instance, respectively).
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2.2 Parameterized complexity

In parameterized complexity, each instance of a problem is equipped with a parameter,
usually denoted by the symbol k. We say that a parameterized problem is fixed-parameter
tractable (FPT) if there is an algorithm that solves it in f(k) - [I|°()) time, where f is a
computable function only depending on & and |I| is the input size. We denote the running
time as O*(f(k)), where the polynomial factor in |I| is suppressed in the O* notation. For
more in-depth notions in parameterized complexity, we refer to the standard textbook [8].

2.3 Matching theory

We use several results from matching theory (see e.g., the book of Lovasz and Plummer [30]).
In particular, Kénig’s theorem and the Gallai-Edmonds structural theorem play important
roles in the running time analysis for Theorem 1. Recall that a matching M in a graph G
is a set of pairwise non-incident edges. If a vertex v € V(@) is incident to an edge in M,
then M covers v. If there is no edge in M incident with v, then M misses v. A matching
covering every vertex of G is said to be perfect. A matching covering all but one vertex of G
is said to be near-perfect. A graph G is factor-critical if for every vertex v € V(G), G —v
has a perfect matching.

» Theorem 2 (Kénig's theorem). For a bipartite graph G, MM(G) = VC(G).

» Definition 3. The Gallai-Edmonds decomposition of a graph G is a partition of V(G)
into D(G), A(G), and C(G) where

D(G) = {v € V(G) | there exists a mazimum matching missing v},

A(G) = N(D(@)),
C(G) =V(G)\ (A(G) U D(G)).

We simply write D, A, C for D(G), A(G), C(Q), respectively, when G is clear from context.

» Theorem 4 (The Gallai-Edmonds structure theorem (see e.g. [30])). The Gallai-Edmonds
decomposition satisfies the following properties.
Every connected component of G[D] is factor-critical.
G[C] has a perfect matching.
Let G’ be the bipartite graph obtained from G[D U A] by contracting every connected
component of G[D] into one vertex and removing edges in G[A]. Then, |Ng (A")| > |4'|
for every A’ C A.
A matching M is a mazimum matching if and only if the following hold:
M contains a near-perfect matching for every connected component of G[D].
Every vertex in A is matched to a vertex in D.
M contains a perfect matching of G[C].
The Gallai—-Edmonds decomposition can be computed in polynomial time.

2.4 Cameron—Walker graphs

A graph G whose maximum matching size equals maximum induced matching size (that is,
MM(G) = IM(Q)) is referred to as a Cameron—Walker graph in the literature, as Cameron
and Walker [5] gave the structural characterization of these graphs. Recall that a triangle
(u,v,w) with deg(u) = deg(w) = 2 is called a pendant triangle. A triangle star is a graph
obtained from a triangle by adding any number of pendant triangles to one of its vertices
(see Figure 1). (When we say that we add a pendant triangle to a vertex v, it means that we
add two vertices u and w and add edges such that u,v,w form a triangle.)

39:5
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Figure 1 A triangle star with four pendant triangles (left). A Cameron—Walker graph (right).
The vertex sets U and W are marked by dotted lines.

» Theorem 5 ([5]). For a connected graph G, MM(G) = IM(G) if and only if one of the
following holds:
G is a star.
G is a triangle star.
G is obtained from a connected bipartite graph G' with a bipartition V(G) =U UW by
adding at least one pendant vertex to each vertex of U and adding any number of pendant
triangles to each vertex of W.

See Figure 1 for an illustration of a Cameron—Walker graph. The statement provided
by Cameron and Walker [5] had a small mistake. The statement of Theorem 5 follows a
slight modification of Hibi et al. [20]. Note that Theorem 5 yields a linear-time algorithm to
recognize Cameron—Walker graphs.

2.5 FPT algorithm for IMBTG

In this subsection, we briefly discuss a simple branching algorithm that solves IMBTG in
O*(9%) time [38]. Recall that the input of IMBTG is (G, ¢) for a graph G and £ € N, and we
search for an induced matching of size £ in G. The parameterization of IMBTG is k = %n —/.
As we will see in Section 3, the reduction rules and branching rules presented here form the
basis for our algorithm for IMBA, which is parameterized by 3(MM(G) + IS(G)) — ¢.

We begin with two reduction rules:

» Reduction Rule 6. Remowve an isolated vertex.

» Reduction Rule 7. Remove an isolated edge (including its endpoints) and decrease € by
one (if £ >0).

It is straightforward to prove the correctness of these reduction rules.
» Lemma 8. Reduction Rules 6 and 7 are correct.

Since there is no vertex of degree at least two in any induced matching, we may branch
into three instances as follows whenever there is a vertex of degree at least two:

» Branching Rule 9. Choose a vertex v € V(G) with at least two neighbors u,w € V(G).
We branch into three instances: (G — u,¥), (G —v,f), (G —w,?).

The algorithm terminates in one of the following two ways:
» Termination 10. Return yes if £ = 0.

» Termination 11. Return no if 1|V (G)| < L.
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In the simple O*(9%)-time algorithm for IMBTG, we repeat the following:
1. Apply Reduction Rules 6 and 7 exhaustively.
2. Check the termination conditions for Termination 10 and 11.
3. If there is a vertex of degree at least two, we branch according to Branching Rule 9.
If there is no vertex of degree at least two, then applying Reduction Rules 6 and 7 exhaustively
deletes all vertices in the graph. Thus, we always reach the condition for Termination 10
(¢ =0) or Termination 11 (¢ > 0). For the running time analysis, note that our algorithm
terminates if the value of 3|V (G)| — ¢ is negative (Termination 11). This value decreases by
% each time we apply Branching Rule 9: [V(G)| decreases by one and ¢ remains the same.
Moreover, this value does not increase by applying Reduction Rules 6 and 7. Since the value
of 3|V(G)| — € equals k for the input instance, we apply Branching Rule 9 at most 2k + 1
times. (A more careful analysis yields an upper bound of 2k.) Hence, this algorithm runs in
time O*(32F+1) = O*(9%).

