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Abstract

We sudy the metric properties of finite subsetslaf. The arlysis of such meics is central to a
number of important algorithmic problems involving the cut structure of weighted graphs, including
the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation
algorithms. Additionally, many open questions in geometric non-linear functional analysis involve
the properties of finite subsets bf .

We pregnt some new observations concerning the relatioh pofo dimension, topology, and
Euclidean distortion. We show that evenypoint subset ot. 1 embeds intd_, with average distor-
tion O(,/logn), yielding the first evidence that the conjectured worst-case bour(al(Q/rog n) is
valid. We also address the issue of dimension reductioh grfor p € (1, 2). We resole aques-
tion left open by M. Charika and A. S&ai [Dimension reduction in thé; norm, in: Proceedings of
the 43rd Annual IEEE Conference on Foundations of Computer Science, ACM, 2002, pp. 251-260]
conceming the impossibility of dimension reduction withlimear map in the above cases, and we
show that a natural variant of the recent example of Brinkman and Charikar [On the impossibility
of dimension reduction iy, in: Proceedings of the 44th Annual IEEE Conference on Founda-
tions of Computer Science, ACM, 2003, pp. 514-523], cannot be used to prove a lower bound for the
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non-linear case. This is accomplished by exhibiting tamsdistortion embeddings of snowflaked
planar metrics into Euclidean space.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is devoted to the analysis of metric properties of finite subséts &uch
metrics occur in many important algorithmic contexts, and their analysis is key to progress
on some fundamental problems. For instanceQglog n)-approximate max-flow/min-cut
theorem proved elusive for many years until, k8p], it was shownto follow from a
theorem of Bourgain stating that every metricropoints embeds inth 1 with distortion
O(logn).

The importance ol ; metrics has given rise to many problems and conjectures that
have attracted a lot of attention in recent years. The four basic problems of this type are as
follows.

I. Isthere arlL 1 analog of the Johnson—Lindenstrauss dimension reduction ledj?a [
II. Are all n-point subsets of ; O(,/logn)-embeddable into Hilbert space?
lll. Are all squaredé; metiics O(1)-embeddable intd.1?
IV. Are all planar graph©(1)-embeddable intd 1 ?

(We recall that a squarety metic is a space(X,d) for which (X, d?) embeds
isometrically in a Hilbert space.)

Each of these questions has been asked many times before; we refer the reatler to [
2217,11], in particular. Despite an immense amount of interest and effort, the metric
properties oL 1 have proved quite elusive; hence the name “The mystetigiappearing
in a wrvey of Linial at the ICM in 200217]. In this paper, we attempt to offer new insights
into the above problesand buch on some relationships between them. We refer the reader
to the book [21] for an introductory account of the theory of low distortion embeddings of
metric spaces. In particulahroughout this paper we shalleithe standard terminology
appearing in21].

1.1. Results and techniques

1.1.1. Euclidea digortion
Our first result addresses problem (I1) stated above. We show that the answer to this
question is positive on averagin the following sense.

Theorem 1.1. For every fi, ..., fn € L there is a linear operator T: L1 — Ly such
that

ITCf) - Tl 1

Ifi— fjll.  — /8logn’

1 3 <||T(fi)—T(fj)||2>1/2<10
I — fil -

n
2) 1<i<j=<n

l<i<j=n, and
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In other words, for anyn-point subset inLj, there exiss a map intoL, suchthat
distances are contracted by at m@s(t\/m) and the average expansionGg1). This
yields the first positive evidence that the conjectured worst-case bou@fogn)
holds. We remark that a different notiofi average embedding was recently studied by
Rabnovich [24]; there, one ties to embed (planar) metsdnto the line such that the
average distancdoes not change too much.

The exponent A2 abovehas no significance, and we cactually obtain the same result
for any power 1- ¢,¢ > 0 (we rder the reader t&ection 2for details). The proof of
Theorem 1.%ollows from the following probabilistic lemma, which is implicit i19]. We
bdieve that this result is of independent interest.

