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Abstract

We study the metric properties of finite subsets ofL1. The analysis of such metrics is central to a
number of important algorithmic problems involving the cut structure of weighted graphs, including
the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation
algorithms. Additionally, many open questions in geometric non-linear functional analysis involve
the properties of finite subsets ofL1.

We present some new observations concerning the relation ofL1 to dimension, topology, and
Euclidean distortion. We show that everyn-point subset ofL1 embeds intoL2 with average distor-
tion O(

√
logn), yielding the first evidence that the conjectured worst-case bound ofO(

√
logn) is

valid. We also address the issue of dimension reduction inL p for p ∈ (1, 2). We resolve aques-
tion left open by M. Charikar and A. Sahai [Dimension reduction in the�1 norm, in: Proceedings of
the 43rd Annual IEEE Conference on Foundations of Computer Science, ACM, 2002, pp. 251–260]
concerning the impossibility of dimension reduction with alinear map in the above cases, and we
show that a natural variant of the recent example of Brinkman and Charikar [On the impossibility
of dimension reduction in�1, in: Proceedings of the 44th Annual IEEE Conference on Founda-
tions of Computer Science, ACM, 2003, pp. 514–523], cannot be used to prove a lower bound for the

✩ A preliminary conference version of this paper will appear in LATIN 2004.
E-mail addresses:jrl@cs.berkeley.edu (J.R. Lee), mendelma@uiuc.edu (M. Mendel),

anaor@microsoft.com (A. Naor).

0195-6698/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2004.07.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82060306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/ejc


J.R.Lee et al. / European Journal of Combinatorics 26 (2005) 1180–1190 1181

non-linear case. This is accomplished by exhibiting constant-distortion embeddings of snowflaked
planar metrics into Euclidean space.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is devoted to the analysis of metric properties of finite subsets ofL1. Such
metrics occur in many important algorithmic contexts, and their analysis is key to progress
on some fundamental problems. For instance, anO(logn)-approximate max-flow/min-cut
theorem proved elusive for many years until, in [18,2], it was shownto follow from a
theorem of Bourgain stating that every metric onn points embeds intoL1 with distortion
O(logn).

The importance ofL1 metrics has given rise to many problems and conjectures that
have attracted a lot of attention in recent years. The four basic problems of this type are as
follows.

I. Is there anL1 analog of the Johnson–Lindenstrauss dimension reduction lemma [12]?
II. Are all n-point subsets ofL1O(

√
logn)-embeddable into Hilbert space?

III. Are all squared-�2 metrics O(1)-embeddable intoL1?
IV. Are all planar graphsO(1)-embeddable intoL1?

(We recall that a squared-�2 metric is a space(X, d) for which (X, d1/2) embeds
isometrically in a Hilbert space.)

Each of these questions has been asked many times before; we refer the reader to [21,
22,17,11], in particular. Despite an immense amount of interest and effort, the metric
properties ofL1 have proved quite elusive; hence the name “The mysteriousL1” appearing
in a survey of Linial at the ICM in 2002 [17]. In this paper, we attempt to offer new insights
into the above problems and touch on some relationships between them. We refer the reader
to the book [21] for an introductory account of the theory of low distortion embeddings of
metric spaces. In particular, throughout this paper we shall use the standard terminology
appearing in [21].

1.1. Results and techniques

1.1.1. Euclidean distortion
Our first result addresses problem (II) stated above. We show that the answer to this

question is positive on average, in the following sense.

Theorem 1.1. For every f1, . . . , fn ∈ L1 there is a linear operator T: L1 → L2 such
that

‖T( fi ) − T( f j )‖2

‖ fi − f j ‖1
≥ 1√

8 logn
, 1 ≤ i < j ≤ n, and

1(n

2

) ∑
1≤i< j ≤n

(‖T( fi ) − T( f j )‖2

‖ fi − f j ‖1

)1/2

≤ 10.
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In other words, for anyn-point subset inL1, there exists a map intoL2 such that
distances are contracted by at mostO(

√
logn) and the average expansion isO(1). This

yields the first positive evidence that the conjectured worst-case bound ofO(
√

logn)

holds. We remark that a different notion of average embedding was recently studied by
Rabinovich [24]; there, one tries to embed (planar) metrics into the line such that the
average distancedoes not change too much.

The exponent 1/2 abovehas no significance, and we canactually obtain the same result
for any power 1− ε, ε > 0 (we refer the reader toSection 2for details). The proof of
Theorem 1.1follows from the following probabilistic lemma, which is implicit in [19]. We
believe that this result is of independent interest.