We remark that Branching Rule 9 can be strengthened as follows:

» Branching Rule 12. Choose two adjacent vertices u,v € V(G) with N({u,v}) # 0. We
branch into three instances: (G — u,f), (G —v,¥€), (G— N({u,v}),?)

To see the correctness, observe that we have two cases: If G has an induced matching M
of size ¢ containing uv, then M is an induced matching in G — N({u,v}) as well. Otherwise,
G has no induced matching of size ¢ covering both u and v, and thus v or v must be deleted.

Due to a space limitation, some proofs are in the appendix.

3 Algorithm for IMBA

In this section, we give an FPT algorithm IMBA: Given a graph G and an integer ¢, IMBA
asks whether G has an induced matching of size ¢ with the parameterization £(MM(G) +
IM(G)) — £. We start with an overview in Section 3.1. We describe reduction rules in
Section 3.2 and branching rules in Section 3.3.

3.1 Overview

Our algorithm for IMBA is an intricate adaptation of the FPT algorithm given in Section 2.5.
In addition to Reduction Rules 6 and 7, we use another reduction rule on pendant triangles
(Reduction Rule 14). We will also derive our branching rules from Branching Rules 9 and 12.

To ensure that our algorithm runs in O*(49%) time, we define the measure of an instance
T = (G,?) of IMBA as u(Z) = £(MM(G) +1S(G)) — £. Note that the parameter k for IMBA
is the measure of the input instance.? We design our algorithm such that (i) every branching
rule generates at most seven instances whose measure is smaller by at least % and (ii) there
is no increase in the measure throughout. This way, since we start with the measure at k, we
end up with an instance whose measure is zero (or smaller) within 2k branching steps.® As
we show in Section 3.4, our algorithm correctly identifies yes-instances before the measure
becomes zero or smaller. So we terminate returning no after 2k branching steps:

» Termination 13. Return no if branching rules have been applied 2k times.

2 As is often the case in parameterized complexity, we assume that k is given along with input. We will
not change the value of k in this section.

3 Our algorithm does not compute the measure. In fact, it is even computationally challenging to
determine whether ;(Z) < 0 (this is equivalent to IS(G) < 2¢ — MM(G)).
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Figure 2 The maximum matching size and independent set size remain 4 even after deleting the
red vertex.

Termination 13 ensures that the search tree has depth at most 2k. Our algorithm thus runs
in O*(7?F) = O*(49%) time.
Our algorithm repeats the following until one of the conditions for a termination is met.
1. Apply Reduction Rules 6, 7, and 14 exhaustively.
2. Check the termination conditions for Termination 10, 11, and 13.
3. If there is a vertex of degree at least two, we apply one of the branching rules in Section 3.3.
We remark that we check the condition of Termination 10 before that of Termination 13.
As for how to branch, we want to branch in such a way that the measure drops by %
To this end, branching according to Branching Rule 9 in the naive way is seemingly not
appropriate because the measure may not decrease. This challenge is illustrated in Figure 2:
The maximum matching size and the maximum independent set both remain unchanged
(thus so does the measure) after deleting the red vertex. To find a set of vertices whose
deletion guarantees a decrease in the measure by %, we will exploit the Gallai-Edmonds
decomposition.

3.2 Reduction Rules

Our algorithm employs Reduction Rules 6 and 7. We also introduce another reduction rule
on pendant triangles. Recall that a triplet (u, v, w) is a pendant triangle if u, v, w are pairwise
adjacent and deg(u) = deg(w) = 2.

» Reduction Rule 14. If there is a pendant triangle (u,v,w) with deg(u) = deg(w) = 2,
then delete v.

» Lemma 15. Reduction Rule 1/ is correct.

As discussed in Section 3.1, we need to ensure that these reduction rules do not increase the
measure. Recall that for an instance Z = (G, ¢), its measure is u(Z) = £(MM(G) +1S(G)) — £.

» Lemma 16. Let T = (G,{) be an instance of IMBA and let ' = (G', ') be an instance
obtained by applying Reduction Rule 6, 7, or 14. Then, u(Z') < u(Z).

3.3 Branching Rules

In this subsection, we describe our branching rules, which are based on the Gallai-Edmonds
decomposition (Definition 3). Recall that the vertex set V(G) is divided into three parts:
A, C, and D. (Note that we have to recompute the Gallai-Edmonds decomposition after a
vertex is deleted by our reduction rule or branching rule.) In our algorithm, we apply the
first reduction rule for which the condition is met in the following:

If C' # 0, then apply Branching Rule 17.

If A is not independent, then apply Branching Rule 21.

If there is a connected component S of G[D] such that G[S] is a triangle, then apply

Branching Rule 25.
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If there is a connected component S of G[D] such that G[S] is a triangle star, then apply
Branching Rule 28.

If there is a connected component S of G[D] with |S| > 5, then apply Branching Rule 33.

If none of the above holds, then apply Branching Rule 36.
For each branching rule, we prove that it is correct and that it decreases the measure by at

least % We assume that reduction rules are exhaustively applied throughout the subsection.

In the first branching rule, we apply Branching Rule 9 on a vertex in C.

» Branching Rule 17. Choose a vertex v € C with at least two neighbors u,w € N(v). We
branch into three instances I; = (G;,£) for i € [3], where Gy = G —v, G3 = G — u, and
G3 =G —w.