Lemma 1.2. There exists a distribution over linear mappings: L1 — L2 such hat for
every xe L1 \ {0} the random variable| T (x)||2/[Ix||l1 has densitg=Y/#® /(x2. /7).

We show that,n contrast toTheorem 1.1problem (II) cannot be resolved positively
using linear mappings. Specifically, weaw that there arerhbitrarily largen-point subsets
of Ly such that any linear embedding of them into, incurs distortionf2(,/n). As
a wrollary we settle the problem left open by Charikar and Sahaidin ¢f whether
dimension rduction wth alinear map is possible i, p & {1, 2}. Thecasep = 1 was
proved in {] via linear piogramming techniques, and it seems impossible to generalize
their method to arbitraryt ,. We show hat there are aitrarily large n-point subsets
X € Lp (namely, the same point set as was used]rid handle the casg = 1), such
that any linear embedding &f into Z‘,’) incurs distortion2[(n/d)*/P~1/21}; thus dimension
reduction vith a linear map is impossible in arlyp, p # 2. Additionally, we show that
there are arbitrarily larga-point subsets C L1 such that any linear embedding of
into any d-dimensional normed space incurs distortifig,/n/d). This gerralizes the
Charikar—Sahai result to arbitrary low dimensional norms.

1.1.2. Dimension reduction

In [3], and soon after in1#], it was shown that if the Newman—Rabinovich diamond
graph onn vetticesa-embeds inta§ thend > n2/¢® Theproof in [3] is baed on a
linear poogramming argument, while the proof ihif] uses a gemetric argument which
reduces the problem to bounding from below the distortion required to embed the diamond
graph infp, 1 < p < 2. These results settle the long standing open problem of whether
there is anL1 analog of the Johnson—Lindenstrauss dimension reduction leiihglh
other words, they show that the answer to problem (I) aboMeilIn Section 4 we show
that the methoaf proof in [16] can be used to provide an even more striking counter-
example ¢ this pioblem.

A metric spaceX is calleddoublingwith constantC if every ball in X can be covered
by C balls of half the radius. Doubling metrics with bounded doubling constants are widely
viewed as low dimensional (se8,13] for somepractical and theoretical applications of
this viewpoint). On the other hand, the doubling constant of the diamond graghs/8)
(wheren is the nunber of points). On the basis of a fractal construction due to Laak$o [
and the method developed ihg], we prove the fdlowing theorem, which shows a strong
lower bound on the dimension required to represent uniformly doubling subskts of
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Theorem 1.3. There are arbitrarily lage npoint subsets X L1 which are doubling with
constan® but such hat everyv-embedding of X inté requires d> n2/e?),

In [15,9] it was asked whether any subset &f which is doubling well-embeds into
Eg (with bounds on the distortion and the dimension that depend only on the doubling
constant). In9], it was shown that a similar property cannot hold £gr Our lower bound
exponentially strengthens that result.

1.1.3. Planar metrics

Our final result addresses problems (Ill) and (IV). Our motivation was an attempt to
generalize the argument il to prove that dimasion reduction is impossible ihp
forany 1 < p < 2. A natural approach to this problem is to consider the point set
used in B,16] (namely, anatural realization of the diamond grap®, in L1) with the
metic inducedby the L , norm instead of thé.; norm. This is easily seen to amount to

proving lower bounds on the distortion required to embed the metric s(maaﬂ-é/p) in
E'F‘). Unfortunately, this approach cannot work since we show that, for any planar metric

(X,d) and any O< ¢ < 1, the metric spacéX, d1=¢) embeds in Hilbert space with
distortionO(1/4/¢), and then using results of Johnson and Lindenstral@sénd Hgiel,
Lindenstrauss and Milma], we conclude thathis metric can b®(1/.,/¢)-embedded in
E?), whereh = O(logn). Theproof of this irteresting fact is a straightforward application
of Assouad’s classical embedding theorethgnd Ra’'s embedding method2p]. The
O(1/+/¢) upper bound is shown to be tight for every value<: < 1. We note that the
cases = 1/2 has been previously observed by A. Gupta in his (unpublished) thgsis [

2. Averagedistortion Euclidean embedding of subsetsof L1

The heart of our argument is the following lemma which is impliciti8][ and which
seems to be of independent interest.

