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Abstract

In this paper we consider the approximability of the maximum induced matching
problem (MIM). We give an approximation algorithm with asymptotic performance ratio
d — 1 for MIM in d-regular graphs, for each d > 3. We also prove that MIM is APX-
complete in d-regular graphs, for each d > 3.
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1 Introduction

For a given graph G, an induced matching M is a set of non-intersecting edges in E(G) such
that no two edges in M are joined by an edge of GG. In other words, the set of edges in the
subgraph of G induced by V(M) coincides with M. For all other relevant graph-theoretic
definitions, the reader is referred to [3]. Let 3*(QG),5o(G) and +v(G) denote the size of a
maximum induced matching, a maximum independent set and a minimum dominating set
respectively, for a given graph G. Define MIM, MIS [13, problem GT20] and MDS [13,
problem GT2] to be the problems of determining 5*(G), 8o(G) and v(G) respectively, for a
given graph G. Let MIMD, MISD and MDSD denote the decision versions of MIM, MIS
and MDS respectively.

Stockmeyer and Vazirani [27] introduced MIM as a variant of the maximum matching
problem and motivated MIM as the “risk-free” marriage problem: find the maximum number
of married couples such that each married person is compatible with no married person other
than his/her spouse.

Induced matchings have stimulated a great deal of interest in the discrete mathemat-
ics community, since finding large induced matchings is a subtask of finding a strong edge
colouring (i.e. a proper colouring of the edges such that no edge is adjacent to two edges
of the same colour) using a small number of colours. (See [24, 26] for algorithmic results
relating to strong edge colourings and see [23] for a survey of previous work in this area.)
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MIMD is NP-complete — this was first shown in [27], where it was demonstrated that
the result holds even for bipartite graphs of maximum degree 4. Also, Zito [28] showed
that MIMD is NP-complete for 4k-regular graphs, for £ > 1. Cameron [5] independently
established NP-completeness of MIMD in bipartite graphs. Her transformation begins from
MISD in arbitrary graphs; by starting from the NP-complete restriction of MISD to graphs
of maximum degree 3 [13, problem GT20], the bipartite graph constructed as an instance
of MIMD has vertices of degree 7. Lozin [22] proved that MIMD is NP-complete for certain
classes of bipartite graphs, including bipartite graphs of maximum degree 3. Additionally,
Ko and Shepherd [19] asserted that there is a close relationship between the parameters 5*
and v: namely §*(S(QG)) + v(G) = n for any graph G, where n = |[V(G)| and S(G) denotes
the subdivision graph of G (i.e. the graph obtained from G by replacing each edge e = {u,w}
by two edges {u,ve}, {ve,w}, where v, is a newly-introduced vertex). Thus, since MDSD
is NP-complete for planar cubic graphs [17], an immediate corollary of Ko and Shepherd’s
observation is that MIMD is NP-complete for planar bipartite graphs, where each vertex in
one partite set has degree 2 and each vertex in the other partite set has degree 3.1 Kobler
and Rotics [20] showed that MIMD is NP-complete in Hamiltonian graphs, claw-free graphs,
chair-free graphs, line graphs and d-regular graphs, for d > 5.

On the other hand, MIM has been shown to be solvable in polynomial time for sev-
eral graph classes, including chordal graphs [5], circular arc graphs [14], trapezoid graphs,
interval-dimension graphs, cocomparability graphs, interval graphs [15], prime bipartite
(Stari 2,3, Sung)-free graphs [22], (Ps, Dy,)-free graphs [20, 21], (Ps, K1 )-free graphs [20],
(Py, K1 p)-free graphs [21], (bull,chair)-free graphs, line graphs of Hamiltonian graphs [20],
graphs of bounded clique width, including (chair,co-P,gem)-free graphs [4], weakly chordal
graphs [7], graphs of bounded asteroidal index, bipartite permutation graphs [8], polygon-
circle graphs, interval-filament graphs and asteroidal triple-free graphs [6]. Lastly, Kobler
and Rotics [20] gave a polynomial-time algorithm that either finds a maximum induced
matching in a given graph G, or else reports that 8*(G) < (1(G), where 31(G) denotes the
size of a maximum matching in G.