» Lemma 18. Branching Rule 17 is correct.

» Lemma 19. Let v be a vertex in AUC and let G' = G —v be the graph obtained by deleting
v. Then, MM(G") < MM(G) — 1.

» Lemma 20. In Branching Rule 17, p(Z;) < p(Z) — 5 for all i € [3].

We claim that if we cannot branch according to Branching Rule 17 (that is, every vertex
in C has at most one neighbor), then C' = . Assume for contradiction that there is a vertex
v € C. Then, v has a neighbor u in C, since G[C] has a perfect matching by Theorem 4. If
neither u nor v has other neighbors, then Reduction Rule 7 applies. Thus, we have C' = ().

In the next rule, we branch on two adjacent vertices in A adapting Branching Rule 12.

» Branching Rule 21. Choose two adjacent vertices u,v € A. We branch into three instances
I, = (Gy,0) for i€ [3]. In the first two, we delete u or v, i.e., Gy = G —u and Gy = G —v.
In the third branch, we delete N ({u,v}), i.e., G = G — N({u,v}).

» Lemma 22. Branching Rule 21 is correct.

Note that A is an independent set when we cannot apply Branching Rule 21. We will
later describe how we branch on the vertices in D. Before doing so, we show that deleting two
vertices from a nontrivial (i.e., size at least two) connected component S of G[D] decreases
the measure. (In fact, S is of size at least three because G[9] is factor-critical by Theorem 4.)

» Lemma 23. Let S be a connected component of G[D] with at least three vertices and let
u,v € S. Let G = G —u — v be the graph obtained from G by deleting u and v. Then,
MM(G") < MM(G) — 1.

Proof. By Theorem 4, every maximum matching of G contains a near-perfect matching Mg
of G[S]. Since G[S] is factor-critical, S consists of an odd number of vertices, and we have
|Ms| = %(|S| — 1). Since u,v € S are deleted from G’, any matching in G'[S] contains at
most |1(|S] —2)] = 3(|S] — 3) = [Ms| — 1 edges. It follows that G’ has no matching of size
MM(G). <

For branching on the vertices in D, we start with the connected components of G[D]
which form a triangle. We first prove a lemma concerning such triangles.

» Lemma 24. Let S be a connected component of G[D] such that G[S] is a triangle. There
exist two vertices u,v € S such that u and v have a neighbor v’ and v’ in A, respectively
(possibly u' = v').

39:9
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» Branching Rule 25. Let S = {u,v,w} be a connected component of G[D] such that G[S)|
is a triangle and u and v have a neighbor u' and v' in A, respectively (such vertices exist
by Lemma 24). Let Hh = G — v, Hy = G —u, and H3 = G —v. We generate seven
instances ; = (G;, ) fori € [7], where Gy = Hy, Go = Hy —v', G5 = Hy —v, G4 = Hy —w,
G5:H3—u’, G6:H3—u, G7:H3—’LU.

» Lemma 26. Branching Rule 25 is correct.

We verify the drop in measure in Lemma 30. We then look into the connected components
of G[D] which form triangle stars (with at least two pendant triangles). We show a lemma
analogous to Lemma 24.

» Lemma 27. Let S be a connected component of G[D] such that G[S] is a triangle star
with at least two pendant triangles. There exist two nonadjacent vertices u,v € S such that u
and v have a neighbor v’ and v’ in A, respectively (possibly v’ =v’).

» Branching Rule 28. Let S be a connected component of G[D] such that G[S] is a triangle
star with at least two pendant triangles. Let u,v € S be vertices as specified in Lemma 27,
and let u',v" € A be neighbors of u,v, respectively. Also, let u'’,v"" € S be neighbors of
u, v, respectively, which are not the center of G[S]. Let H = G — v/, Hy = G — u, and
Hs; = G —u". We generate seven instances I; = (G;,{) for i € [7], where Gy = Hy,
G2 :Hgf'l), G3 :Hgf?)/, G4:H27’UH, G5 :Hgf’l}, G6:H37’U/, G7:H37’UH.

Its correctness can be argued in the same way as we did for Branching Rule 25.
» Lemma 29. Branching Rule 28 is correct.
» Lemma 30. In Branching Rules 25 and 28, p(I;) < p(I) — 3 for alli € [7].

Proof. Observe that we delete a vertex from A or two vertices from S in every branch.
Thus, we obtain MM(G;) < MM(G) — 1 by Lemmas 19 and 23. It follows that u(Z;) =
LMM(G,) +15(G2) — £ = L(MM(G) — 1) +1S(G)) — £ = u(Z) - . 4

Finally, we look into nontrivial connected components of G[D] which are not triangles or
triangle stars. We first prove two lemmas that help to develop a branching rule. Note that
each nontrivial component (unless it is a triangle) has at least five vertices.

» Lemma 31. Let H be a connected graph on at least four vertices that is not a star. Then,
H has a path on four vertices.

» Lemma 32. Let H be a factor-critical graph that is not a triangle star and let v be an
arbitrary vertex in V(H). Then, H —v has a vertezx of degree at least two.

» Branching Rule 33. Let S be a nontrivial connected component of G[D] with |S| > 5

which is not a triangle star. Choose a path (u,v,w,x) on four vertices in G[S] (such a path

exists by Lemma 31). We have seven branches I; = (G;,£) as follows:

1. Choose a vertex v' with at least two neighbors vi, vy € S in G — v (such a vertex exists by
Lemma 32). Let Gy =G —v—v', Ga =G —v -0}, and G3 = G — v — v}.