Lemma 2.1. For every0 < p < 2there is a probability spacé?, P) such hat for every
w € {2 there is a linear operator J : L, — L such hat for every xe Lp \ {0} the

random variable X= || T,(X)|l2/[IX|lp satisfies dr every ae R, EeaX* — g2 |n
particular, for p= 1 the density of X ie=%#? /(x2, /7).

Proof. Consider the following three sequences of random varialflég,j>1, {0j}j>1,
{gj}j=1, such that each variable is independent of the others. For ¢ach 1,Yj is
uniformly distributed or{0, 1], gj is a standard Gaussian afydis an exponential random
variable; i.e. forh > 0, P(9; > 1) = e*. Setl'j = 61 + --- + 6. By Proposition 1.5
in [19], there is a constar@ = C(p) such that if we define forf € L,
gi
V(f)= CZFTJ/pf(Yj),
=14

thenEeV(") = eI 15,

Assume that the random variablg¥;}j~1 and{I’j}j>1 are defined on a probability
space ({2, P) and that{gj}j>1 are defined on a probability spa¢€’, P’), in which
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case we use the notation(f) = V(f; w, ). Define forw € 2 alinear operator
To : Lp = L2(f2,P) by T,(f) = V(f;w,). Since for sery fixedw € 12
the random variableV(f; w,-) is Gaussian with varianceTa,(f)H%, for everya e
R, EpdaVse) — e @IT(DIZ Taking exgctation with respect t® we find that
Epe@ITa(MI5 — e=a®IT15, This implies the required identity. The explicit distribution in
the casep = 1 follows from the fact that the inverse Laplace transfornxof> e v* is

y > e V@) /2,/7y3) (see for exampleZ65]). O

Proof of Theorem 1.1. Using he notation oLemma 2.1(in the casep = 1) we find that
for everya > 0O, Ee 3%’ — VA, Herce, foreverya, ¢ > 0andevery <i < j <n,

P (”Ta)(fl) - Ta)(fJ)HZ < 8) —PpP (e—ax2 > e_a52> < eagz_\/a.
Ifi — fjlla

1
25"

I To(fi) = Tu(fpl2 1
A: > C Q
1§iQ§ni Ifi — fjlla ~ /8logn|

By the union boundP(A) > 1, so

11 5 (llTw(fi)—Tw(fJ)||2>l/2 < 2EXL2

Choosinga = the above upper bound becomed/&*> . Considerthe set

n ) )
P(A) (2) 1<i<j<n ” fI - f] ”1
2 00 —1/(4x?)
=—f xl/z-eidx<10.
ﬁ 0 x2
It follows that there exists» € A for which the operatolf = T, has the desired

properties. O

Remark 2.2. There is nothing special about the choice of the pow@rith Theorem 1.1
Whenp = 1,EX = oo butEX'™* < oo for every 0 < ¢ < 1, so we may wite the
above average with the power-1¢ replacing the exponent/2. Obvious generalizations
of Theorem 1.1hold true for every 1< p < 2, in which case the avage distortion is of
orderC(p)(logn)P~1/2 (and the power can be taken to be 1).