For MIM in trees, Fricke and Laskar [12] gave a linear-time algorithm. Independently,
Zito [28] and Golumbic and Lewenstein [15], have constructed simpler linear-time algorithms.
Note that in [12, 14], induced matchings are referred to as strong matchings.

Given the NP-hardness of MIM in graphs of bounded degree, it is of interest to consider
approximation algorithms in this setting. (Terminology relating to approximability used in
this section is defined in Section 2.) Zito [28] has shown that for d-regular graphs, MIM is
approximable within d — (d—1)/(2d—1), for each d > 3. In Section 3 we improve this bound
by presenting an approximation algorithm for MIM in d-regular graphs which has asymptotic
performance ratio d — 1, for each d > 3. We also show that MIM admits a polynomial-time
approximation scheme for planar graphs of maximum degree 3.

On the other hand, Zito [28] also showed that, for each & > 1, MIM is APX-complete for
4k-regular graphs. In Section 4 we extend this result to show that MIM is APX-complete
for d-regular graphs, for each d > 3. We also establish the APX-completeness of MIM for
bipartite graphs of maximum degree 3.

2 Preliminaries

In this section we define the notation and terminology related to approximability that will
be used in this paper. The reader may find a more detailed description of the topic in [2].

Ko and Shepherd [18] also asserted that MIMD is NP-complete for planar cubic graphs; however their rea-
soning contains an error. In Section 4 we prove this result as a corollary of establishing the APX-completeness
of MIM in cubic graphs.



Let P be an optimisation problem and let Ap be an approximation algorithm for P, i.e. an
algorithm that returns a feasible solution for a given instance of P. For every instance x of P
and for every feasible solution y of z, let cp(x,y) denote the cost of y. For a given instance
x of P, let optp(x) denote the optimal cost of a feasible solution and let Ap(z) denote
the cost of the feasible solution constructed by Ap. If P is a maximisation (respectively
minimisation) problem, we define

RAP (x) _ OIZT;P&(;C)) <RAP (Z’) = 7012:15(%3)) .

The (absolute) performance ratio R4, of Ap is defined as follows:
Ry, =inf{c>1 : Ra,(x) < c for all instances = of P}.

If P admits an approximation algorithm with performance ratio ¢, then P is approrimable
within c. The asymptotic performance ratio R}, of Ap is defined as follows:

RY, =inf{c>1 : N e Ry, (v) < c for all instances x of P with optp(z) > N}.

We say that P admits a polynomial time approzimation scheme (PTAS) if, given any € > 1
there exists an approximation algorithm Ap. such that R4, _ < ¢ and, for every instance x
of P, Ap. runs in time polynomial in |z|.

Some optimisation problems do not admit a PTAS unless P=NP. One way to prove
such a result is to use an approximation preserving reduction. Although several notions of
such reductions have been proposed (see for example [10]), the L-reduction defined in [25] is
perhaps the easiest one to use. We now give a definition of this reduction.

Definition 2.1. Let P and QQ be two optimisation problems. An L-reduction from P to )
is a four-tuple (t1,ta, a, 3) where t1, to are polynomial time computable functions and o, (3
are positive constants with the following properties:

1. t; maps instances of P to instances of Q such that, for every instance x of P, optg(t1(z))
< a-optp(x).

2. for every instance x of P, ty maps pairs (t1(x),y") (where y' is a feasible solution of
t1(x)) to a feasible solution y of x such that

loptp(x) — cp(x, ta(t1(x),y'))| < Bloptq(ti(x)) — cq(ti(x), )]

If there is an L-reduction from P to QQ, we say that P is L-reducible to Q) and denote this
by P <1, Q.

Let APX denote the class of optimisation problems that are approximable within ¢, for
some constant c¢. Suppose that @ is a problem in APX. By [2, Lemma 8.2], we may define
Q@ to be APX-complete if P <1, @ for every problem P in APX. By transitivity of the L-
reduction [25], to show that @ is APX-complete it is sufficient to show that P <y, @ for some
APX-complete problem P.

