10 research outputs found

    Investigation of QoS Performance Evaluation over 5G Network for Indoor Environment at millimeter wave Bands

    Get PDF
    One of the key advancement in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher data rates as compared to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), when we propagate the radio signal at high frequencies. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the realworld scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28 GHz, 38 GHz, 60 GHz and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. The results have been collected concerning the capacity of users to evaluate the average user throughput, cell-edge user throughput, average cell throughput, spectral efficiency and fairness index. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network

    Survey of millimeter-wave propagation measurements and models in indoor environments

    Get PDF
    The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond

    Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-with a focus on Propagation Models

    Get PDF
    This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range

    30 GHz Path Loss Modeling and Performance Evaluation for Noncoherent M-ary Frequency Shift Keying in the 30 GHz Band

    Get PDF
    A candidate millimeter-wave (mmWave) frequency band and modulation scheme that could fit to many present and future applications has been presented in this work. As is being explored by industry, we also suggest the 30 GHz band as a candidate carrier frequency and non-coherent frequency shift keying (NC-FSK) as a potential modulation scheme for future communication applications. The primary applications are aimed at 5th generation (5G) cellular type systems. Propagation measurements were conducted for outdoor and indoor environments using directional horn antennas for both co-polarized and cross-polarized antenna configurations to model the path loss for our candidate band. The measurements were conducted in typical line-of-sight (LOS) and non-LOS (NLOS) environments in a large building on the University of South Carolina campus, specifically at Swearingen Engineering Center. Several propagation path loss (PL) models are presented based upon this collected data. We can use these PL models in link budgets for estimating transmit power, antenna gains, receiver characteristics (e.g., noise figure), and link distances. The measurements also contribute to the body of knowledge on wireless channel propagation path loss for bands near 30 GHz. Another measurement campaign was also conducted at the USC campus to measure a unique and complicated vegetation attenuation that may be considered a large challenge to mmWave systems. Radio wave attenuation and depolarization effects through several broadleaf evergreen shrubs at 31 GHz are reported, based upon measurements. To obtain a comparative reference for this mmWave attenuation, another measurement was also conducted at 5 GHz. From these measurements, we analyzed the proportional relationships between the attenuation and the shrub density (related to species), depth, and measurement geometry. Three different shrub species with different densities and depths, and for different measurement geometries, were employed. Results are in terms of measured specific attenuations at 31 GHz—the attenuation in dB/m. These will also be useful for link budget design, and outdoor and outdoor-indoor models for future mmWave communication. For our 5G modulation scheme candidate, we evaluate its performance at 31 GHz via an empirical 3-D mmWave channel simulator: the NYUSIM channel model. As with all digital communication systems, performance is measured in terms of error ratios, and we evaluate the bit error rate (BER) performance of NC-FSK for different symbol rates over a variety of wireless mmWave channels. The NC-FSK scheme is known to be energy efficient for large alphabet size, and this is one of its virtues. Another is that since it is a form of FM, nonlinear amplification (far less costly than linear amplification) can be used. The performance evaluations enable us to present enhancements and trade-offs that can be done to improve the system performance by adjustment of the design parameters, i.e., modulation alphabet size and symbol rate, which together determine bandwidth (BW)

    Multi-band Wideband Channel Measurements in Indoor and Outdoor Environments above 6 GHz for 5G Networks

    Get PDF
    This document presented the results of ultra-wideband of multi-bands measurements performed in three different indoor environments such as large office, factory like and small office and one outdoor street canyon scenario at the science site of Durham University, United Kingdom. The measurements conducted using a wideband chirp sounder developed at Durham University. An analytical review of the radio wave propagation mechanisms and formulas is presented in addition to the background of the channel characteristics parameters and statistics. The parameters reviewed are the received signal strength, path loss, the excess, average and RMS delay spread, in addition to the angular parameters such as the angle of arrival (AoA), angle of departure (AoD) and the RMS angular spread. A literature survey for about 80 paper of the previous work are studied and summarised for the measurements and simulation performed to estimate different parameters in both indoor and outdoor scenarios. Two different measurements set up were performed in three indoor environments and one outdoor scenario to measure mainly, the frequency dependency in various channel characteristics parameters. In the first set the measured parameters are the received signal strength, path loss, and the excess, average and the cumulative distribution function (CDF) and the RMS delay spread in three indoor environments. While in the second set the 3D angular parameters such as AoA, AoD and RMS angular spread in both Tx and Rx sides are studied in three indoor and one outdoor environment mentioned earlier. The measurements set up and procedures are presented for each set of measurement. The measurements were performed using a wideband channel sounder up to 6 GHz for both sets. Five different frequency bands (i.e.13.4 GHz, 26.8 GHz, 54.2 GHz, 62.6 GHz and 70 GHz) were used in the first set and three bands (i.e.13.4 GHz, 26.8 GHz, 62.6 GHz) for the second set. A steerable horn antenna at both side using 3D positioner in the second set of measurements, while an omnidirectional antenna was used at the receiver side in the first set. A summary and discussion the extracted results for each set of measurements are given. Conclusions about the achieved results and the recommended future work are provided