2. Choose a vertex w' with at least two neighbors wi,why € S in G —w (such a vertex exists
by Lemma 32). Let G4y =G —w —w', G5 =G —w —w), and Gg = G — w — wh.

3. Let G; = G — N({v,w}).
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» Lemma 34. Branching Rule 33 is correct.

Proof. Observe that Z is a yes-instance if and only if at least one of (G — v,¢), G(G — w, {),
and G(G — N({v,w}),?) is a yes-instance by the correctness of Branching Rule 12. We
branch further on the first two instances (G — v, {) and G(G — w, £) as in Branching Rule 9
to end up with the seven instances given above. |

» Lemma 35. In Branching Rule 33, W(Z;) < w(Z) — & for all i € [7).

Proof. Note that every branch deletes at least two vertices from S (in particular, {u,z} C
N({v,w})). We thus have MM(G;) < MM(G) — 1 by Lemma 23. It follows that u(Z;) =
3(MM(G)) +15(G) — € < 3(MM(G) — 1 +1S(G)) — £ = u(T) — 5. «

If the branching reduction rules given so far are not applicable, then G is a bipartite
graph whose partition is A and D: We have C = (), since otherwise we can apply Branching
Rule 17. We also have that A is an independent set, since otherwise Branching Rule 21
applies. Moreover, every connected component S of G[D] is trivial: Note that S consists of
an odd number of vertices because G[S] is factor-critical. If |S| = 3, then S is a triangle and
hence we can apply Branching Rule 25. If |S| > 5, then we can apply Branching Rule 28 or
Branching Rule 33. Thus, every connected component of G[D] is trivial, implying that D is
an independent set as well. Now, Branching Rule 9 actually decreases the measure:

» Branching Rule 36. Choose a vertex v € V(G) with at least two neighbors u,w € V(QG).
We branch into Z; = (G;,0) for i € [3], where Gy =G —v, Go = G — u, and G3 = G — w.

It is correct since Branching Rule 9 is correct.
» Lemma 37. Branching Rule 36 is correct.
» Lemma 38. In Branching Rule 36, (Z;) < p(Z) — 5 for all i € [3].

Proof. Recall that VC(H) denote the minimum vertex cover size of a graph H. Since G and
G; are both bipartite, we have VC(G) = MM(G) and VC(G;) = MM(G;) by Kénig’s theorem
(Theorem 2). It follows that u(Z) = £(MM(G) +IS(G)) — ¢ = $(VC(G) +1S(G)) — £ =
1|V (G)| — €. Analogously, we obtain p(Z;) = 3|V (G;)| — £. Since |V(G;)| = [V(G)| — 1, we
have pu(Z) — w(Z;) = 3(IV(G)| = [V(Gi)]) = 3 <

N[ ”

3.4 Correctness and Running Time Analysis

We prove Theorem 1 in this subsection. For the correctness of our algorithm (the outline
is given in Section 3.1), we need to show that if the input Z is a yes-instance, then our
algorithm correctly determines that 7 is a yes-instance after branching 2k times (avoiding
Termination 13). We will show that if we end up with a yes-instance Z' = (G', ') after 2k
branching steps, then 1 (MM(G")+IS(G")) = IM(G’) (equivalently, MM(G’) = IS(G’) = IM(G')
since MM(G’) > IM(G’) and IS(G”) > IM(G”)) holds. We examine the structure of graphs G’
with 2(MM(G’")+I1S(G")) = IM(G’) in Lemma 39. We find that for a yes-instance I’ = (G, ¢')
with 2(MM(G’) +1S(G”)) = IM(G’), our algorithm terminates with ¢ = 0 returning yes
(Termination 10) after reduction rules are applied exhaustively (Lemma 40).

» Lemma 39. For a connected graph G, if 1 (MM(G) +1S(G)) = IM(G), then one of the
following holds:

G is an isolated edge.

G is a triangle star.
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G is obtained from a connected bipartite graph G' with a bipartition V(G') =U UW by
adding exactly one pendant vertex to each vertex of U and adding at least one pendant
triangle to each vertex of W. In particular, MM(G) = IS(G) = IM(G) = 3(|V(G)| — [W]).
We remark that the converse of Lemma 39 holds as well. We show that an instance (G, ¢)
with 2(MM(G) 4 1S(G)) = IM(G) can be solved by exhaustively applying reduction rules.

» Lemma 40. Let T = (G, () be an instance of IMBA with 3(MM(G) +1S(G)) = IM(G). If
T is a yes-instance, then the instance T' = (G',¢') obtained from T by exhaustively applying
Reduction Rules 6, 7, and 14 has ¢’ = 0.

Combining all our lemmas, we prove the following:

» Theorem 1. IMBA can be solved in O*(49%) time.

Proof. We first show that our algorithm is correct. Let S be the set of instances corresponding
to leaves in the search tree. For the correctness, we must show that if the input Z is yes-
instance, then there exists an instance Z' € S which results in a termination returning yes
(Termination 10). Note that each instance Z' = (G’,¢') € S fulfills at least one of conditions
for Termination 10, 11, and 13: Suppose that the condition for Termination 13 not is met.
Then, G’ does not have any vertex of degree at least two, since otherwise we can apply a
branching rule in Section 3.3. Thus, every vertex has degree at most one and Reduction
Rules 6 and 7 deletes every vertex in the graph, resulting in Termination 10 (¢ = 0) or
Termination 11 (¢’ > 0).

If Z is a no-instance, then every instance Z' € S is a no-instance as well by the correctness
of our reduction rules (Lemmas 8 and 15) and branching rules (Lemmas 18, 22, 26, 29, 34,
and 37). Thus, our algorithm reaches Termination 11 or 13, returning no.