Lemma 1.2. There exists a distribution over linear mappings T: L1 → L2 such that for
every x∈ L1 \ {0} the random variable‖T(x)‖2/‖x‖1 has densitye−1/(4x2)/(x2√π).

We show that, in contrast toTheorem 1.1, problem (II) cannot be resolved positively
using linear mappings. Specifically, we show that there are arbitrarily largen-point subsets
of L1 such that any linear embedding of them intoL2 incurs distortionΩ(

√
n). As

a corollary we settle the problem left open by Charikar and Sahai in [4], of whether
dimension reduction with a linear map is possible inL p, p �∈ {1, 2}. Thecasep = 1 was
proved in [4] via linear programming techniques, and it seems impossible to generalize
their method to arbitraryL p. We show that there are arbitrarily large n-point subsets
X ⊆ L p (namely, the same point set as was used in [4] to handle the casep = 1), such
that any linear embedding ofX into �d

p incurs distortionΩ [(n/d)|1/p−1/2|]; thus dimension
reduction with a linear map is impossible in anyL p, p �= 2. Additionally, we show that
there are arbitrarily largen-point subsetsX ⊆ L1 such that any linear embedding ofX
into any d-dimensional normed space incurs distortionΩ(

√
n/d). This generalizes the

Charikar–Sahai result to arbitrary low dimensional norms.

1.1.2. Dimension reduction
In [3], and soon after in [16], it was shown that if the Newman–Rabinovich diamond

graph onn verticesα-embeds into�d
1 thend ≥ nΩ(1/α2). Theproof in [3] is based on a

linear programming argument, while the proof in [16] uses a geometric argument which
reduces the problem to bounding from below the distortion required to embed the diamond
graph in�p, 1 < p < 2. These results settle the long standing open problem of whether
there is anL1 analog of the Johnson–Lindenstrauss dimension reduction lemma [12]. (In
other words, they show that the answer to problem (I) above isNo.) In Section 4, we show
that the methodof proof in [16] can be used to provide an even more striking counter-
example to this problem.

A metric spaceX is calleddoublingwith constantC if every ball in X can be covered
by C balls of half the radius. Doubling metrics with bounded doubling constants are widely
viewed as low dimensional (see [9,13] for somepractical and theoretical applications of
this viewpoint). On the other hand, the doubling constant of the diamond graphs isΩ(

√
n)

(wheren is the number of points). On the basis of a fractal construction due to Laakso [14]
and the method developed in [16], we prove the following theorem, which shows a strong
lower bound on the dimension required to represent uniformly doubling subsets ofL1.
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Theorem 1.3. There are arbitrarily large n-point subsets X⊆ L1 which are doubling with
constant6 but such that everyα-embedding of X into�d

1 requires d≥ nΩ(1/α2).

In [15,9] it was asked whether any subset of�2 which is doubling well-embeds into
�d

2 (with bounds on the distortion and the dimension that depend only on the doubling
constant). In [9], it was shown that a similar property cannot hold for�1. Our lower bound
exponentially strengthens that result.

1.1.3. Planar metrics
Our final result addresses problems (III) and (IV). Our motivation was an attempt to

generalize the argument in [16] to prove that dimension reduction is impossible inL p

for any 1 < p < 2. A natural approach to this problem is to consider the point set
used in [3,16] (namely, anatural realization of the diamond graph,G, in L1) with the
metric inducedby theL p norm instead of theL1 norm. This is easily seen to amount to

proving lower bounds on the distortion required to embed the metric space(G, d1/p
G ) in

�h
p. Unfortunately, this approach cannot work since we show that, for any planar metric

(X, d) and any 0< ε < 1, the metric space(X, d1−ε) embeds in Hilbert space with
distortionO(1/

√
ε), and then using results of Johnson and Lindenstrauss [12], and Figiel,

Lindenstrauss and Milman [6], we conclude thatthis metric can beO(1/
√

ε)-embedded in
�h

p, whereh = O(logn). Theproof of this interesting fact is a straightforward application
of Assouad’s classical embedding theorem [1] and Rao’s embedding method [25]. The
O(1/

√
ε) upper bound is shown to be tight for every value 0< ε < 1. We note that the

caseε = 1/2 has been previously observed by A. Gupta in his (unpublished) thesis [7].

2. Average distortion Euclidean embedding of subsets of L1

The heart of our argument is the following lemma which is implicit in [19], and which
seems to be of independent interest.