3. Theimpossibility of dimension reduction with alinear mapin L,, p # 2

The above method cannot yield &(,/logn) bound on the Euclidean distortion of
n-point subsets of 1. In fact, thee are arbitarily large n-point subsets of.1 on which
anylinear embedding intd_, incurs distortion at leasy/(n — 1)/2. Thisfollows from the
following simple lemma:

Lemma3.1. For everyl < p < oo there are arbitrarily lage n-point subsets of j on
which any linear embedding intoplincurs distortion at least(n — 1)/2)11/P=1/2,
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Proof. Letws, ..., wok be the rows of the'x 2K Walsh matrix (.e. the simplest Hadamard
k
mattix). Write wj ij 1 Wij eJ Whereel, ..., &x are the standard unit vectorse*.

Consider the seA = {0 }U{w.}I 1U{q} 1 C Ep LetT : £, — Lo be any linear operator
which is non-contracting andl-Lipschitz on A. Assume first of all that ¥ p < 2. Then,

ok | 2k

ok(1+2/p) _ Z“w' ||p < Z”Tw' ||2_Z Zqu(ej)

ok oK
ZZ wi, wj )T (&), T(g))) = 2
i=1j=1

2k
IT(ej)l3 < 4% L2
=1

which implies that. > 2k1/P=1/2) — ((|A] — 1)/2)Y/P~1/2, Whenp > 2 apply the same
reasoning, with the inequalities reversed ]

We remak that the above point set was also used by Charikar and Sdhao [
give a lower bound on dimension reduction with a linear magp jn Their proof used
a linear pogramming argument, which does not seem to be generalizable to the case
of Lp, p > 1. Lemma 3.1formally implies their result (with a significantly simpler
proaf), and in fact proves the impossibility of dimension reduction with a linear map
inany Lp, p # 2. Indeed, if there were a linear operator which embédmto E%
with distortion D then it would also be @ - dIY/P~Y/2-embedding intar§. It follows
that D > ((|A] — 1)/2d)Y/P=1/2 Smilarly, since by John’s theorem (see e.g3))
any d-dimensional normed space igd equivalent to Hilbert space, we deduce that
there are arbitrarily large-point subsets of 1, anylinear embeddig of which into any
d-dimensional normed space incurs distortion at lg&st — 1)/2d.

4. An inherently high dimensional doubling metricin L4

This section is devoted to the proofbfieorem 1.3

Proof of Theorem 1.3. Consider the hakso graphs{Gi}°,, which are defined as
follows. Gg is the graph on two verticasith one @lge. To construd®;, take sixcopies of
Gj_1 and scale their metric by a factor ofd. We glue four of them in a cyclic manner by
identifying pairs of end-points, and attach at two opposite gluing points the remaining two
copies. Se&ig. 1below.

As shown in [L4], the graphgG; }°, are uniformly doubling (see als@§|, for a simple
argument showing they are doubllng with constant 6). Moreover, sincéithare ®ries
parallel graphs, they embed uniformlylin (see B]).

We will show below tha any embdding of Gj in Lp, 1 < p < 2, incurs distortion at
leasty/1 + ((p — 1)/4)i. We then onclude as in16] by observing thatd is 3-isonorphic
to Ed whenp = 1+ (1/logd), so if Gi embeds with distortior in Ed thena >

Vi /(40 logd). This imdies the reguired result since ~ log |G;i .
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Fig. 1. The Laakso graphs.

The proof of the lower bound for the distortion required to emi@dinto L is
by induction oni. We sall prove by induction that whenevdr : G; — L is non-
contracting then there exist two adjacent vertioes € G; suchthat| f (u) — f(v)|p >
dg, (U, v)/I+ ((p— 1)/4)i (observe that fou,v € Gj_1,dg,_,(U,v) = dg; (U, v)).
Fori = O there isnothing to prove. Foi > 1, sinceG; contains an isometric copy
of Gj_1, there areu, v € Gj corresponding to two adjacent vertices@j_; suchthat
[fWw — fWlp = dg (U, v)/IT+ ({(p—1D/H( —1). Let a, b be the two mid-points
betweeru andv in Gj. By Lemma 2.1 in [L6],

I — fI5+(pP-DIf@ - fOI
<l fw—f@I5+1f@— f@I5+1f@ — fOI5+ o) - fWI.