Suppose that Z is a yes-instance. Since our reduction rules and branching rules are
correct, there exists an instance 7' = (G’, ¢') € S such that Z' is a yes-instance. For the sake
of contradiction, assume that our algorithm incorrectly concludes that Z’ is a no-instance,
i.e., (i) ¢ > 0 (recall that we check for Termination 10 first) and (ii) $|V(G’)| < ¢ or there
have been 2k branching steps (conditions for Termination 11 and 13, respectively). By the
assumption that Z’ is a yes-instance, we have 1|V(G’)| > IM(G’) > /. We thus may assume
that branching rules have been applied 2k times. We have shown that every branching rule
decreases the measure (Lemmas 20, 30, 35, 38, and 43) by at least % and that the measure
does not increase by applying reduction rules (Lemma 16). Since the measure is k for the
input instance Z, we have pu(Z') < k — 2k - 3 = 0. Moreover, we have

—_

W(T) = %(MM(G’) FIS(E) — € > S(MM(E) +15(G") ~ IM(G) > 0.

Here, the first inequality follows because Z' is a yes-instance, i.e., IM(G’) > ¢'; and the second
inequality (MM(G")+IS(G"))—IM(G’) = 3(MM(G")—IM(G"))+1(IS(G")=IM(G")) > 0 holds
for any graph G’. We thus have ;(Z’) = 0 and in particular £(MM(G’) + IS(G")) = IM(G').
Since Reduction Rules 6, 7, and 14 are exhaustively applied, we have £/ = 0 by Lemma 40, a
contradiction. Thus, our algorithm correctly determines that Z’ is a yes-instance.

For the running time, note that each node in the search tree has at most seven children.

Moreover, the depth of the search tree is at most 2k by Termination 13. Thus, our algorithm
runs in O*(72%) = O*(49%) time. <

4 Hardness for IMBMM and IMBIS

Here, we prove the hardness for IMBMM and IMBIS. Recall that IMBMM is parameterized
by MM(G) — £ and IMBIS is parameterized by IS(G) — ¢, where MM(G) is the maximum
matching size of G, IS(G) is the maximum independent set size of G. These negative results
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complement Theorem 1 in answering our main question: is there a parameterization smaller
than %n — ¢ which admits an FPT algorithm? Our negative results suggest that using MM(G)
or IS(G) as an upper bound of ¢ fails.

We first show that IMBMM is W/[2]-hard. The hardness holds for 2-degenerate graphs.

This also complements the following two results: One is an XP algorithm for IMBMM ([11]
and the other is an FPT algorithm for IMBMM where the maximum degree is additionally
included as part of the parameter [11].

» Theorem 41. IMBMM is W[2/-hard even on 2-degenerate bipartite graphs.

Proof. We reduce from DOMINATING SET, which is W[2]-hard:

DOMINATING SET

Input: An undirected graph G and ¢ € N.
Question:  Does G have a dominating set D (i.e., N(D) = V(G)\ D) of size at most £?
Parameter: /

Let Z = (G, £) be an instance of DOMINATING SET such that G is connected and G has
at least one cycle. Let G’ be the graph obtained from G by subdividing every edge vv’ of G
(i.e., add a vertex v”, add two edges vv” and v'v”, and delete the edge vv’). Let U denote
the set of vertices added by subdivisions. Note that every vertex in U corresponds to an edge
in G. Tt is straightforward to verify that G is 2-degenerate: Let X C V(G'). If X N U # 0,
then e € X NU has degree at most two in G[X]. Otherwise, we have X C U and thus G[X]
is a graph without any edge. Moreover, G’ is bipartite with a bipartition V(G) UU. We
show that G has a dominating set of size £ if and only if G’ has an induced matching of size
U =1V(Q)| ¢

First, suppose that G has a dominating set D of size exactly £. By definition, every vertex
v € V(G)\ D has at least one neighbor in D in G. Let vp € D be one of such neighbors. Now
consider a matching M’ in G’ in which each vertex v € V(G) \ D is matched to the vertex
(in G’) corresponding to the edge vup (in G). We claim that M’ is an induced matching
of size ¢'. Since G’ is bipartite, it suffices to verify that for two vertices v,v’ € V(G) \ D,
there is no edge between vp and v’. By the choice of vp, we have Ng/(vp) = {v,w}, where
w is some vertex in D, showing that vp and v" are not adjacent to each other. We thus have
shown that M is an induced matching. Note that M has size |V(G) \ D| = |[V(G)| — ¢.

Conversely, suppose that G’ has an induced matching M’ of size exactly ¢'. Since G’
is bipartite, M’ covers exactly ¢ vertices of V(G). Let D C V(G) be the set of vertices in

V(G) covered by M’. For every vertex v € D, let v' € U be the vertex such that vv’ € M.

Since M’ is an induced matching, v’ corresponds to an edge between v and some vertex not
in D. This implies that V(G) \ D is a dominating set of size |V (G)| — ¢ = ¢ in G.
To establish the W[2]-hardness of IMBMM, it remains to show that the parameter

k = MM(G’) — ¢’ associated with the instance (G’, ¢') is upper-bounded by some function of /.

In fact, we show that k < £. To do so, we show that MM(G’) = |V (G)], i.e., there is a matching
in G’ that covers every vertex in V(G) using Hall’s theorem. To apply Hall’s theorem, we
must show that |[N(S)| > |S| holds in G’ for each S C V(G). Note that |[N(S)| in G’ equals
the number of edges incident to S in G. For S C V(G), let S1,...,S. denote the connected
component of G[S]. We claim that |N(S;)| > |S;| for each i € [c]. If S; = V(G), then by

the assumption that G has at least one cycle, we have |[N(S;)| = |E(G)| > |[V(G)| = |Si].
Assume that S; # V(G). For each ¢ € [c], note that there are at least |\S;| — 1 edges in G[S;].