If @ is APX-complete, then @ does not admit a PTAS unless P=NP [2, p.261]. In
particular, there is some constant ¢ such that the problem of approximating ) within c¢ is
NP-hard. The following result, proved in [28], can assist with computing such a constant c.

Proposition 2.2. Let P and Q) be two optimisation problems such that there is an L-
reduction from P to Q with parameters o and 3. Suppose that it is NP-hard to approximate

P within c. Then it is NP-hard to approximate Q) within 7(04,51;%1.



select e = {u, v} from E(G)

M—e

E(G) — E(G) \ (adj(N (u)) U adj(N(v)))
V(G) < V(G) \ (N(u) UN(v))

while (E(G) # 0)

do

. "y
J uénvlflc){ eg(u)}

select u from V;

k in {d
- yéan&){ eg(v)}

select v from Vi N N (u)

M — M U {u,v}

E(G) — E(G) \ (adj(N () U adj(N (v)))
dV(G) = V(G)\ (N(u) UN(v))

Figure 1: The algorithm MinGreedy.

3 Approximation algorithms

We begin this section by presenting a greedy algorithm for approximating MIM in regular
graphs. In what follows, for a graph G = (V, E), V; denotes the set of vertices of current
degree i in G and we let Y; represent |V;|. The set of neighbours of a vertex v € V is
represented by N(v) and for S C V, adj(S) denotes the set of edges incident with the
vertices in S.

The algorithm MinGreedy shown in Figure 1 takes a d-regular graph G as input (d > 3)
and returns an induced matching M C E(G). We assume the input graph to be connected,
otherwise the algorithm may be applied to each connected component. Then, for each step
of the algorithm, after the first and before its completion, Zf;ll Y; > 0. The first step of
the algorithm involves adding an arbitrary edge to M and deleting the appropriate edges
and vertices. At each subsequent step, a vertex wu is chosen from those of current minimum
degree and a vertex v is chosen from the vertices of current minimum degree in N(u). The
edge {u,v} is added to M and the appropriate edges and vertices are deleted.

We now establish a lower bound on the size of the induced matching returned by the
algorithm MinGreedy.

Theorem 3.1. For every integer d > 3, given a connected d-reqular graph on n vertices, the
algorithm MinGreedy returns an induced matching of size at least

d(n — 2)
2(2d —1)(d—1)

Proof. Let o = (2d—1)(d—1). In the first step, the total number of edges deleted is at most
14+2(d=1)+2(d-1)>=2d(d—1)+1=a+d.
Subsequently, at each step, the total number of edges deleted is at most
I+ d=1D)+d-2)+@d—-1)2?+{@-2)(d—-1)=(2d—1)(d—-1) = a.
Assuming the worst case in each step, we have

d—"—a—d_d(n—2)_ d(n —2)
M| =1+ 2 T T 20 20d-1)d-1) M)
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Figure 2: An example first step operation for a cubic graph.

Corollary 3.2. For every integer d > 3, the algorithm MinGreedy approrimates MIM for
d-reqular graphs with asymptotic performance ratio d — 1.

Proof. Zito [28] showed that the size of an optimum induced matching M™* of a d-regular
graph on n vertices satisfies the inequality

M| < dn
2

2d—1) @)

Using the bounds given in (1) and (2), we have

dn
| M| 22d-1) n
< = —1).
M) S dny T p—z @Y

22d-1)(d—1)
|

It may be shown that for each d > 3, there exists an infinite family of d-regular graphs
for which the algorithm MinGreedy only realises the lower bound given in (1). In order to
demonstrate this, we consider the operations performed by the algorithm (an operation being
the process of selecting an edge for inclusion into the induced matching and the subsequent
deletion of the necessary vertices and edges). An operation may be described in terms of a
subgraph that indicates the selected edge and those vertices and edges that are subsequently
deleted.

For any k > 1, we construct a d-regular graph G, for which the algorithm MinGreedy
has its poorest worst-case performance — this graph consists of two parts. Firstly, we have a
subgraph that will be processed by the initial step of the algorithm. Secondly, the remaining
part of the graph will consist of a chain of repeating subgraphs that are processed by the
main body of the algorithm.

