931 research outputs found

    Induced Embeddings into Hamming Graphs

    Get PDF

    Classification and Galois conjugacy of Hamming maps

    Full text link
    We show that for each d>0 the d-dimensional Hamming graph H(d,q) has an orientably regular surface embedding if and only if q is a prime power p^e. If q>2 there are up to isomorphism \phi(q-1)/e such maps, all constructed as Cayley maps for a d-dimensional vector space over the field of order q. We show that for each such pair d, q the corresponding Belyi pairs are conjugate under the action of the absolute Galois group, and we determine their minimal field of definition. We also classify the orientably regular embedding of merged Hamming graphs for q>3

    â„“1-Rigid Graphs.

    Get PDF

    Universal Communication, Universal Graphs, and Graph Labeling

    Get PDF
    We introduce a communication model called universal SMP, in which Alice and Bob receive a function f belonging to a family ?, and inputs x and y. Alice and Bob use shared randomness to send a message to a third party who cannot see f, x, y, or the shared randomness, and must decide f(x,y). Our main application of universal SMP is to relate communication complexity to graph labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other functions of two vertices x and y can be determined from the labels ?(x), ?(y). We give a universal SMP protocol using O(k^2) bits of communication for deciding whether two vertices have distance at most k in distributive lattices (generalizing the k-Hamming Distance problem in communication complexity), and explain how this implies a O(k^2 log n) labeling scheme for deciding dist(x,y) ? k on distributive lattices with size n; in contrast, we show that a universal SMP protocol for determining dist(x,y) ? 2 in modular lattices (a superset of distributive lattices) has super-constant ?(n^{1/4}) communication cost. On the other hand, we demonstrate that many graph families known to have efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit constant-cost communication protocols for adjacency. Trees also have an O(k) protocol for deciding dist(x,y) ? k and planar graphs have an O(1) protocol for dist(x,y) ? 2, which implies a new O(log n) labeling scheme for the same problem on planar graphs

    Metric structures in L_1: Dimension, snowflakes, and average distortion

    Get PDF
    We study the metric properties of finite subsets of L_1. The analysis of such metrics is central to a number of important algorithmic problems involving the cut structure of weighted graphs, including the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation algorithms. Additionally, many open questions in geometric non-linear functional analysis involve the properties of finite subsets of L_1.Comment: 9 pages, 1 figure. To appear in European Journal of Combinatorics. Preliminary version appeared in LATIN '0

    Dimension reduction by random hyperplane tessellations

    Full text link
    Given a subset K of the unit Euclidean sphere, we estimate the minimal number m = m(K) of hyperplanes that generate a uniform tessellation of K, in the sense that the fraction of the hyperplanes separating any pair x, y in K is nearly proportional to the Euclidean distance between x and y. Random hyperplanes prove to be almost ideal for this problem; they achieve the almost optimal bound m = O(w(K)^2) where w(K) is the Gaussian mean width of K. Using the map that sends x in K to the sign vector with respect to the hyperplanes, we conclude that every bounded subset K of R^n embeds into the Hamming cube {-1, 1}^m with a small distortion in the Gromov-Haussdorf metric. Since for many sets K one has m = m(K) << n, this yields a new discrete mechanism of dimension reduction for sets in Euclidean spaces.Comment: 17 pages, 3 figures, minor update
    • …
    corecore