Note also that there is at least edge in G where one endpoint is in S; and the other is in
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V(G)\ S; (which is nonempty) by the assumption that G is connected. Since |N(S;)| is
the number of edges incident to S; in G, we have |[N(S;)| > (|S;] — 1) + 1 = |S;| for each
i € [¢]. The sets N(S1),...,N(S.) are pairwise disjoint, since otherwise for two distinct
connected components S; and S;, an edge e € N(S;) N N(S;) would connect S; and S}
in G. Thus, we have |[N(S)[ = > ;¢ [N(Si)| = 22,¢(q 1Sl = |S]. By Hall’s theorem, G’
has a matching that covers every vertex in V(G), i.e., MM(G’) = |V(G)|. Tt follows that
k=MM(G") -0 =V(Q) - (|V(G)| - ) =¢. <

We then show that IMBIS is NP-hard even if the parameter is zero. Our hardness holds
even if a maximum independent set is given as part of input.

» Theorem 42. IMBIS is NP-hard for k = 0 even if an independent set of mazximum size is
given as part of input.

Proof. We reduce from the NP-hard MULTICOLORED INDEPENDENT SET problem: Its input
is an undirected graph G and ¢ € N. Additionally, we are given a partition (Cy,...,Cy) of
V(G) into ¢ cliques. The task is to determine whether G has an independent set of size /.
Consider the graph G’ obtained by introducing ¢ vertices vy, ..., v, and adding edges such
that N(v;) = C; for every i € [¢]. Tt is not difficult to see that G has an independent set of
size ¢ if and only if G’ has an induced matching of size ¢. Note that the set {vq,...,v¢} is an
independent set of size ¢ in G’ and that this is of maximum cardinality since the vertex set
can be partitioned into ¢ cliques. Thus, we have k = ¢ — IM(G) = 0. Note that our hardness
holds even if {v1,...,v,} is given as part of input for INDUCED MATCHING. <

5 Conclusion

In this work, we discovered a new parameter 3(MM(G) + IS(G)) — ¢ for which INDUCED
MATCHING is fixed-parameter tractable. This parameter is smaller than below trivial
guarantee 2n — £. Our main result states that INDUCED MATCHING is solvable in O*(49%)
time for k = 2(MM(G) +1S(G)) — ¢. This stands in contrast to our negative results: the
W2]-hardness when parameterized by MM(G) — ¢ and the NP-hardness for IS(G) — ¢ =0
There remain several natural questions for future research. First, is INDUCED MATCHING
fixed-parameter tractable for an even smaller parameter? We remark that our negative results
in Section 4 indicates that the upper bound cannot be as tight as the maximum matching
size or the maximum independent set size. Another question is whether the base 49 in the
running time of our algorithm can be lowered. It would also be interesting to study whether
INDUCED MATCHING has a polynomial kernel with respect to k = (MM(G) + 1S(G)) — £.
To the best of our knowledge, we are the first to propose the below (or above) guarantee
parameterization, where the bound from which the parameter is derived is the average of
two values. We believe that this framework will be successful for other problems as well.
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A Missing Proofs from Section 3.2

» Lemma 15. Reduction Rule 14 is correct.

Proof. Let G’ = G — v be the graph obtained by deleting v. We show that IM(G) > ¢ if
and only if IM(G’) > £. First, observe that IM(G’) > ¢ implies IM(G) > ¢, since any induced
matching in G’ is also an induced matching in G. We then show that if G has an induced
matching M of size ¢, then IM(G’) > ¢. If M does not cover v, then M is an induced
matching in G’ as well, implying that IM(G’) > £. Suppose that M covers v and let e denote
the edge in M incident to v. Then, the edge uw is not part of M since u and w are adjacent
to v. Thus, (M \ {e}) U {uw} is an induced matching of size £ in G as well as G’. <

» Lemma 16. Let 7 = (G, ) be an instance of IMBA and let T' = (G', (') be an instance
obtained by applying Reduction Rule 6, 7, or 1. Then, u(Z") < u(Z).

Proof. It is easy to see that when Reduction Rule 6 or 14 is applied, the measure does
not increase as ¢ remains unchanged. There is no increase in the measure when applying
Reduction Rule 7 either: We have MM(G’) = MM(G) — 1 and IS(G’) = IS(G) — 1 since every
maximal matching contains an isolated edge and every maximal independent set contains
exactly one endpoint of an isolated edge. Moreover, we have ¢/ = £ — 1. We thus have

W(T) = %(MM(G’) IS(G)) — ¢ = %(MM(G) H1S(G)) — € = (). <

B Missing Proofs from Section 3.3
B.1 On Branching Rule 17

» Branching Rule 17. Choose a vertex v € C with at least two neighbors u,w € N(v). We
branch into three instances I; = (G;,£) for i € [3], where G1 = G —v, G3 = G — u, and
G3 =G —w.

» Lemma 18. Branching Rule 17 is correct.

Proof. The correctness follows from the correctness of Branching Rule 9. <

» Lemma 19. Let v be a vertex in AUC and let G’ = G —v be the graph obtained by deleting
v. Then, MM(G’) < MM(G) — 1.