It may be verified that there exists an operation that may be performed as the first step
of the algorithm that destroys vertices of degree d and generates two vertices of degree d — 1.
We call this a first step operation. As an example, Figure 2 shows one such operation for
d = 3. Here the bold edge is added to the matching, the dashed edges are deleted and the
vertices adjacent only to bold or dashed edges are deleted.

For larger d, the construction is as follows. Start with an edge {a, b} and introduce two

new sets of vertices U = {uy,ug,...,uq—1} and V = {vy,v9,...,v4-1}. Connect vertex a to
all vertices in U and connect vertex b to all vertices in V. Now introduce two more sets of
new vertices W = {wq,ws,...,wg_2} and X = {z1,29,...,24-2}. Connect each vertex in

W to every vertex in U and connect each vertex in X to every vertex in V. Every vertex
in U UV now has degree d — 1. For each i (1 < ¢ < d — 2), connect vertex w; to vertex v;
and connect vertex z; to vertex u;yi. Finally introduce two more vertices yi, y2, connect
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Figure 3: Operations for the algorithm MinGreedy on a cubic graph.

vertex 1 to vertex uq and connect vertex yo to vertex vg_1. Each of the vertices y1 and yo
has d — 1 additional neighbours to be defined.

We now define two additional operations which we will call Type 1 and Type 2. The
subgraph for Type 1 consists of an edge with endpoints p; and ps having degrees d — 1
and d respectively. Let N7 denote the neighbours of these endpoints other than p; and po
themselves. The size of Ny is 2d — 3 and all vertices in N1 have degree d. All neighbours
of vertices in Ny, apart from p; and po, are also of degree d and are distinct; we label these
vertices as q1,42, - ..,qp, where D = (2d — 3)(d — 1). The subgraph for Type 2 consists of
an edge with endpoints 1 and ro having degrees d — 1 and d respectively. Let No denote
the neighbours of these endpoints other than r; and ry themselves. The size of Ny is 2d — 3
and all vertices in N9 have degree d. The vertices in Ny form one half of the vertices of a
(d — 1)-regular bipartite graph on two sets of 2d — 3 vertices. Label the other half of the
vertices in this bipartite subgraph with si, $o,..., S2q_3. As an example, Type 1 and Type
2 operations for d = 3 are given in Figure 3. In each instance the bold edges in Figure 3 are
added by the algorithm MinGreedy to the induced matching, the dashed edges are deleted
and the vertices adjacent only to bold or dashed edges are deleted.

We form a repeating component by merging operations together. By this we mean, for a
pair of successive operations, we identify vertices in the first operation with vertices in the
second operation. The repeating component is constructed from a number of Type 1 and
Type 2 operations, together with a single Type la operation. A Type la operation is almost
identical to a Type 1 operation except that vertex ps has d — 2 neighbours of degree d and
one neighbour of degree d — 1 (other than py).

Take 2d — 3 copies, C1,Co,...,Coq_3, of Type 1 and merge them together by identifying
vertex gp in Cj, 1 <14 < 2d — 4, with vertex p; in C;11. Then merge a copy of Type la by
identifying vertex ¢p in Cyy_3 with vertex p; in the Type la. Now merge (2d — 1)(d — 2)
copies of Type 2 by identifying vertices ¢1,...,gp_1 in the copies of the Type 1 and Type
la subgraphs with vertices r1, s1,...,824—3 in the copies of the Type 2 subgraphs. The
repeating component has a p; vertex of degree d — 1 in one copy of a Type 1 subgraph,
together with a vertex of degree d— 1 in the Type la subgraph (the neighbour of ps of degree
d — 1 that is not labelled p;). Again, an example for d = 3 is given in Figure 4 where the
two vertices of degree d — 1 are labelled p; and z.
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Figure 4: Repeating cubic component.