Hence,

max(|| f () — f@]5, IIf @ — f@I5, I f @) — FO)IZ, || ) — f W3

v

v

A/ Dl MR D

(1+ i 1(i - 1)) dg, (U, v)° +

1
1w = fI5+ (P -DIf@ - fb)

p_

1 2

4
p—1

1+ Ti) dg, (U, v)?

1+ F’;li> maxdg, (u, )%, dg, (&, v)?, dg, (v, b)?, dg, (b, W?). O

4
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We end this section by observing that the above approach also gives a lower bound on
the dimensiomequired to embed expander/ig .

Proposition 4.1. Let G be an n-point constant-degree expander which embeﬁ& iwith
distortion at mostv. Then d> n*?(/®)

Proof. By MatouSek’s lower bound for the distortion required to embed expanders in
£p [20], any embedding of into £, incurs distortions2(logn/p). Sincetd, is O(1)-
equivalentto@ﬁ')gd, we deluce thatr > 2(logn/logd). O

We can also obtain a lower bound on the dimension required to embed the Hamming
cube {0, 1}¥ into ¢.,. Our proof uses a simple concentration argument. An analogous
concentration argument yields an alternative prod®afposition 4.1

Proposition 4.2. Assume that{0, 1} embeds into¢d, with distortion . Then d >
zm(l/az)_

Proof. Let f = (f1,..., fg) : {0, 1}k — Ego be a contraction such that for every
u,v e {0, 1% || f(u) — f(W)llo = 2d(u, v) (Whered(, -) denotes the Hamming metric).
Denote by P the uniform probability measure d, 1}%. Since fa every 1< i < k, f;

is 1-Lipschitz, the standard concentration inequality on the hypercubeZ#penplies
that P(| fi (u) — Efi| > k/(4a)) < 26 X/G22 0On theother hand, ifu, v € {0, 1} are
suchthatd(u, v) = k then there exist 1< i < d for which | fj(u) — fi(v)| > k/«,
implying that max| f; (u) — Efj|, | fi (v) — Efj|} > k/(4a). By the union bound it follows
thatde=?®/«) > 1, as required. O

5. Snowflake versions of planar metrics

The problem of whether there is an analog of the Johnson-Lindenstrauss dimension
reduction emma inLp,1 < p < 2, is an interesting one which remains open. In
view of the above proof and the proof id€], a natural point set which is a candidate
for demonstrating the impossibility of dimension reductionlig is the realization of
the diamondgraph in¢, which appears inJ], equipped with the/, metic. Since this
point set consists of vectors whose coordinates are either 0 or 1 (i.e. subsets of the cube),
this amounts to considering the diamond graph with its metric raised to the poiper 1
Unfortunately, this approach cannot work; we show below that any planar graph whose
metiic is raised to the power 4 ¢ has Euclidean distortio®(1/./¢).

Given a metric spacgX,d) ande > 0, the metric spac&X, d1~¢) is known in
geometric analysis (see e.d.() as the 1— ¢ snowflake version of X, d). Assouad’s
classical theoreml] states that any snowflake version of a doubling metric space is bi-
Lipschitz equivalent to a subset of some finite dimensional Euclidean space. A quantitative
version of this result (with bounds on the distortion and the dimension) was obtained
in [9]. The following theorem is proved by combining embedding techniques of Bgo [
and Assuad [l]. A similar analysis is also used if]. In what followswe call a metric
Ky-excluded if it is the metric on a subset of a weighted graph which does not admit a
Ky minor. In particular, planar metrics are &k-excluded.
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Theorem 5.1. For any r € N there exists aonstant Gr) such hat for every0 < ¢ < 1,
a1l — ¢ snowflake version of a kexcluded metric embeds infe with distortion at most

C(r)/e.
Our argument is based oretfidlowing lemma, thegroof of which is contained inZ5)].