Proof. By Theorem 4, every vertex in AU C' is matched in every maximum matching. Since
G’ misses one vertex from AU C, we have MM(G’) < MM(G) — 1. <

» Lemma 20. In Branching Rule 17, p(Z;) < p(Z) — 5 for all i € [3].
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Proof. By the definition of the Gallai-Edmonds decomposition, the neighbors of v € C' are in
AUC. Tt follows that u,w € AUC. We thus have, by Lemma 19, that MM(G;) < MM(G) —1.
We also have IS(G;) < IS(G). Consequently, p(Z;) = $(MM(G;) +15(G;)) — € < $(MM(G) —
1+1S(G)) — £ = p(Z) — 3. |

B.2 On Branching Rule 21

» Branching Rule 21. Choose two adjacent vertices u,v € A. We branch into three instances
T, = (G;,0) for i € [3]. In the first two, we delete u or v, i.e., Gy =G —u and Gy = G —v.
In the third branch, we delete N({u,v}), i.e., G = G — N({u,v}).

» Lemma 22. Branching Rule 21 is correct.

Proof. By Theorem 4, N({u,v}) has at least one vertex in D (note that Branching Rule 12
requires N ({u,v}) # 0). The correctness of Branching Rule 21 follows from the correctness
of Branching Rule 12. <

» Lemma 43. In Branching Rule 21, p(Z;) < w(Z) — 1 for all i € [3].

Proof. Since G; and G2 each misses a vertex from A, we have MM(G;) < MM(G) — 1 and
MM(G2) < MM(G) — 1 by Lemma 19. We show that MM(G3) < MM(G) — 1 also holds.
Any maximal matching M of (G3 contains uw, since it is isolated. Note, however, that u
and v are matched to vertices in D in every maximum matching of G by Theorem 4. It
follows that M is not a maximum matching in G, implying that MM(G3) < MM(G) — 1.
Since G; (i € [3]) arises from vertex deletions of G, we have IS(G;) < IS(G). Consequently,
w(T) = LMM(Gy) + 1S(Gi)) — £ < LMM(G) — 1 +1S(G)) — £ = u(@) — . .

B.3 On Branching Rule 25 and Branching Rule 28

» Branching Rule 25. Let S = {u,v,w} be a connected component of G[D] such that G[S)|
is a triangle and u and v have a neighbor u' and v' in A, respectively (such vertices exist
by Lemma 24). Let Hh = G — v, Hy = G —u, and Hy = G —v. We generate seven
instances ; = (G;, ) fori € [7], where Gy = Hy, Go = Hy —v', G5 = Hy —v, G4 = Hy —w,
G5:H3—u’, G6:H3—u, G7:H3—w.

» Branching Rule 28. Let S be a connected component of G[D] such that G[S] is a triangle
star with at least two pendant triangles. Let u,v € S be vertices as specified in Lemma 27,
and let u',v'" € A be neighbors of u,v, respectively. Also, let u',v" € S be neighbors of
u, v, respectively, which are not the center of G[S]. Let Hi = G —u', Hy = G — u, and
Hs = G —u". We generate seven instances I; = (G;,{) for i € [7], where Gy = Hy,
GQZHQ—U, G3:H2—UI, G4:H2—1J”, G5:H3—U, G6:H3—’U/, G7:H3—UN.

» Lemma 24. Let S be a connected component of G[D] such that G[S] is a triangle. There
exist two vertices u,v € S such that u and v have a neighbor v’ and v’ in A, respectively
(possibly u' =v').

Proof. Let Sq,...,S. be the connected components of H — v. Without loss of generality,
assume that |Sy| > -+ > |S.|. We show that |S1| > 3. Since H is factor-critical, H — v has a
perfect matching by definition. It follows that every connected component S; has at least
two vertices. For the sake of contradiction, assume that |\S;| = 2 for every i € [¢]. We claim
that for every connected component S; = {u;, w;}, v is adjacent to both u; and w; in H. If v
is not adjacent to u; (or w;), then G — w; (or G — v;, respectively) has no perfect matching
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because u; (or w;, respectively) is isolated. Thus, v is adjacent to every vertex in H. This,
however, implies that H is a triangle star, which contradicts our assumption. Thus, we have
|S1] > 3. Since H[S]] is connected, there is a vertex in Sy of degree at least two in H —v. <

» Lemma 26. Branching Rule 25 is correct.

Proof. Observe that u is adjacent to v’ and v in G. By the correctness of Branching Rule 9,
7 is a yes-instance if and only if one of the three instances J; = (H;,¢) is a yes-instance
for j € [3]. Since v has two neighbors v/, w in Hs, J» is a yes-instance if and only if Z; is a
yes-instance for some i € [2, 4] by the correctness of Branching Rule 9. Moreover, since u has
two neighbors v/, w in Hs, J3 is a yes-instance if and only if Z; is a yes-instance for some
1 € [5,7] by the correctness of Branching Rule 9. Hence, Z is a yes-instance if and only if one
of the seven instances Z; = (G, {) is a yes-instance for some i € [7]. <

» Lemma 27. Let S be a connected component of G|D] such that G[S] is a triangle star
with at least two pendant triangles. There exist two nonadjacent vertices u,v € S such that u
and v have a neighbor v’ and v’ in A, respectively (possibly v’ =v’).

Proof. Let s be the center of G[S5], i.e., s has more than two neighbors in G[S]. Then, by
the assumption that Reduction Rule 14 has been applied exhaustively, for every pendant
triangle (w1, we, s) in G[S], at least one of w; or wy has at least one neighbor in A. Thus,
the lemma holds. |

B.4 On Branching Rule 33

» Lemma 31. Let H be a connected graph on at least four vertices that is not a star. Then,
H has a path on four vertices.