Next we form a chain of k repeating components, D1, Do, ... Dy, by connecting with an
edge the vertex z of degree d — 1 in D;, 1 < i < k — 1, with the vertex p; of degree d — 1 in
D;;1. (This leaves only one Type la operation, since the additional edges turn k£ — 1 Type
la operations into Type 1 operations.) Finally we obtain a d-regular graph G g by merging
this graph with the subgraph for the first step operation. We do this by identifying vertices
p1 and z at either end of the chain of repeating components with vertices y; and ys from the
first step operation.

In the worst case the algorithm MinGreedy would initially choose the edge {a,b} in the
first step operation, thus exposing the chain of repeating components. It would then perform
2k(d — 1) — 1 Type 1 operations, then one Type la operation, followed by k(2d — 1)(d — 2)
operations of Type 2. Hence, in the worst case, the matching M satisfies |[M| = kd(2d—3)+1.
Let @ = (2d—1)(d—1). The initial operation deletes a+d edges and each operation performed
thereafter deletes a edges, except the Type la operation which deletes o — 1 edges. Hence
it may be verified that G4 has kda(2d — 3) + a + d — 1 edges. Thus the lower bound of
Theorem 3.1 gives |M| > kd(2d—3)+1— 1 ie. M| > kd(2d—3)+1 since d > 3. Therefore
we have proved the following result.

Theorem 3.3. For every d > 3 and k > 1, there exists a d-regular graph G gy such that,
in the worst case, the size of the induced matching returned by the algorithm MinGreedy on
G 1s equal to the lower bound given by Theorem 3.1.

We conclude this section by considering the approximability of MIM in planar graphs. It
turns out that MIM has a PTAS for planar graphs of maximum degree 3. To demonstrate
this we introduce an additional graph problem. Given a graph G = (V, E), define a set
S C V to be 2-independent if, for any two vertices u,v € S, the distance between them in
G is at least 3. Let M2IS denote the problem of finding a maximum 2-independent set in
a given graph G. Also let L(G) denote the line graph of a given graph G. Clearly S is an
induced matching in G if and only if S is a 2-independent set in L(G). Duckworth et al.
[11] showed that M2IS admits a PTAS for planar graphs. Now suppose that G is any planar
graph of maximum degree 3. Then L(G) is planar (c.f. [3, Theorem 10.4]), so the PTAS
for M2IS in planar graphs, together with the simple reduction from MIM to M2IS, gives the
following result.

Theorem 3.4. MIM admits a PTAS for planar graphs of maximum degree 3.

4 Non-approximability results

In this section we establish the APX-completeness of MIM in d-regular graphs, for each
d > 3. Throughout this section we use the fact that MIM belongs to APX for bounded
degree graphs [28]. We begin by proving APX-completeness for MIM in bipartite graphs of
maximum degree 3.

Proposition 4.1. MIM is APX-complete for bipartite graphs of mazximum degree 3.

Proof. Alimonti and Kann [1] proved that MDS is APX-complete for graphs of maximum
degree 3. As mentioned in Section 1, Ko and Shepherd [18] proved that 8*(S(G))++v(G) = n
for any graph G, where n = |V (G)|. It is known [16, p.50] that v(G) > #@, where A(G)
denotes the maximum degree of G. Hence *(S(G)) < 3v(G), so there is an L-reduction
from MDS in graphs of maximum degree 3 to MIM in bipartite graphs of maximum degree

3, with constants « = 3 and § = 1. O

Corollary 4.2. It is NP-hard to approrimate MIM in bipartite graphs of mazimum degree

7. 6600
3 within 6659 -
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Figure 5: A typical subgraph C; from the constructed instance of MIM (the arrows denote
cross-edges).

Proof. Alimonti and Kann [1] proved that MDS is APX-complete for graphs of maximum
degree 3. They gave an L-reduction from the problem of finding a minimum vertex cover in a
given graph, which we denote by MVC [13, problem GT1], restricted to graphs of maximum
degree 3, with constants & = 22 and § = 1. As mentioned in the proof of Proposition
4.1, there is an L-reduction from MDS in graphs of maximum degree 3 to MIM in bipartite
graphs of maximum degree 3 with constants « = 3 and 8 = 1. The problem of approximating
MVC in graphs of maximum degree 3 within 1% is NP-hard [9]. Hence by combining these

99
calculations, the result follows from Proposition 2.2. O

For arbitrary graphs of maximum degree 3, it is possible to substantially improve on the
lower bound computed in Corollary 4.2 by considering the following alternative reduction,
which uses techniques from [22].