Lemmab5.2. For every r € N there is aconstan®s = §(r) such hat for everyp > 0 and
every K;-excluded metri¢X, d) there exists a finitely supported probability distribution
on partitions of X with the following properties:

1. For every P € supp(u), and for every Ce P, diam(C) < p.
2. Forevery xe X,E; Y ccpd(x, X\ C) > ép.

Obseave that the sum under the expectation in (2) above actually consists of only one
summand.

Proof of Theorem 5.1. Let X be aK;-excluded metric. For eaahe Z, we defne a map
¢n as follows. Letu, bethe probability distribution on partitions of from Lemma 5.2
with p = 219 Fix a partitionP e supp(in). For anyo € {—1, +1}!P!, considero to
be indexed bYC € P so thatoc denotes the value ef atC. Fdlowing Rao R5], define

1
op) = D g D oc dx X\0),
CeP

oe{—1,+1}IPI

and writegn = P pcsupgpn v#n(P) ¢p (here the symbab refers to the oncatenation
operator).
Now, following Assouad]], let {g }ic7 be an orthonormal basis 6§, and set

D(x) =y 27"/ g0 (%) @ en.

nez

Clam5.3. For every n € Z, and xy € X, we have ||[ph(X) — ¢n(Y)ll2 < 2 -

min{d(x, y), 2"/1=9}. Addtionally, if d(x,y) > 2"V1=9 then [¢n(X) — ¢n(Y)ll2 >
52019,

Proof. For any patition P € supp(un), let Cx, Cy be the tusters of P containing
x andy, respectively. Note that since for ever@ e P, diamC) < 2"1-8) when
d(x, y) > 2"/1-9 we haveCy # Cy. In this case,

lpp(X) — dp (N5 = Eqe_141y7iloc,d(x, X \ Cx) — oc,d(y, X \ Cy)[?
_ dx, X\ Co? +d(y, X\ Cy)?
> 5 .

It follows that

Ipn(X) — pn(V) 15 = By llpp (X) — pp (N3

2 2
Z Eﬂnd(xv X \ CX) —;Eﬂnd(yv X \ Cy) Z (5 2[‘]/(1—8))2.
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On the other had, for everyx, y € X, sinced(x, X \ Cx), d(y, X \ Cy) < 2V1=9),
we have thaflgp () — ¢p(Y)ll2 < 2- min{d(x, y), 2"/=)}; herce |¢n(X) — ¢n(Y)ll2 <
2. min{d(x, y),2V1=9 O

To finish theanalysis, let us fixx,y € X and letm be such thad(x, y)}=¢ e
(2™, 2™+1. In this case,

1200 — 25 =Y 272"/ )gn() — dn(W) 3

nez
< 4 Z 22n + 4d(X, y)2 Z 272['\8/(178)
n<m n>m

5 272m8/(178)
1 _ 2-2¢/(1-¢)
= O(1/¢) - d(x, y)?1~9,

— 22m+1 + 4d(X, y)

On the otler hand,

I8(x) — dYll2 > 27/ prn(X) — pm(V 2 > §2™ > ~d(x, y)1~*.

NI >

The proofis complete. [

Remark 5.4. The O(1/4/¢) upper bound iTheorem 5.1s tight. In fact, fori ~ 1/¢, the
1 — ¢ snowflake versionfathe Laakso graplG; (presented irSection 4 has Eglidean
distortion 2(1/./¢). To see tks, let f : G; — ¢2 be any non-contracting embedding of
(Gi, dé?e) into £2. For j < i denote byK; the Lipschitz constant of the restriction 6f

to (Gj, déi_s) (as before, we think 06 as a subset db;j). ClearlyKg = 1, and the same
reasoning as in the proof @heorem 1.3hows hat forj > 1, sz > (Kj271/4€) +(1/4).

This implies thal? > 7 + 4 + -+ + 2= = 2(1/¢), as reuired.
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