    Channel Modeling and Tropospheric Effects on Millimeter Wave Communications for Aviation Applications

    Get PDF
    Next generation communication systems will be designed to be faster, more secure and easier to connect with than current systems. Along with the concept of internet of things (IoT), many more devices will be required to communicate with each other. In the case of aeronautical vehicles and systems, in addition to current navigation and surveillance systems, more data links will be required for multiple applications, such as photography, inspections, and entertainment. Current aviation frequency bands will likely be unable to support all proposed services. Apart from air-to-ground (AG) communication links, airport surface terrestrial links and satellite-to-air links (SA) are also of research interest. Most AG communication systems operate in L-band (960-1164 MHz) and below, with a few operating in C-band (5030-5150 MHz). Bandwidth provided by these frequency bands is limited, and will be unable to meet demands for future applications. Hence higher frequency bands in the millimeter wave range (30-300 GHz) are being actively investigated, aiming to fully utilize the much larger available bandwidths. Since millimeter wave (mmWave) signals behave somewhat different from lower frequency signals in AG, SA and terrestrial links, more work is needed to characterize mmWave channels in terms of tropospheric attenuation, path loss, obstacle attenuation, and wideband multipath fading and Doppler effects. In this dissertation, we investigate and model the tropospheric attenuation for AG and SA links, and model path loss and obstacle attenuation for terrestrial channels, with focus on aviation applications. Some wideband terrestrial channel measurement and modeling is also included. We utilize the tropospheric attenuation empirical model developed by the International Telecommunications Union (ITU) and quantify the effect of the type of precipitation data input on mmWave channel attenuation. Variability of tropospheric attenuation over the long term is also investigated for rain and cloud attenuation in particular, i.e., we investigate extreme rainy and foggy cases, since mmWave signals are so susceptible to these attenuations. Our findings quantify the differences in tropospheric attenuation model outputs with different precipitation data inputs: we find that differences can be substantial in terms of the percentage of time a given attenuation value is exceeded. Frequencies of 30, 60 and 90 GHz are investigated for terrestrial and short AG links, and frequencies 30 and 45 GHz for AS links, for four different climate types: temperate, subtropical, tropical, and rainforest. Results show that in 1 km terrestrial or AG links, local measured rain data input increases mean rain attenuation by 0.5-2 dB over results when ITU’s regional empirical rain data is input. Fog attenuation may increase by 8 dB at 90 GHz in the same comparison. In AS links, mean rain attenuation increases by 0.8 and 1.1 dB at 30 and 45 GHz, respectively, using local measured data input. Rain attenuation has a larger probability of occurrence at moderate-to-significant rain attenuation values: for example, at 90 GHz, 20 dB rain attenuation occurs at most 0.02% of time with ITU’s input data, but occurs an order of magnitude more often (0.2% of the time) with local measured input data. For path loss, we employ measurements in several settings, including a small airport building, and compare with ray tracing simulations. Multipath components are simulated via ray tracing software Wireless Insite, to obtain channel impulse responses, from which path loss and delay dispersion (e.g., root-mean-square delay spread (RMS-DS) were estimated. We compare the ray-tracing results with measurements for both narrowband signals and wideband signals of bandwidth 500 MHz. The characterization includes path loss and delay spread, and the mmWave results employ directional antennas. We provide preliminary channel characterization for several indoor channels and an outdoor channel at frequencies of 5, 30 and 90 GHz. Comparing our measured path loss results with free space path loss, mean path loss difference are 2.47, 2.72 and 0.31 dB for 5, 30 and 90 GHz, respectively, in indoor channels. For the widely used “close-in” reference distance path loss model, comparing simulation and measurement in 90 GHz channels, differences in model slope versus distance for simulation and measurement are less than 0.2, and standard deviation of large scale fading is less than 1.8 dB. These differences are less than 0.2 and 2 dB at 30 GHz, and less than 0.4 and 1.8 dB at 5 GHz. For large scale fading, the Generalized Extreme Value (GEV) distribution appears to describe excess path loss the best, instead of the commonly used Gaussian distribution. The Kolmogorov-Smirnov (KS) goodness of fit test statistic for GEV is 3% less than that for the Gaussian, for an example 90 GHz indoor channel. Small scale fading was also investigated for a densely sampled 5 GHz line of sight indoor office channel. The Lognormal distribution was found as the most accurate fit among tested distributions
    corecore