Theorem 4.3. MIM is APX-complete for graphs of mazximum degree 3.

Proof. We give a transformation from MIS in cubic graphs, which was shown to be APX-
complete by Alimonti and Kann [1]. Let G = (V, E) (a cubic graph) be an instance of MIS
where V' = {v1,v9,...,v,}. We form an instance G’ = (V’, E’) (graph of maximum degree 3)
of MIM. For every vertex v; € V (1 < i < n), construct a subgraph C; of G’ as follows. Let
the vertices in C; be V;, where V; = {w; 1, w; 2,2 1,2, z;3}. Join all vertices in V; to form
a Ps in the order z; 1, w; 1,2 2,23, w; 2 (let F; denote the four edges joining these vertices).
Let {v;1,vi2,v;3} be the set of vertices adjacent to v; in G. Solely for ease of exposition,
in what follows, we shall use w; 3 to also denote the vertex w;s. For each j (1 < j < 3),
the vertex w; ; of Cj is joined in G’ to exactly one of the w, s vertices in the subgraph C,
corresponding to v; j, where v, = v; j and 1 < s < 3 (call such an edge of G’ a cross-edge of
G’). (That is, there is a one-one correspondence between the edges of G and the cross-edges
of G'.) There is obviously a degree of freedom involved in making such attachments, however
the actual choice of assignment does not affect the remainder of the proof. We denote by F;
the union of F; with the cross-edges of G’ incident to vertices in V;. Finally, let T; denote
the edges {x;1,wi1}, {23, wi2} '

Let V! = ;2] Vi and let £ = (J;Z] E;. It is clear that the graph G’ constructed has
maximum degree 3. A typical subgraph C; of G’ is illustrated in Figure 5.

We now demonstrate that 3*(G’) = n + (y(G). Suppose that I is an independent set of
G and that k = |I|. We construct a set of edges S as follows. For each ¢ (1 < ¢ < n), if
v; € I then add the edges in T; to S. If v; ¢ I then add the edge {z;2,2;3} to S. It may
be verified that S is an induced matching in G’ and |S| = 2k + (n — k) = n + k, so that
B (G") > n+ Bo(G).

Conversely, let S be a maximum induced matching in G’ and let i be given (1 < i < n).
Clearly |S N E;| <2 and it may be verified that |S N E;| = 2 if and only if each of w;; and
wj 2 is incident to some edge of S. Without loss of generality if w; ; is incident to some edge
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Figure 6: Typical gadgets in the constructed instance of MIM in cubic graphs.

e of S, we may assume that this edge is ¢’ = {z; 1, w; 1}, for if not, we may replace e with
¢ in S. Similarly, if w; 9 is incident to some edge e of S, we may assume that this edge is
¢ = {x;3,w;2}, for if not, we may replace e with e’ in S (since {w;1,z;2} ¢ S). Hence
either SNE; =T;, or [SNE;] <1. Define I = {v; € V:SnNE; =T;}. We firstly claim
that I is independent in G. For if {v;,v;} € E, then {w;,, w;s} € E', where 1 < r < 2
and 1 < s < 2. If v; € I then w;, is incident to some edge of S N T}, but S is an induced
matching in G’, so w;, cannot be incident to any edge of S. Thus S N E; # T}, so that
vj ¢ I as required. Let k& = |I| and suppose for sake of a contradiction that k& < Bo(G).
Then 5*(G') = |S| <2k + (n— k) =n+k <n+ By(G), a contradiction. Hence k = y(G)
so 3*(G") = n + By(G) as required.