Lemma 2.1. For every0 < p ≤ 2 there is a probability space(Ω , P) such that for every
ω ∈ Ω there is a linear operator Tω : L p → L2 such that for every x∈ L p \ {0} the

random variable X= ‖Tω(x)‖2/‖x‖p satisfies for every a ∈ R, Ee−aX2 = e−ap/2
. In

particular, for p = 1 the density of X ise−1/(4x2)/(x2√π).

Proof. Consider the following three sequences of random variables,{Yj } j ≥1, {θ j } j ≥1,
{gj } j ≥1, such that each variable is independent of the others. For eachj ≥ 1, Yj is
uniformly distributed on[0, 1], gj is a standard Gaussian andθ j is an exponential random
variable; i.e. forλ ≥ 0, P(θ j > λ) = e−λ. SetΓ j = θ1 + · · · + θ j . By Proposition 1.5
in [19], there is a constantC = C(p) such that if we define forf ∈ L p

V( f ) = C
∑
j ≥1

gj

Γ 1/p
j

f (Yj ),

thenEeiV( f ) = e−‖ f ‖p
p .

Assume that the random variables{Yj } j ≥1 and {Γ j } j ≥1 are defined on a probability
space (Ω , P) and that{gj } j ≥1 are defined on a probability space(Ω ′, P′), in which
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case we use the notationV( f ) = V( f ; ω,ω′). Define for ω ∈ Ω a linear operator
Tω : L p → L2(Ω ′, P′) by Tω( f ) = V( f ; ω, ·). Since for every fixed ω ∈ Ω
the random variableV( f ; ω, ·) is Gaussian with variance‖Tω( f )‖2

2, for every a ∈
R, EP′eiaV(s;ω,·) = e−a2‖Tω( f )‖2

2. Taking expectation with respect toP we find that
EPe−a2‖Tω( f )‖2

2 = e−ap‖ f ‖p
p . This implies the required identity. The explicit distribution in

the casep = 1 follows from the fact that the inverse Laplace transform ofx 
→ e−√
x is

y 
→ e−1/(4y)/(2
√

πy3) (see for example [26,5]). �

Proof of Theorem 1.1. Using the notation ofLemma 2.1(in the casep = 1) we find that
for everya > 0, Ee−aX2 = e−√

a. Hence, for everya, ε > 0 and every 1< i < j ≤ n,

P

(‖Tω( fi ) − Tω( f j )‖2

‖ fi − f j ‖1
≤ ε

)
= P

(
e−aX2 ≥ e−aε2

)
≤ eaε2−√

a.

Choosinga = 1
4ε4 , the above upper bound becomes e−1/(4ε2). Considerthe set

A =
⋂

1≤i< j ≤n

{
‖Tω( fi ) − Tω( f j )‖2

‖ fi − f j ‖1
≥ 1√

8 logn

}
⊆ Ω .

By theunion bound,P(A) > 1
2, so

1

P(A)
E


 1(n

2

) ∑
1≤i< j ≤n

(‖Tω( fi ) − Tω( f j )‖2

‖ fi − f j ‖1

)1/2


 ≤ 2EX1/2

= 2√
π

∫ ∞

0
x1/2 · e−1/(4x2)

x2 dx < 10.

It follows that there existsω ∈ A for which the operatorT = Tω has the desired
properties. �

Remark 2.2. There is nothing special about the choice of the power 1/2 in Theorem 1.1.
When p = 1, EX = ∞ but EX1−ε < ∞ for every 0 < ε < 1, so we may write the
above average with the power 1− ε replacing the exponent 1/2. Obvious generalizations
of Theorem 1.1hold true for every 1< p < 2, in which case the average distortion is of
orderC(p)(logn)1/p−1/2 (and the power can be taken to be 1).

3. The impossibility of dimension reduction with a linear map in Lp, p �= 2

The above method cannot yield anO(
√

logn) bound on the Euclidean distortion of
n-point subsets ofL1. In fact, there are arbitrarily largen-point subsets ofL1 on which
any linear embedding intoL2 incurs distortion at least

√
(n − 1)/2. Thisfollows from the

following simple lemma:

Lemma 3.1. For every 1 ≤ p ≤ ∞ there are arbitrarily large n-point subsets of Lp on
which any linear embedding into L2 incurs distortion at least((n − 1)/2)|1/p−1/2|.
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Proof. Letw1, . . . , w2k be the rows of the 2k×2k Walsh matrix (i.e. the simplest Hadamard

matrix). Write wi = ∑2k

j =1 wi j ej wheree1, . . . , e2k are the standard unit vectors inR2k
.