Proof. Let v be a vertex of maximum degree in H. We consider two cases: If deg(v) =
|[V(H)| — 1, then by the assumption that H is not a star, we have two adjacent vertices
w,x € N(v). Since |[N(v)| = |V(H)| — 1 > 3, there is a vertex v € N(v) distinct from w
and x. We thus have a path (u,v,w,z). Otherwise, we have deg(v) < |V(H)| — 1. We can
assume that deg(v) > 2 because H is a connected graph on at least four vertices. Since H is
connected, there exist two adjacent vertices w € N(v) and z € V(H) \ (N(v) U {v}). Since
deg(v) > 2, there is a vertex u € N(v) distinct from w. We thus have a path (u,v,w,z). <=

» Lemma 32. Let H be a factor-critical graph that is not a triangle star and let v be an
arbitrary vertex in V(H). Then, H —v has a vertezx of degree at least two.

Proof. Let Sq,...,S. be the connected components of H — v. Without loss of generality,
assume that |S7| > -+ > |S.|. We show that |S1| > 3. Since H is factor-critical, H — v has a
perfect matching by definition. It follows that every connected component S; has at least
two vertices. For the sake of contradiction, assume that |S;| = 2 for every i € [¢]. We claim
that for every connected component S; = {u;, w;}, v is adjacent to both u; and w; in H. If v
is not adjacent to u; (or w;), then G — w; (or G — v;, respectively) has no perfect matching
because u; (or w;, respectively) is isolated. Thus, v is adjacent to every vertex in H. This,
however, implies that H is a triangle star, which contradicts our assumption. Thus, we have
|S1] > 3. Since H[S1] is connected, there is a vertex in Sy of degree at least two in H —v. <
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C Miissing Proofs from Section 3.4

» Lemma 39. For a connected graph G, if 2(MM(G) +1S(G)) = IM(G), then one of the
following holds:

G is an isolated edge.

G is a triangle star.

G is obtained from a connected bipartite graph G’ with a bipartition V(G') =U UW by

adding exactly one pendant vertex to each vertex of U and adding at least one pendant
triangle to each vertex of W. In particular, MM(G) = IS(G) = IM(G) = 3(|V(G)| — [W]).

Proof. Suppose that G is a connected graph with £(MM(G) + IS(G)) = IM(G). We show
that G satisfies one of the above. Since MM(G) = IS(G) = IM(G), G is a Cameron—Walker
graph. We assume that G has at least two vertices, since otherwise MM(G) = IM(G) =0
and IS(G) = 1. We examine each case of Theorem 5.
Suppose that G is a star with n — 1 pendant vertices. It is easy to see that IS(G) =n —1
and IM(G) = 1. Thus, we obtain n = 2.
The second case of Theorem 5 states that G is a triangle star. So we are done.
Suppose that G is obtained from a bipartite graph G’ with a bipartition V(G') = U UW
by adding at least one pendant vertex to each vertex of U and adding any number of
pendant triangles to each vertex of W. Let n, be the number of pendant vertices attached
to u for every u € U and let n,, be the number of pendant triangles attached to w for
every vertex w € W. We show that n, = 1 for each u € U and n,, > 1 for each w € W.
First, we show that MM(G) = IM(G) = |U[+}_,,cw Mw- Let M be a maximum (induced)
matching of G. Since every vertex u € U has at least one pendant vertex adjacent to it,
we can assume that u is matched to one of its pendant neighbors in M. The deletion of
U and pendant vertices in N(U) leaves |W| triangle stars. The triangle star containing
w € W has n,, pendant triangles. Thus, |M| = |U|+ >, o Nw-
We then show that IS(G) = >, cynu + D ,cw Max(ny, 1). We can assume that a
maximum independent set I contains all pendant vertices. Then, I contains no vertex of
U. After deleting all pendant vertices and their neighbors (that is, U), a triangle star
with n,, pendant triangles remains for each w € W, which has an independent set of size
max(ny, 1). Thus, we have IS(G) = > iy + D ey Max(Ny, 1).
Since n, > 1 and max(ny, 1) > ny, we have IS(G) = >, cy 1w + D cpy max(ny, 1) >
U+ > wew nw = IM(G). By the assumption that IS(G) = IM(G), equality holds and
hence n, =1 for each u € U and max(n,, 1) = ny, that is, n,, > 1.
For the third case, note that since |V(G)| = 2|U| + >, cp (2w + 1), we have MM(G) =
IM(G) = 15(G) = [U] + X ey mo = S(V(@)] = [W]). «

» Lemma 40. Let T = (G, () be an instance of IMBA with 3(MM(G) + 1S(G)) = IM(G). If
T is a yes-instance, then the instance T' = (G', ') obtained from T by exhaustively applying
Reduction Rules 6, 7, and 14 has ¢’ = 0.

Proof. Suppose that 7 is a yes-instance with 1(MM(G) + I1S(G)) = IM(G). Note that
IM(G) > ¢. We consider three cases of Lemma 39.
Suppose that G consists of an isolated edge. Then, ¢ < 1, and hence we have ¢/ = 0 after
an application of Reduction Rule 7.
Suppose that G is a triangle star. Then, ¢ < 1(|V(G)| — 1), and hence we have ¢' = 0
after one application of Reduction Rule 14 and 3(|V(G)| — 1) applications of Reduction
Rule 7.
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Suppose that G arises from a connected bipartite graph with a bipartition U U W as
specified in Lemma 39. By Lemma 39, we have IM(G) = £(|V(G)| — [W]) > £. Since
every vertex w € W has at least one pendant triangle attached to it, Reduction Rule 14
deletes every vertex in W. Note that after the deletion of W, we have a disjoint union of
$(|V(G)| — W) isolated edges. It follows that Reduction Rule 7 applies ¢ times, resulting
in an instance 7' = (G', ¢’) with ¢ = 0.

This concludes the proof. <
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