Note that any maximal independent set is also a dominating set, so 5o(G) > ~(G).
Also 7(G) > 1Ry as mentioned in the proof of Proposition 4.1. Hence 3o(G) > %, so

JEwN(e)
B*(G") < 560(G). Thus our transformation is an L-reduction, from MIS in cubic graphs to
MIS in graphs of maximum degree 3, with parameters « =5 and § = 1. U

Corollary 4.4. It is NP-hard to approzimate MIM in graphs of maximum degree 3 within
475
m .
Proof. Tt is NP-hard to approximate MIS in cubic graphs within % [9]. The proof of Theorem
4.3 gives an L-reduction from MIS in cubic graphs to MIM in graphs of maximum degree 3
with constants « = 5 and 8 = 1. The result follows by Proposition 2.2. O

We now extend the result of Theorem 4.3 to cubic graphs by adding suitable gadgets to
vertices of degree 1 or 2.

Corollary 4.5. MIM is APX-complete for cubic graphs.

Proof. We use the same transformation as in the proof of Theorem 4.3, together with copies
of the gadgets shown in Figure 6.

Let 7 (1 <i < n) be given and consider the subgraph C;. Using the dashed edges, attach
the graph G; to x; 1 and attach the graphs H;; and H;2 to x;2 and x; 3 respectively. Then
the graph G’ so obtained is cubic. It may be verified that any induced matching in G’ has
at most one edge from G; and at most two edges from H; j, for any i (1 < i < n) and j
(1 < j < 2). Furthermore these upper bounds can be attained by selecting, in particular,
the edges {r;, s;},{aij,bi;} and {c¢;;,d;;} as shown in Figure 6. Each of these edges is at
distance at least 2 from each of z; 1, z; 2 and x; 3. Hence we have that 5*(G’) = 6n+ 5o(G),
so this revised transformation is an L-reduction with parameters a = 25 and g = 1. U



<0
<0

Figure 7: A typical gadget in the constructed instance of MIM in 4-regular graphs.

Corollary 4.6. MIMD is NP-complete for planar cubic graphs.

Proof. Clearly MIMD is in NP. The reduction described by Theorem 4.3 and Corollary 4.5
preserves the planarity of the input graph G. By reducing from the NP-complete restriction
of MISD to planar cubic graphs [13, problem GT20], we obtain NP-completeness for MIMD
in planar cubic graphs also. O

We continue this section by establishing the APX-completeness of MIM in d-regular
graphs, for d > 4. We firstly consider the case d = 4.

Theorem 4.7. MIM is APX-complete for 4-reqular graphs.

Proof. By Corollary 4.5, MIM is APX-complete for cubic graphs. Hence let G = (V| E) (a
cubic graph) be an instance of MIM and let G’ = (V' E’) be a copy of G. Suppose that
V ={v1,v2,...,0,} and V' = {v], v}, ..., v}, }. We construct a 4-regular graph H as follows.
Initially let H = GUG’. For each i (1 <14 < n), connect v; and v} using the subgraph H; as
shown in Figure 7.

It may be verified that any induced matching in H contains at most two edges from H;
(1 <i < n). Furthermore, this upper bound can be attained by selecting, in particular, the
edges {w;, x;} and {y;, z;}. Each of these edges is at distance at least 2 from each of v;, v}.

7

Hence we have that §*(H) = 2n + 25*(G). By Theorem 3.1, 8*(G) > 3(n — 2)/20. Hence

this transformation is an L-reduction with parameters o = 53—8 and 3 = % O

We conclude this section by establishing APX-completeness for the case that d > 5. Note
that Kobler and Rotics [20] showed that MIMD is NP-complete for d-regular graphs, for each
d > 5. Their transformation takes a (d — 2)-regular graph G as an instance of MISD and
constructs a d-regular graph G’ as an instance of MIMD, such that 5*(G") = n + (y(G),
where n = |[V(G)|. The same transformation is an L-reduction from MIS to MIM and, as
in the proof of Theorem 4.3, the parameters are & = d and 3 = 1. Note that MIS is APX-
complete for (d — 2)-regular graphs, for each d > 5 [9]. Hence Kobler and Rotics’ reduction
immediately gives the following result.

Theorem 4.8. MIM is APX-complete for d-reqular graphs, for each d > 5.
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