Consider the setA = {0}∪{wi }2k

i=1∪{ei }2k

i=1 ⊂ �p. Let T : �p → L2 be any linear operator
which isnon-contracting andL-Lipschitz on A. Assume first of all that 1≤ p < 2. Then,

2k(1+2/p) =
2k∑

i=1

‖wi ‖2
p ≤

2k∑
i=1

‖Twi ‖2
2 =

2k∑
i=1

∥∥∥∥∥∥
2k∑
j =1

wi j T(ej )

∥∥∥∥∥∥
2

2

=
2k∑

i=1

2k∑
j =1

〈wi , w j 〉〈T(ei ), T(ej )〉 = 2k
2k∑
j =1

‖T(ej )‖2
2 ≤ 4k · L2,

which implies thatL ≥ 2k(1/p−1/2) = ((|A| − 1)/2)1/p−1/2. Whenp > 2 apply the same
reasoning, with the inequalities reversed.�

We remark that the above point set was also used by Charikar and Sahai [4] to
give a lower bound on dimension reduction with a linear map inL1. Their proof used
a linear programming argument, which does not seem to be generalizable to the case
of L p, p > 1. Lemma 3.1formally implies their result (with a significantly simpler
proof), and in fact proves the impossibility of dimension reduction with a linear map
in any L p, p �= 2. Indeed, if there were a linear operator which embedsA into �d

p

with distortion D then it would also be aD · d|1/p−1/2|-embedding into�d
2. It follows

that D ≥ ((|A| − 1)/2d)|1/p−1/2|. Similarly, since by John’s theorem (see e.g. [23])
any d-dimensional normed space is

√
d equivalent to Hilbert space, we deduce that

there are arbitrarily largen-point subsets ofL1, any linear embedding of which into any
d-dimensional normed space incurs distortion at least

√
(n − 1)/2d.

4. An inherently high dimensional doubling metric in L1

This section is devoted to the proof ofTheorem 1.3.

Proof of Theorem 1.3. Consider the Laakso graphs,{Gi }∞i=0, which are defined as
follows. G0 is the graph on two verticeswith one edge. To constructGi , take sixcopies of
Gi−1 and scale their metric by a factor of 1/4. We glue four of them in a cyclic manner by
identifying pairs of end-points, and attach at two opposite gluing points the remaining two
copies. SeeFig. 1below.

As shown in [14], the graphs{Gi }∞i=0 are uniformly doubling (see also [15], for a simple
argument showing they are doubling with constant 6). Moreover, since theGi ’s are series
parallel graphs, they embed uniformly inL1 (see [8]).

We will show below that any embedding of Gi in L p, 1 < p ≤ 2, incurs distortion at
least

√
1 + ((p − 1)/4)i . We then conclude as in [16] by observing that�d

1 is 3-isomorphic
to �d

p when p = 1 + (1/ logd), so if Gi embeds with distortionα in �d
1 then α ≥√

i /(40 logd). This implies the required result sincei ≈ log |Gi |.
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Fig. 1. The Laakso graphs.

The proof of the lower bound for the distortion required to embedGi into L p is
by induction oni . We shall prove by induction that wheneverf : Gi → L p is non-
contracting then there exist two adjacent verticesu, v ∈ Gi suchthat‖ f (u) − f (v)‖p ≥
dGi (u, v)

√
1 + ((p − 1)/4)i (observe that foru, v ∈ Gi−1, dGi−1(u, v) = dGi (u, v)).

For i = 0 there isnothing to prove. Fori ≥ 1, sinceGi contains an isometric copy
of Gi−1, there areu, v ∈ Gi corresponding to two adjacent vertices inGi−1 suchthat
‖ f (u) − f (v)‖p ≥ dGi (u, v)

√
1 + ((p − 1)/4)(i − 1). Let a, b be the two mid-points

betweenu andv in Gi . By Lemma 2.1 in [16],

‖ f (u) − f (v)‖2
p + (p − 1)‖ f (a) − f (b)‖2

p

≤ ‖ f (u) − f (a)‖2
p + ‖ f (a) − f (v)‖2

p + ‖ f (v) − f (b)‖2
p + ‖ f (b) − f (u)‖2

p.

