114 research outputs found

    Internet of things for disaster management: state-of-the-art and prospects

    Get PDF
    Disastrous events are cordially involved with the momentum of nature. As such mishaps have been showing off own mastery, situations have gone beyond the control of human resistive mechanisms far ago. Fortunately, several technologies are in service to gain affirmative knowledge and analysis of a disaster's occurrence. Recently, Internet of Things (IoT) paradigm has opened a promising door toward catering of multitude problems related to agriculture, industry, security, and medicine due to its attractive features, such as heterogeneity, interoperability, light-weight, and flexibility. This paper surveys existing approaches to encounter the relevant issues with disasters, such as early warning, notification, data analytics, knowledge aggregation, remote monitoring, real-time analytics, and victim localization. Simultaneous interventions with IoT are also given utmost importance while presenting these facts. A comprehensive discussion on the state-of-the-art scenarios to handle disastrous events is presented. Furthermore, IoT-supported protocols and market-ready deployable products are summarized to address these issues. Finally, this survey highlights open challenges and research trends in IoT-enabled disaster management systems. © 2013 IEEE

    Sensor-free corner shape detection by wireless networks

    Get PDF

    RFID Localization in Wireless Sensor Networks

    Get PDF
    Received signal strength (RSS)‐based localization of people and assets through RFID has significant benefits for logistics, security and safety. However, the accuracy of RFID localization in wireless sensor networks suffers from unrealistic antenna gain pattern assumption, and the human body has a major effect on the gain pattern of the RFID badge that the person is wearing. In this book chapter, the gain pattern due to the effect of the human body is experimentally measured and modeled. A method is presented to estimate the model parameters from multiple RSS measurements. Two joint orientation and position estimators, four‐dimensional (4D) maximum likelihood estimation (MLE) algorithm and alternating gain and position estimation (AGAPE) algorithm, are proposed to estimate the orientation and the position of the badge using RSS measurements from anchor nodes. A Bayesian lower bound on the mean squared error of the joint estimation is derived and compared with the Cramer‐Rao bound with an isotropic gain pattern. Both theoretical and experimental results show that the accuracy of position estimates can be improved with orientation estimates included in the localization system

    Device Free Indoor Localization Of Human Target Using WIFI Fingerprinting

    Get PDF
    Indoor localization of human objects has many important applications nowadays. Proposed here is a new device free approach where all the transceiver devices are fixed in an indoor environment so that the human target doesn\u27t need to carry any transceiver device with them. This work proposes radio-frequency fingerprinting for the localization of human targets which makes this even more convenient as radio-frequency wireless signals can be easily acquired using an existing wireless network in an indoor environment. This work explores different avenues for optimal and effective placement of transmitter devices for better localization. In this work, an experimental environment is simulated using the popular software Feko. The indoor geometry under study is first divided into several zones and then the received signal-strength indicators (RSSIs) are measured by the receiving antennae which serve as input features to our designed innovative machine-learning model to identify within which zone the target is. Our proposed machine-learning model, a multi-resolution random-forest classifier is composed of a cascade architecture that integrates and distills learned results over various zoning resolutions. The proposed new multi-resolution approach greatly outperforms the existing random-forest classifier. The average Euclidean-distance error resulting from our proposed new technique is 1.25 meters

    IoT and semantic web technologies for event detection in natural disasters

    Get PDF
    This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Natural disasters cannot be predicted well in advance, but it is still possible to decrease the loss of life and mitigate the damages, exploiting some peculiarities that distinguish them. Smart collection, integration, and analysis of data produced by distributed sensors and services are key elements for understanding the context and supporting decision making process for disaster prevention and management. In this paper, we demonstrate how Internet of Things and Semantic Web technologies can be effectively used for abnormal event detection in the contest of an earthquake. In our proposal, a prototype system, which retrieves the data streams from IoT sensors and web services, is presented. In order to contextualize and give a meaning to the data, semantic web technologies are applied for data annotation. We evaluate our system performances by measuring the response time and other parameters that are important in a disaster detection scenario.Peer ReviewedPostprint (author's final draft

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor

    On the design of smart parking networks in the smart cities: an optimal sensor placement model

    Get PDF
    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called ''anchor'' nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and e ciency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering e ciency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative e ciency of the single-step compared to the two-step model on di erent performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network

    Unified Fingerprinting/Ranging Localization in Harsh Environments

    Get PDF
    Context-awareness in wireless sensor networks (WSNs) relies mainly on the position of objects and humans. The provision of this positional information becomes challenging in the harsh environmental conditions where WSNs are commonly deployed. With an antagonistic philosophy of design, fingerprinting and ranging have emerged as the key technologies underpinning wireless localization in harsh environments. Fingerprinting primarily focuses on accurate estimation at the expense of exhaustive calibration. Ranging mainly pursues an easy-to-deploy solution at the expense of moderate performance. In this paper, we present a resilient framework for sustained localization based on accurate fingerprinting in critical areas and light ranging in noncritical spaces. Such framework is conceived from the Bayesian perspective that facilitates the specification of recursive algorithms for real-time operation. In comparison to conventional implementations, we assessed the proposed framework in an indoor scenario with measurements gathered by commercial devices. The presented techniques noticeably outperform current approaches, enabling a flexible adaptation to the fluctuating conditions of harsh environments
    corecore