Hence,

max{‖ f (u) − f (a)‖2
p, ‖ f (a) − f (v)‖2

p, ‖ f (v) − f (b)‖2
p, ‖ f (b) − f (u)‖2

p}
≥ 1

4
‖ f (u) − f (v)‖2

p + 1

4
(p − 1)‖ f (a) − f (b)‖2

p

≥ 1

4

(
1 + p − 1

4
(i − 1)

)
dGi (u, v)2 + p − 1

4
dGi (a, b)2

= 1

4

(
1 + p − 1

4
i

)
dGi (u, v)2

=
(

1 + p − 1

4
i

)
max{dGi (u, a)2, dGi (a, v)2, dGi (v, b)2, dGi (b, u)2}. �
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We end this section by observing that the above approach also gives a lower bound on
the dimensionrequired to embed expanders in�∞.

Proposition 4.1. Let G be an n-point constant-degree expander which embeds in�d∞ with
distortion at mostα. Then d≥ nΩ(1/α).

Proof. By Matoušek’s lower bound for the distortion required to embed expanders in
�p [20], any embedding ofG into �p incurs distortionΩ(logn/p). Since�d∞ is O(1)-
equivalent to�d

logd, we deduce thatα ≥ Ω(logn/ logd). �

We can also obtain a lower bound on the dimension required to embed the Hamming
cube {0, 1}k into �∞. Our proof uses a simple concentration argument. An analogous
concentration argument yields an alternative proof ofProposition 4.1.

Proposition 4.2. Assume that{0, 1}k embeds into�d∞ with distortion α. Then d ≥
2kΩ(1/α2).

Proof. Let f = ( f1, . . . , fd) : {0, 1}k → �d∞ be a contraction such that for every
u, v ∈ {0, 1}d, ‖ f (u) − f (v)‖∞ ≥ 1

α
d(u, v) (whered(·, ·) denotes the Hamming metric).

Denote byP the uniform probability measure on{0, 1}k. Since for every 1≤ i ≤ k, fi
is 1-Lipschitz, the standard concentration inequality on the hypercube (see [21]) implies
that P(| fi (u) − E fi | ≥ k/(4α)) ≤ 2e−k/(32α2). On theother hand, ifu, v ∈ {0, 1}k are
suchthat d(u, v) = k then there exist 1≤ i ≤ d for which | fi (u) − fi (v)| ≥ k/α,
implying that max{| fi (u) − E fi |, | fi (v) − E fi |} > k/(4α). By the union bound it follows
thatde−Ω(k/α2) ≥ 1, as required. �

5. Snowflake versions of planar metrics

The problem of whether there is an analog of the Johnson–Lindenstrauss dimension
reduction lemma in L p, 1 < p < 2, is an interesting one which remains open. In
view of the above proof and the proof in [16], a natural point set which is a candidate
for demonstrating the impossibility of dimension reduction inL p is the realization of
the diamondgraph in�1 which appears in [3], equipped with the�p metric. Since this
point set consists of vectors whose coordinates are either 0 or 1 (i.e. subsets of the cube),
this amounts to considering the diamond graph with its metric raised to the power 1/p.
Unfortunately, this approach cannot work; we show below that any planar graph whose
metric is raised to the power 1− ε has Euclidean distortionO(1/

√
ε).

Given a metric space(X, d) and ε > 0, the metric space(X, d1−ε) is known in
geometric analysis (see e.g. [10]) as the 1− ε snowflake version of(X, d). Assouad’s
classical theorem [1] states that any snowflake version of a doubling metric space is bi-
Lipschitz equivalent to a subset of some finite dimensional Euclidean space. A quantitative
version of this result (with bounds on the distortion and the dimension) was obtained
in [9]. The following theorem is proved by combining embedding techniques of Rao [25]
and Assouad [1]. A similar analysis is also used in [9]. In what followswe call a metric
Kr -excluded if it is the metric on a subset of a weighted graph which does not admit a
Kr minor. In particular, planar metrics are allK5-excluded.
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Theorem 5.1. For any r ∈ N there exists aconstant C(r ) such that for every0 < ε < 1,
a 1 − ε snowflake version of a Kr -excluded metric embeds into�2 with distortion at most
C(r )/

√
ε.

Our argument is based on the following lemma, theproof of which is contained in [25].

Lemma 5.2. For every r ∈ N there is aconstantδ = δ(r ) such that for everyρ > 0 and
every Kr -excluded metric(X, d) there exists a finitely supported probability distributionµ

onpartitions of X with the following properties:

1. For every P∈ supp(µ), and for every C∈ P, diam(C) ≤ ρ.
2. For every x∈ X, Eµ

∑
C∈P d(x, X \ C) ≥ δρ.

Observe that the sum under the expectation in (2) above actually consists of only one
summand.

Proof of Theorem 5.1. Let X be aKr -excluded metric. For eachn ∈ Z, we define a map
φn as follows. Letµn be the probability distribution on partitions ofX from Lemma 5.2
with ρ = 2n/(1−ε). Fix a partitionP ∈ supp(µn). For anyσ ∈ {−1,+1}|P|, considerσ to
be indexed byC ∈ P so thatσC denotes the value ofσ at C. Following Rao [25], define

φP(x) =
⊕

σ∈{−1,+1}|P|

√
1

2|P|
∑
C∈P

σC · d(x, X \ C),

and writeφn = ⊕
P∈supp(µn)

√
µn(P) φP (here the symbol⊕ refers to the concatenation

operator).
Now, following Assouad [1], let {ei }i∈Z be an orthonormal basis of�2, and set

Φ(x) =
∑
n∈Z

2−nε/(1−ε)φn(x) ⊗ en.

Claim 5.3. For every n ∈ Z, and x, y ∈ X, we have ‖φn(x) − φn(y)‖2 ≤ 2 ·
min{d(x, y), 2n/(1−ε)}. Additionally, if d(x, y) > 2n/(1−ε), then ‖φn(x) − φn(y)‖2 ≥
δ 2n/(1−ε).

Proof. For any partition P ∈ supp(µn), let Cx, Cy be the clusters of P containing
x and y, respectively. Note that since for everyC ∈ P, diam(C) ≤ 2n/(1−ε), when
d(x, y) > 2n/(1−ε), we haveCx �= Cy. In thiscase,

‖φP(x) − φP(y)‖2
2 = Eσ∈{−1,+1}|P| |σCx d(x, X \ Cx) − σCyd(y, X \ Cy)|2

≥ d(x, X \ Cx)
2 + d(y, X \ Cy)

2

2
.

It follows that

‖φn(x) − φn(y)‖2
2 = Eµn‖φP(x) − φP(y)‖2

2

≥ Eµnd(x, X \ Cx)
2 + Eµnd(y, X \ Cy)

2

2
≥

(
δ 2n/(1−ε)

)2
.
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On the other hand, for everyx, y ∈ X, sinced(x, X \ Cx), d(y, X \ Cy) ≤ 2n/(1−ε),
we have that‖φP(x) − φP(y)‖2 ≤ 2 · min{d(x, y), 2n/(1−ε)}; hence‖φn(x) − φn(y)‖2 ≤
2 · min{d(x, y), 2n/(1−ε)}. �

To finish theanalysis, let us fixx, y ∈ X and let m be such thatd(x, y)1−ε ∈
(2m, 2m+1]. In this case,

‖Φ(x) − Φ(y)‖2
2 =

∑
n∈Z

2−2nε/(1−ε)‖φn(x) − φn(y)‖2
2

≤ 4
∑
n<m

22n + 4d(x, y)2
∑
n≥m

2−2nε/(1−ε)

= 22m+1 + 4d(x, y)2 2−2mε/(1−ε)

1 − 2−2ε/(1−ε)

= O(1/ε) · d(x, y)2(1−ε).

On the other hand,

‖Φ(x) − Φ(y)‖2 ≥ 2−mε/(1−ε)‖φm(x) − φm(y)‖2 ≥ δ 2m ≥ δ

2
d(x, y)1−ε.

The proof is complete. �

Remark 5.4. TheO(1/
√

ε) upper bound inTheorem 5.1is tight. In fact, fori ≈ 1/ε, the
1 − ε snowflake version of the Laakso graphGi (presented inSection 4) has Euclidean
distortionΩ(1/

√
ε). To see this, let f : Gi → �2 be any non-contracting embedding of

(Gi , d1−ε
Gi

) into �2. For j ≤ i denote byK j the Lipschitz constant of the restriction off

to (G j , d1−ε
Gi

) (as before, we think ofG j as a subset ofGi ). ClearlyK0 = 1, and the same

reasoning as in the proof ofTheorem 1.3shows that for j ≥ 1, K 2
j ≥ (K 2

j −1/4ε) + (1/4).

This implies thatK 2
i ≥ 1

4 + 1
4ε + · · · + 1

4iε = Ω(1/ε), as required.
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